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Abstract

The design of modern semiconductor devices requires the numerical simula-
tion of basic fabrication steps. We investigate some electro-reaction—diffusion
equations which describe the redistribution of charged dopants and point de-
fects in semiconductor structures and which the simulations should be based on.
Especially, we are interested in pair diffusion models. We present new results
concerned with the existence of steady states and with the asymptotic behaviour
of solutions which are obtained by estimates of the corresponding free energy
and dissipation functionals.
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1. Introduction

In the design of modern semiconductor devices and in the development of their tech-
nology, device and process simulation programmes turned out to be very important
tools. The simulation of modern technologies requires the continuous improvement of
the underlying physical models and their analytical and numerical investigation.

One of the main steps in the preparing of semiconductor devices is the redistribution
of dopants connected with or followed after the doping. In order to explain this process,
different models have been developed. Of special interest are pair diffusion models
(see e. g. [2,4,10]). They consist in a set of reaction—diffusion equations for charged
dopants, point defects and dopant—defect pairs coupled with a Poisson equation for
the electrostatic potential of the inner electric field. Besides of the mentioned species
electrons and holes have to be taken into account. But we assume that their kinetics
is very fast such that the Poisson equation is replaced by a nonlinear Poisson equation
for the chemical potential of the electrons (see e. g. [7,10]).

Motivated by these considerations we investigate a rather general electro—reaction—
diffusion system for m species X;. We denote by v the chemical potential of the
electrons, by p;(¢) suitably chosen reference concentrations depending on v, and by
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w;, a; = u;/pi(¥), ¢ = Ina; the concentration, the electrochemical activity and the
electrochemical potential of the i-th species where all variables are suitably scaled.
We assume that the set {1,...,m} is split into two parts {1,...,m} = JU J', and
formulate the initial boundary value problem which we are interested in as follows:

3ui
ot

+V-ji+ > (4 —B)Ras = 0 on(0,00) xQ,
(a,B)ER
v-ji = 0 on (0,00)x 00, i€ J;

ou;
: (; —Bi)Roag = 0 on (0,00)xQ, i€
TR ’ 1)
V- (Vi) +e(®) = > Qi(¥)u; = f on (0,00) x Q,
i=1

v-Vip = 0 on (0,00) x 08;
w(0) = U; onQ, i=1...,m.

Here denote f a fixed charge density, —e(1)) the charge density of electrons and holes,
and Q;(¢) = —pi(¥)/pi(¥) the charge of the i-th species depending on 1, too. Only
for species ¢ € J there is a diffusive and convective transport given by the mass flux

Ji = —Di(0) [V + Qi(w) V], i € J.

But in all continuity equations occur source terms generated by a lot of mass action
type reactions of the form

ale—{——i—O{meﬁﬁle—i—‘{‘ﬁme, (oz,ﬁ)G'R,

where «, 8 € ZT' are the vectors of stoichiometric coefficients of the reaction and R
describes the set of all reactions under consideration. The corresponding reaction rate
Rp is given by

m m

Raﬁ(u7¢) - kaﬁ(¢)[Ha?i - Haiﬁz}? u < ]Rm7 ¢ S ]R7 a; = ‘ : ’ (Oé,ﬂ) € R.
i=1 i=1 pi(¥)

If each species has a constant charge then

pi(Y) = ﬂz‘e_qﬂp, Qi(v) = ¢, u;, g; = const,

and we arrive at a model which we have studied in great detail in [5,6,7,8] (for J =
0, but in a more general setting which is valid for heterostructures, too). There
energy estimates, global existence and uniqueness of a solution and further qualitative
properties of the solution have been established. For the pair diffusion model in [2,4]

it holds
> que
; = ue 4Y Q; _ s 2
pl) = T e Qi) = ®)

JE€J;
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It is the aim of this paper to show that the energy estimates are valid in this new
situation, too. More precisely, we prove that under some assumptions concerning the
initial value and the structure of the underlying reaction system (see assumptions (II),
(IIT) later on) there exists a unique steady state to (1), and that the free energy along
any solution to (1) remains bounded and decays monotonously and exponentially to
its equilibrium value as ¢ tends to infinity. From these assertions first global a priori
estimates for solutions to (1) are obtained (see Corollary 1 — Corollary 3). We expect
that based on these energy estimates further a priori estimates, and finally existence
results could be derived. In this direction first results may be found in [12] (for J" = ()
and for smooth data).

