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Abstract

The design of modern semiconductor devices requires the numerical simula-

tion of basic fabrication steps. We investigate some electro�reaction�di�usion

equations which describe the redistribution of charged dopants and point de-

fects in semiconductor structures and which the simulations should be based on.

Especially, we are interested in pair di�usion models. We present new results

concerned with the existence of steady states and with the asymptotic behaviour

of solutions which are obtained by estimates of the corresponding free energy

and dissipation functionals.
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1. Introduction

In the design of modern semiconductor devices and in the development of their tech-

nology, device and process simulation programmes turned out to be very important

tools. The simulation of modern technologies requires the continuous improvement of

the underlying physical models and their analytical and numerical investigation.

One of the main steps in the preparing of semiconductor devices is the redistribution

of dopants connected with or followed after the doping. In order to explain this process,

di�erent models have been developed. Of special interest are pair di�usion models

(see e. g. [2,4,10]). They consist in a set of reaction�di�usion equations for charged

dopants, point defects and dopant�defect pairs coupled with a Poisson equation for

the electrostatic potential of the inner electric �eld. Besides of the mentioned species

electrons and holes have to be taken into account. But we assume that their kinetics

is very fast such that the Poisson equation is replaced by a nonlinear Poisson equation

for the chemical potential of the electrons (see e. g. [7,10]).

Motivated by these considerations we investigate a rather general electro�reaction�

di�usion system for m species Xi. We denote by ψ the chemical potential of the

electrons, by pi(ψ) suitably chosen reference concentrations depending on ψ, and by
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ui, ai = ui/pi(ψ), ζi = ln ai the concentration, the electrochemical activity and the

electrochemical potential of the i-th species where all variables are suitably scaled.

We assume that the set {1, . . . ,m} is split into two parts {1, . . . ,m} = J ∪ J ′, and
formulate the initial boundary value problem which we are interested in as follows:

∂ui
∂t
+∇ · ji +

∑
(α,β)∈R

(αi − βi)Rαβ = 0 on (0,∞)×Ω,

ν · ji = 0 on (0,∞)× ∂Ω, i ∈ J ;

∂ui

∂t
+

∑
(α,β)∈R

(αi − βi)Rαβ = 0 on (0,∞)×Ω, i ∈ J ′;

−∇ · (∇ψ) + e(ψ)−
m∑
i=1

Qi(ψ)ui = f on (0,∞)×Ω,

ν · ∇ψ = 0 on (0,∞)× ∂Ω;

ui(0) = Ui on Ω, i = 1, . . . ,m.

(1)

Here denote f a �xed charge density, −e(ψ) the charge density of electrons and holes,

and Qi(ψ) = −p′i(ψ)/pi(ψ) the charge of the i-th species depending on ψ, too. Only

for species i ∈ J there is a di�usive and convective transport given by the mass �ux

ji = −Di(ψ)
[
∇ui +Qi(ψ) ui∇ψ

]
, i ∈ J.

But in all continuity equations occur source terms generated by a lot of mass action

type reactions of the form

α1X1 + . . .+ αmXm ⇀↽ β1X1 + . . .+ βmXm, (α, β) ∈ R,

where α, β ∈ ZZm+ are the vectors of stoichiometric coe�cients of the reaction and R
describes the set of all reactions under consideration. The corresponding reaction rate

Rαβ is given by

Rαβ(u, ψ) = kαβ(ψ)
[ m∏
i=1

aαii −
m∏
i=1

aβii
]
, u ∈ IRm, ψ ∈ IR, ai =

ui
pi(ψ)

, (α, β) ∈ R.

If each species has a constant charge then

pi(ψ) = ui e
−qiψ, Qi(ψ) = qi, ui, qi = const,

and we arrive at a model which we have studied in great detail in [5,6,7,8] (for J ′ =
∅, but in a more general setting which is valid for heterostructures, too). There

energy estimates, global existence and uniqueness of a solution and further qualitative

properties of the solution have been established. For the pair di�usion model in [2,4]

it holds

pi(ψ) =
∑
j∈Ji

uje
−qjψ, Qi(ψ) =

∑
j∈Ji

qjuje
−qjψ

∑
j∈Ji

uje
−qjψ

. (2)
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It is the aim of this paper to show that the energy estimates are valid in this new

situation, too. More precisely, we prove that under some assumptions concerning the

initial value and the structure of the underlying reaction system (see assumptions (II),

(III) later on) there exists a unique steady state to (1), and that the free energy along

any solution to (1) remains bounded and decays monotonously and exponentially to

its equilibrium value as t tends to in�nity. From these assertions �rst global a priori

estimates for solutions to (1) are obtained (see Corollary 1 � Corollary 3). We expect

that based on these energy estimates further a priori estimates, and �nally existence

results could be derived. In this direction �rst results may be found in [12] (for J ′ = ∅
and for smooth data).

Notation. The notation of function spaces corresponds to that in [11]. By

ZZm+ , IR
m
+ , L

p
+ we denote the cones of nonnegative elements. For the scalar product

in IRm we use a centered dot. If u ∈ IRm then u ≥ 0 (u > 0) means ui ≥ 0 ∀i
(ui > 0 ∀i);

√
u denotes the vector {

√
ui}i=1,...,m, and analogously lnu, eu are to be

understood. If u, v ∈ IRm then uv = {uivi}i=1,...,m and analogously for u/v. Finally, if
u ∈ IRm+ and α ∈ ZZm+ then uα means the product

∏m
i=1 u

αi
i . In our estimates positive

constants depending at most on the data of our problem are denoted by c.

