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ABSTRACT. Using inverse positivity properties and Brouwer’s fixed point theo-
rem, we derive existence and uniqueness results for certain nonlinear systems of
equations with off diagonal nonlinearity. The type of systems considered arises
from stable finite volume discretizations of viscous nonlinear conservation laws
and has a wide range of applications.

1. INTRODUCTION

Existence and uniqueness results for nonlinear systems of equations inRn with
arbitrary right hand sides can be given only under structural restrictions to the sys-
tem. One well understood class of systems in this respect has the structure

B(u) + Au = f(1.1)

where A is an M-matrix and B : Rn
! R

n is an isotone diagonal mapping
[OR70]. This type of systems arises e.g. from the nonlinear Poisson equation in
semiconductor device simulation when discretized with finite volume methods
[Sel84, GLTZ89]. More general nonlinear systems of equations one can find when
numerically treating nonlinear heat transfer [FH97] or porous media flow problems
[Ric31, Fuh97]. When discretized following certain rules, in each time step of the
solution algorithm for these problems we have to solve a system of the form

B(u) +A(u) +Q(u) = B(u0)(1.2)

with B being an isotone diagonal operator, Q(u) limited and A(u) being an opera-
tor with off-diagnal nonlinearities and certain structural properties.

In this paper, we prove existence and uniqueness results for (1.2), also for cases
with degenerating B or A. The basic idea of the proof is the usage of estimates of
inverse matrix norms from the Perron-Frobenius theory in Brouwer’s fixed point
theorem.

The paper is organized as follows. In section 2 we prove a basic existence result
using Brouwer’s fixed point theorem. Section 3 contains existence results based
on L1-estimates and weakly row-wise diagonal dominance. Section 4 is devoted
to existence and uniqueness considerations in the case of L1-estimates and weakly
column-wise diagonal dominance. As the considerations in this paper are moti-
vated by finite volume discretizations of initial boundary value problems for non-
linear parabolic partial differential equations, we introduce algebraically the no-
tation of a “Dirichlet”-problem and prove our results for this case as well. To il-
lustrate what we have in mind, section 5 contains an example of a finite difference
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scheme for a nonlinear parabolic problem in an one-dimensional domain. Finally,
appendix A explains our notations, and for the convenience of the reader, collects
some well known definitions and implications of the Perron-Frobenius theory. Ap-
pendix B contains the formulation of a mean value theorem we often use.

2. A BASIC EXISTENCE THEOREM

The following theorem is the basic building block of the theory developed in this
paper.

2.1. Theorem. Let K 2 C(Rn;M (n)) and Q 2 C(Rn;Rn). For any u 2 Rn assume
either

K(u) 2Z+
r
(n) and jjQ(u)jj1 � Q+

1
(2.2a)

or

K(u) 2Z+
c
(n) and jjQ(u)jj1 � Q+

1 :(2.2b)

Then the equation

u+K(u)u = Q(u)(2.3)

has a solution û with either

jjûjj1 � Q+
1

(2.4a)

or

jjûjj1 � Q
+
1 ;(2.4b)

respectively.

Proof. The solution û would be a fixed point of the mapping

L(u) =
�
I +K(u)

��1
Q(u):

For � 2 f1;1g theorems A.7,A.9 give us

jj

�
I +K(u)

��1
jj� � 1;

hence

jjL(u)jj� � Q+
�
:

The entries of
�
I + K(u)

��1 are rational functions of the entries of I + K(u).
Inverse positivity bounds them below by zero, and the norm estimate together
with the explicit norm representation (A.4) bounds them from above. Hence for
K 2Z

+
r
(n) respectively K 2Z

+
c
(n) these rational functions cannot have poles and

need to be continuous. Thus the mapping L is continuous as well. As the balls
fu 2 Rn

j jjujj� < Q+
�
g are convex, we can apply Brouwer’s fixed point theorem

which ensures the existence of the desired fixed point which at the same time ad-
mits the estimates (2.4a) and (2.4b), respectively.

