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Abstract

In this paper, a phase �eld system of Penrose�Fife type with non�conserved order

parameter is considered. A class of time�discrete schemes for an initial�boundary value

problem for this phase��eld system is presented. In three space dimensions, convergence

is proved and an error estimate is derived. For one scheme, this error estimate is linear

with respect to the time�step size.

1 Introduction

In [PF90], Penrose and Fife derived a phase��eld system modeling the dynamics of di�usive

phase transitions. In the case of a non�conserved order parameter, their approach leads to

the following system:

c0�t + �
0(�)�t + ��

�
1

�

�
= g; (1.1)

��t � "��+ �(�)� �
0(�) 3 �

�
0(�)

�
: (1.2)

This system determines the evolution of the order parameter � and the absolute temperature

�. Here, c0 and � denote the physical data speci�c heat and thermal conductivity, which

are supposed to be positive constants. The datum g represents heat sources or sinks, and �

stands for a positive space�dependent relaxation coe�cient. Choosing this coe�cient in a

particular way, an anisotropic growth can be simulated.

" is a positive relaxation coe�cient and � denotes the subdi�erential of the convex but non�

smooth part of a potential on R, while �� corresponds to the non�convex but di�erentiable

part of the potential. The latent heat of the phase transition is represented by �
0(�).

In the context of solid�liquid phase transitions, one typically has a quadratic or linear func-

tion � and

�(s) =
�(s)

�C

+ �s
2
; 8 s 2 R; (1.3)

where �C denotes some critical temperature and � some positive constant. For �(s) = 2�s3,

we see that �(s)��0(s)+��1
C
�
0(s) is the derivative of the double well potential �

2
(s�1)2(s+1)2.

If � is the subdi�erential of the indicator function I[�1;1] of the interval [�1; 1], we see

that �(s) � �
0(s) + �

�1
C �

0(s) corresponds to the �derivative� of the double obstacle potential

I[�1;1](s) + �(1 � s
2), which has been introduced for the standard phase��eld system by

Blowey and Elliott (see [BE94]).

In the mean��eld theory of the Ising ferromagnet as in [PF90, Sec. 4], one has quadratic

functions � and �, D(�) = (0; 1), and

�(s) = �
� @

@s

�
s ln s+ (1 � s) ln(1 � s)� ln

�
1

2

��
= �

�
ln

�
s

1� s

�
; 8 s 2 D(�);

where �� is some positive constant.
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The results in this work cover all these situations. Its main novelty is a time�discrete

scheme for an initial�boundary value problem for the phase��eld system (1.1)�(1.2) such

that in three space dimensions an error estimate linear with respect to the time�step size h

can be derived. Moreover, a general class of time�discrete schemes is investigated, including

some which are explicit in the approximation of �0(�) or �0(�). For these schemes an error

estimate is derived, which is linear with respect to h in two space dimensions and still nearly

linear in three space dimensions.

In [Hor93], Horn considers a time�discrete scheme in one space dimension for the Penrose�

Fife system for quadratic � and �. He derives an error estimate of order
p
h.

In previous works [Kle97a, Kle97b] of the author a time discrete scheme for a simpli�ed

Penrose�Fife system with � linear and � linear or quadratic has been considered and an

error estimate of order
p
h has been shown.

Using the time�discrete scheme, the existence of a unique solution to the Penrose�Fife system

is proved. This result is a minor novelty of this paper, because of the weakened regularity

assumption used for � and �. These functions are supposed to be C1�functions on R with

�
0 and �

0 locally Lipschitz continuous such that the Lipschitz constants ful�ll some growth

conditions.

Until now, in papers concerning existence, uniqueness, and regularity of similar Penrose�Fife

systems these functions are supposed to be at least C2�functions with �
00 bounded (see, e.g.

[HLS96, HSZ96, Lau93, Lau95, SZ93] or C1�functions with �
0 global Lipschitz (see [KN94])

resp. � convex (see [DK96]).

The same holds for papers like [CL98, CS98, CLS, Lau98], where more general heat �ux laws

are considered.

The layout of this paper is as follows: In Section 2, a precise formulation of the considered

phase��eld system is given, the class of time�discrete schemes is introduced, and the existence

and approximation results are presented. The remaining sections are devoted to the proof

of these results.

In Section 3, estimates concerning the approximation of the data are derived and the exis-

tence of a solution to the scheme is shown under the additional assumption that the domain

D(�) is bounded. Uniform estimates for a solution to the scheme are derived in Section 4.

Based on these results, the existence of a unique solution to the scheme is proved in Section

5. This is done by considering the time�discrete scheme with � replaced by � + @I[�C;C],

where I[�C;C] denotes the indicator function of the interval [�C;C] for some su�ciently big

C > 0.

In Section 6, the error estimates are derived, and the existence of a unique solution to the

Penrose�Fife system is proved.

2 The Penrose�Fife system and the time�discrete

schemes

In this section, a precise formulation of the considered phase��eld system of Penrose�Fife

type is given. Moreover, existence results and approximation results for a class of time�

discrete schemes are presented.
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2.1 The phase��eld system

In the sequel, 
 � R
N with N 2 f2; 3g denotes a bounded, open domain with smooth

boundary � and T > 0 stands for a �nal time. Let 
T := 
 � (0; T ) and �T := � � (0; T ).

We consider the following Penrose�Fife system:

(PF): Find a quadruple (�; u; �; �) ful�lling

� 2 H
1(0; T ;L2(
)); u 2 L

2(0; T ;H2(
)) \ L
1(0; T ;H1(
)); (2.1a)

� 2 H
1(0; T ;L2(
)) \ L

1(0; T ;H2(
)); (2.1b)

� 2 L
1(0; T ;L2(
)); (2.1c)

� > 0; u =
1

�
; � 2 D(�); � 2 �(�) a.e. in 
T ; (2.1d)

c0�t + �
0(�)�t + ��u = g a.e. in 
T ; (2.1e)

��t � "��+ � � �
0(�) = ��0(�)u a.e. in 
T ; (2.1f)

�
@u

@n
+ 
u = �;

@�

@n
= 0 a.e. in �T ; (2.1g)

�(�; 0) = �
0
; �(�; 0) = �

0 a.e. in 
: (2.1h)

For dealing with this system, the following assumptions will be used:

(A1): Let � be a maximal monotone graph on R and � : R ! [0;1] a convex, lower

semicontinuous function � : R! [0;1] satisfying

� = @�; 0 2 D(�); 0 2 �(0); int D(�) 6= ;:

(A2): There are positive constants C�
1 ; p; q such that

� 2 C
1
(R); � 2 C

1
(R); p < 1; q < 4;

��(s) � C
�

1 (�(s) + 1); (�0(s))
2 � C

�

1 (�(s) + 1); 8 s 2 D(�);

j�0(s)� �
0(r)j � js� rjC�

1 (jsj
p
+ jrjp + 1) ; 8 s; r 2 D(�);

j�0(s)� �
0
(r)j � js� rjC�

1 (jsj
q
+ jrjq + 1) ; 8 s; r 2 D(�):

(A3): We have positive constants c�; c
, and c� such that

g 2 H
1(0; T ;L1(
)); � 2 L

1(
); � � c� a.e. in 
;


 2 L
1(0; T ;C1(�)); 
t 2 L

1(�T ); 
 � c
 a.e. in �T ;

� 2 H
1
(0; T ;L

2
(�)) \ L

1
(�T ) \ L

1
(0; T ;H

1

2 (�)); � � c� a.e. in �T :

(A4): We consider initial data �0; �0
; u

0
; �

0 such that

�
0
; u

0 2 H
1(
) \ L

1(
); �
0 2 H

2(
); �
0 2 L

2(
); �(�0) 2 L
1(
);

�
0
> 0; u

0
=

1

�0
; �

0 2 D(�); �
0 2 �(�

0
) a.e. in 
;

@�
0

@n
= 0 a.e. in �:
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2.2 The class of time discrete schemes

To allow for variable time�steps, we consider decompositions of (0; T ) that do not need to

be uniform, but satisfy the following assumption.

(A5): The decomposition Z = ft0; t1; : : : ; tKg with 0 = t0 < t1 < � � � < tK = T ful�lls

0:01(tm � tm�1) � tm+1 � tm � 2(tm � tm�1); 8 1 � m < K: (2.2)

Remark 2.1. In the estimate (2.2), the �rst constant could be replaced by any positive con-

stant smaller than one and the second by any constant bigger than one.

We de�ne the width jZj of the decomposition by jZj := max
1�m�K

(tm� tm�1), and, for 1 � m �

K,

hm := tm � tm�1; gm(x) :=
1

hm

tmZ
tm�1

g(x; t) dt ; 8x 2 
; (2.3a)


m(�) :=
1

hm

tmZ
tm�1


(�; t) dt ; �m(�) :=
1

hm

tmZ
tm�1

�(�; t) dt ; 8� 2 �: (2.3b)

Now, the following time�discrete scheme (DZ) for the Penrose�Fife system is considered

(DZ): For 1 � m � K, �nd

�m 2 L
2(
); um; �m 2 H

2(
); �m 2 L
2(
) (2.4a)

such that

0 < um; �m =
1

um

; �m 2 D(�); �m 2 �(�m) a.e. in 
; (2.4b)

c0

�m � �m�1

hm

+ �
0

d(�m; �m�1)
�m � �m�1

hm

+ ��um = gm a.e. in 
; (2.4c)

�
�m � �m�1

hm

� "��m + �m � �
0

d(�m; �m�1) = ��0d (�m; �m�1) um a.e. in 
; (2.4d)

��
@um

@n
= 
mum � �m;

@�m

@n
= 0 a.e. in �; (2.4e)

with

�0 := �
0
; u0 := u

0
; �0 := �

0
; �0 := �

0
: (2.4f)

Here, approximations �0d and �
0
d for �

0 and �
0 are used such that the following assumption is

satis�ed:
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(A6): Let �0d; �
0
d : R�R! R be continuous functions, and let C�

2 ; p; q be positive constants

with p < 1, q < 4 such that, for all r; s; r0; s0 2 D(�),

�
0

d(s; s) = �
0(s); �

0

d(s; s) = �
0(s); (�0d(r; s))

2 � C
�

2 (�(r) + �(s) + 1);

j�0d(r; r
0)� �

0

d(s; s
0)j � C

�

2 (jr � sj+ jr0 � s
0j)
�
jrjp + jr0jp + jsjp + js0jp + 1

�
;

j�0d(r; r
0)� �

0

d(s; s
0)j � C

�

2 (jr � sj+ jr0 � s
0j)
�
jrjq + jr0jq + jsjq + js0jq + 1

�
;

��0d(r; s)(r � s) � ��(r) + �(s) + C
�

2(r � s)2: (2.5)

Remark 2.2. The time�discrete scheme (DZ) is an Euler scheme in time for the Penrose�

Fife system (PF), which is fully implicit, except for the treatment of the nonlinearities

�
0 and �

0.