2. Formulation of the problem

First we summarize the basic assumptions (I) which we assume to be ful�lled up to

the end of the paper:

Ω ⊂ IR2 bounded, Lipschitzian;

U ∈ L∞+ (Ω, IR
m), f ∈ L2(Ω);

e ∈ C1(IR), |e(ψ)| ≤ c ec|ψ|, e′(ψ) ≥ c > 0, ψ ∈ IR;

R ⊂ ZZm+ × ZZ
m
+ ;

kαβ ∈ C(IR), kαβ(ψ) > 0, ψ ∈ IR, (α, β) ∈ R;

{1, . . . ,m} = J ∪ J ′, J ∩ J ′ = ∅;

Qi ∈ C1(IR), |Qi(ψ)| ≤ c, Q′i(ψ) ≤ 0,

pi(ψ) = pi0 e
−Pi(ψ), pi0 > 0, Pi(ψ) =

∫ ψ
0

Qi(s) ds, ψ ∈ IR, i ∈ J ∪ J ′;

for i ∈ J : Di ∈ C(IR), Di(ψ) > 0, ψ ∈ IR;

for i ∈ J ′ : there is a reaction of the form Rαβ = kαβ(ψ)
[ ∏
j∈J

a
αj
j − a2i

]
.

(I)

The last two assumptions imply that there is a su�ciently high dissipation in the

reaction�di�usion system, produced either by a di�usion�drift term (i ∈ J) or by a



4 Hünlich & Glitzky

suitable quadratic reaction term (i ∈ J ′). From (I) we easily �nd some further useful

properties:

pi, Pi ∈ C2(IR),

pi(ψ) > 0, p′i(ψ) = −pi(ψ)Qi(ψ), p′′i (ψ) ≥ 0, pi(ψ), |p′i(ψ)| ≤ c ec|ψ|,

|P ′i (ψ)| ≤ c, P ′′i (ψ) ≤ 0, Pi(ψ)−Qi(ψ)ψ ≥ 0, ψ ∈ IR, i = 1, . . . ,m;

g ∈ C1(IR) where g(ψ) = e(ψ)ψ −
∫ ψ
0

e(s) ds,

g(ψ) ≥ c ψ2, g(ψ) ≤ c ec|ψ|, ψ ∈ IR;

pi(ψ), Di(ψ), kαβ(ψ) ≥ cR > 0, ψ ∈ IR, |ψ| ≤ R.

(3)

Next we introduce the function spaces

Y = L2(Ω, IRm), X = {u ∈ Y : ui ∈ H1(Ω) ∀ i ∈ J}

and de�ne the two operators

A : (X ∩ L∞(Ω, IRm))× (H1(Ω) ∩ L∞(Ω))→ X∗, E : H1(Ω)× Y → (H1(Ω))∗,

〈A(u, ψ), u〉 =
∫
Ω

∑
i∈J

Di(ψ)
[
∇ui + uiQi(ψ)∇ψ

]
· ∇ui dx

+
∫
Ω

∑
(α,β)∈R

Rαβ(u, ψ)
m∑
i=1

(αi − βi) ui dx, u ∈ X,

〈E(ψ, u), ψ〉 =
∫
Ω

{
∇ψ · ∇ψ +

[
e(ψ)−

m∑
i=1

uiQi(ψ)− f
]
ψ
}
dx, ψ ∈ H1(Ω).

Because of (I) and of Trudinger's imbedding theorem [14] the operator E(·, u) turns
out to be well de�ned on H1(Ω) for every u ∈ Y . The precise formulation of the

electro�di�usion system (1) now reads as follows:

u′(t) +A(u(t), ψ(t)) = 0, E(ψ(t), u(t)) = 0, u(t) ≥ 0 f.a.a. t > 0,

u(0) = U,

u ∈ L2
loc
(IR+, X) ∩ L∞

loc
(IR+, L

∞(Ω, IRm)), u′ ∈ L2
loc
(IR+, X

∗),

ψ ∈ L2
loc
(IR+, H

1(Ω)) ∩ L∞
loc
(IR+, L

∞(Ω)).

(P)

3. The nonlinear Poisson equation

Here we summarize some results concerned with the nonlinear Poisson equation.
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Lemma 1. For any u ∈ Y+ = L2+(Ω, IR
m) there exists a unique solution ψ to E(ψ, u) =

0. Moreover, there are a positive constant c and a monotonously increasing function

d: IR+ → IR+ such that

‖ψ − ψ‖H1 ≤ c ‖u− u‖Y ∀u, u ∈ Y+, E(ψ, u) = E(ψ, u) = 0,

‖ψ‖L∞ ≤ c
{
1 +

m∑
i=1

‖ui lnui‖L1 + d(‖ψ‖H1)
}
∀u ∈ Y+, E(ψ, u) = 0.

Proof. Since for u ∈ Y+ the operator E(·, u) is strongly monotone uniformly with

respect to u as well as hemicontinuous, and since for ψ ∈ H1(Ω) the operator E(ψ, ·)
is Lipschitz continuous uniformly with respect to ψ, the �rst and second assertions are

obvious. The third assertion is a consequence of Gröger's regularity result [9] and of

Trudinger's imbedding theorem [14].

Later on we are interested in a modi�ed version of the Poisson equation which is

obtained by setting u = ap(ψ), a ∈ IRm. We de�ne Ẽ : H1(Ω)× IRm → (H1(Ω))∗ by

〈Ẽ(ψ, a), ψ〉 =
∫
Ω

{
∇ψ · ∇ψ +

[
e(ψ) +

m∑
i=1

aip
′
i(ψ)− f

]
ψ
}
dx, ψ ∈ H1(Ω).

Lemma 2. For any a ∈ IRm+ there exists a unique solution ψ to Ẽ(ψ, a) = 0. Moreover,

for every R > 0 there is a positive constant c(R) such that

‖ψ‖H1, ‖ψ‖L∞ ≤ c(R) ∀a ∈ Rm+ , ‖a‖IRm ≤ R, Ẽ(ψ, a) = 0,

‖ψ − ψ‖H1 ≤ c(R) ‖a− a‖IRm ∀a, a ∈ IR
m
+ , ‖a‖IRm, ‖a‖IRm ≤ R, Ẽ(ψ, a) = Ẽ(ψ, a) = 0.