3. NONNEGATIVE ROW SUMS AND L1 ESTIMATES

In this section, we generalize theorem 2.1 for the case of nonnegative row sums
and L1- estimates. The nonlinear operators we have in mind here come from dis-
cretizations of nonlinear diffusion problems by the finite volume method or by the
finite element method with quadrature rules. An introductory example one finds
in section 5.

Having in mind the application of our theory in the framework of numerical
methods for the solution of initial boundary value problems for partial differen-
tial equations, we introduce here the notation of a Dirichlet problem. For simplic-
ity, we do this strictly algebraically, as it can be done in numerical codes as well.
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In this case, a Dirichlet problem is posed just by fixing the values of a set D of un-
knowns and regarding only the equations corresponding to the complementary set
of unknowns I = f1 : : :ng nD.

So, assume a partition of our index set f1 : : :ng = D[I into the sets of “Dirichlet
nodes” and ”interior nodes”. The corresponding splitting Rn = RD � RI for any
matrix A 2 M (n) after an obvious reordering of unknowns induces a splitting

A =

�
ADD ADI

AID AII

�
:(3.1)

For any vector u 2 Rn we introduce the coordinate projections uD 2 RD and uI 2

RI. In this case we can write

u =

�
uD
uI

�
:

The restriction of a nonlinear operatorB : Rn
! R

n to I we denote byBI : R! RI.
For simplicity, we introduce the follwing notation which is similar to the one

used for partial differential equations. Please note that everywhere we regard
Dirichlet problems, we allow D to be the empty set.

3.2. Definition. LetB : Rn
! R

nbe a diagonal operator,Q : Rn
! R

nbe arbitrary
and K : Rn

! M (n) be a matrix valued function. Let u0 2 Rn and ud 2 RD be
given vectors. We say that u is a solution of the Dirichlet problem(

B(u) +K(u)u = Q(u) +B(u0)

ujD = ud
(3.3)

if

uD = ud(3.4a)

and

BI (u) +KII (u) = QI(u) + BI(u0)�KID(u)ud(3.4b)

3.5. Theorem. Let K 2 C(Rn;M(n)) and Q 2 C(Rn;Rn). For any u 2 Rn assume

K(u) 2Z+
r
(n)(3.6a)

and

jjQ(u)jj1 � Q+(3.6b)

Further, let B 2 C1(Rn;Rn) be a diagonal operator with

jjB0(u)jj1 � B� > 0:(3.6c)

Then for any u0 2 Rn, for any (possibly empty) subset D � f1 : : :ng and any ud 2 RD,
the Dirichlet problem (3.3) has a solution û with

jjûIjj1 �
Q+

B�
+ jju0;Ijj1 + jjudjj1;(3.7)

assuming jjudjj1 = 0 for D = ;.

Proof. Let ~BI (u; u0) be the diagonal matrix defined by the mean value theorem B.1.
It allows us to rewrite equation (3.4b) by

~BI(u; u0)uI +KII(u) = QI(u) + ~BI (u; u0)u0;I �KID(u)ud:(3.8a)

By the identity (B.3), any solution of (3.8a) is a solution of (3.4b).
Further, KII(u) 2Z+

r
(I), and we have a splitting

KII(u) = K0(u) +KD(u) +KM (u)
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with K0(u) 2 Z0
r
(I), KD(u) 2 D+ (I) being the negative row sum of KID(u) and

KM (u) 2 D+ (I) being some nonnegative diagonal matrix.
Let

M (u) = ~BI (u; u0) +KD(u) +KM (u):

We have M (u) 2 D++ (I) and can rewrite equation (3.8a) by

M (u)uI +K0(u)uI = QI(u) + ~BI(u; u0)u0;I �KID(u)ud(3.8b)

and

uI +M (u)�1K0(u)uI = M (u)�1
�
QI(u) + ~BI (u; u0)u0;I �KID(u)ud

�
:(3.8c)

By theorem A.7, M (u)�1K0(u) 2 Z+
r
(I). Further, it continuously depends on u.