Notation. The notation of function spaces corresponds to that in [11]. By
Z7, R, [ we denote the cones of nonnegative elements. For the scalar product
in IR™ we use a centered dot. If w € R™ then v > 0 (u > 0) means u; > 0Vi
(u; > 0Vi); y/u denotes the vector {\/u;}i=1,..m, and analogously Inu, e* are to be
understood. If u, v € R™ then uv = {u;v;},—1,..m and analogously for u/v. Finally, if
v € RY and o € ZT' then u® means the product [[2; ui*. In our estimates positive
constants depending at most on the data of our problem are denoted by c.

2. Formulation of the problem

First we summarize the basic assumptions (I) which we assume to be fulfilled up to
the end of the paper:

Q) ¢ IR? bounded, Lipschitzian;

UeLP(Q,R™), fe L*Q);

e € CY(R), le(y)| <cell, e'(y) > >0, ¥ € R;

RCZL" X L™

kap € C(R), kas(¥)) >0, ¥ € R, (a,0) € R;

(1,...om}=JUJ, JnJ =0 (D)

Qi € Cl(]R)? |Q1(w)| <cg Q;(w) < Oa
¥

pi(¥) = pie W), pyy >0, Pi(¢) = / Qi(s)ds, Yy € R, i € JUJ;
0

forie J : D;e C(R), Di(¢p) >0, ¢ € R;

for i € J': there is a reaction of the form R, = kog(¢)) { 11457 - aﬂ.
jeJ

The last two assumptions imply that there is a sufficiently high dissipation in the
reaction—diffusion system, produced either by a diffusion—drift term (i € J) or by a
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suitable quadratic reaction term (i € J’). From (I) we easily find some further useful
properties:

Di, PL € 02(11:{)7

pi(¥) >0, pi(¥) = —pi(¥)Qi(¥), P () >0, pi(¥), |pi(v)] < ce¥l,

|P/(¥)] <¢, P'(¥) <0, P(¥) - Qi)Y >0, v eR, i=1,...,m;
P

g € CY(R) where g(¥) = e()y — | e(s)ds,

g(W) = c?, g(v) < ceVl) ¢ € IR;

pi(¥), Di(V), kap(¥p) > cr >0, ¥ € R, |[¢| < R.

Next we introduce the function spaces
Y =L*(QR"™), X={ueY:u € H(Q)Viec J}
and define the two operators

A (X NL®XQ,R™) x (H(Q) N L®(Q) — X*, E: H(Q) xY — (H(Q)),

(A(u, / > Di(y Vui + UiQi(w)vﬁf} -V dx
e
+ / Z aﬁu¢ in: ﬂz uzdx EGX,
(a,B)ER i=1

(B,0),0) = [ V0 90+ [ew) - S wQutw) - f] G} e, § e (@),

Because of (I) and of Trudinger’s imbedding theorem [14] the operator E(-,u) turns
out to be well defined on H'(Q) for every u € Y. The precise formulation of the
electro—diffusion system (1) now reads as follows:

W) + A®),v(t) =0, E@®),ut) =0, u(t)>0 faa t>0,
u(0) = U,
u € Li (Ry, X) N L, (Ry, L2(Q,R™)), v’ € L (R4, X7),
¥ € Ly (R, H(Q)) N Lis, (R, L2(Q)).

3. The nonlinear Poisson equation

Here we summarize some results concerned with the nonlinear Poisson equation.
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Lemma 1. Foranyu € Y, = L2 (Q,IR™) there exists a unique solution ) to E(¢, u) =
0. Moreover, there are a positive constant ¢ and a monotonously increasing function

d:IR; — IR such that

||¢ _@HH1 < CHU’ _EHY Vu,u € Yy, E(¢7u) = E(@vﬂ) =0,

[l < {1+ uilnwpr + d([]lm)}  Yu € Yy, E(w,u)=0.
=1

Proof. Since for u € Y, the operator E(-,u) is strongly monotone uniformly with
respect to u as well as hemicontinuous, and since for ¢ € H*(Q) the operator E(1, )
is Lipschitz continuous uniformly with respect to v, the first and second assertions are
obvious. The third assertion is a consequence of Groger’s regularity result [9] and of
Trudinger’s imbedding theorem [14]. =

Later on we are interested in a modified version of the Poisson equation which is
obtained by setting u = ap(¢), a € R™. We define £ : H'(Q) x R™ — (H'(Q))* by

(B(,0),9) = [ {0 VO + [etw) + L ani(w) - f] T} e, T Q)

Lemma 2. For anya € R there exists a unique solution v to E’(¢, a) = 0. Moreover,
for every R > 0 there is a positive constant c(R) such that

[l 1¥ll= < e(R) Va € RY, |lallwe < R, E(,a) =0,
I =Pl < e(R) la —allwn Ya,a € RY, [lalle @l < R, E(y,a) = E($,a) =0.