Proof. Again for a ∈ IRm+ the operator Ẽ(·, a) is strongly monotone uniformly with

respect to a as well as hemicontinuous. From this the existence and uniqueness result

follows. The estimate

c‖ψ‖2H1 ≤ 〈Ẽ(ψ, a)−Ẽ(0, a), ψ〉 ≤
∣∣∣ ∫
Ω

[
e(0)+

m∑
i=1

aip
′
i(0)−f

]
ψ dx

∣∣∣ ≤ c(1+‖a‖IRm)‖ψ‖L2

yields the assertion on the H1�norm of ψ. The assertion on the L∞�norm of ψ is

obtained from Lemma 1, for instance. Then the last assertion is obvious.

4. The energy and dissipation functionals

In this section we investigate basic properties of the free energy functional and of other

related functionals. First, we de�ne F1, F2 : Y+ → IR by

F1(u) =
∫
Ω

{1
2
|∇ψ|2 + g(ψ) +

m∑
i=1

ui(Pi(ψ)−Qi(ψ)ψ)
}
dx, u ∈ Y+ (4)
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where ψ ∈ H1(Ω)∩L∞(Ω) is the unique solution to the Poisson equation E(ψ, u) = 0,

F2(u) =
∫
Ω

m∑
i=1

{
ui
[
ln

ui
pi(0)

− 1
]
+ pi(0)

}
dx, u ∈ Y+, (5)

and set

F (u) = F1(u) + F2(u), u ∈ Y+.

The value F (u) can be interpreted as the free energy of the state u. Because of (3) it

holds

F (u) ≥ c
{
‖ψ‖2H1 +

m∑
i=1

‖ui lnui‖L1 − 1
}
, u ∈ Y+. (6)

For u, u ∈ Y+ and corresponding ψ, ψ ∈ H1(Ω) with E(ψ, u) = E(ψ, u) = 0 we obtain

F1(u)− F1(u) =
∫
Ω

{ m∑
i=1

Pi(ψ)(ui − ui) +
1

2
|∇(ψ − ψ)|2

+
∫ ψ
ψ
(s− ψ) e′(s) ds−

m∑
i=1

ui

∫ ψ
ψ
(s− ψ)Q′i(s) ds

}
dx

≥ (P (ψ), u− u)Y + c ‖ψ − ψ‖2H1 ≥ (P (ψ), u− u)Y . (7)

From this relation it follows that F1 is convex and continuous on the convex set Y+.
We extend F1 to Y by setting F1(u) = +∞ for u ∈ Y \ Y+. Then the extended

functional F1 : Y → IR is proper, convex, lower semicontinuous, and subdi�erentiable

in each point u ∈ Y+ where P (ψ) ∈ ∂F1(u). Because of properties of its integrand the

functional F2 is convex (see [3]) and continuous (see [7]) on Y+. Again the extended

functional F2 : Y → IR, F2(u) = +∞ for u ∈ Y \ Y+, is proper, convex and lower

semicontinuous. For u, u ∈ Y+ with u ≥ δ > 0 we obtain

F2(u)− F2(u) =
∫
Ω

{ m∑
i=1

ln
ui

pi(0)
(ui − ui) +

m∑
i=1

∫ ui
ui

ln
s

ui
ds
}
dx

≥ (ln
u

p(0)
, u− u)Y + ‖

√
u−
√
u‖2Y ≥ (ln

u

p(0)
, u− u)Y . (8)

Thus, F2 is subdi�erentiable in points u ∈ Y+ with u ≥ δ > 0 and ln(u/p(0)) ∈ ∂F2(u).
Finally, we have to extend the introduced functionals to the space X∗. We de�ne

F̃k = (F
∗
k |X)

∗ : X∗ → IR, k = 1, 2,

where the star denotes the conjugation (see [3])

F ∗k (v) = sup
u∈Y

{
(u, v)Y − Fk(u)

}
, v ∈ Y, (F ∗k |X)

∗(u) = sup
v∈X

{
〈u, v〉 − F ∗k (v)

}
, u ∈ X∗.

Easily one veri�es that F̃k is proper, convex and lower semicontinuous, that F̃k(u) =
Fk(u) for u ∈ Y+, and that it holds

P (ψ) ∈ ∂F̃1(u), u ∈ Y+, ln
u

p(0)
∈ ∂F̃2(u), u ∈ X, u ≥ δ > 0. (9)
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Omitting the tilde we can summarize the properties of the free energy functional as

follows.

Lemma 3. The functional F = F1 + F2 : X
∗ → IR is proper, convex and lower

semicontinuous. For u ∈ Y+ it can be evaluated according to (4), (5). The restriction

F |Y+ is continuous. If u ∈ X and u ≥ δ > 0 then

ζ = P (ψ) + ln
u

p(0)
= ln

u

p(ψ)
∈ X, ζ ∈ ∂F (u).

Next we study properties of the dual functional F ∗ : X → IR,

F ∗(ζ) = sup
u∈X∗

{
〈u, ζ〉 − F (u)

}
, ζ ∈ X.

If F ∗ is subdi�erentiable in ζ , u ∈ ∂F ∗(ζ), or equivalently, ζ ∈ ∂F (u), then (see [3])

F ∗(ζ) = 〈u, ζ〉 − F (u), ζ ∈ ∂F (u). (10)

Mainly we are interested in the special situation that ζ ∈ IRm. Therefore, let ζ ∈ IRm

be given, let ψ ∈ H1(Ω)∩L∞(Ω) be the solution to the Poisson equation Ẽ(ψ, eζ) = 0,
and de�ne u = p(ψ) eζ . Obviously, u ∈ X, u ≥ δ > 0 and thus u ∈ ∂F ∗(ζ). By means

of (10) we obtain

F ∗(ζ) =
∫
Ω

{1
2
|∇ψ|2 +

∫ ψ
0

e(s) ds− fψ +
m∑
i=1

pi(0)
[
eζi−Pi(ψ) − 1

]}
dx, ζ ∈ IRm.