By introducing the general approximations �0d(�m; �m�1) and �
0
d(�m; �m�1) in (DZ), the

same formulation can be used to investigate a bunch of di�erent time�discrete schemes.

A full implicit scheme corresponds to the choices �0
d
(r; s) = �

0(r) and �
0
d
(r; s) = �

0(r). A

fully explicitly treatment of nonlinearities �0 and �
0 corresponds to �

0
d(r; s) = �

0(s) and

�
0
d(r; s) = �

0(s).

The following choices for �0d and �
0
d ful�ll (A6), if (A2) is satis�ed (see Lemma 3.1).

a) Any convex combination of �0(�m) and �
0(�m�1) can be used for �0d(�m; �m�1).

b) One particular choice for �0d is the following approximation for a derivative, which has

been used by Niezgódka and Sprekels in [NS91, (2.3)]:

�
0

�(r; s) :=

(
�(r)��(s)

r�s
; if r 6= s;

�
0(r); if r = s:

(2.6)

If one chooses this function as �0d , the approximation for �0(�)�t used in the discrete

energy balance (2.4c) will coincide with the discrete di�erential quotient arising in the

approximation of (�(�))
t
.

c) Assume that � 2 C
2(R). If we have a uniform upper and a uniform lower bound

for �
00 on D(�), we can use every convex combination of �0(�m) and �

0(�m�1) for

�
0
d(�m; �m�1).

If we have a uniform upper bound for �00 onD(�), we can use the explicit approximation

�
0
d(�m; �m�1) = �

0(�m�1). If we have a uniform lower bound for �00 on D(�), we can

use the implicit approximation �
0
d(�m; �m�1) = �

0(�m).

For the time�discrete scheme there holds:

Theorem 2.1. Assume (A1)�(A6). Then, the scheme has a unique solution, if jZj is
su�ciently small.

Remark 2.3. We use the solution to (DZ) to construct an approximate solution�b�Z; buZ; b�Z; �Z� in (L1(0; T ;L2(
)))
4
to the Penrose�Fife system (PF). The function
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b�Z is de�ned to be linear in time on [tm�1; tm] for m = 1; : : : ;K such that b�Z(tk) = �k

holds for k = 0; : : : ;K. The functions buZ and b�Z are de�ned analogously. We de�ne �
Z

piecewise constant in time by �
Z
(t) = �k for t 2 (tk�1; tk] and k = 1; : : : ;K.

The following corollary allows to check, if for a given decomposition Z the scheme has a

unique solution.

Corollary 2.1. Assume that (A1)�(A6) hold. There exists a solution to (DZ), if jZj � h
�,

where h� and C
�
5 are positive constants with

h
�

�
2 (�0d(r; s))

2 � C
�

5(�(s) + 1)

�
� c��(r); 8 r; s 2 D(�): (2.7)

The solution to the scheme is unique, if, in addition,

�
0

d(r; s) = �
0(s); 2 jZj j�0d(r; s)� �

0

d(r
0
; s)j � c� jr � r

0j ; 8 r; r0; s 2 D(�): (2.8)

Remark 2.4. Assume that (A1)�(A6) hold. If D(�) is bounded, Corollary 2.1 yields that

the scheme has a solution. If D(�) is unbounded, the upper bound h
� can be calculated

from (2.7) for given � and �
0
d. Thanks to (A6), we can always �nd positive h� and C

�
5 ,

such that (2.7) is satis�ed.

If �0 is approximated explicitly and �0d is globally Lipschitz continuous in the �rst variable

on D(�) �D(�), the conditions (2.8) and (2.7) lead to an computable upper bound for

the time�step size to ensure the existence of a unique solution.

For �0d explicit, i.e. �0d(r; s) = �
0(s), we do not get any restriction for the time�step size

from (2.7) or (2.8).

2.3 Existence and approximation results

Theorem 2.2. Assume that (A1)�(A4) and (A6) hold. Then there is a unique solution

(�; u; �; �) to the Penrose�Fife system (PF). For this solution it holds that

� 2 L
1
(0; T ;H

1
(
)) \ L

1
(
T ) \ W

1;1
(0; T ;H

1
(
)

�
); (2.9)

u 2 H
1(0; T ;L2(
)) \ L

1 (
T ) ; (2.10)

� 2 W
1;1(0; T ;L2(
)) \ H

1(0; T ;H1(
)) \ L
1 (
T ) : (2.11)

As, for decompositions Z with (A5), jZj tends to 0, we have,

b�Z �! � weakly in H
1(0; T ;L2(
)); (2.12)

weakly�star in L
1(0; T ;H1(
)) \ L

1 (
T ) ; (2.13)

weakly�star in W
1;1(0; T ;H1(
)

�
); (2.14)buZ �! u weakly in H

1(0; T ;L2(
)); (2.15)

weakly�star in L
1(0; T ;H1(
)) \ L

1 (
T ) ; (2.16)

weakly in L
2(t�; T ;H

2(
)); 8 0 < t� < T; (2.17)
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b�Z �! � weakly in H
1(0; T ;H1(
)); (2.18)

weakly�star in W
1;1

(0; T ;L
2
(
)) \ L

1
(0; T ;H

2
(
)); (2.19)

�
Z
�! � weakly�star in L

1(0; T ;L2(
)): (2.20)

The following error�estimate is the main result of this work.

Theorem 2.3. Assume that (A1)�(A6) hold and that jZj is su�ciently small. Let (�; u; �; �)

be the solution to the Penrose�Fife system (PF).

a) If �0
d
= �

0
�
(cf. (2.6)), then we have a positive constant C, independent of Z, such that


b�Z � �





L2(0;T ;L2(
))\C([0;T ];H1(
)�)

+


buZ � u




L2(0;T ;L2(
))

+


b�Z � �




C([0;T ];L2(
))\L2(0;T ;H1(
))

� C jZj : (2.21)

b) If �0d 6= �
0
� and 
 � R

2, then (2.21) still holds.

c) If �0
d
6= �

0
� and 
 � R

3, then (2.21) holds with jZj replaced by jZj
20

23 .

Remark 2.5 (Numerical implementation). In a lot of physically relevant situations, see [PF90],

the considered functions � and � are quadratic and � has a quadratic lower bound, i.e.

we have positive constants C�
3 ; C

�
4 with

�(s) + C
�

3 � C
�

4s
2
; 8 s 2 D(�): (2.22)

In this situation, the scheme with

�
0

d(r; s) := �
0(r); �

0

d(r; s) := �
0(s); 8 r; s 2 R

is the most promising one to perform numerical computations, because of the following

properties of this scheme: The coupling between the two equations (2.4c) and (2.4d) is a

linear one, since �0d(�m; �m�1) does not depend on �m. Moreover, �0d(�m; �m�1) is linear

in �m. Thus, a �nite element discretization and a nonlinear Gauss�Seidel scheme similar

to the one in [Kle97a, Sec. 10] can be used to �nd approximative solutions to (DZ).

Corollary 2.1 allows us to calculate an upper bound for the time�step size to ensure the

existence of a unique solution. In two space dimensions, Theorem 2.3 yields a convergence

linear with respect to the time�step size, and in three dimensions the convergence in still

nearly linear.

Remark 2.6. If the regularity assumption for g in (A3) is weakened to g 2 L
1 (
T ), all

results of this work still holds, except the error estimates in Theorem 2.3.

3 Some properties of the approximation of the data and

a special existence result

To prepare the proof of the theorems and the corollary in the last section, some notations

will be �xed and some properties for the approximation of the data will be proved. Moreover,

7



the existence of a unique solution will be shown, under the additional condition that D(�)

is bounded.

In the sequel, we use the notation k�k
p
for the Lp(
)�norm, for all p 2 [1;1]. Moreover,

k�k2 will also be used for the (L2(
))2 resp. (L2(
))3 norm.

3.1 Properties of the data and their approximations

In the following lemma it is shown that those approximations discussed in Remark 2.2 ful�ll

the condition (A6).

Lemma 3.1. Assume that (A2) holds. Let ! 2 [0; 1] be given and de�ne �0d : R�R! R by

�
0

d(r; s) = !�
0
(r) + (1� !)�

0
(s); 8 r; s 2 R: (3.1)

a) If �0d = �
0
� (cf. (2.6)), we have (A6) and

�
0

�(r; s)(r � s) = �(r) � �(s); 8 r; s 2 R: (3.2)

b) Assume, in addition, � 2 C
2(R) and

�
0

d(r; s) = !
�
�
0(r) + (1� !