Proof. Again for a € IR'" the operator E(-,a) is strongly monotone uniformly with
respect to a as well as hemicontinuous. From this the existence and uniqueness result
follows. The estimate

el < (B, a)-E(©0,0),9) < | | [e<o>+leaip;<o>—f]w dz| < c(1+(allmm) |2

yields the assertion on the H'-norm of 1. The assertion on the L*-norm of v is
obtained from Lemma 1, for instance. Then the last assertion is obvious. ®

4. The energy and dissipation functionals

In this section we investigate basic properties of the free energy functional and of other
related functionals. First, we define F, F5 : Y, — IR by

R = [ G074 o)+ S u(R@) — @} e e e (@)
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where ¢ € HY(Q) N L>(Q) is the unique solution to the Poisson equation F(1,u) = 0,

= /Q;{uz{hl]% - 1} —i—pi(O)}dx, ueY,, (5)

and set
F(u) = Fi(u) + F5(u), u e Y.

The value F(u) can be interpreted as the free energy of the state u. Because of (3) it
holds

F(u) zc{HwHip + > Jwi Inw | 12 —1}, ueY,. (6)
i=1

For u,m € Y, and corresponding 1,9 € H*(Q) with E(¢,u) = E(1,u) = 0 we obtain
m . 1 .
R -F@ = [ {zwxui — ) + 31V = D)
) /_¢( ds_zul/ s — ) Qi(s)ds} dz

¥
> (P(®),u—a)y +cllv = dlipn = (PY),u—0)y. (7)

From this relation it follows that F}j is convex and continuous on the convex set Y, .
We extend Fj to Y by setting Fi(u) = +oo for u € Y\ Yy. Then the extended
functional F; : Y — IR is proper, convex, lower semicontinuous, and subdifferentiable
in each point u € Y, where P(1) € OF(u). Because of properties of its integrand the
functional F; is convex (see [3]) and continuous (see [7]) on Y . Again the extended
functional Fy : Y — R, Fy(u) = +oo for u € Y \ Yy, is proper, convex and lower
semicontinuous. For u,w € Y, with @ > § > 0 we obtain

Fy(u) — Fy(q) = /Q{.m1 +2;/u nu—ds}d
> (111@7“ ﬂ)y+|lx/ﬂ—\/ﬁlly2(1nm7u—ﬂ)% (8)

Thus, F; is subdifferentiable in points u € Y, with u > § > 0 and In(u/p(0)) € 0F,(u).
Finally, we have to extend the introduced functionals to the space X*. We define

Fo=(Flx): X* =R, k=1,2,
where the star denotes the conjugation (see [3])

Fr(v) = ig{(u,v)y ~ Fy(w}, veY, (Filx) (u)=sup{(uv) - F;(v)}, ue X"

veX

Easily one verifies that F, is proper, convex and lower semicontinuous, that F’k(u) =
Fi(u) for u € Y, and that it holds

P() € OF,(u), u € Y,, 1“;% € 0Fy(u), ue X, u>4 > 0. 9)
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Omitting the tilde we can summarize the properties of the free energy functional as
follows.

Lemma 3. The functional F = F, + F, : X* — IR is proper, convez and lower
semicontinuous. For u € Yy it can be evaluated according to (4),(5). The restriction
Fly, is continuous. If u € X and u > § > 0 then

(=P)+In—— =In——

2(0) ) €X, (€0F(u).

Next we study properties of the dual functional F* : X — IR,

F*(¢) = sup {(u,¢) = F(u)}, (eX.

ueX*

If F* is subdifferentiable in (, u € F*((), or equivalently, ¢ € OF (u), then (see [3])
FY() = (w,¢) — F(w), ¢ €0P(u) (10)

Mainly we are interested in the special situation that ¢ € IR™. Therefore, let ( € R™
be given, let 1» € H'(Q)NL>(Q) be the solution to the Poisson equation E (1, e¢) = 0,
and define u = p(¢)) e¢. Obviously, u € X, u > § > 0 and thus u € F*(¢). By means
of (10) we obtain

F*(() :/Q{%|V1/J|2 —i—/(:p e(s)ds — fw—i-g;p@-(O) [eCi_PiW) — 1}}dx, (eR™

We define the function
G=Fg~:R™ > R.