We de�ne the function

G = F ∗|IRm : IR
m → IR.

Because of (I), (3) we get the estimate

G(ζ) ≥ c
{
‖ψ‖2H1 + ‖[ζ − P (ψ)]+‖2Y − 1

}
, ζ ∈ IRm, (11)

and for ζ, ζ ∈ IRm with corresponding ψ, ψ we �nd that

G(ζ)−G(ζ) =
∫
Ω

m∑
i=1

pi(ψ) e
ζi(ζi − ζi) dx+ ω(ζ, ζ),

ω(ζ, ζ) =
∫
Ω

{1
2
|∇(ψ − ψ)|2 +

∫ ψ
ψ
(ψ − s) e′(s) ds

−
m∑
i=1

pi(ψ) e
ζi

∫ ψ
ψ
(ψ − s)Q′i(s) ds

+
m∑
i=1

pi(0)
∫ ζi−Pi(ψ)
ζi−Pi(ψ)

(ζi − Pi(ψ)− s) es ds
}
dx.
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Let R > 0 be given. Because of Lemma 2 there exist constants c1(R), c2(R) > 0 such
that for all ζ, ζ with ‖ζ‖IRm, ‖ζ‖IRm ≤ R it holds

ω(ζ, ζ) ≥ c1(R)
{
‖ψ − ψ‖2H1 + ‖ζ − ζ − (P (ψ)− P (ψ))‖2L2

}
,

ω(ζ, ζ) ≤ c2(R) ‖ζ − ζ‖2IRm.

From these estimates we derive the following assertions.

Lemma 4. The function G = F ∗|IRm : IR
m → IR is strictly convex, continuous and

Fréchet di�erentiable,

∂G(ζ) =
∫
Ω
eζ p(ψ) dx, ζ ∈ IRm, Ẽ(ψ, eζ) = 0.

A further functional which we are interested in is the dissipation functional, or

more precisely, a lower estimate of this functional. We de�ne the set

MD =
{
u ∈ L∞+ (Ω, IR

m) :
√
a ∈ X, where a = u/p(ψ) and E(ψ, u) = 0

}
and the functional D :MD → IR by

D(u) =
∫
Ω

{∑
i∈J

4Di(ψ)pi(ψ)|∇
√
ai|
2

+
∑

(α,β)∈R

2 kαβ(ψ)|
√
a
α
−
√
a
β
|2
}
dx, u ∈MD. (12)

Lemma 5. For all u ∈ MD it holds D(u) ≥ 0. If u ∈ MD and D(u) = 0 then

u = ap(ψ) where ψ is the solution to E(ψ, u) = 0 and

a ∈ IRm+ , aα = aβ ∀(α, β) ∈ R.

Proof. The �rst assertion is obvious. Now letD(u) = 0. Since all coe�cients in (12)

are strictly positive we obtain ai = const ≥ 0, i ∈ J , as well as aα = aβ, (α, β) ∈ R.
Because of the last assumption in (I) we �nd that ai = const ≥ 0, i ∈ J ′, too.

5. Monotonicity and boundedness of the free energy

According to thermodynamic principles the free energy should monotonously decrease

along solutions to the evolution problem (P). This property is indeed obtained from

the following theorem.

Theorem 1. Let (u, ψ) be a solution to (P) and set a = u/p(ψ). Then
√
a ∈

L2
loc
(IR+, X), u(t) ∈MD f.a.a. t > 0, and for every λ ∈ IR+ it holds

eλt2F (u(t2))− eλt1F (u(t1))−
∫ t2
t1

eλt
{
λF (u(t))−D(u(t))

}
dt ≤ 0, 0 ≤ t1 ≤ t2.
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Proof. 1. Let (u, ψ) be a solution to (P), λ ∈ IR+, S = [t1, t2]. Then u ∈ H1(S,X∗),
ψ ∈ L2(S,H1(Ω)), P (ψ) ∈ L2(S,X) and ∇P (ψ) = Q(ψ)∇ψ. Because of (9) we �nd

P (ψ(t)) ∈ ∂F1(u(t)) f.a.a. t ∈ S. Therefore, the function t �→ F1(u(t)) is absolutely
continuous on S and there holds the chain rule (see [1])

d

dt
F1(u(t)) = 〈u

′(t), P (ψ(t))〉 f.a.a. t ∈ S.

2. We de�ne uδ = u + δ for δ > 0. Then uδ ∈ H1(S,X∗), ln(uδ/p(0)) ∈ L2(S,X)
and ∇ ln(uδi/pi(0)) = ∇ui/(ui + δ), i ∈ J . Because of (9) we �nd ln(uδ(t)/p(0)) ∈
∂F2(u

δ(t)) f.a.a. t ∈ S. Thus, the function t �→ F2(u
δ(t)) is absolutely continuous on

S and
d

dt
F2(u

δ(t)) =
〈
u′(t), ln

uδ(t)

p(0)

〉
f.a.a. t ∈ S.

3. Using these results and setting ζδ = ln(uδ/p(ψ)) ∈ L2(S,X) we obtain

eλt
[
F1(u(t)) + F2(u

δ(t))
] ∣∣∣t2
t1
=
∫ t2
t1

eλt
{
λ
[
F1(u(t)) + F2(u

δ(t))
]
+ 〈u′(t), ζδ(t)〉

}
dt.

