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Abstract

In this paper, a phase field system of Penrose-Fife type with non—conserved order
parameter is considered. A class of time—discrete schemes for an initial-boundary value
problem for this phase—field system is presented. In three space dimensions, convergence
is proved and an error estimate is derived. For one scheme, this error estimate is linear
with respect to the time—step size.

1 Introduction

In [PF90], Penrose and Fife derived a phase—field system modeling the dynamics of diffusive
phase transitions. In the case of a non—conserved order parameter, their approach leads to
the following system:

1
cob: + N (x)x: + kA (5) =g, (1.1)

NG

; (1.2)

nxe — eAx + B(x) —o'(x) D -
This system determines the evolution of the order parameter y and the absolute temperature
0. Here, ¢y and k denote the physical data specific heat and thermal conductivity, which
are supposed to be positive constants. The datum g represents heat sources or sinks, and 7
stands for a positive space—dependent relaxation coefficient. Choosing this coefficient in a
particular way, an anisotropic growth can be simulated.
€ is a positive relaxation coefficient and S denotes the subdifferential of the convex but non-
smooth part of a potential on R, while —o corresponds to the non—convex but differentiable
part of the potential. The latent heat of the phase transition is represented by A'(x).
In the context of solid-liquid phase transitions, one typically has a quadratic or linear func-
tion A and

A
o(s) = 0(2) + ps?, Vs€R, (1.3)

where ¢ denotes some critical temperature and p some positive constant. For 8(s) = 2ps?,
we see that ﬁ(s)—a'(s)—l—ﬂal)\'(s) is the derivative of the double well potential g(s—l)z(s—l—l)z.
If 8 is the subdifferential of the indicator function Ij_i) of the interval [—1,1], we see
that B(s) — o'(s) + 85" X (s) corresponds to the “derivative” of the double obstacle potential
I_11(s) + p(1 — s?), which has been introduced for the standard phase-field system by
Blowey and Elliott (see [BE94]).

In the mean—field theory of the Ising ferromagnet as in [PF90, Sec. 4], one has quadratic
functions o and A, D(8) = (0,1), and

1 s

B(s) = p*% (slns—l—(l — s)In(1 —s) — In (5)) — 'l (1 _3) , Vse D(B),

where p* is some positive constant.



The results in this work cover all these situations. Its main novelty is a time—discrete
scheme for an initial-boundary value problem for the phase—field system (1.1)-(1.2) such
that in three space dimensions an error estimate linear with respect to the time—step size A
can be derived. Moreover, a general class of time—discrete schemes is investigated, including
some which are explicit in the approximation of o’(x) or A'(xx). For these schemes an error
estimate is derived, which is linear with respect to A in two space dimensions and still nearly
linear in three space dimensions.

In [Hor93], Horn considers a time-discrete scheme in one space dimension for the Penrose—
Fife system for quadratic A and . He derives an error estimate of order v/A.

In previous works [Kle97a, Kle97b] of the author a time discrete scheme for a simplified
Penrose-Fife system with A linear and o linear or quadratic has been considered and an
error estimate of order v/% has been shown.

Using the time—discrete scheme, the existence of a unique solution to the Penrose-Fife system
is proved. This result is a minor novelty of this paper, because of the weakened regularity
assumption used for A and o. These functions are supposed to be C'~functions on R with
A" and ¢’ locally Lipschitz continuous such that the Lipschitz constants fulfill some growth
conditions.

Until now, in papers concerning existence, uniqueness, and regularity of similar Penrose-Fife
systems these functions are supposed to be at least C>—functions with A" bounded (see, e.g.
[HLS96, HSZ96, Lau93, Lau95, SZ93] or C'—functions with A’ global Lipschitz (see [KN94])
resp. A convex (see [DK96]).

The same holds for papers like [CL98, CS98, CLS, Lau98], where more general heat flux laws

are considered.