Because of (I), (3) we get the estimate

G(Q) = el + IC = P@ITIE — 1}, CeR™, (1)
and for ¢, € IR™ with corresponding 1,1 we find that
GO-GQ) = [ S n)EG-T)dr+ (D),
=1
1 — Y
w0 = [ (V@ -BP+ [ s)dls)ds
{

- f:lpz@) eZi/E (v —s)Qi(s)ds

S Gi—Pi(y)
+ ;pi(O) /Zi_PZ_@ (G — Pi(3) — s) e ds pda.
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Let R > 0 be given. Because of Lemma 2 there exist constants ¢;(R), cz(R) > 0 such
that for all ¢, ¢ with ||(||r=, ||{||rm < R it holds

w(¢,0) = a®{Iv =l +1¢ =T (P@) - P@))]i:},
w(¢,0) < eaR) I~ Tlfm

From these estimates we derive the following assertions.

Lemma 4. The function G = F*|g= : R™ — IR is strictly convez, continuous and
Fréchet differentiable,

9G(0) = [ p(v)dr, CER™, E(w,ef) =

A further functional which we are interested in is the dissipation functional, or
more precisely, a lower estimate of this functional. We define the set

Mp = {u € LT(Q,R™) : va € X, where a = u/p(¢) and E(¢,u) = 0}

and the functional D : Mp — IR by

= [ {Z4D@m@)Vyar

e

+ Y 2kas@)Va" — va" 2} dz, u e Mp. (12)

(a,8)ER

Lemma 5. For all w € Mp it holds D(u) > 0. If u € Mp and D(u) = 0 then
u = ap(yp) where 1 is the solution to E(¢,u) =0 and

a€R?, a*=d° Y(a,B)ER

Proof. The first assertion is obvious. Now let D(u) = 0. Since all coefficients in (12)
are strictly positive we obtain a; = const > 0, i € J, as well as a® = a°, (o, 8) € R.
Because of the last assumption in (I) we find that a; = const > 0, ¢ € J', too. ®

5. Monotonicity and boundedness of the free energy

According to thermodynamic principles the free energy should monotonously decrease
along solutions to the evolution problem (P). This property is indeed obtained from
the following theorem.

Theorem 1. Let (u,) be a solution to (P) and set a = u/p(y)). Then Ja €
L} (Ry, X), u(t) € Mp fa.a. t >0, and for every X\ € Ry it holds

loc

M2 F(u(ty)) — M F(u(ty)) — /“ MAF(u(t)) - D(u() }dt <0, 0<t <t

t1
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Proof. 1. Let (u, ) be a solution to (P), A € R, S = [t1,t2]. Then u € H*(S, X*),
v e L*(S,HY(Q)), P(y) € L*(S,X) and VP(¢) = Q(0)V1. Because of (9) we find
P(y(t)) € OF(u(t)) f.a.a. t € S. Therefore, the function ¢ — Fj(u(t)) is absolutely
continuous on S and there holds the chain rule (see [1])

4 p ) = W (), P(t)) faa. t € S.

dt
2. We define u’ = u+ 6 for 6 > 0. Then v’ € H(S, X*), In(u’/p(0)) € L*(S, X)
and VIn(ul/p;(0)) = Vu;/(u; +0), i € J. Because of (9) we find In(u’(t)/p(0)) €
OFy(u’(t)) fa.a. t € S. Thus, the function ¢ — Fy(u’(t)) is absolutely continuous on

S and

d , ud(t
TR (®) = (u (t),lnTg))> fa.a. teS.

3. Using these results and setting ¢(° = In(u®/p(¥)) € L?(S, X) we obtain

to

*[Re) + B @)] 2 = [ Fwe) + RO )] + wo.00)

t1

Here we insert the evolution equation,

(W'(t), (1) = —(A(u(t), ¥ (1)), (1) = —{A(u’ (1), ¥ (1)), C°(1)) + 1°(t) faa. t € S

where b9 = (A(u, ) — A(u, ¥), ¢%). We set a® = u®/p(1h) = e¢’. Then va® € L*(S, X)