Here we insert the evolution equation,

〈u′(t), ζδ(t)〉 = −〈A(u(t), ψ(t)), ζδ(t)〉 = −〈A(uδ(t), ψ(t)), ζδ(t)〉+ hδ(t) f.a.a. t ∈ S

where hδ = 〈A(uδ, ψ)−A(u, ψ), ζδ〉. We set aδ = uδ/p(ψ) = eζ
δ
. Then

√
aδ ∈ L2(S,X)

and ∇
√
aδi =

1
2

√
aδi ∇ζδi , i ∈ J . Some simple calculation yields

Di(ψ)
[
∇uδi +Qi(ψ)u

δ
i∇ψ

]
· ∇ζδi = Di(ψ)u

δ
i |∇ζδi |

2 = 4Di(ψ)pi(ψ)|∇
√
aδi |
2, i ∈ J,

Rαβ(u
δ, ψ) (α− β) · ζδ = kαβ(ψ)

[
eα·ζ

δ

− eβ·ζ
δ
]
(α− β) · ζδ ≥ 2 kαβ(ψ)|

√
aδ
α
−
√
aδ
β
|2,

and thus we obtain∫ t2
t1

∫
Ω
eλt
{∑
i∈J

4Di(ψ)pi(ψ)|∇
√
aδi |
2 +

∑
(α,β)∈R

2 kαβ(ψ)|
√
aδ
α
−
√
aδ
β
|2
}
dxdt

≤
∫ t2
t1

eλt 〈A(uδ(t), ψ(t)), ζδ(t)〉 dt = Hδ (13)

where

Hδ =
∫ t2
t1

eλt
{
λ
[
F1(u(t)) + F2(u

δ(t))
]
+ hδ(t)

}
dt− eλt

[
F1(u(t)) + F2(u

δ(t))
] ∣∣∣t2
t1
.

4. Now let δ → 0. First, we easily �nd that

Hδ → H =
∫ t2
t1

eλtλF (u(t)) dt− eλt F (u(t))
∣∣∣t2
t1
.
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By Lebesgue's dominated convergence theorem we obtain that
√
aδ →

√
a in L2(S, Y ),

and at least for a subsequence,
√
aδ →

√
a a.e. on S × Ω. Fatou's lemma yields

∫ t2
t1

∫
Ω
eλt

∑
(α,β)∈R

2 kαβ(ψ)|
√
a
α
−
√
a
β
|2dxdt

≤ lim inf
δ→0

∫ t2
t1

∫
Ω
eλt

∑
(α,β)∈R

2 kαβ(ψ)|
√
aδ
α
−
√
aδ
β
|2dxdt. (14)

Finally, let i ∈ J . Since ψ ∈ L∞(S, L∞) and since the sequence Hδ is bounded because

of (13) there exists a constant c > 0 such that ‖∇
√
aδi‖L2(S,L2) ≤ c. From this

∇
√
ai ∈ L2(S, L2), ∇

√
aδi ⇀ ∇

√
ai in L2(S, L2), i ∈ J,

follows (see [13, Proposition 2.4]), and because of the weak lower semicontinuity of

continuous quadratic functionals we arrive at

∫ t2
t1

∫
Ω
eλt
∑
i∈J

4Di(ψ)pi(ψ)|∇
√
ai|
2 dxdt

≤ lim inf
δ→0

∫ t2
t1

∫
Ω
eλt
∑
i∈J

4Di(ψ)pi(ψ)|∇
√
aδi |
2 dxdt. (15)

Hence
√
a ∈ L2(S,X), and from (13) � (15) we obtain

∫ t2
t1

eλtD(u(t)) dt ≤ H.

Corollary 1. Along any solution (u, ψ) to (P) the free energy F (u) remains bounded

from above by its initial value F (U) and decreases monotonously,

F (u(t2)) ≤ F (u(t1)) ≤ F (U), 0 ≤ t1 ≤ t2.

Moreover, there exists a constant c depending only on the data such that

m∑
i=1

‖ui lnui‖L∞(IR+,L1(Ω)) ≤ c, ‖u‖L∞(IR+,L1(Ω,IRm)) ≤ c,

‖ψ‖L∞(IR+,H1(Ω)) ≤ c, ‖ψ‖L∞(IR+,L∞(Ω)) ≤ c

for any solution to (P).

Proof. The �rst assertion follows from Theorem 1 by setting λ = 0. The remaining

estimates are a consequence of (6) and Lemma 1.

6. Invariants and steady states

We introduce the stoichiometric subspace S belonging to all reactions,

S = span{α− β : (α, β) ∈ R} ⊂ IRm.
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By integrating the continuity equations over (0, t)×Ω one easily veri�es the following

invariance property.

Lemma 6. If (u, ψ) is a solution to (P) then

∫
Ω

{
u(t)− U

}
dx ∈ S for all t ∈ IR+.

Now we ask for steady states belonging to the evolution problem (P) which satisfy

such an invariance property, too. Thus we have to solve the following problem.

A(u, ψ) = 0, E(ψ, u) = 0, u ≥ 0,∫
Ω

{
u− U

}
dx ∈ S,

u ∈ X ∩ L∞(Ω, IRm), ψ ∈ H1(Ω) ∩ L∞(Ω).

(S)

Lemma 7. If (u, ψ) is a solution to (S) then u ∈MD and D(u) = 0.

Proof. The proof is similar to that of Theorem 1. Let (u, ψ) be a solution to (S),

de�ne a = u/p(ψ) and set uδ = u+ δ, aδ = uδ/p(ψ), ζδ = ln aδ where δ > 0. Then

ζδ,
√
aδ ∈ X, 〈A(uδ, ψ), ζδ〉 = hδ

where hδ = 〈A(uδ, ψ)− A(u, ψ), ζδ〉 → 0 if δ → 0. Furthermore,
√
aδ →

√
a in Y and

because of the estimate∫
Ω

{∑
i∈J

4Di(ψ)pi(ψ)|∇
√
aδi |
2 +

∑
(α,β)∈R

2 kαβ(ψ)|
√
aδ
α
−
√
aδ
β
|2
}
dx ≤ 〈A(uδ, ψ), ζδ〉

we �nd that ∇
√
aδi ⇀ ∇

√
ai in L2, i ∈ J . Thus

√
a ∈ X, u ∈MD and

0 ≤ D(u) ≤ lim inf
δ→0

〈A(uδ, ψ), ζδ〉 = 0.