The layout of this paper is as follows: In Section 2, a precise formulation of the considered
phase—field system is given, the class of time-discrete schemes is introduced, and the existence
and approximation results are presented. The remaining sections are devoted to the proof
of these results.

In Section 3, estimates concerning the approximation of the data are derived and the exis-
tence of a solution to the scheme is shown under the additional assumption that the domain
D(pB) is bounded. Uniform estimates for a solution to the scheme are derived in Section 4.
Based on these results, the existence of a unique solution to the scheme is proved in Section
5. This is done by considering the time-discrete scheme with § replaced by 8 4 01_¢ ¢y,
where I;_¢ ¢ denotes the indicator function of the interval [—C, C] for some sufficiently big
C>0.

In Section 6, the error estimates are derived, and the existence of a unique solution to the
Penrose-Fife system is proved.

2 The Penrose—Fife system and the time—discrete
schemes

In this section, a precise formulation of the considered phase—field system of Penrose—Fife
type is given. Moreover, existence results and approximation results for a class of time-
discrete schemes are presented.



2.1 The phase—field system

In the sequel, @ C RY with N € {2,3} denotes a bounded, open domain with smooth
boundary I" and T' > 0 stands for a final time. Let Q7 := Q x (0,T) and I'7 :=T x (0, 7).

We consider the following Penrose-Fife system:

(PF):| Find a quadruple (6,u, x, ¢) fulfilling

9 e HNO,T; I(Q)), we IA(0,T; HY(Q)) 1 L=(0,T; H'(%),
x € H'(0,T; L*(Q)) n L*=(0,T; H*(Q)),
¢ € L=(0,T; L*(Q)),
1
>0, u= g XE€ D(B), ¢€p(x) ae. in Qf,
cobs + X (x)xt + kAu=g ae.in Qr,
nxe —eAx+&—o'(x) = —X(x)u ae in Qr,
Ou Ox
=g, X
0,00 =6° x(-,0)=x° ae.in .

=0 ae. in I'r,

For dealing with this system, the following assumptions will be used:

(A1): Let B8 be a maximal monotone graph on R and ¢ : R — [0, 0] a convex,
semicontinuous function ¢ : R — [0, oo] satisfying

B =04, 0€D(B), 0cp(0), intD(B)D0.

(A2): There are positive constants Cf, p, ¢ such that

AeCYR), ccCYR), p<l1, g¢<4,
—A(s) S CH(g(s)+1), (o'(s))” <CI(g(s)+1), Vse D),
[X(s) = X(r)| < |s=r|C7(Isf + 7P+ 1),  Vs,r€ D(B),
0'(s) =o' (M) < |s —r|CT (Is|* + |r|* +1), Vs,r€ D(B).

(A3): We have positive constants ¢,, ¢y, and ¢, such that

g€ HY(0,T; L~(Q)), n€L®), n>c, ae in Q,
v € L*(0,T;CT)), ~v¢€L>(Tr), v>¢, ae in I'7,

lower

¢ € HY(0,T; L*(T)) N L*(Tg) N L®(0,T; H*(T)), (>c¢; ae. in I7.

(A4): We consider initial data 6°, x°, u°, €° such that

u’ € HY(Q) N L=(Q), x"€ HY(Q), ¢ el*Q), 6(x’)e€L(Q)

1 0
° >0, = 00’ X’ € DB), € ecB(x®) ae in Q, %ln =0 a.e. in

I



2.2 The class of time discrete schemes

To allow for variable time-steps, we consider decompositions of (0,7") that do not need to
be uniform, but satisfy the following assumption.

(A5): The decomposition Z = {to,t1,...,tx} with 0 =tg < t; < --- < tgx =T fulfills

Remark 2.1. In the estimate (2.2), the first constant could be replaced by any positive con-
stant smaller than one and the second by any constant bigger than one.