�)�0(s); 8 r; s 2 R; (3.3)

with some !� 2 [0; 1].

If we have positive constants C1; C2 such that �C1 � �
00(s) � C2 for all s 2 D(�), the

assumption (A6) holds.

If !� = 0 and we have a positive constant C3 with �
00(s) � C3 for all s 2 D(�), the

assumption (A6) is satis�ed.

If !� = 1 and we have a positive constant C4 with �C4 � �
00(s) for all s 2 D(�), the

assumption (A6) holds.

Proof. First, we consider part (a) of the lemma. Thanks to (2.6), we have (3.2) and �0�(r; s) =
1R
0

�
0(s+ � (r� s)) d� : Hence, for �0d = �

0
�, we can use (3.1), Schwarz's inequality, and (A2),

to show that (A6) is satis�ed. This yields part (a) of the Lemma.

To prove part (b) of the lemma, we need only to show that the last estimate in (A6), i.e. (2.5),
is satis�ed, since the remaining assumptions in (A6) follow by an argumentation similar to

the one above. For r; s 2 D(�), applying Taylor's formula and (3.3) gives �; � 2 D(�) such

that

��0d(r; s)(r� s) + �(r) � �(s) =
1

2
(�!��00(� ) + (1 � !

�
)�

00
(�)) (r � s)

2
:

Now, we see immediately that (2.5) holds under the considered assumptions.

8



Lemma 3.2. Assume that (A3) holds. Then there exist positive constants C1; C2; : : : ; C6,

such that, for all decompositions Z with (A5), the functions gm, 
m, and �m de�ned in (2.3)

ful�ll, for 1 � m � K,

C1 kvk
2

H1(
)
� � krvk2

2
+

Z
�


mv
2 d� � C2 kvk

2

H1(
)
; 8 v 2 H

1(
);


mv 2 H
1

2 (�); k
mvk
H

1

2 (�)
� C3 kvkH1(
) ; 8 v 2 H

1(
);

c� � �m a.e. in �;

������
Z
�

�mv d�

������+
������
Z



gmv dx

������ � C4 kvkH1(
) ; 8 v 2 H
1(
);

kgmk1 + k
mkC1(�)
+ k�mkL1(�)

+ k�mk
H

1

2 (�)
� C5;

and

max
1�m�K�1






m+1 � 
m

hm






L1(�)

+

K�1X
m=1

hm





�m+1 � �m

hm





2
L2(�)

� C6;

where the positive constants c�; c
 are speci�ed in (A3).

Proof. This lemma follows from (A3), (A5), the trace�mapping from H
1(
) to H

1

2 (�), and

the interpolation of H
1

2 (�) by H
1(�) and L

2(�).

3.2 The existence proof for D(�) bounded

Lemma 3.3. Assume that (A1)�(A6) hold and that D(�) is bounded. Then there exists a

solution to (DZ).

Proof. From (2.4f), we get �0; u0; �0; �0. Now, we assume that �m�1 2 L
2(
); �m�1 2 H

2(
)

for some m 2 f1; : : : ;Kg are given. To show that there exists a solution to the system in

(DZ), i.e. to (2.4a)�(2.4e), we will �rst consider the discrete energy balance equation and the

discrete equation for the order parameter separately. Afterwards, we will rewrite the system

as a �xed point problem and apply Schauder's �xed point theorem.

Lemma 3.4. For every � 2 L
1(
), there is a unique ~u 2 H

2(
) such that

0 < ~u a.e. in 
;
1

~u
2 L

2(
); ��
@~u

@n
= 
m~u� �m a.e. in �; (3.4)

�
c0

~u
� hm��~u = �c0�m�1 � hmgm + �

0

d(�;�m�1) (�� �m�1) a.e. in 
: (3.5)

Proof. Let � 2 L
1(
) be given. Thanks to (A6) and �m�1 2 C(�
), we have

�
0

d(�;�m�1) (�� �m�1) 2 L
2(
):

By translating the proof of [Bré71, Corollary 13], we see that the operator corresponding to

(3.4) and the left�hand side of (3.5) is maximal monotone. By showing that this operator

is also coercive, we obtain that the operator is also surjective. The injectivity follows by

estimating the di�erence between two given solutions. Details can be found in [Kle97a,

Lemma 5.1].
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Lemma 3.5. For every � 2 L
1(
), ~u 2 L

2(
) there exists a unique ~� such that

~� 2 H
2(
); ~� 2 D(�) a.e. in 
;

@ ~�

@n
= 0 a.e. in �; (3.6)

�
~�� �m�1

hm

� "�~�+ �(~�) 3 �
0

d(�;�m�1)� �
0

d (�;�m�1) ~u a.e. in 
; (3.7)

��
~�� �m�1

hm

+ "�~�+ �
0

d(�;�m�1)� �
0

d (�;�m�1) ~u 2 L
2(
): (3.8)

Proof. By (A1) and (A3), we can rewrite (3.6)�(3.8) as

c�

hm

~�+B ~� 3 �
0

d(�;�m�1)� �
0

d (�;�m�1) ~u+
�

hm

�m�1; (3.9)

where B : L2(
) ! fW � L
2(
)g is a nonlinear operator. Using [Bré71, Corollary 13], we

see that this operator is maximal monotone. Details can be found in [Kle97a, (5.7)�(5.8)

and Lemma 5.5].

Because of (A6), (A3), � 2 L
1(
), �m�1 2 H

2(
) � C(
), we see that the right�hand

side of (3.9) is in L
2(
). Hence, [Bré71, Theorem 2] yields that there is a unique solution ~�

to (3.6)�(3.8).

In this proof, Ci, for i 2 N, will always denote generic positive constants, independent of

� 2 M with

M :=

n
� 2 L

2
(
) : � 2 D(�) a.e. in 


o
: (3.10)

This is a closed and convex set.

We have

Lemma 3.6. The functions �0d(�; �m�1) and �
0
d(�; �m�1) are Lipschitz continuous on D(�)

and there is a positive constant C1 such that, for all � 2 M,

k�0d(�;�m�1)k1 + k�0d(�;�m�1)k1 + k�k
1
+ k�m�1k1 � C1: (3.11)

Proof. Since D(�) is bounded and �m�1 2 H
2(
) � C(
), (A6) yields that the assertions

of this lemma hold.

Combining Lemma 3.4 and Lemma 3.5, we see that for every � 2 M there is a unique

~u 2 H
2(
) and a unique 	(�) := ~� 2 H

2(
) such that (3.4)�(3.5) and (3.6)�(3.8) hold.

This de�nes a mapping 	 : M ! M and any �xed point of 	 leads to a solution to the

system in (DZ), i.e. to (2.4a)�(2.4e). Therefore, it is su�cient to prove that 	 has a �xed

point.

We test (3.5) by hm~u, apply Green's formula, Lemma 3.2, Hölder's inequality, (3.4), (3.11),

and Young's inequality to conclude that

C2 k~uk
2

H1(
)

�c0 j
j+ hm

Z
�

�m~ud� +

Z



(�c0�m�1 � hmgm + �
0

d(�;�m�1) (�� �m�1)) ~udx

�C3 +
C2

2
k~uk2

H1(
) : (3.12)
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Owing to (A1), we have ws � 0 for all s 2 D(�), w 2 �(s). Therefore, by testing (3.7) by ~�

and applying (A3), Green's formula, (3.6), (3.11), Hölder's inequality, (3.12), and Young's

inequality, we get

C4 k~�k
2

H1(
) �




��m�1

hm

+ �
0

d(�;�m�1)� �
0(�;�m�1)~u






2

k~�k2 � C5 +
C4

2
k~�k22 :

Hence, we see that ~� 2 M1 with

M1 :=

�
�� 2 M : k��k2

H1(
)
� 2

C5

C4

�
:

Therefore, we observe that M1 is a nonempty, convex, compact set in L
2(
) and, by con-

struction, that 	 mapsM1 into itself. Thanks to Lemma 3.7, 	 is on M1 continuous. Now,

Schauder's �xed point theorem yields the existence of a �xed point of 	 in M1.

Lemma 3.7. 	 :M!M is L2(
)�continuous.

Proof. Let ��1; �
�
2 in M be arbitrary, and

~�1 := 	(��1); ~�2 := 	(��2); �
� := �

�

1 � �
�

2; ~� := ~�1 � ~�2:

Combining (3.4)�(3.5), (3.6)�(3.8), and the de�nition of 	, we �nd ~u1; ~u2 2 H
2(
), ~�1; ~�2 2

L
2(
) such that

~u1 > 0; ~u2 > 0; ~�1 2 �(~�1); ~�2 2 �(~�2) a.e. in 
; (3.13)

�c0

�
1

~u1
�

1

~u2

�
� hm��(~u1 � ~u2)

= �
0

d(�
�

1; �m�1)(�
�

1 � �m�1)� �
0

d(�
�

2; �m�1)(�
�

2 � �m�1) a.e. in 
; (3.14)

�
~�

hm

� "�~�+ ~�1 � ~�2 = ��0
d
(��1; �m�1)~u1 + �

0

d
(��2; �m�1)~u2

+�0d(�
�

1; �m�1)� �
0

d(�
�

2; �m�1) a.e. in 
; (3.15)

��
@ (~u1 � ~u2)

@n
= 
m (~u1 � ~u2) ;

@ ~�

@n
= 0 a.e. in �: (3.16)

Testing (3.14) by ~u := ~u1 � ~u2, integrating by parts, and using (3.16), (3.13), Lemma 3.2,

Hölder's inequality, Lemma 3.6, and Young's inequality, we deduce

c0





 ~u
p
~u1~u2





2
2

+ C6 k~uk
2

H1(
)

�
Z



�
�
0

d(�
�

1; �m�1)�
�
+ (�

0

d(�
�

1; �m�1)� �
0

d(�
�

2; �m�1)) (�
�

2 � �m�1)
�
~udx

�C7 k��k2 k~uk2 � C8 k��k
2

2 +
C6

2
k~uk2

2
: (3.17)
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We test (3.15) by ~� and use (3.13), the monotonicity of �, (A3), (3.16), and the generalized

Hölder's inequality (see Lemma AP.2) to derive

C9 k~�k
2

H1(
) �k�
0

d(�
�

1; �m�1)k3

2

k~uk6 k~�k6 + k�0d(�
�

1; �m�1)� �
0

d(�
�

2; �m�1)k 3

2

k~u2k6 k~�k6
+ k�0d(�

�

1; �m�1)� �
0

d(�
�

2; �m�1)k2 k~�k2 :

Because of Lemma 3.6, (AP.1), (3.17), and (3.12), we see

C9 k~�k
2

H1(
) � C10 k��k2 k~�kH1(
) :

Hence, thanks to Young's inequality, we have shown that 	 is L2(
)�continuous.