and V\/;f = \/;fVCf, 1 € J. Some simple calculation yields

1

2
D) [Vul + Qi()uiVe] - V& = D)l | VG = 4 Dy()pu()| Vel i € U,

Rap(u’,9) (@ = B) - ¢° = kap() [ — | (a = B) - ¢* > 2kag(v))|Va® " — Vi,

and thus we obtain

[ e {SAD@nITdR ¢ T 2hao)Va - ViR dsa

(vf)eR
< [T Al @), 0(0), ) dt = (13)
where

1 = [" M A[Fu(u(0) + B’ @)] + @)} de - ¥ [Fi(u(t) + Fa(u(9)]

t1

to

t1 )
4. Now let  — 0. First, we easily find that

H s H= [t F(u(t)) dt — e F(u(t)) [

t1

tl'
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By Lebesgue’s dominated convergence theorem we obtain that va® — /a in L*(S,Y),
and at least for a subsequence, vVa® — /a a.e. on S x . Fatou’s lemma yields

L[ % 2kaslva - va’ P

(a,B)ER

< liminf / /Q MY 2oy (W)Va " — VS [Pdxdt. (14)
t1

0—0 (aBER
Finally, let 7 € J. Since 1 € L>(S, L*°) and since the sequence H° is bounded because
of (13) there exists a constant ¢ > 0 such that HV\/;;'SHL2(S’L2) < ¢. From this
Via € IX(S, 1), Vydd = Vya in XS, L%, i€l

follows (see [13, Proposition 2.4|), and because of the weak lower semicontinuity of
continuous quadratic functionals we arrive at

to
/ / 'S4 D, (0)ps ()| V /a2 dardlt
t1

ieJ

< At 512
hIgl_)lglf/ / > 4D;()pi(¢ |V\/7| dzdt. (15)

ieJ

t
Hence /a € L?(S, X), and from (13) — (15) we obtain / "MDut)dt < H. m

t1

Corollary 1. Along any solution (u,) to (P) the free energy F(u) remains bounded
from above by its initial value F(U) and decreases monotonously,

Flu(ts)) < Flu(ty)) < F(U), 0<t, <t

Moreover, there exists a constant ¢ depending only on the data such that

Z |wi Inw;l| Lo 1)) < 6 Ul zomy i @mrm)) < 6,
i=1
"¢"L°°(R+,H1(Q)) <c, ’WHLO@(R+,LOO(Q)) <c

for any solution to (P).

Proof. The first assertion follows from Theorem 1 by setting A = 0. The remaining
estimates are a consequence of (6) and Lemma 1. =

6. Invariants and steady states

We introduce the stoichiometric subspace S belonging to all reactions,

S =span{a—f(: (a,f) € R} C R™.
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By integrating the continuity equations over (0,t) x £ one easily verifies the following
invariance property.

Lemma 6. If (u,v) is a solution to (P) then /

Q{u(t)—U}deSfor allt € IRy

Now we ask for steady states belonging to the evolution problem (P) which satisfy
such an invariance property, too. Thus we have to solve the following problem.

A(u,v) =0, E(@,u)=0, u>0,

/Q{U—U}dxeS, (S)
we XNL®(QR™), e H(Q)NL®Q).

Lemma 7. If (u,v) is a solution to (S) then uw € Mp and D(u) = 0.

Proof. The proof is similar to that of Theorem 1. Let (u,1) be a solution to (S),
define a = u/p() and set u® = u + 4§, a® = u®/p(v)), ¢° = Ina’® where § > 0. Then

¢, Vad € X, (A(u’,¢),(%) = h°

where h% = (A(u’ 1) — A(u, ), (%) — 0if § — 0. Furthermore, va? — y/a in Y and
because of the estimate

| {ZaD@m@Ivyail + T 2kl GV~ Va Pz < (AW, 0),¢%)

ieJ B)ER
we find that V\/a! —~ V /@ in L2, i € J. Thus v/a € X, u € Mp and
0<D(u) < li%niglf(A(ué,w),C5> =0. m
_)

Next, we show that there is a correspondence between the set of steady states, i. e.
the set of solutions to (S), and the set A C R™ defined by

A = {ae]RT: a® =d’ V(a, B) € R, / {u—U}deS,
Q
where u = ap(+) and 1 is the solution to E(t,a) = 0}.

Lemma 8. If (u,v) is a solution to (S) then a = u/p(y) € A. Vice versa, if a € A
and u, are chosen as in the definition of A then (u,) is a solution to (S).