We define the width |Z| of the decomposition by |Z| := max (¢m — tm-1), and, for 1 <m <

1<m<K
K,
17
Bop i=tm — tm-1, gm(z) = . / g(z,t)dt, Ve € Q, (2.3a)
1'ntm_l
X t X t
TYm(0) = 7 / v(o,t)dt, Cm(0) = 7 / ((o,t)dt, VoeTl. (2.3b)

tm—1 tm—1

Now, the following time-discrete scheme (Dz) for the Penrose-Fife system is considered

(Dz):| For 1 <m < K, find

Om € L*(Q),  Um,Xm € H*(Q), tm € L2(Q) (2.4a)

such that
0<um, 6= i xom € D(B), m € Blxm) ae.in QO (2.4b)
co% + A;(Xm,xm_l)”";i:tm‘l 4 kAU = g ae. in Q, (2.4¢)
nx’“%f’“—l — eAXm + ém — 0 (Xmy Xm1) = =y (Xms Xomo1) Um  ace.in Q,  (2.4d)
—na(;‘—: = Yot — Com, 6X—n” =0 aein T, (2.4¢)

with

0o :=6°, wo:=u°, xo0:=%° & =& (2.4f)

Here, approximations A; and o), for A’ and o’ are used such that the following assumption is
satisfied:



(A6): Let M), 0, : Rx R — R be continuous functions, and let C5, p, g be positive constants

with p < 1, ¢ < 4 such that, for all r,s,7’,s" € D(5),

Ni(s,8) = X(s), oy(s,s)=0"(s), (0h(r,s)) < Cs(h(r)+ ¢(s) + 1),
Aa(r ') = Xg(s,8) < O3 (Ir — s| + ' = ') (Ir[P + '[P+ [sfP + [P + 1),
|og(r, ") — ag(s,s) < C5 (Ir — s[ + |7 = &) (I + [7'[T + |5 + '] + 1),

—A(r,s)(r —s) < =A(r) + A(s) + C5(r — 3)2. (2.5)

Remark 2.2. The time-discrete scheme (Dgz) is an Euler scheme in time for the Penrose—
Fife system (PF), which is fully implicit, except for the treatment of the nonlinearities
A and o'

By introducing the general approximations A}(Xm, Xm-1) and o5(Xm, Xm-1) in (Dz), the
same formulation can be used to investigate a bunch of different time—discrete schemes.
A full implicit scheme corresponds to the choices Aj(r,s) = M(r) and o(r,s) = o'(r). A
fully explicitly treatment of nonlinearities A’ and o’ corresponds to Aj(r,s) = A'(s) and
al(r,s) = o'(s).

The following choices for o, and A/, fulfill (A6), if (A2) is satisfied (see Lemma 3.1).

a)
b)

Any convex combination of ¢/(x.m) and o'(xm-1) can be used for o(xm, Xm—1)-

One particular choice for A} is the following approximation for a derivative, which has

been used by Niezgédka and Sprekels in [NS91, (2.3)]:

A(r)=A(s) if
Mir,s)i=4 = 7 T 78 (2.6)
N(r), if r=s.

If one chooses this function as A/, , the approximation for A'(x)x: used in the discrete
energy balance (2.4c) will coincide with the discrete differential quotient arising in the
approximation of (A(x)), -
Assume that A € C%*(R). If we have a uniform upper and a uniform lower bound
for A" on D(f), we can use every convex combination of X (x.) and A (xm-1) for

Aa(Xoms Xm—1)-
If we have a uniform upper bound for A" on D(8), we can use the explicit approximation

Mi(Xmy Xm-1) = N (Xm-1). If we have a uniform lower bound for A" on D(f), we can
use the implicit approximation A4(Xm, Xm-1) = X' (Xm)-

For the time—discrete scheme there holds:

Theorem 2.1. Assume (A1)-(A6). Then, the scheme has a unique solution, if |Z| is
sufficiently small.