We can estimate

jjM (u)�1QI(u)jj1 �
Q+

B�
;

jjM (u)�1BI(u; u0)jj1 � 1;

jjM (u)�1KID(u)jj1 � 1;

because the row sums of M (u)�1KID(u) are less then one by construction.
Hence, by theorem 2.1, equation (3.8c) has a solution which can be estimated

by (3.7). It is a solution of (3.4b) as well, and by definition, it is a solution of the
Dirichlet problem (3.3).

If D = ;, we can everywhere omit ud;KID and KD, thus obtaining the result
also for this case.

3.9. Remark. Please note, that we did not demand any non-degeneracy condition
for K(u). This allows to apply our result also in the case of degenerating diffusion
equations, where rows of K(u) can become zero.

Another case of degeneracy which occurs in saturated/unsaturated flow calcu-
lations [Ric31] is covered by the next theorem.

3.10. Theorem. Let K 2 C(Rn;M (n)). For any u 2 Rn assume

K(u) 2Z+
r
(n)(3.11a)

Further, let B 2 C1(Rn;Rn) be a diagonal operator with

B0(u) � B� � 0:(3.11b)

Then for any u0 2 Rn, for any (possibly empty) subset D and any ud 2 RD, the Dirichlet
problem (

B(u) +K(u)u = B(u0)

ujD = ud
(3.12)

has a solution û with

jjûIjj1 � jju0;Ijj1 + jjudjj1(3.13)

assuming jjudjj1 for D = ;.

Proof. For " > 0 Let B"(u) = B(u)+ "u. Then after theorem 3.5, the Dirichlet prob-
lem (

B"(u) +K(u)u = B"(u0)

ujD = ud

has a solution u" which can be estimated by

jju";Ijj1 � jju0;Ijj1 + jjudjj1
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Hence we can find an element ûI admitting the estimate (3.13) and a sequence "n
with

lim
n!1

"n = 0;

lim
n!1

u"n = û:

As all operators involved continuously depend on u, û =

�
ud
ûI

�
necessarily is a

solution of (3.12).

3.14. Remark. Unfortunately, using the type of estimates of this section, we are not
able to prove uniqueness. At the other hand, in the case of theorem 3.10, for both
degeneratingB andK, we of course have to expect multiple solutions. Further one
can expect that already in the case of linearB andK that for certainQ, bifurcations
happen.

4. NONNEGATIVE COLUMN SUMS AND L1 ESTIMATES

In this section, we apply theorem 2.1 to the case of nonnegative column sums
and L1- estimates. The nonlinear operators corresponding to this case come from
stable finite volume discretizations of nonlinear convection diffusion problems.
Under certain conditions, the example from section 5 is valid for this case, as well.

4.1. Theorem. Let A 2 C(Rn;Rn) have a Gâteaux derivative A0(u) 2 Z+
c
(n) contin-

uously depending on u. Further, let B 2 C1(Rn;Rn) be an isotone diagonal homeomor-
phism. Let Q 2 C(Rn;Rn) be bounded with jjQ(u)jj1 � Q+. Then for u0 2 Rn, for any
(possibly empty) subset D � f1 : : :ng, and ud � RD, the Dirichlet problem(

B(u) + A(u) = Q(u) +B(u0)

ujD = ud
(4.2)

has a solution û which in the case D = ; admits the estimate

jjB(u)jj1 � jjB(u0)jj1 + Q+ + jjA
�
B�1(0)

�
jj1:(4.3)

Proof. First, regard the case D = ;. As B is an homeomorphism, we can perform a
variable substitution v = B(u).