Proof. The first assertion follows from Lemma 7 and Lemma 5. If a € A then ob-
viously ¢ € HY(Q)NL®(Q), u = ap(t) € X NL=(Q,R™), u > 0, Vu; = ap() Vo) —
—u;Qi(V)V, i € J, A(u,v) =0, and E(¢,u) = E(¢,a) =0. W
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Finally, we show that the set AN int R"" corresponds to the set of minimizers of
the function G : R™ — IR defined by

Gol() = G(O) +15:(Q) = [ U-Cdz, CeR™

This function is proper, convex and lower semicontinuous, dom Gy = S*. Because of
the continuity of G (see Lemma 4) we obtain by the Moreau-Rockafellar theorem (see
[3]) that

8Go(C) = AG(C) + D51 (¢) — /Q Udz, ¢ € R™. (16)

Lemma 9. Ifa € AN intIRY then ¢ = Ina is a minimizer of Go. Vice versa, if
¢ € R™ is a minimizer of Gy then a = e* € AN int IR

Proof. Because of (16) and Lemma 4, ¢ is a minimizer of Gy if and only if

1 _ — ¢ _
cest, 9G(0) /Qde /Q{e p) ~Uldres
where v is the solution to E(1,e¢) = 0. The relation ( € St is equivalent to
(a—B)-¢=0V(a,B) € R, or to (e¢)* = ()P VY(a, ) € R. Since the map ¢ + e¢ is

a bijection from IR™ onto int IR’ all assertions of the lemma are obtained. m

Lemma 10. The set AN int IR contains at most one element. Furthermore, AN
int IRY" # 0 if and only if the following condition is fulfilled:

/QU-de>O Ve e St C>0, CAO. (1)

Proof. 1. The first assertion follows from Lemma 9 since the functions G and Gy|s+

are strictly convex. B B B
2. If a € AN intR7 then for any ¢ € S*, (>0, ¢ # 0 we find

/ U-(dx :/ Zaipi(w)zidx > 0.
Q Q=
3. Now let (II) be fulfilled. According to Lemma 9 we have to show, that there is a

minimizer of Gy. It is sufficient to verify the property Go(¢) — +oc if ||(||rm — +00.
Suppose this to be false. Then there exist R € IR, and a sequence (, € S* such that

1Callmm — 00,  Gol(Ca) = G(Cn) — /Q U.¢,de < R.
Using (11) this implies

e {1enlin + G = P@)TIE ) — (U, Gy < R+ ca. (17)
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We set 1), = Un /Gl (o = Cn/||Call, and assume that ¢, = —C in R™ where ¢ € S+,

¢ # 0. Because of (17) we find 1, — 0 in H'(Q2), and ¢ > 0 since P is Lipschitz
continuous. Again using (17) we obtain (U, )y < 0 in contradiction to (II). m

There are examples of reaction—diffusion systems with steady states where the cor-
responding a € A belongs to R even if condition (II) is satisfied. But in many
applications e. g. in semiconductor technology this can not happen. Therefore in our
following considerations we shall assume that

ANORY = 0. (III)
Then we may summarize our results concerned with the steady states to (P) as follows.

Theorem 2. Let the additional assumption (1) be fulfilled. Then there ezists a
solution (u*,v*) to (S) with following properties:

a* =u*/p(y*) € R™, a* >0, * =Ina* € S, u* >c>0ae. on Q.
If (I11) is fulfilled, too, then there is no other solution to (S).

Corollary 2. Assume (II) and let (u*,9*) be the solution to (S) as in Theorem 2.
Then for any solution (u,) to (P) it holds

F(u*) < Fu(t)) VteR,, /O " Du(t)) dt < F(U) — F(u?).

Proof. This follows from (7), (8) with @ = u*, ¥ = ¢* and from Theorem 1. m

7. Exponential decay of the free energy

In this section we shall prove that for any solution to the evolution problem (P) (with
the initial value U) the free energy F'(u) decays exponentially to its equilibrium value
F(u*) (where u* belongs to that compatibility class which is generated by U) if the
additional assumptions (II) and (III) are fulfilled. This will be a consequence of the
following estimate of the free energy by the dissipation functional.