Remark 2.8. We use the solution to (Dgz) to construct an approximate solution

(@

uZ X%, € ) in (L“(O,T;Lz(Q)))4 to the Penrose-Fife system (PF). The function



87 is defined to be linear in time on [tm_1,tm] for m = 1,..., K such that é\z(tk) = 6
holds for k = 0,..., K. The functions 4% and XZ are defined analogously. We define EZ
piecewise constant in time by Ez(t) = ¢ for t € (tg-1,tk) and k=1,..., K.

The following corollary allows to check, if for a given decomposition Z the scheme has a
unique solution.

Corollary 2.1. Assume that (A1)-(A6) hold. There exists a solution to (Dz), if |Z| < h*,

where h* and C¥ are positive constants with

B (2(04(r,9))" = Ci(9(s) +1)) < cqd(r), V1,5 € D(B). (2.7)
The solution to the scheme is unique, if, in addition,

Ny(r,s) = N(s), 2|Z]|o4(r,s) = oh(r', )| < colr — '], Vrr's€ D(B).  (28)

Remark 2.4. Assume that (A1)-(A6) hold. If D(B) is bounded, Corollary 2.1 yields that
the scheme has a solution. If D(8) is unbounded, the upper bound h* can be calculated
from (2.7) for given 8 and o}. Thanks to (A6), we can always find positive h* and Cf,
such that (2.7) is satisfied.

If ) is approximated explicitly and ¢, is globally Lipschitz continuous in the first variable
on D(B) x D(B), the conditions (2.8) and (2.7) lead to an computable upper bound for
the time—step size to ensure the existence of a unique solution.

For ¢} explicit, i.e. o(r,s) = o'(s), we do not get any restriction for the time-step size

from (2.7) or (2.8).

2.3 [Existence and approximation results

Theorem 2.2. Assume that (A1)-(A4) and (A6) hold. Then there is a unique solution
(0,u,x,&) to the Penrose—Fife system (PF). For this solution it holds that

9 € L0, T; HY(Q)) N L™ (Qr) N WHe(0,T; HY(Q)"), (2.9)
u € H'(0,T; L*(Q)) N L™ (Qr), (2.10)
x € Wh(0,T; L*(Q)) n HY(0,T; H*(Q)) N L= (Qr). (2.11)

As, for decompositions Z with (A5), |Z| tends to 0, we have,

92 ¢ weakly in H'(0,T; L*(R)),
weakly-star in  L=(0,T; H'(Q)) N L= (Q7),
weakly—star in W0, T; H{(Q)"),

27 — u  weakly in  H'(0,T; L*(Q)),
weakly-star in L0, T; H'()) N L™ (),
weakly in  L*(t., T; H*(Q)), V0 < t,. < T,

6



XZ — x  weakly in  H*(0,T; HY(Q)), (2.18)
weakly-star in - WH(0,T; L*(Q)) N L=(0,T; H*(Q)), (2.19)

EZ — & weakly-star in  L=(0,T; L*(Q)). (2.20)
The following error—estimate is the main result of this work.

Theorem 2.3. Assume that (A1)—(A6) hold and that |Z| is sufficiently small. Let (0,u,x, &)
be the solution to the Penrose—Fife system (PF).

a) If Xy = X (cf. (2.6)), then we have a positive constant C, independent of Z, such that

=4

H"/‘\Z - uHLZ(o,T;LZ(Q))

<clz|. (2.21)

L2(0,T;L(0)) N C([o,TT:H (9)")

~7
+ HX - XHC([O,T];LZ(Q))nLZ(o,T;Hl(n))
b) If X, # N and Q C R?, then (2.21) still holds.

c) If Xy # M. and Q C R3, then (2.21) holds with |Z| replaced by |Z|%

Remark 2.5 (Numerical implementation). In alot of physically relevant situations, see [PF90],
the considered functions A and o are quadratic and ¢ has a quadratic lower bound, i.e.
we have positive constants C3, C; with