Next, we show that there is a correspondence between the set of steady states, i. e.

the set of solutions to (S), and the set A ⊂ IRm de�ned by

A =
{
a ∈ IRm+ : aα = aβ ∀(α, β) ∈ R,

∫
Ω

{
u− U

}
dx ∈ S,

where u = ap(ψ) and ψ is the solution to Ẽ(ψ, a) = 0
}
.

Lemma 8. If (u, ψ) is a solution to (S) then a = u/p(ψ) ∈ A. Vice versa, if a ∈ A
and u, ψ are chosen as in the de�nition of A then (u, ψ) is a solution to (S).

Proof. The �rst assertion follows from Lemma 7 and Lemma 5. If a ∈ A then ob-

viously ψ ∈ H1(Ω)∩L∞(Ω), u = ap(ψ) ∈ X∩L∞(Ω, IRm), u ≥ 0, ∇ui = aip
′
i(ψ)∇ψ =

−uiQi(ψ)∇ψ, i ∈ J , A(u, ψ) = 0, and E(ψ, u) = Ẽ(ψ, a) = 0.
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Finally, we show that the set A ∩ int IRm+ corresponds to the set of minimizers of

the function G0 : IR
m → IR de�ned by

G0(ζ) = G(ζ) + IS⊥(ζ)−
∫
Ω
U · ζ dx, ζ ∈ IRm.

This function is proper, convex and lower semicontinuous, domG0 = S⊥. Because of

the continuity of G (see Lemma 4) we obtain by the Moreau-Rockafellar theorem (see

[3]) that

∂G0(ζ) = ∂G(ζ) + ∂IS⊥(ζ)−
∫
Ω
U dx, ζ ∈ IRm. (16)

Lemma 9. If a ∈ A ∩ int IRm+ then ζ = ln a is a minimizer of G0. Vice versa, if

ζ ∈ IRm is a minimizer of G0 then a = eζ ∈ A ∩ int IRm+ .

Proof. Because of (16) and Lemma 4, ζ is a minimizer of G0 if and only if

ζ ∈ S⊥, ∂G(ζ)−
∫
Ω
U dx =

∫
Ω

{
eζ p(ψ)− U

}
dx ∈ S

where ψ is the solution to Ẽ(ψ, eζ) = 0. The relation ζ ∈ S⊥ is equivalent to

(α− β) · ζ = 0 ∀(α, β) ∈ R, or to (eζ)α = (eζ)β ∀(α, β) ∈ R. Since the map ζ �→ eζ is

a bijection from IRm onto int IRm+ all assertions of the lemma are obtained.

Lemma 10. The set A ∩ int IRm+ contains at most one element. Furthermore, A ∩
int IRm+ �= ∅ if and only if the following condition is ful�lled:

∫
Ω
U · ζ dx > 0 ∀ζ ∈ S⊥, ζ ≥ 0, ζ �= 0. (II)

Proof. 1. The �rst assertion follows from Lemma 9 since the functions G and G0|S⊥
are strictly convex.

2. If a ∈ A ∩ int IRm+ then for any ζ ∈ S⊥, ζ ≥ 0, ζ �= 0 we �nd

∫
Ω
U · ζ dx =

∫
Ω

m∑
i=1

aipi(ψ)ζi dx > 0.

3. Now let (II) be ful�lled. According to Lemma 9 we have to show, that there is a

minimizer of G0. It is su�cient to verify the property G0(ζ)→ +∞ if ‖ζ‖IRm → +∞.

Suppose this to be false. Then there exist R ∈ IR+ and a sequence ζn ∈ S⊥ such that

‖ζn‖IRm →∞, G0(ζn) = G(ζn)−
∫
Ω
U · ζn dx ≤ R.

Using (11) this implies

c1
{
‖ψn‖

2
H1 + ‖[ζn − P (ψn)]

+‖2Y
}
− (U, ζn)Y ≤ R+ c2. (17)
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We set ψ̃n = ψn/‖ζn‖, ζ̃n = ζn/‖ζn‖, and assume that ζ̃n → −ζ in IRm where ζ ∈ S⊥,
ζ �= 0. Because of (17) we �nd ψ̃n → 0 in H1(Ω), and ζ ≥ 0 since P is Lipschitz

continuous. Again using (17) we obtain (U, ζ)Y ≤ 0 in contradiction to (II).

There are examples of reaction�di�usion systems with steady states where the cor-

responding a ∈ A belongs to ∂IRm+ even if condition (II) is satis�ed. But in many

applications e. g. in semiconductor technology this can not happen. Therefore in our

following considerations we shall assume that

A∩ ∂IRm+ = ∅. (III)

Then we may summarize our results concerned with the steady states to (P) as follows.

Theorem 2. Let the additional assumption (II) be ful�lled. Then there exists a

solution (u∗, ψ∗) to (S) with following properties:

a∗ = u∗/p(ψ∗) ∈ IRm, a∗ > 0, ζ∗ = ln a∗ ∈ S⊥, u∗ ≥ c > 0 a.e. on Ω.

If (III) is ful�lled, too, then there is no other solution to (S).

Corollary 2. Assume (II) and let (u∗, ψ∗) be the solution to (S) as in Theorem 2.

Then for any solution (u, ψ) to (P) it holds

F (u∗) ≤ F (u(t)) ∀t ∈ IR+,
∫ ∞
0

D(u(t)) dt ≤ F (U)− F (u∗).

Proof. This follows from (7), (8) with u = u∗, ψ = ψ∗ and from Theorem 1.

7. Exponential decay of the free energy

In this section we shall prove that for any solution to the evolution problem (P) (with

the initial value U) the free energy F (u) decays exponentially to its equilibrium value

F (u∗) (where u∗ belongs to that compatibility class which is generated by U) if the

additional assumptions (II) and (III) are ful�lled. This will be a consequence of the

following estimate of the free energy by the dissipation functional.