4 Uniform estimates

In this section, uniform estimates for the solutions to the time�discrete scheme are derived.

Assume that (A1)�(A6) hold and that jZj � h
�, where h� and C

�
5 are positive constants

such that (2.7) is satis�ed.

Let �� := @�
� and �

� : R! [0;1] be either � or the function de�ned by

�
�
(s) =

(
�(s); if jsj � B;

1; otherwise;
(4.1)

for some B > k�0k
1
. In the light of (A1), we see that �� is a convex, lower semicontinuous

function with

0 � � � �
� on R; 0 2 D(��); intD(��) 6= ;; 0 2 �

�(0); �
�j
D(��) = �j

D(��) : (4.2)

Now, a modi�ed version of the time�discrete scheme is considered, where � in (DZ), i.e. in

(2.4b), is replaced by �
�. Let any solution to this scheme be given.

In the sequel, Ci, for i 2 N, will always denote positive generic constants, independent of

the decomposition Z, the considered choice of ��, and the solution itself.

Remark 4.1.

Recalling (2.4a), (2.4b), (2.4e), (2.4f), (A4), and the de�nition of ��, we see that

0 < um =
1

�m

; �m 2 D(��) � D(�); �m 2 �
�(�m) = @�

�(�m) a.e. in 
;

�m 2 H
2(
);

@�m

@n
= 0 a.e. in �; 8 0 � m � K:

(4.3)

Applying (2.4c), Green's formula, and (2.4e), we deduce thatZ



�
c0
�m � �m�1

hm

+
�m � �m�1

hm

�
v dx � �

Z



rum � rv dx

�
Z
�


mumv d� =

Z



gmv dx �
Z
�

�mv d� ; 8 v 2 H
1(
); 1 � m � K; (4.4)

with

�0 := �(�0); �m := �m�1 + �
0
d(�m; �m�1)(�m � �m�1) a.e. in 
; 8 1 � m � K: (4.5)
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The following Lemmas use ideas from [HSZ96, SZ93, CS97, Hor93, HS, Lau93, Lau94, Kle97a]

Lemma 4.1. a) There is a positive constant C1 such that

k��(�0)k1 + k�0k2 + k�(�0)k1 + k�0k6 + k�0d(�0; �0)k2 + k�0d(�0; �0)k2 + k�0kH2(
)

+ k�0kH1(
)\L1(
) + ku0kH1(
)\L1(
) + kln(�0)k1 � C1: (4.6)

b) Let ��1 2 L
2(
) be de�ned by

�
�0 � ��1

h0

� "��0 + �0 + �
0

d(�0; �0) = ��0d(�0; �0)u0 a.e. in 
; (4.7)

with h0 := jZj. We have a positive constant C2 such that



p� ��0 � ��1

h0

�



2
2

� C2: (4.8)

Proof. If �� = �, we use the initial condition (2.4f), (A2), (A4), Sobolev's embedding

Theorem, (A6), and (4.5) to show that (4.6) is satis�ed. If �� 6= �, in addition, (4.1) and

B > k�0k
1

are applied. Combining (4.7), (4.6), and (A3) leads to (4.8).

Lemma 4.2. There are two positive constants C3; C4 such that

max
0�m�K

�
k�mk1 + kln(�m)k1 + k�mk

2

H1(
) + k�(�m)k1
�

+

KX
m=1

hm kumk
2

H1(
) +

KX
m=1

hm





�m � �m�1

hm





2
2

+

KX
m=1

k�m � �m�1k
2

H1(
) � C3; (4.9)

max
1�m�K

k�0d(�m; �m�1)k2 � C4: (4.10)

Proof. Testing (2.4d) by (�m � �m�1), taking the sum from m = 1 to m = k, and using

(A3), Green's formula, (4.3), (AP.5), (4.6), (4.2), (4.5), Schwarz's inequality, and Young's

inequality, we deduce

c�

2

kX
m=1

hm





�m � �m�1

hm





2
2

+
"

2
kr�kk

2

2
+
"

2

kX
m=1

kr�m �r�m�1k
2

2
+ k�(�k)k1

�C5 �
kX

m=1

Z



(�m � �m�1)um dx +
1

2c�

kX
m=1

hm k�0d(�m; �m�1)k
2

2
: (4.11)

Let � := min

�
1

2C�
1

;
c�

6C�
2
T

�
, with C

�
1 ; C

�
2 as in (A2) and (A6). For 1 � m � K, we insert

v = hm�� hmum in (4.4), use (4.3) and that �1
s

is the derivative of the convex function

� ln(s), take the sum from m = 1 to m = k, and apply Lemma 3.2, (4.6), and Young's

inequality, to show that

c0

Z



(� ln(�k)) dx + �c0 k�kk1 + C6

kX
m=1

hm kumk
2

H1(
)

�C7 +

kX
m=1

Z



(�m � �m�1)(um � �) dx : (4.12)
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Because of (4.5), (A6), (A2), (4.6), Young's inequality, and the de�nition of �, we have

��
kX

m=1

Z



(�m � �m�1) dx � C8 +
1

2

Z



�(�k) dx +
c�

6

kX
m=1

hm





�m � �m�1

hm





2
2

:

Hence, by using Lemma AP.8 and adding (4.12) to (4.11), we deduce

C9 k�kk1 + c0 kln(�k)k1 + C6

kX
m=1

hm kumk
2

H1(
)
+
c�

3

kX
m=1

hm





�m � �m�1

hm





2
2

+
"

2
kr�kk

2

2

+
"

2

kX
m=1

kr (�m � �m�1)k
2

2
+

1

2
k�(�k)k1 � C10 +

1

2c�

kX
m=1

hm k�0d(�m; �m�1)k
2

2
: (4.13)

Since (A6), (2.7), and jZj � h
� yield

k�0
d(�m; �m�1)k

2

2 � C
�

2

0@k�(�m)k1 + k�(�m�1)k1 +
Z



1 dx

1A ; 8 1 � m � K; (4.14)

hk

2c�
k�0d(�k; �k�1)k

2

2
�

1

4
k�(�k)k1 + C11 (hk k�k�1k1 + 1) ;

we obtain from (4.13), (A5), the discrete version of Gronwall's lemma, and (4.6) that (4.9)

is satis�ed. Therefore, (4.10) holds because of (4.14).

Lemma 4.3. There exists a constant C12 such that

max
0�m�K

 



�m � �m�1

hm





2
2

+ kumk
2

H1(
)

!
+

KX
m=1

hm





�m � �m�1

hm





2
H1(
)

+

KX
m=1





(�m � �m�1)
�m � �m�1

hm






1

+

KX
m=1





�m � �m�1

hm

�
�m�1 � �m�2

hm�1





2
2

+

KX
m=1

hm





 um � um�1

hm
p
umum�1





2
2

+

KX
m=1

kum � um�1k
2

H1(
)
� C12; (4.15)

with ��1, h0 as in Lemma 4.1.

Proof. Inserting v = � (um � um�1) in (4.4), taking the sum from m = 1 to m = k, and

applying (4.3), (AP.5), (AP.4), Lemma 3.2, (4.9), (4.6), the generalized Hölder's inequality,

hm � 2hm�1, and Young's inequality, we deduce that

co

2

kX
m=1

hm





 um � um�1

hm
p
umum�1





2
2

+ C13 kukk
2

H1(
)
+ C13

kX
m=1

kum � um�1k
2

H1(
)

�C14 +

kX
m=1

Z



�m � �m�1

hm

(um � um�1) dx : (4.16)
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For 2 � m � K, we test the di�erence of (2.4d) for m and m� 1 by
�m��m�1

hm
. By applying

(A3), Green's formula, (4.3), the monotonicity of �, (4.5), and (AP.5), we obtain that

1

2





p� �m � �m�1

hm





2
2

�
1

2





p� �m�1 � �m�2

hm�1





2
2

+
c�

2





�m � �m�1

hm

�
�m�1 � �m�2

hm�1





2
2

+ "hm





r��m � �m�1

hm

�



2
2

+





(�m � �m�1)
�m � �m�1

hm






1

��
Z



�
�m � �m�1

hm

um � �
0

d;m�1

�m � �m�1

hm

um�1

�
dx

+

Z



�
�
0

d(�m; �m�1)� �
0

d;m�1

� �m � �m�1

hm

dx ; (4.17)

with �
0

d;m�1 := �
0

d(�m�1; �m�2); �
0

d;m�1 := �
0

d(�m�1; �m�2) a.e. in 
: (4.18)

Testing the di�erence of (2.4d) for m = 1 and (4.7) by �1��0

h1
and using the same argumen-

tation as above, we deduce that (4.17) holds also for m = 1 with

�
0

d;0 := �
0

d
(�0; �0); �

0

d;0 := �
0

d
(�0; �0) a.e. in 
: (4.19)