#(s)+C3>Crs*, Vse D(B). (2.22)
In this situation, the scheme with
oh(r,s):=d'(r), Mi(r,s):=X(s), Vr,seR

is the most promising one to perform numerical computations, because of the following
properties of this scheme: The coupling between the two equations (2.4c) and (2.4d) is a
linear one, since AL(Xm, Xm—1) does not depend on x,,. Moreover, o5;(Xm, Xm-1) is linear
in xm. Thus, a finite element discretization and a nonlinear Gauss—Seidel scheme similar
to the one in [Kle97a, Sec. 10] can be used to find approximative solutions to (Dgz).
Corollary 2.1 allows us to calculate an upper bound for the time—step size to ensure the
existence of a unique solution. In two space dimensions, Theorem 2.3 yields a convergence
linear with respect to the time—step size, and in three dimensions the convergence in still
nearly linear.

Remark 2.6. If the regularity assumption for g in (A3) is weakened to g € L* (Qdr), all
results of this work still holds, except the error estimates in Theorem 2.3.

3 Some properties of the approximation of the data and
a special existence result

To prepare the proof of the theorems and the corollary in the last section, some notations
will be fixed and some properties for the approximation of the data will be proved. Moreover,

7



the existence of a unique solution will be shown, under the additional condition that D(3)
is bounded.
In the sequel, we use the notation ||-||, for the LP(2)-norm, for all p € [1,00]. Moreover,

|||, will also be used for the (L*(Q))? resp. (L*(©2))? norm.

3.1 Properties of the data and their approximations

In the following lemma it is shown that those approximations discussed in Remark 2.2 fulfill
the condition (A6).

Lemma 3.1. Assume that (A2) holds. Let w € [0,1] be given and define o : RxR — R by

oh(r,s) =wa'(r)+ (1 —w)a'(s), Vr,seR (3.1)

a) If Ay = X, (¢f. (2.6)), we have (A6) and

X (rys)(r—s)=A(r)—A(s), VrseR. (3.2)

b) Assume, in addition, A € C*(R) and
Mi(r,s)=w*MN(r)+ (1 —w*)N(s), Vr,s€eR, (3.3)

with some w* € [0, 1].

If we have positive constants C1,Cy such that —Cy; < X'(s) < Cy for all s € D(B), the
assumption (A6) holds.

If w* = 0 and we have a positive constant Cs with X'(s) < C3 for all s € D(B), the
assumption (A6) is satisfied.

If w* =1 and we have a positive constant Cy with —Cy < X'(s) for all s € D(B), the
assumption (A6) holds.

Proof. First, we consider part (a) of the lemma. Thanks to (2.6), we have (3.2) and A.(r, s) =
1
[ X(s+7(r—s))dr. Hence, for X, = X, we can use (3.1), Schwarz’s inequality, and (A2),
0

to show that (A6) is satisfied. This yields part (a) of the Lemma.

To prove part (b) of the lemma, we need only to show that the last estimate in (A6), i.e. (2.5),
is satisfied, since the remaining assumptions in (A6) follow by an argumentation similar to
the one above. For r,s € D(8), applying Taylor’s formula and (3.3) gives 7,4 € D(8) such
that

Xyl $)(r — ) M) = M(3) = 5 (N () + (1wt W) (r — )

Now, we see immediately that (2.5) holds under the considered assumptions. O



Lemma 3.2. Assume that (A8) holds. Then there exist positive constants C1,C,. .., Ce,
such that, for all decompositions Z with (A5), the functions gm, Ym, and (m defined in (2.3)
fulfill, for1 <m < K,

s oy < Vol + [ 1 do < Callolingy,s Yo e HA@),

T
v € HHD), il < Callolgays Vo€ HY(R),
¢t <lm ae in T, /Cmvda + /gmvdaz < C4||v||H1(Q), Vv e HY(Q),
T Q

|9mll oo + ||’Ym||cl(r) + ||Cm||L°°(r) + HC’"”H%(F) < Cs,

and
max ’}’7114_27% + Z B % < Cs,
1SmSK_1 m L°°(F) m=1 m LZ(F)

where the positive constants c¢,cy are specified in (A3).