Theorem 3. Let (II) and (III) be satis�ed. Then for every R > 0 there exists a

constant cR > 0 such that

F (u)− F (u∗) ≤ cRD(u) ∀u ∈MR

where

MR =
{
u ∈MD: F (u)− F (u∗) ≤ R,

∫
Ω
(u− U)dx ∈ S

}
.
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Proof. 1. For u ∈ MR let ψ, a be de�ned by E(ψ, u) = 0, a = u/p(ψ). First let

us note that there is a c(R) > 0 such that ‖ψ‖H1, ‖ψ‖L∞ ≤ c(R) ∀u ∈ MR. Setting

F̃ (u) = F (u)− F (u∗) and using (7), (8) and Theorem 2, we obtain the estimates

c1(R)
{
‖
√
a/a∗ − 1‖2Y + ‖ψ − ψ∗‖2H1

}
≤ F̃ (u), (18)

F̃ (u) ≤ c2(R) ‖u− u∗‖2Y , (19)

D(u) ≥ c3(R)D̃(u), D̃(u) =
∫
Ω

{∑
i∈J

∣∣∣∇√ai/a
∗
i

∣∣∣2 + ∑
(α,β)∈R

∣∣∣√a/a∗
α

−
√
a/a∗

β∣∣∣2} dx
for all u ∈MR with positive constants ck(R). It remains to show that for every R > 0
there exists a c̃R > 0 such that

F̃ (u) < c̃R D̃(u) ∀u ∈MR \ {u
∗}.

2. Suppose this assertion to be false. Then there exist R > 0 and sequences cn ∈ IR,
un ∈MR such that cn → +∞ and

0 < cn D̃(un) ≤ F̃ (un) ≤ R. (20)

Let ψn, an be correspondingly de�ned. (18), (20) imply that ‖ψn‖H1 , ‖
√
an‖Y ≤ c(R),

D̃(un)→ 0. Therefore ψn ⇀ ψ̂ in H1, ψn → ψ̂ in L2. For i ∈ J we �nd âi ∈ IR+ with
√
ani →

√
âi in H1 and in each Lp. For i ∈ J ′ we have at least ani → âi ∈ IR+ in L2

since for such i there is a special reaction for which∫
Ω

∣∣∣ ∏
j∈J

√
anj/a

∗
j

αj
− ani/a

∗
i

∣∣∣2 dx→ 0.
Fatou's lemma ensures that âα = âβ ∀(α, β) ∈ R. Setting û = âp(ψ̂) we get un → û
in Y , and thus

∫
Ω(û − U) dx ∈ S. The estimate ‖ψn+p − ψn‖H1 ≤ c ‖un+p − un‖Y

shows that ψn → ψ̂ in H1. Using properties of E we conclude that E(ψn, û) ⇀
E(ψ̂, û) in (H1)∗, E(ψn, û) → 0 in (H1)∗. Thus E(ψ̂, û) = Ẽ(ψ̂, â) = 0 is obtained.
Summarizing, we have found that â ∈ A. Now assumption (III) ensures that â = a∗,
and correspondingly û = u∗, ψ̂ = ψ∗. From (19) we conclude that F̃ (un)→ 0.
3. We set

wn =
√
an/a∗−1, λn =

√
F̃ (un), bn = wn/λn, yn = (un−u∗)/λn, zn = (ψn−ψ∗)/λn.

In the formula for the lower bound of the dissipation rate

D̃(un) =
∫
Ω

{∑
i∈J

|∇wni|
2 +

∑
(α,β)∈R

|(1 + wn)
α − (1 + wn)

β|2
}
dx

we use the binomial expansion

∏
i∈I

(1 + wni)
αi = 1 +

∑
i∈I

αiwni + ω(wn),
1

λn
|ω(wn)| ≤ c

∑
i∈I

{
λn|bni|

2 + λpα−1n |bni|
pα
}
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where pα = max{2,
∑
i∈I αi}. (18), (20) imply that ‖zn‖H1 , ‖bn‖Y ≤ c(R), D̃(un)/λ

2
n →

0. Therefore zn ⇀ ẑ in H1, zn → ẑ in L2. Now, for i ∈ J we �nd b̂ni ∈ IR+ with

bni → b̂i in H1 and in each Lp, moreover λn‖b2ni‖L2 → 0. For i ∈ J ′ from

∫
Ω

∣∣∣ 1
λn

{ ∏
j∈J

(1 + wnj)
αj − 1

}
− 2bni − λnb

2
ni

∣∣∣2 dx→ 0

it follows that 2bni + λnb
2
ni → 2b̂i ∈ IR+ in L2, and because of the estimate

‖bni − b̂i‖L2 ≤ c(R) (‖2bni + λnb
2
ni − 2b̂i‖L2 + λn‖bni‖L2)

we get bni → b̂i in L2 as well as λn‖b2ni‖L2 → 0. Fatou's lemma yields (α − β) · b̂ =
0 ∀(α, β) ∈ R, or in other words, b̂ ∈ S⊥. Setting ŷ = a∗p(ψ∗)(2b̂−Q(ψ∗)ẑ) we get

‖yn − ŷ‖Y ≤ c(R)
{
‖bn − b̂‖Y + ‖zn − ẑ‖L2 + λn

( m∑
i=1

‖b2ni‖L2 + 1
)}

,

and thus yn → ŷ in Y . Consequently,
∫
Ω ŷ dx ∈ S and (b̂, ŷ)Y = 0. Finally, we obtain

0 ≥
1

λ2n
〈E(ψ∗, un)−E(ψn, un), ψn − ψ∗〉 = −

∫
Ω

m∑
i=1

Qi(ψ
∗)znyni dx,

and using (b̂, ŷ)Y = 0, in the limit we arrive at

0 ≥ −
∫
Ω

m∑
i=1

Qi(ψ
∗)ẑŷi dx =

∫
Ω

m∑
i=1

(2b̂i −Qi(ψ
∗)ẑ) ŷi dx =

∫
Ω

m∑
i=1

1

a∗i pi(ψ
∗)
|ŷi|
2 dx.

Therefore ŷ = 0, and (19) gives the contradiction 1 ≤ c2(R)‖yn‖2Y → 0.