Theorem 3. Let (II) and (III) be satisfied. Then for every R > 0 there exists a
constant cg > 0 such that

F(u)— F(u") <cgD(u) Yu€ Mg

where

My = {u € Mp: F(u)~ F(u") <R, /Q(u ~U)dz € S}
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Proof. 1. For u € Mg let 1, a be defined by E(¢¥,u) = 0, a = u/p(¢). First let
us note that there is a c¢(R) > 0 such that |||z, ||[¢|~ < ¢(R) Vu € Mg. Setting
F(u) = F(u) — F(u*) and using (7), (8) and Theorem 2, we obtain the estimates

R){lla/ar =113 + [ — ¢ [} } < F(u), (18)
F(u) < e(R) [[u— |3, (19)

D(u) > e3(R)D(u), D(u) :/ﬂ{‘ J ajar" - Jajar o

for all u € Mg with positive constants c,(R). It remains to show that for every R > 0
there exists a ¢g > 0 such that

2
ai/a;

F(u) <¢grD(u) Yue Mg\ {u*}.

2. Suppose this assertion to be false. Then there exist R > 0 and sequences ¢, € R,
u, € Mg such that ¢, — +00 and

0 < ¢n D(uy) < F(uy,) < R. (20)

Let 1, a,, be correspondingly defined. (18), (20) imply that |[¢n[ g1, [[v/anlly < c¢(R),
E(un) — 0. Therefore v,, — ;Z in H, ¢, — ¥ in L% For i € J we find @; € R, with

ani — v/@; in H! and in each LP. For i € J' we have at least a,; — a; € IR, in L?
since for such 7 there is a special reaction for which

*a]' *2
/ )H\/anj/aj — api/a;
Q jes

Fatou’s lemma ensures that a® = a°V(«, 3) € R. Setting @ = ap(¢) we get u, — 4

in Y, and thus [o(a — U)dz € S. The estimate |[¢nip — Ynllm < ¢||tngp — wnlly

shows that 1, — ¢ in H'. Using properties of E we conclude that E(i,,d) —
E(, ) in (HY)*, E(¢,, 1) — 0 in (HY)*. Thus E(¢,@) = E(1,ad) = 0 is obtained.

Summarizing, we have found that @ € .A. Now assumption (III) ensures that @ = a*

and correspondingly @ = u*, ¢ = ¢*. From (19) we conclude that F(u,) — 0.

3. We set

Wy =1/ an/a* - 1; )\n =YV F(un); bn - wn/)\n) Yn = (un_U*)/)\n; Zn = (wn _w*)/)\n

In the formula for the lower bound of the dissipation rate

/{Zlvwml2+ > 1w = (14 w,)*} d

icJ (a,B)ER

we use the binomial expansion

[T+ we) =14+ @ + w(w,), L o) <o > {Aalbuil” + A b |

il 1€l n el
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where po = max{2, ey ac}. (18), (20) imply that [[zallgn, [bally < e(R), Dlun) /A2 -
0. Therefore 2, — z in H', 2, — Z in L?. Now, for i € J we find b,; € R, with
bni — b; in H' and in each LP, moreover \,||b2,|[z: — 0. For i € J' from

1 Qa — P 2
/Q)A—n{jEHJ(Hwnj) 1} — 2b, — Aab2,

it follows that 2b,; + A.b2, — 2b; € R, in L2, and because of the estimate
lbns = billz2 < e(R) ([12bni + Anby; = 2bill 22 + Anllbusll 22)

we get by; — b; in L2 as well as Anllb2ill2 — 0. Fatou’s lemma yields (a — f3) b=
0 V(e, ) € R, or in other words, b € SL Setting § = a*p(¥*)(2b — Q(¢¥*)Z) we get

Iy = Glly < cR){l1bn = blly + [120 — Zllz2 + X (30 182:M122 + 1)},
i=1
and thus y,, — § in Y. Consequently, [,7dz € S and (b, §)y = 0. Finally, we obtain
(B, ) = By un) = 97) = = [ z Qi) i

and using (5, ¥)y = 0, in the limit we arrive at

= /ZQ zyzdx—/z VD) ide = [ 3 i
= 1a“pz

Therefore § = 0, and (19) gives the contradiction 1 < ¢3(R)||yn/3 — 0. =

Corollary 3. Let the assumptions (II), (III) be fulfilled. Then along any solution
(u, ) to (P) the free energy F(u) decays exponentially to its equilibrium value F(u*),

F(u(t)) — Fu*) <e ™ (F(U) - F(u*)) Vt>0

where \ depends only on the data. Moreover, there is a constant ¢ such that
lu(t) = u* || rammy, [19() = 7o) < ce™™? vt >0
for any solution to (P).