Summing up (4.17) from m = 1 to m = k, adding the resulting estimate to (4.16), and using

(A3), (4.9), and (4.8), we conclude that

c�

2





�k � �k�1

hk





2
2

+
c�

2

kX
m=1





�m � �m�1

hm

�
�m�1 � �m�2

hm�1





2
2

+ C15

kX
m=1

hm





�m � �m�1

hm





2
H1(
)

+

kX
m=1





(�m � �m�1)
�m � �m�1

hm






1

+
co

2

kX
m=1

hm





 um � um�1

hm
p
umum�1





2
2

+ C13 kukk
2

H1(
) + C13

kX
m=1

kum � um�1k
2

H1(
)

�C16 + I1;k + I2;k; (4.20)

with I1;k :=

kX
m=1

Z



�
�
0

d;m�1

�m � �m�1

hm

�
�m � �m�1

hm

�
um�1 dx ; (4.21)

I2;k :=

kX
m=1

Z



�
�
0
d(�m; �m�1)� �

0
d;m�1

� �m � �m�1

hm

dx : (4.22)

Using (4.5), the generalized Hölder's inequality, and Schwarz's inequality, we deduce that

I1;k �
�

max
1�m�k





�m � �m�1

hm






2

�p
I3;k

vuut kX
m=1

hm�1 kum�1k
2

6;

with I3;k :=

kX
m=1

1

hm�1



�0d;m�1 � �
0

d(�m; �m�1)


2
3
: (4.23)
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Now, owing to (AP.1), (4.9), (4.6), and Young's inequality, we observe that

I1;k =
c�

4
max
1�m�k





�m � �m�1

hm





2
2

+ C17I3;k: (4.24)

Since 1
3
= 1

p1
+

p

6
holds for p1 := 6

2�p
, we obtain, by (4.18), (4.19), (A6), the generalized

Hölder's inequality, hm � 2hm�1, (AP.1), and (4.9), that

I3;k �C18

kX
m=2

 
h
2
m

hm�1





�m � �m�1

hm





2
p1

+ hm�1





�m�1 � �m�2

hm�1





2
p1

!
�
k�pmk 6

p

+


�pm�1

 6

p

+


�pm�2

 6

p

+ 1

�2

+ C19

h
2
1

jZj





�1 � �0

h1





2
p1

�
k�p1k 6

p

+ k�p0k 6

p

+ 1

�2
� C20

kX
m=1

hm





�m � �m�1

hm





2
6

2�p

:

Because of p < 1, we can use the Gagliardo�Nirenberg inequality (see Lemma AP.5) and

Young's inequality to deduce

C17I3;k �
C15

4

kX
m=1

hm





�m � �m�1

hm





2
H1(
)

+ C21

kX
m=1

hm





�m � �m�1

hm





2
2

: (4.25)

De�ning q1 :=
12
6�q

, we have 1 = 1
q1
+

q

6
+ 1

q1
. It follows from (4.22), (4.18), (4.19), (A6), and

the generalized Hölder's inequality that

I2;k �C22

kX
m=2

 
hm





�m � �m�1

hm






q1

+ hm�1





�m�1 � �m�2

hm�1






q1

!
�
k�qmk6

q

+


�qm�1

 6

q

+


�qm�2

 6

q

+ 1

�



�m � �m�1

hm






q1

+ C23h1





�1 � �0

h1






q1

�
k�q1k 6

q

+ k�q0k 6

q

+ 1

� 



�1 � �0

h1






q1

:

Using (AP.1), (4.9), Young's inequality, (A5), the Gagliardo�Nirenberg inequality, and q <

4, we obtain that

I2;k �
C15

4

kX
m=1

hm





�m � �m�1

hm





2
H1(
)

+ C24

kX
m=1

hm





�m � �m�1

hm





2
2

: (4.26)
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Combining (4.20), (4.24)�(4.26), and (4.9), we conclude that

c�

2





�k � �k�1

hk





2
2

+
c�

2

kX
m=1





�m � �m�1

hm

�
�m�1 � �m�2

hm�1





2
2

+
C15

2

kX
m=1

hm





�m � �m�1

hm





2
H1(
)

+

kX
m=1





(�m � �m�1)
�m � �m�1

hm






1

+
co

2

kX
m=1

hm





 um � um�1

hm
p
umum�1





2
2

+ C13 kukk
2

H1(
) + C13

kX
m=1

kum � um�1k
2

H1(
)

�C25 +
c�

4
max
1�m�k





�m � �m�1

hm





2
2

: (4.27)

By taking the maximum from m = 1 to m = K, we see that (4.15) holds, because of

(4.6).

Lemma 4.4. There exists a positive constant C26 such that

max
1�m�K

k�mk2 + max
0�m�K

k�mkH2(
) � C26: (4.28)

Proof. To test (2.4d) by �m, we use the Yosida approximation ��1
n

of ��, which is, see [Bré71,

p. 104], a nondecreasing, Lipschitz continuous function on R. The construction of the Yosida

approximation and 0 2 �(0) yield that 0 = �
�
1

n

(0), for all n 2 N.
Since ��1

n

is the derivative of a convex function on R, we can apply [Bré71, Corollary 13] to

show that for every n 2 N there exists a unique �m;n 2 H
2(
) and a unique �m;n 2 L

2(
)

such that

�m;n � "��m;n + �m;n = fm a.e. in 
; (4.29)

�m;n = �
�
1

n

(�m;n) a.e. in 
;
@�m;n

@n
= 0 a.e. in �; (4.30)

with fm 2 L
2(
) de�ned by

fm := ��0d(�m; �m�1)um + �
0
d(�m; �m�1) + �m �

�

hm

(�m � �m�1) : (4.31)

Since �
�
1

n

is globally Lipschitz�continuous on R and, by Sobolev's embedding Theorem,

�m;n 2 H
1;6(
), we obtain, by [MM79, Theorem 1], that ��1

n

(�m;n) = �m;n 2 H
1(
) and,

by [MM72, Lemma 2.1 and Remark 2.1], that for this function the generalized chain rules

holds. Therefore, since ��1
n

is nondecreasing on R, we see thatZ



r(�m;n) � r�m;n dx =

Z



�
�
�
1

n

�0
(�m;n) (r�m;n)

2
dx � 0: (4.32)
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We test (4.29) by �m;n, and use Green's formula, (4.32), (4.30), and Young's inequality, to

derive

k�m;nk
2

2
�
Z



(fm � �m;n)�m;n dx �
1

2
kfm � �m;nk

2

2
+

1

2
k�m;nk

2

2
: (4.33)

Testing (4.29) by �m;n and using Green's formula, (4.30), 0 2 �
�
1

n

(0), the monotonicity of

�
�
1

n

, and Young's inequality, we observe that the sequence (�m;n)n2N is bounded in H
1(
).

Hence, the sequence (�m;n)n2N is bounded in L2(
), because of (4.33). Comparing the terms

in (4.29), using (4.30) and Lemma AP.4, we see that (�m;n)n2N is also bounded in H
2(
).

Thus, there is a �� 2 H
2(
) and a �� 2 L

2(
) such that, for some subsequences,

�m;ni ! �� weakly in H
2(
); strongly in H

1(
); (4.34)

�m;ni ! �� weakly in L
2(
): (4.35)

Now, a passage to the limit in (4.29)�(4.30) and using [Bar76, Cha. II Prob. 1.1(iv)] lead to

�� 2 D(��); �� 2 �
�(��); ��� "���+ �� = fm a.e. in 
;

@ ��

@n
= 0 a.e. in �:

Since (4.31), (4.3), and (2.4d), yield that (�m; �m) is also a solution to this system, which

has, by [Bré71, Corollary 13], a unique solution, we see that �m = �� and �m = ��. Now,

(4.33)�(4.35), (4.31), (4.10), (A3), and (4.15) lead to

1

2
k�mk

2

2 �
1

2
kfm � �mk

2

2 � C27 + C28 k�0d(�m; �m�1)umk
2

2 : (4.36)

Applying (A6), the generalized Hölder's inequality, p < 1, (AP.1), (4.9), and (4.15), we

obtain

k�0
d
(�m; �m�1)umk2

� j�0d(0; 0)j kumk2 + C29 (k�m � 0k6 + k�m�1 � 0k6)
�
k�pmk6 +



�pm�1

6 + 1
�
kumk6

�C30: (4.37)

Comparing the terms in (2.4d), and using (A3), (4.15), (4.10), (4.36), and (4.37), we see

that

k"��mk2 =




��m � �m�1

hm

+ �m � �
0

d(�m; �m�1) + �
0

d (�m; �m�1) um






2

� C31:

Now, using Lemma AP.4, (4.9), and (4.3), we conclude k�mkH2(
) � C32: Combining this

with (4.36), (4.37), and (4.6), we see that (4.28) is satis�ed.

Lemma 4.5. There exists a positive constant C33 such that

max
1�m�K

 
k�0d(�m; �m�1)k1 +





�m � �m�1

hm






2

+





�m � �m�1

hm






H1(
)

�

!