Let AB(v) = A(B�1(v)). We have the identity A0
B
(v) = A0

�
B�1(v)

��
B�1

�0
(v),

thus because of theorem A.9, the isotonicity and the continuity of B and hence of
its inverse, AB fulfills the conditions of the theorem. Thus we restrict ourselves to
the problem

v +AB(v) = QB(v) + v0(4.4a)

whith QB(v) = Q(B�1(v)) and v0 = B(u0).
Let AB0(v) = AB(v)�AB(0) and QB0(v) = QB(v)�AB(0). We get the equiva-

lent problem

v + AB0(v) = QB0(v) + v0(4.4b)

where AB0 besides of the condition of the theorem fulfills AB0(0) = 0 and QB0 is
limited by

jjQB0(v)jj1 � Q
+
B0 = Q+ + jjAB(0)jj1 = Q+ + jjA(B�1(0))jj1(4.4c)

Let ~AB0(v; w) 2Z
+
c
(n) be defined as in theorem B.1. Then we can rewrite equation

(4.4b) to

v + ~AB0(v; 0)v = QB0(v) + v0(4.4d)
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which after theorem 2.1 has a solution v̂ with the estimate

jjv̂jj1 � Q
+
B0 + jjv0jj1:

It is a solution of (4.4b), too and consequently, û = B�1(v̂) is a solution of (4.2)
admitting the estimate (4.3).

For the Dirichlet problem, we regard

BI(u) +AI(u) = QI(u) +BI (u0)(4.4e)

We have a splitting

A0(u) =

�
ADD ADI

AID AII

�
:

As A0(u) 2 Z+
c
(n), AII 2 Z

+
c
(I), thus (4.4e) fulfills the conditions of the first part

of the proof.

4.5. Remark. Again, degeneracy of the “main part”A is allowed. But unlike in sec-
tion 3, the existence proof for degenerating B does not work here.

4.6. Theorem. Assume that the conditions of theorem 4.3 are fulfilled, that Q = 0 and
that for any u 2 Rn, B0(u) 2 D++ (n). Then the solution of (4.2) is unique.

Proof. For u; v being two solutions of (4.2) after theorem B.1 we can write

~B(u; v)(u� v) + ~A(u; v)(u� v) = 0:

By theorem A.9, ~B(u; v) + ~A(u; v) is an M-Matrix, thus necessarily, u = v.

5. EXAMPLE: NONLINEAR DIFFUSION IN INHOMOGENEOUS DOMAINS

To motivate our considerations, we give a simple example. In the fields of non-
linear heat transfer and of porous media flow simulation, we have to solve numer-
ically initial boundary value problems of the form

@tb(x; u(x; t))�r �

�
d(x; u(x; t))ru(x; t)

�
= 0:(5.1)

with b monotonically increasing and continuously differentiable in u and d con-
tinuous and nonnegative. For simplicity, we assume here an one-dimensional do-
main 
 = (0; 2) with two subdomains 
1 = (0; 1) and 
2 = (1; 2) with ho-
mogeneous Neumann boundary conditions, and an initial value u0. Assume that
b(x; u) = bm(u) and d(x; u) = dm(u) on 
m, respectively.

If we introduce an implicit Euler time discretization with timestep � , in the �th
timestep we have to solve a problem of the type

b(x; u�)� �r �
�
d(x; u�)ru�) = b(x; u��1)(5.2)

To be able to do this, we introduce the following finite difference scheme:
Let N = 2n, h = 1

n
and for i = 0 : : :2n, let xi = ih, and ui � u(xi). Let

B(u)i = h

8>>>>>><
>>>>>>:

1
2
b1(ui); i = 0

b1(ui); 0 < i < n
1
2

�
b1(ui) + b2(ui)

�
; i = n

b2(ui); n < i < 2n
1
2
b2(ui); i = 2n
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and