Corollary 3. Let the assumptions (II), (III) be ful�lled. Then along any solution

(u, ψ) to (P) the free energy F (u) decays exponentially to its equilibrium value F (u∗),

F (u(t))− F (u∗) ≤ e−λt (F (U)− F (u∗)) ∀t ≥ 0

where λ depends only on the data. Moreover, there is a constant c such that

‖u(t)− u∗‖L1(Ω,IRm), ‖ψ(t)− ψ∗‖H1(Ω) ≤ c e−λt/2 ∀t ≥ 0

for any solution to (P).

Proof. Because of Corollary 1 and Lemma 6 for R = max{1, F (U) − F (u∗)} > 0
it holds u(t) ∈ MR f.a.a. t > 0. We set λ = 1/cR and with Theorem 3, Theorem 1

the �rst assertion is obtained. In Theorem 2 have we stated that ζ∗ ∈ S⊥. Then the

estimates follow from (7), (8) by setting there u = u∗, ψ = ψ∗.
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8. Remarks

Remark 1. We consider a special version of the pair di�usion models in [2,4]. The

meaning of the species and the used reactions are outlined in Fig. 1. Here m = 5,
i = 1, . . . , 5, or in the notation of Fig. 1, i = A, I, V, AI, AV , J = {2, 3, 4, 5}, J ′ = {1}.
The functions pi, Qi are given by (2), Di, kαβ are similar averaged quantities and

e(ψ) = c sinhψ. These functions have all properties which are required in (I). Next

we �nd that dimS = 3, dimS⊥ = 2, S⊥ = span {(1, 0, 0, 1, 1), (0, 1,−1, 1,−1)} such
that there are two invariants the value of which is �xed by the initial state, namely

I1(t) =
∫
Ω
[uA(t) + uAI(t) + uAV (t)] dx = I1(0),

I2(t) =
∫
Ω
[uI(t)− uV (t) + uAI(t)− uAV (t)] dx = I2(0) ∀t ∈ IR+.

Condition (II) means that I1(0) > 0, and we easily verify that then assumption (III)

is ful�lled, too. Thus our results can be applied to this special model.

Remark 2. In (1) the boundary conditions for the �rst set of continuity equations

can be replaced by the following ones:

ν · ji =
∑

(α,β)∈RΓ

(αi − βi)R
Γ
αβ on (0,∞)× ∂Ω, i ∈ J,

RΓαβ(x, u, ψ) = kΓαβ(x, ψ)
[ m∏
i=1

aαii −
m∏
i=1

aβii
]
, x ∈ ∂Ω, u ∈ IRm, ψ ∈ IR, ai =

ui
pi(ψ)

,

where (α, β) ∈ RΓ and RΓ ⊂ {(α, β) ∈ ZZm+ × ZZ
m
+ :αi = βi = 0 ∀i ∈ J ′} describes a set

of additional boundary reactions. We assume that for each (α, β) ∈ RΓ the function

kΓαβ : ∂Ω× IR→ IR satis�es the Carathéodory conditions and

c1,R(x) ≤ kΓαβ(x, ψ) ≤ c2,R(x) f.a.a. x ∈ ∂Ω, ∀ψ ∈ IR, |ψ| ≤ R,

c1,R, c2,R ∈ L∞+ (∂Ω), ‖c1,R‖L1(∂Ω) > 0.

All boundary reactions must be included into the de�nition of the sets S, A, and in

the de�nition of A, D boundary integrals have to be added. Then all assertions of the

paper, especially the assertions of Corollary 1 � Corollary 3 remain valid.

Remark 3. Testing the Poisson equation E(ψ, u) = 0 by ψ = 1 the global electroneu-
trality condition ∫

Ω

[
e(ψ(t))−

m∑
i=1

Qi(ψ(t)) ui(t)− f
]
dx = 0 ∀t ∈ IR+ (21)

is obtained. If we want to use other boundary conditions for the Poisson equation

in (1) then condition (21) must be taken onto account, too. Therefore, as in [7] we

consider mixed boundary conditions of the form

ψ = ζ0 on (0,∞)× ΓD, ν · ∇ψ + τψ = τζ0 on (0,∞)× ΓN
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0 V + I AV + AI 2A

A V + AI AI A + I

A I +AV AV A + V
host atom

on lattice site

A dopant atom

on lattice site

I host atom

on interstice

V vacancy

AI dopant�

interstitial pair

AV dopant�

vacancy pair

Fig. 1: Species and reactions in the pair di�usion model (see [2,4]). The corre-

sponding reaction rates are given by

Rαβ = kαβ(ψ) (aA − aI aAV ), Rαβ = kαβ(ψ) (aAV − aA aV ),

Rαβ = kαβ(ψ) (aA − aV aAI), Rαβ = kαβ(ψ) (aAI − aA aI),

Rαβ = kαβ(ψ) (1 − aV aI), Rαβ = kαβ(ψ) (aAV aAI − a
2
A)

where e. g. for the �rst reaction α = (1, 0, 0, 0, 0), β = (0, 1, 0, 0, 1) and for the last

one α = (0, 0, 0, 1, 1), β = (2, 0, 0, 0, 0).

where the new unknown quantity ζ0 : IR+ → IR (the electrochemical potential of elec-

trons, i. e. the Fermi level) has to be determined by means of the nonlocal constraint

(21). We assume that

ΓD, ΓN are disjoint open subsets of ∂Ω, ∂Ω = ΓD ∪ ΓN ,

ΓD ∩ ΓN consists of �nitely many points,

τ ∈ L∞+ (ΓN), mesΓD + ‖τ‖L1(ΓN ) > 0.

The de�nition ofE must be changed (see [7]) and F, F ∗ contain an additional boundary

integral. Again, all assertions of Corollary 1 � Corollary 3 remain valid.

Remark 4. As in [6] analogous energy estimates and asymptotic properties can be

derived for a discrete�time version of (1) using an implicit scheme of �rst order.
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