+

KX
m=1

hm





�m � �m�1

hm





2
H1(
)

+ max
0�m�K

k�mkH1(
) � C33: (4.38)
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Proof. By looking at the terms in (4.4) and using (4.15) and Lemma 3.2, we see that

max
1�m�K





c0 �m � �m�1

hm

+
�m � �m�1

hm






H1(
)�

� C34: (4.39)

Thanks to (4.28), Sobolev's embedding Theorem, and (A6), we have

max
0�m�K

k�mkH1;6(
)
+ max

1�m�K
k�0d(�m; �m�1)k1 � C35: (4.40)

Combining this with (A6), and [MM79, Theorem 1], we see that �0d(�m; �m�1) 2 H
1;6(
)

and

max
1�m�K

kr�0d(�m; �m�1)k6 � C36:

Therefore, owing to (4.5), Young's inequality, the generalized Hölder's inequality, (4.40),

(4.15), and Sobolev's embedding Theorem, we have

max
1�m�K





�m � �m�1

hm





2
2

+

KX
m=1

hm





r��m � �m�1

hm

�



2
2

� max
1�m�K

�
k�0d(�m; �m�1)k1





�m � �m�1

hm






2

�2

+ 2

KX
m=1

hm k�0d(�m; �m�1)k
2

1





r��m � �m�1

hm

�



2
2

+ 2

KX
m=1

hm kr�0d(�m; �m�1)k
2

6





�m � �m�1

hm





2
3

� C37:

Combining this with (4.39) and (4.6), we see that (4.38) is satis�ed.

Lemma 4.6. We have �m 2 H
1(
) for 0 � m � K.

Proof. We have �0 2 H
1(
) by (2.4f) and (A4). For 1 � m � K with �m�1 2 H

1(
), we

de�ne the approximation �m;n 2 H
1(
) \ L

1(
) for �m by

�m;n :=

�
um +

1

n

��1
a.e. in 
; 8n 2 N:

The Lebesgue dominated convergence theorem and �m 2 L
2(
) yield that

�m;n ���!
n!1

�m strongly in L
2(
): (4.41)

By applying (4.4) with v = �
3
m;n

and using (4.3), Hölder's inequality, Lemma 3.2, (4.38),

(AP.1), and Young's inequality, we see that this sequence is bounded in H
1(
). Combining

this with (4.41), we conclude that �m 2 H
1(
).
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Lemma 4.7. There exists a constant C38 such that

max
0�m�K

k�mk2 � C38: (4.42)

Proof. We multiply (2.4c) by hm and use (4.5). Summing up the resulting equation for

m = 1 to m = i, we �nd

c0�i + �i + �

iX
m=1

hm�um = c0�0 + �0 +

iX
m=1

hmgm a.e. in 
: (4.43)

We test (4.43) by hi � �ui, take the sum from i = 1 to i = k, and apply Green's formula,

(2.4e), (4.3), �m 2 H
1(
), (AP.3), (AP.2), Lemma 3.2, and Schwarz's inequality, to derive

c0

kX
i=1

hi





ruiui





2
2

+
�

2







kX
i=1

hi�ui







2

2

+
�

2

kX
i=1

h
2
i k�uik

2

2
+
c0c�

�

kX
i=1

hi k�ikL1(�)

�C39 +

Z



  
c0�0 + �0 +

kX
i=1

higi

!
kX
i=1

hi�ui

!
dx �

k�1X
i=1

hi+1

Z



gi+1

iX
m=1

hm�um dx

+

kX
i=1

hi

Z



r�i � rui dx +

kX
i=1

hi

1

�

Z
�

�i (
iui � �i) d� :

Now, by utilizing Young's inequality, (4.6), Lemma 3.2, (4.15), (4.38), and hm � 2hm�1, we

derive

c0

kX
m=1

hm





rum
um





2
2

+
�

4







kX

m=1

hm�um







2

2

+
�

2

kX
m=1

h
2
m k�umk

2

2

�C40 + C41

k�1X
m=1

hm







mX
i=1

hi�ui







2

2

: (4.44)

By applying the discrete version of Gronwall's lemma, we get a uniform upper bound for

the left�hand side of (4.44). Looking at the terms in (4.43) and applying (4.38), (4.6), and

Lemma 3.2, we see that (4.42) holds.

Lemma 4.8. There are two positive constant C42; C43 such that

max
0�m�K

�
kumkC(�
) + k�mkC(�
)\H1(
)

�
+

KX
m=1

hm

 



um � um�1

hm





2
2

+





�m � �m�1

hm





2
2

!
� C42; (4.45)

KX
m=1

hm kumk
2

H2(
) � C43: (4.46)
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Proof. We deduce, by Lemma 3.2, (4.38), and (AP.1), that

kX
m=1

hm





gm � �m � �m�1

hm





2
6

� C44:

Thanks to (4.3)�(4.6), (4.15), (4.38), (4.42), and Lemma 3.2, we can apply Moser's technique

as in [Kle97a, Lemma 6.11 and 6.12, for " > 0 �xed], and derive, by using (4.6), that

max
0�m�K

�
kumkL1(
) + k�mkL1(
)

�
� C45:

Combining this with um 2 H
2(
) � C(�
), (4.3), (4.15), and Hölder's inequality, we see that

(4.45) holds. Now, by looking at the terms in (2.4c), and using (4.5), (4.38), and Lemma

3.2, we see that
KX

m=1

hm k�umk
2

2 � C46:

Now, Lemma AP.4 yields that (4.46) is satis�ed, because of (2.4e), Lemma 3.2, and (4.15).

Lemma 4.9. We have

k�(�k)� �kk 5

3

� C47 jZj ; 8 1 � k � K: (4.47)

If at least one of the assumptions 
 � R
2 or �0d = �

0
� is satis�ed, we have

k�(�k)� �kk2 � C48 jZj ; 8 1 � k � K: (4.48)

Proof. Applying (4.5), (A2), the mean value theorem, (A6), (4.28), and Sobolev's embed-

ding Theorem, we deduce

j�(�k)� �kj � C49

kX
m=1

h
2
m

�����m � �m�1

hm

����2 a.e. in 
: (4.49)

Hence, recalling Hölder's inequality, the Gagliardo�Nirenberg inequality, and (4.15), we

conclude

k�(�k)� �kk
5

3

5

3

�C50 jZj
5

3

kX
m=1

hm





�m � �m�1

hm





 10

3

10

3

�C51 jZj
5

3

kX
m=1

hm





�m � �m�1

hm





2
H1(
)





�m � �m�1

hm





 4

3

2

� C52 jZj
5

3 :

Thus, we have shown (4.47).

We use (4.49) and Hölder's inequality to show that

k�(�k)� �kk
2

2 � C53 jZj
2

kX
m=1

hm





�m � �m�1

hm





4
4

:

Therefore, if 
 � R
2, recalling the Gagliardo�Nirenberg inequality and (4.15) leads to (4.48).

If �0d = �
0
�, then (3.2) and (4.5) yield that �(�k) = �k. Hence, (4.48) is satis�ed.
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5 Proof of Theorem 2.1 and Corollary 2.1

We assume that (A1)�(A6) hold.
In the framework of Theorem 2.1, we obtain from (A6) that we have positive constants h�

and C
�
5 such that (2.7) is satis�ed. We assume that jZj � h

�.

In the framework of Corollary 2.1, it is part of the assumptions that jZj � h
� where h� and

C
�
5 are positive constants ful�lling (2.7).

Because of (A4) and Sobolev's embedding Theorem, we see that k�0k
1

is �nite.

For any B > k�0k
1
, we can consider �� as in (4.1), ��, and the corresponding modi�ed

version of the time�discrete scheme as in the last section. Lemma 3.3 yields that there exists

a solution
�
�
B
m; u

B
m; �

B
m; �

B
m

�K
m=0

to this modi�ed version of the scheme. Since the assumptions

used in the last section are satis�ed, the estimates derived therein hold for this solution.

Now, because of (4.28) and Sobolev's embedding Theorem, there is some positive constant

C
0, independent of B, such that

max
0�m�K



�Bm

C(
) � C
0
: (5.1)

Now, we consider B := C
0 + k�0k

1
+ 2. Thanks to (4.1), �� = @�

�, and � = @�, we have

�
�j[�C0�1;C0+1] = �j[�C0�1;C0+1] :

This yields, by (4.3) and (5.1), that the solution to the modi�ed version of scheme is also a

solution to the unmodi�ed version of the scheme (DZ).

It remains to show the uniqueness of the solution. Assume that we have two solutions�
�
(1)
m ; u

(1)
m ; �

(1)
m ; �

(1)
m

�K
m=0

and
�
�
(2)
m ; u

(2)
m ; �

(2)
m ; �

(2)
m

�K
m=0

to the scheme (DZ). Hence, the esti-

mates in the last section are valid for both solutions.

In the sequel, Ci, for i 2 N, will always denote positive generic constants, independent of

the decomposition Z and the considered solutions.

Thanks to (2.4f), we have �
(1)
0 = �

(2)
0 ; u

(1)
0 = u

(2)
0 ; �

(1)
0 = �

(2)
0 ; �

(1)
0 = �

(2)
0 a.e. on 
.

To prove by induction that the two solutions coincide, we now assume that 1 � m � K is

given such that

�
(1)
m�1 = �

(2)
m�1; u

(1)
m�1 = u

(2)
m�1; �

(1)
m�1 = �

(2)
m�1 =: �� a.e. in 
: (5.2)

Now, let um := u
(1)
m � u

(2)
m and �m := �

(1)
m � �

(2)
m .