A(u)i =
�

h

8>>>>>><
>>>>>>:

g1(ui; ui+1); i = 0

g1(ui; ui�1) + g1(ui; ui+1); 0 < i < n

g1(ui; ui�1) + g2(ui; ui+1); i = n

g2(ui; ui�1) + g2(ui; ui+1); n < i < 2n

g2(ui; ui�1); i = 2n

Then under certain conditions on g1;2, we can regard

B(u�) + A(u�) = B(u��1)

as an approximation to (5.2).
A common way to discretize the nonlinear diffusion term is the usage of the

arithmetical mean of the solutions of the neigboring nodes:

gm(�; �) = dm
�� + �

2

�
(� � �)

If bm0 > b� � 0, for A and B, the conditions of theorem 3.10 are fulfilled. Thus for
arbitrarily large timesteps, the time step problems are solvable, and, furthermore,
the estimate (3.13) yields the L1 stability estimate

jju�jj1 � jju��1jj1:

Please note, that d can become zero, thus allowing to consider degenerate diffusion
effects. However,A is not of isotone flux type, and even in the case of strictly mon-
tone bwe are not able to prove uniqueness. The practical experience however does
not indicate that multiple solutions ar a problem in this case [Fuh97, FH97].

The natural question if there exists as scheme which allows for uniqueness is
answered by the following variant: Let dm = Dm0 and define

gm(�; �) = Dm(�) �Dm(�)

The mean value theorem says that there exists a � 2 [�; �] such that

gm(�; �) = dm(�)(� � �)

thus still being consistent to the diffusion type operator. The so defined operator
A(u) now fulfills the conditions of theorem 4.1. Defining

km(�; �) =

(
D
m(�)�Dm(�)

���
; � 6= �

dm(�); � = �

for D 2 C1(R;R) allows to rewite A(u) = K(u)u with K continuously depending
on u:

K(u)ij =
�

h

8>>>>>><
>>>>>>:

k1(ui; uj); 0 <= i < n; j = i + 1

k1(ui; uj); 0 < i <= n; j = i � 1

k2(ui; uj); n <= i < 2n; j = i + 1

k2(ui; uj); n < i <= 2n; j = i � 1

0; else

Thus, the conditions of both theorems 3.10 and 4.6 are fulfilled, and the solutions
of the timestep problems are unique.

We remark that in the case of homogeneous materials, i.e. b1 = b2 and d1 = d2

we could use the variable transformation v = D(u). In this case, the results for the
case of diagonal nonlinearity would be sufficient.

We further remark, that a generalization of these results to higher space dimen-
sions, unstructured meshes and more general conservation laws one finds in the
forthcoming paper [FL98].
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APPENDIX A. LINEAR ALGEBRA

A good reference for the following results still is [Var62]. Let M (n) be the set of
all real n� n-matrices.

A.1. Definition. For u = (ui)i=1:::n 2 Rn, let

jjujj1 =
nX
i=1

juij

jjujj1 =
n

max
i=1

juij

(A.2)

A.3. Remark. Let A 2 M (n). Then

jjAjj1 = sup
06=u2Rn

jjAujj1

jjujj1
=

n

max
j=1

nX
i=1

jaijj = jjA
T
jj1

jjAjj1 = sup
06=u2Rn

jjAujj1

jjujj1
=

n

max
i=1

nX
j=1

jaijj = jjAT
jj1

(A.4)

Further, we introduce some notations which are not usual, but we think they are
useful in the context of this paper. We note that often there isn’t paid attention to
the difference between row-wise and column-wise diagonal dominance.