Proof. Because of Corollary 1 and Lemma 6 for R = max{l, F(U) — F(u*)} > 0
it holds u(t) € Mg f.a.a. t > 0. We set A = 1/cg and with Theorem 3, Theorem 1
the first assertion is obtained. In Theorem 2 have we stated that ¢(* € S*. Then the
estimates follow from (7), (8) by setting there @ = u*, ¢ = ¢*. ™
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8. Remarks

Remark 1. We consider a special version of the pair diffusion models in [2,4]. The
meaning of the species and the used reactions are outlined in Fig. 1. Here m = 5,
i=1,...,5, orin the notation of Fig. 1,1 = A, I,V, AI,L AV, J ={2,3,4,5}, J' = {1}.
The functions p;, Q; are given by (2), D;, k. are similar averaged quantities and
e(1)) = c sinhy. These functions have all properties which are required in (I). Next
we find that dimS = 3, dimS*+ = 2, §* = span {(1,0,0,1,1),(0,1,—1,1,—1)} such
that there are two invariants the value of which is fixed by the initial state, namely

L(t) = /Q wa(t) + war(t) + way (t)] da = 1,(0),

L(t) = /Q[UI(t) —uy(t) + uar(t) —uay(t)|de = I(0) Vit e R,.
Condition (IT) means that ;(0) > 0, and we easily verify that then assumption (III)
is fulfilled, too. Thus our results can be applied to this special model.

Remark 2. In (1) the boundary conditions for the first set of continuity equations
can be replaced by the following ones:

veji= Y. (o;—B;)RLs on (0,00) x 9, i€ J,
(a,8)ERT

RE(x,u,9) = k(e 9) [[[ o — [[ o], 2 €09, ue R™, ¢ € R, a; = —
i=1 i=1 pi(¢)
where (o, 8) € R" and R C {(a,8) € ZT X ZT:c; = B; = 0Vi € J'} describes a set
of additional boundary reactions. We assume that for each (a,3) € R' the function
ki - 00 x R — IR satisfies the Carathéodory conditions and
cr(®) < kig(w,9) < cop(z) faa. z €0Q, VW € R, [¢| <R,

C1,R, C2,R € Lf(@Q), le1r

|Ll(aQ) > 0.

All boundary reactions must be included into the definition of the sets S, A, and in
the definition of A, D boundary integrals have to be added. Then all assertions of the
paper, especially the assertions of Corollary 1 — Corollary 3 remain valid.

Remark 3. Testing the Poisson equation E(1,u) = 0 by ¢ = 1 the global electroneu-
trality condition

[, letw) - 3 Qw0 win) - faz =0 vt e R, 21)

is obtained. If we want to use other boundary conditions for the Poisson equation
in (1) then condition (21) must be taken onto account, too. Therefore, as in [7] we
consider mixed boundary conditions of the form

Y=_C on(0,00)xTp, v-VYp+71p=7( on (0,00)xTIy
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I I I I host atom
A==I1+AV AV=A+V on lattice site

A [ ) dopant atom
_ -.— - on lattice site

. R G PPy
| - |* | | host atom
| | on interstice
RS RS \ vacancy

Al @ dopant—
interstitial pair
AV @ dopant—

vacancy pair

0O=V+I AV+AI==2A

Fig. 1: Species and reactions in the pair diffusion model (see [2,4]). The corre-
sponding reaction rates are given by

Rop = kap(¥) (aa — araay), Rop = kap(¥) (aav — aaay),
Rag = kap(¥) (aa — av aar), Rag = kap(t) (aar —anar),
Rop = kap(¥) (1 — ay ay), Rop = kap(¥) (aav aar — a%)

where e. g. for the first reaction oo = (1,0,0,0,0), 8 = (0,1,0,0,1) and for the last
one a = (0,0,0,1,1), 8 =(2,0,0,0,0).

where the new unknown quantity (y : Ry — IR (the electrochemical potential of elec-
trons, i. e. the Fermi level) has to be determined by means of the nonlocal constraint
(21). We assume that

I'p, 'y are disjoint open subsets of 9Q, 092 =T'p U Ty,

I'p N T consists of finitely many points,

T E LT(PN), mesI'p + ||T||L1(I‘N) > 0.
The definition of E must be changed (see |7]) and F, F'* contain an additional boundary
integral. Again, all assertions of Corollary 1 — Corollary 3 remain valid.

Remark 4. As in [6] analogous energy estimates and asymptotic properties can be
derived for a discrete-time version of (1) using an implicit scheme of first order.
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