Using (2.4b), (2.4c), (2.4e), Green's formula, and (5.2), we deduce

�
(1)
m � �

(2)
m =

�um
u
(1)
m u

(2)
m

a.e. in 
; (5.3)

1

hm

Z



�
c0

�um
u
(1)
m u

(2)
m

+ �
0

d(�
(1)
m ; �

�)
�
�
(1)
m � �

�
�
� �

0

d(�
(2)
m ; �

�
)
�
�
(2)
m � �

�
��

v dx

� �

Z



rum � rv dx �
Z
�


mumv dx = 0; 8 v 2 H
1(
):
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This yields for v = �hmum, by Lemma 3.2,

c0







 umq
u
(1)
m u

(2)
m








2

2

+ hmC1 kumk
2

H1(
)

�
Z



�
0

d(�
(1)
m ; �

�)�mum dx +

Z



�
�
0

d(�
(1)
m ; �

�)� �
0

d(�
(2)
m ; �

�)
�
(�(2)

m � �
�)um dx : (5.4)

Recalling (2.4d) and (5.2), we have

�
�m

hm

� "��m + �
(1)
m � �

(2)
m � �

0

d(�
(1)
m ; �

�) + �
0

d(�
(2)
m ; �

�)

=� �
0

d

�
�
(1)
m ; �

�
�
um �

�
�
0

d

�
�
(1)
m ; �

�
�
� �

0

d

�
�
(2)
m ; �

�
��
u
(2)
m a.e. in 
: (5.5)

Testing this equation by �m and using (A3), Green's formula, (2.4e), (2.4b), and the mono-

tonicity of �, and adding the resulting estimate to (5.4), we obtain, by (4.45),

C2 kumk
2

2 + hmC1 kumk
2

H1(
) +
c�

hm

k�mk
2

2 + " kr�mk
2

2 � I1 + I2; (5.6)

with I1 :=

Z



�
�
0
d(�

(1)
m ; �

�)� �
0
d(�

(2)
m ; �

�)
� �

(�(2)
m � �

�)um � u
(2)
m �m

�
dx ; (5.7)

I2 :=

Z



�
�
0

d(�
(1)
m ; �

�)� �
0

d(�
(2)
m ; �

�)
�
�m dx : (5.8)

Now, we consider the framework of Corollary 2.1 and Theorem 2.1 separately.

If we are in the framework of Corollary 2.1, the uniqueness needs only to be shown under

the additional assumption that (2.8) holds. Therefore, we have I1 = 0 and

I2 �
c�

2 jZj

Z



(�m)
2
dx �

c�

2hm
k�mk

2

2 :

Hence, (5.6), (5.3), and (5.5) yield that

um = �m = 0; �
(1)
m = �

(2)
m ; �

(1)
m = �

(2)
m a.e. in 
: (5.9)

This �nishes the proof of Corollary 2.1.

Now, we consider the framework of Theorem 2.1. (A6), (4.28), and Sobolev's embedding

Theorem yield that���0d(�(1)
m ; �

�
)� �

0

d(�
(2)
m ; �

�
)
��+ ���0d(�(1)

m ; �
�
)� �

0

d(�
(2)
m ; �

�
)
�� � C3 j�mj a.e. in 
:

Hence, by applying the generalized Hölder's inequality, (4.28), (4.45), and Young's inequality,

we deduce

I1 + I2 �C3 k�mk2
�

�(2)

m � �m�1




1
kumk2 +



u(2)m




1
k�mk2

�
+ C3 k�mk

2

2

�
C2

2
kumk

2

2 + C4 k�mk
2

2 :
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Therefore, if we assume that jZj � c�

2C4

, we obtain I1+I2 � C2

2
kumk2+

c�

2hm
k�mk2 : Combining

this with (5.6), (5.3), and (5.5), we see that (5.9) is satis�ed.

Since we have shown that the scheme has a unique solution, if jZj is su�ciently small,

Theorem 2.1 is proved.

6 Proof of Theorem 2.2 and Theorem 2.3

We assume that (A1)�(A4) and (A6) hold. Thanks to (A6), we have positive constants

h
� and C

�
5 such that (2.7) is satis�ed.

6.1 Properties of the approximations

In this section, we only consider decompositions Z with (A5) and jZj su�ciently small.

Hence, Theorem 2.1 yields that there exists a unique solution to the time�discrete scheme

(DZ). Let
�b�Z; buZ; b�Z; �Z� be the corresponding approximations derived from the solution

to (DZ) as in Remark 2.3.

For (�m)
K
m=0 as in (4.5), we de�ne the piecewise linear function b�Z analogously to b�Z. The

piecewise constant functions �
Z
, uZ, �Z , 
Z, �

Z
, gZ , �

Z
are de�ned analogously to �

Z
, and

�
Z 2 L

1(0; T ;H2(
)) is de�ned by

�
Z(t) = �m�1; 8 t 2 (tm�1; tm); 1 � m � K: (6.1)

Then, by the de�nition of the approximations, (2.4a)�(2.4f), and (4.5), we haveb�Z; buZ;b�Z 2 H
1(0; T ;H1(
)); u

Z 2 L
2(0; T ;H2(
)); buZ 2 L

2(jZj ; T ;H2(
)); (6.2a)b�Z 2 H
1(0; T ;H2(
)); �

Z
; �

Z 2 L
1(0; T ;H2(
)); (6.2b)

�
Z
2 L

1(0; T ;L2(
)); (6.2c)

0 < buZ; 0 < u
Z
; �

Z
=

1

u
Z
; �

Z
; b�Z; �Z 2 D(�); �

Z
2 �

�
�
Z
�

a.e. in 
T ; (6.2d)

c0
b�Zt + b�Zt + ��uZ = g

Z a.e. in 
T ; (6.2e)

�b�Zt � "��
Z
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Z
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0

d(�
Z
; �

Z) = ��0d(�
Z
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Z)u
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@u

Z

@n
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Z
u
Z � �

Z
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@b�Z
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= 0;
@�

Z

@n
= 0 a.e. in �T ; (6.2g)b�Z(�; 0) = �

0
; buZ(�; 0) = u

0
; b�Z(�; 0) = �

0
; b�Z(�; 0) = �(�

0
) a.e. in 
: (6.2h)

In the sequel, Ci, for i 2 N, will always denote positive generic constants, independent of

the decomposition Z.

We �nd, from (4.15), (4.28), (4.38), (4.45), and (4.46):
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))
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))
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T )\L
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� C1; (6.3)
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+


�Z



L1(0;T ;H2(
))
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))
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b�Z



W 1;1(0;T ;L2(
))\H1(0;T ;H1(
))

� C2: (6.4)

The di�erence between the piecewise linear and the piecewise constant approximations can

be estimated, by using (4.15), (A2), (4.28), Sobolev's embedding Theorem, (4.38), (4.45),

and (4.47):
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))
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5
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)
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L2(0;T ;H1(
))

� C6

p
jZj: (6.8)

For the approximation of the data, we have, by (A3):

Lemma 6.1. The functions gZ; 
Z ; �
Z
ful�ll
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+



Z



L1(0;T ;C1(�))
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g � g

Z



L2(0;T ;L1(
))

+
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Z




L2(0;T ;L2(�))

� C8 jZj : (6.10)

Now, estimates similar to [NSV] are used to prove the following lemma, which is important

to improve the order of the error estimate from
p
jZj to jZj.

Lemma 6.2. We have a positive constant C9 such that

�

sZ
0
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�
� � �

Z
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�� b�Z� dx dt � C9 jZj
2
; 8 s 2 [0; T ]; (6.11)

for all �; � 2 L
2(0; T ;L2(
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� 2 D(�); � 2 �(�) a.e. in 
T : (6.12)

Proof. From (6.12), (6.2d), and � = @�, we get
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Z
�
�
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Z
�
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�

a.e. in 
T :
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We apply the convexity of �, to show that
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l
Z
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�
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�
Z � �

Z
��

dx dt :

Since (6.2d) and � = @� yield that the integrand is a.e. non�negative, we see, by (6.13),

(2.4b), (2.4f), (A4), and � = @�, that
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1

:

Hence, (6.11) holds because of (4.15).

6.2 Error estimates

Now, we estimate the di�erence between the approximation and one exact solution. Here,

ideas from [CS97, Col96, Kle97a, NSV] are used.

Lemma 6.3. For every solution (�; u; �; �) to the Penrose�Fife system (PF) there are pos-
itive constants C10; C11 such that
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�
(6.14)

�! 0; as jZj �! 0; (6.15)

with A
Z :=

TZ
0




��(b�Z)� b�Z� �u� u
Z
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1
dt (6.16)

� C12 jZj


u� u

Z


17

20

L2(0;T ;L2(
))
: (6.17)

Proof. The generic constants may depend on the solution to the Penrose�Fife system.

Thanks to (2.1a), (2.1b), Sobolev's embedding Theorem, and (A2), we have

k�k
L1(0;T ;L2(
)) + kuk

L1(0;T ;H1(
)) + kuk
L2(0;T ;H2(
))

+ k�k
L1(
T )
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L1(
T )

� C13: (6.18)
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First, we work on the equation for � and u. Integrating the di�erence of (2.1e) and (6.2e)

in time, and testing the corresponding equation by v, and using (2.1g), (2.1h), (6.2g), and

(6.2h), we obtain for all v 2 H
1(
),

Z
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Z
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v d� d� ; 8 t 2 (0; T ): (6.19)

For a.e. t 2 (0; T ), this yields, with v = �
�
u(t)� u

Z(t)
�
, by (2.1d) and (6.2d),Z
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�
u(� )� u

Z(� )
�
d� � r

�
u� u

Z
�
dx =: A2 +A3 +A4 +A5: (6.20)

Owing to (6.2d), (2.1d), the generalized Hölder's inequality, (AP.1), (6.3), and (6.18), we

see that
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2
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We have, by Hölder's inequality, (6.10), and Young's inequality,
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: (6.24)

By integrating (6.20) from 0 to s and using (6.16), (6.21)�(6.23), we obtain
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Applying Poincaré's inequality and Hölder's inequality, we conclude that
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Using Hölder's inequality, (A2), (6.18), (6.4), Sobolev's embedding Theorem, and (6.5), we

derive
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Partial integration with respect to time and Hölder's inequality results in
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Because of the trace theorem, (6.3), (6.10), and Young's inequality, we observe
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In the light of Hölder's inequality and (A3), we see
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Hence, we get, by using Hölder's inequality, (6.25)�(6.29), and Young's inequality,
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Now, estimates for � will be derived. Subtracting (6.2f) from (2.1f), we obtain that
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Testing this with �� b�Z and recalling (A3), (2.1g), and (6.2g), we end up with
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Using (6.32), (A6), (A2), (6.18), (6.4), Sobolev's embedding Theorem, Hölder's inequality,

(6.6), and Young's inequality, we conclude
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In the light of (6.32), (A6), the generalized Hölder's inequality, (A2), (6.18), (6.3), (6.4),
Sobolev's embedding Theorem, (6.6), and Young's inequality, we see that
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Combining (6.32)�(6.35), integrating in time, using (A3), (2.1h), (6.2h), (6.11), (6.6), and
adding the resulting estimate to (6.30), we get
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with

A12 := (C18 + C24)
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Using Hölder's inequality, Young's inequality, and the Gagliardo�Nirenberg inequality, we

obtain
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Hence, (6.36), Gronwall's lemma, and (A3) yield that (6.14) is satis�ed.