A.5. Definition. Define the following subsets of M (n)

Z(n)� M (n) nonnegative main diagonal
and nonpositive off-diagonal
elements (often denoted as
Zn�n)

Z
+
c
(n) �Z(n) columnwise weakly diagonally

dominant
Z
++
c

(n) �Z+
c
(n) columnwise strictly diagonally

dominant
Z
0
c
(n) �Z+

c
(n) column sum zero

Z
+
r
(n) �Z(n) row wise weakly diagonally

dominant
Z
0
r
(n) �Z+

r
(n) row sum zero

Z
++
r

(n) �Z(n) row wise strictly diagonally
dominant

D (n) � M (n) diagonal
D
+ (n) � D (n) \Z+

r
(n) \Z+

c
(n) nonnegative diagonal

D
++ (n) � D + (n) \Z++

r
(n) \Z++

c
(n) positive diagonal

For a subsetX � f1 : : :ngwe writeM (X);Z(X) etc. to denote the sets of matri-
ces corresponding to this subset.

A = (aij)i;j=1:::n 2 M (n) is called positive (A > 0) if aij > 0; i; j = 1 : : :n and
nonnegative (A � 0) if aij � 0; i; j = 1 : : :n

A.6. Definition. A Matrix A 2Z(n) is called (nonsingular) M-matrix if A�1 � 0.

A.7. Theorem. Let A 2Z
+
r
(n); D 2 D

++ (n). Then
(i). DA 2Z

+
r
(n)

(ii). A+D 2Z
++
r

(n) is an M-matrix
(iii). jj(I + A)�1jj1 � 1

Proof. The first part is obvious, for the second, see [Axe94], lemma 6.2. For the third
part, let first A 2Z

0
r
(n).
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Assume that jj(I + A)�1jj > 1. We know that (I + A)�1 has positive entries.
Then for �ij being the entries of (I +A)�1,

n

max
i=1

nX
j=1

�ij > 1:

Let k be a row where the maximum is reached. Let e = (1 : : :1)T . Then for v =
(I + A)�1e we have that v > 0, vk > 1 and vk � vj for all j 6= k. The kth equation
of e = (I + A)v then looks like

1 = vk + vk

X
j 6=k

jakjj �
X
j 6=k

jakjjvj

� vk + vk

X
j 6=k

jakjj �
X
j 6=k

jakjjvk

= vk

> 1

This contradiction enforces jj(I +A)�1jj1 � 1.
Let now A 2 Z

+
r
(n). The we can write A = D + A0 with D 2 D

+ (n) and A 2

Z
0
c
(n). We have

I +A =I +D + A0

=(I +D)(I +D)�1(I +D +A0)

=(I +D)(I + AD0)

with AD0 = (I +D)�1A0 2Z
0
c
(n). Thus

jj(I + A)�1jj1 =jj(I + AD0)
�1(I +D)�1jj1

�jj(I +D)�1jj1

�1;

because all main diagonal entries of I +D are greater or equal to 1.

A.8. Remark. The third part of the theorem comes from the M-criterion of [GR92,
RST96], both refer to [Boh81].

A.9. Theorem. Let A 2Z
+
c
(n); D 2 D

++ (n). Then
(i). AD 2Z

+
c
(n)

(ii). A+D 2Z
++
c

(n) is an M-matrix
(iii). jj(I + A)�1jj1 � 1

Proof. Apply theorem (A.7) to AT .

APPENDIX B. A MEAN VALUE THEOREM

Here, we statea mean value theorem which several times is applied in this paper.
We are indebted to L. Recke for the hint to use this type of mean value problem
within our considerations.

B.1. Theorem. Let A : Rn
! R

n be Gâteaux differentiable for any u 2 R
n with the

Gâteaux derivative A0(u). Assume A0 2 C(Rn;M(n)). Then for any u; v 2 R
n, the

operator ~A(u; v) defined by

~A(u; v) =

1Z
0

A0(v + �(u� v))d�(B.2)
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satisfies ~A 2 C(Rn
�R

n;M (n)) and

A(u) �A(v) = ~A(u; v)(u� v):(B.3)

If A0(u) independently of u belongs to any of the subsets of M (n) from definiton A.5, then
~A(u; v) does.

Proof. The existence of ~A satisfying (B.3) is proven in [OR70]. The nonzero pattern,
the sign pattern and the row/column sum conditions are straightforward.
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