By applying (6.16), Hölder's inequality, (6.6), (6.7), and the Gagliardo�Nirenberg inequality,

we get
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2
dt :

Hence, using Hölder's inequality, (6.18), and (6.3), we deduce that (6.17) and (6.15) are

satis�ed.

6.3 Proof of Theorem 2.2

Proof. Thanks to the estimates (6.3), (6.4), Sobolev's embedding Theorem, and compactness

(see, e.g., [Zei90, Prop. 23.7, 23.19, Prob. 23.12]), we get (�; u; �; �; ��) ful�lling (2.1b)�(2.1c),
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(2.9)�(2.11), and

� 2 H
1(0; T ;L2(
)); u 2 L

1(0; T ;H1(
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� 2 W

1;1(0; T ;L2(
)):

such that we have, for some subsequence with jZj ! 0, the convergences (2.12)�(2.20), andb�Z �! �
� weakly�star in W

1;1(0; T ;L2(
)): (6.37)

We obtain the convergences (2.12)�(2.20) for the whole sequence, if we can show that

(�; u; �; �) is the unique solution to the Penrose�Fife system (PF). Hence, we need only

to prove this, to �nish the proof of Theorem 2.2.

Thanks to the convergences for b�Z in (2.18), (6.4), the Aubin compactness lemma (see, e.g.,

[Lio69, p. 58]), and (6.6), we also getb�Z �! �; �
Z �! �; �

Z �! � strongly in L
2
(0; T ;L

2
(
)): (6.38)

Hence, after possibly extracting a further subsequence, we have

�
Z �! �; �

Z �! � a.e. in 
T :

This yields, thanks to (A2), (A6), (6.4), and the Lebesgue dominated convergence theorem,

that

�(�Z) �! �(�); �
0
d(�

Z
; �

Z) �! �
0(�); �

0
d(�

Z
; �

Z) �! �
0(�) strongly in L

2(
T ):

(6.39)

Thus, (6.37), (6.6), and (6.7) yield that �� = �(�) a.e. on 
T . Hence, using (2.12)�(2.20),

(6.37)�(6.39), and (6.3)�(6.10), we can pass to the limit in (6.2a)�(6.2h) and obtain that

(�; u; �; �) is a solution to the Penrose�Fife system (PF). Details can be found in [Kle97a,

Sec. 8]. It remains to show that this solution is unique.

Let (��; u�; ��; ��) be any solution to the Penrose�Fife system (PF). Since we can apply

Lemma 6.3 for this solution, using (6.15) and the convergences (2.12)�(2.19) yields that

�
�
= �; u

�
= u; �

�
= � a.e. in 
T :

Comparing the terms in (2.1f), we see that the two solutions coincide.

6.4 Proof of Theorem 2.3

Proof. Thanks to (2.1d), (6.2d), Hölder's inequality, (2.9), (2.10), and (6.3), we have

u� u
Z


2
L2(0;T ;L2(
))

+




� � �
Z



2
L2(0;T ;L2(
))

� C31





u� u
Z

p
uu

Z






L2(0;T ;L2(
))

:

Moreover, we have ��b�Z 2 C([0; T ];L2(
)), because of (6.2b) and (2.1b). Hence, we obtain

from (6.14) and Young's inequality that

A13 := max
0�s�T








sZ

0

�
u(� )� u

Z
(� )
�
d�








2

H1(
)

+ max
0�s�T








sZ

0


(� )
�
u(� )� u

Z
(� )
�
d�








2

�

+
1

2C31



u� u
Z


2
L2(0;T ;L2(
))

+
1

C31




� � �
Z



2
L2(0;T ;L2(
))

+


�� b�Z

2

L2(0;T ;H1(
))\C([0;T ];L2(
))
� C10A

Z + C32 jZj
2
: (6.40)
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Therefore, by comparing the terms in (6.19), and using (6.10) and (6.3), we get


c0 �� � b�Z�+ �(�)� b�Z


2
L1(0;T ;H1(
)�)

� C33

�
A13 + jZj2

�
: (6.41)

Now, (A2), (6.18), (6.4), (6.6), (6.7), L
5

3 (
) � H
1(
)

�
, (6.2a), and (2.1a) yield that


� � b�Z


2

C([0;T ];H1(
)
�

)
� C34

�
A13 + jZj2

�
: (6.42)

Thanks to (6.17) and Young's inequality, we deduce

C10A
Z �

1

4C31



u� u
Z


2
L2(0;T ;L2(
))

+ C35 jZj
40

23 :

Hence, (6.40), (6.42), and (6.5) yield that (2.21) holds with jZj replaced by jZj
20

23 .

If we assume that at least one of the assumptions 
 � R
2 or �0d = �

0
� is satis�ed, applying

(6.16), Schwarz's inequality, (4.48), (6.7), (6.6), and Young's inequality leads to

C10A
Z � C36 jZj



u� u
Z



L2(0;T ;L2(
))

� C37 jZj
2
+

1

4C31



u� u
Z



L2(0;T ;L2(
))

:

Combining this with (6.40), (6.42), and (6.5), we see that (2.21) is satis�ed.

A Appendix

For convenience, we list some inequalities and equalities used throughout this paper.

Lemma AP.1 (Young's inequality). For a; b 2 R, � > 0, p > 1, q := p

p�1
, it holds

ab �
1

p
jajp +

1

q
jbjq ; ab �

1

p
�
�(p�1) jajp +

1

q
� jbjq ;

jajps jbjp(1�s) � s

�
�

1� s

� s�1

s

jajp + � jbjp ; 8 0 < s < 1:

Lemma AP.2 (Generalized Hölder's inequality). For a bounded, open domain 
 �
R
N with N 2 N, p; p1; p2; p3 2 [1;1], f1 2 L

p1(
), f2 2 L
p2(
), and f3 2 L

p3(
) such that

1

p1

+
1

p2

+
1

p3

=
1

p
;

we have f1 � f2 � f3 2 L
p(
) and

kf1 � f2 � f3kLp(
) � kf1kLp1(
) kf2kLp2(
) kf3kLp3 (
) :

Thanks to Sobolev's embedding Theorem, we have

Lemma AP.3. For a bounded, open domain 
 � R
N with N 2 f2; 3g and Lipschitz bound-

ary, there is a positive constant C such that

kvpk
L
6

p (
)
= kvkp

L6(
)
� C

p kvkp
H1(
)

; 8 v 2 H
1(
); p 2 (0; 6]: (AP.1)

33



The following classical elliptic estimate can be found in [Ama93, Remark 9.3 d].

Lemma AP.4. For a bounded, open domain 
 with @
 smooth there is a positive constant

C such that

kvk2
H2(
) � C

 
k�vk2

L2(
) +





@v
@n





2
H

1

2 (�)

+ kvk2
L2(
)

!
; 8 v 2 H

2(
):

In particular, for all v 2 H
2(
) with @v

@n
= 0 a.e. on �,

kvk2
H2(
) � C

�
k�vk2

L2(
) + kvk2
L2(
)

�
:

The following version of the Gagliardo�Nirenberg inequality is a special case of those con-

sidered in [Zhe95, Th. 1.1.4ii]

Lemma AP.5. Let 
 � R
N with N 2 f2; 3g be a bounded domain with @
 smooth. Let

2 < p < 6 be given and a := 3
2
� 3

p
; Then there is a positive constant C such that

kuk
Lp(
) � C kuka

H1(
) kuk
1�a

L2(
) ; kuk
Lp(
) � C kuk

a

2

H2(
)
kuk

1�a

2

L2(
)
:

If 
 � R
2, then the �rst estimate is also satis�ed for a = 1 � 2

p
.

Elementary calculations lead to

Lemma AP.6. For n 2 N, a0; a1; : : : ; an, b0; b1; : : : ; bn 2 R, we have

nX
i=1

ai

iX
j=1

bj =

 
nX
i=1

ai

! 
nX
i=1

bi

!
�

n�1X
j=1

bj+1

jX
i=1

ai; (AP.2)

nX
i=1

ai

iX
j=1

aj =
1

2

 
nX
i=1

ai

!2

+
1

2

nX
i=1

a
2
i ; (AP.3)

nX
i=1

ai(bi � bi�1) = anbn � a1b0 �
n�1X
i=1

(ai+1 � ai) bi: (AP.4)

Lemma AP.7. Let H be a Hilbert space with scalar-product h�; �iH and norm k�k
H
. Then

we have

ha; a� biH =
1

2
kak2

H
�

1

2
kbk2

H
+

1

2
ka� bk2

H
; 8 a; b 2 H: (AP.5)

The next lemma follows form elementary analysis.

Lemma AP.8. Let a; b > 0 be given. Then there exists a constant C > 0, such that

a

2
s+ b jln sj � as� b ln s+ C; 8 s > 0:
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