Proof. This lemma follows from (A3), (A5), the trace-mapping from H'(£) to H%(F), and
the interpolation of H%(I‘) by H'(T') and L*(T"). O

3.2 The existence proof for D(3) bounded

Lemma 3.3. Assume that (A1)-(A6) hold and that D(B) is bounded. Then there ezists a
solution to (Dgz).

Proof. From (2.4f), we get 8o, uo, X0, {0 Now, we assume that 6,, 1 € L*(Q), xm-1 € H*(Q)
for some m € {1,..., K} are given. To show that there exists a solution to the system in
(Dgz), i.e. to (2.4a)—(2.4e), we will first consider the discrete energy balance equation and the
discrete equation for the order parameter separately. Afterwards, we will rewrite the system
as a fixed point problem and apply Schauder’s fixed point theorem.

Lemma 3.4. For ecvery x € L(Q), there is a unique & € H?*(Q) such that
1

ot
~ . 2 ot ~ .
0<d ae in £, z € L*(Q), fo = Yl (m a.c.in T, (3.4)
——f; Bk AG = — o1 — b + Ny Xome) (X — Xm—1)  ave. in €. (3.5)

Proof. Let x € L*(Q) be given. Thanks to (A6) and xm_1 € C(Q), we have

A:i(X; Xm—l) (X — Xm—l) c Lz(Q)

By translating the proof of [Bré71, Corollary 13], we see that the operator corresponding to
(3.4) and the left-hand side of (3.5) is maximal monotone. By showing that this operator
is also coercive, we obtain that the operator is also surjective. The injectivity follows by
estimating the difference between two given solutions. Details can be found in [Kle97a,
Lemma 5.1]. O



Lemma 3.5. For cvery x € L(Q), @ € L*(Q) there exzists a unique x such that
ox

X € H*(Q), X € D(B) ae in 9, B 0 ae in T, (3.6)
nX_Tim_l — eAX+B(X) 2 04(Xs Xm-1) = Ag (X, Xm-1)& a.c.in Q, (3.7)
—ni_hiim_l +eAX + 0y(X: Xm—1) — A (X6 Xm-1) T € L*(9). (3.8)

Proof. By (A1) and (A3), we can rewrite (3.6)—(3.8) as
K+ B D 0406 Xm1) = N (6 X 1) B (39)

where B : L*(Q) — {W C L?*(Q)} is a nonlinear operator. Using [Bré71, Corollary 13|, we
see that this operator is maximal monotone. Details can be found in [Kle97a, (5.7)-(5.8)
and Lemma 5.5].

Because of (A6), (A3), x € L®(Q), xm-1 € H3(Q) C C(N), we see that the right-hand
side of (3.9) is in L?(Q). Hence, [Bré71, Theorem 2] yields that there is a unique solution ¥
to (3.6)—(3.8). O

In this proof, C;, for + € N, will always denote generic positive constants, independent of
x € M with

Mi={x€10): x€D(F) aein Q}. (3.10)

This is a closed and convex set.

We have

Lemma 3.6. The functions o(-, xm-1) and Ay(-, xm—1) are Lipschitz continuous on D(B)
and there is a positive constant Cy such that, for all x € M,

1206 Xm=-1)ll oo + 11720 Xm—1)ll o0 + [1Xlloo T IXm-1ll0e < C1- (3.11)
Proof. Since D(B) is bounded and xm_1 € H2(Q) C C(Q), (A6) yields that the assertions
of this lemma hold. O

Combining Lemma 3.4 and Lemma 3.5, we see that for every x € M there is a unique
% € H*(Q) and a unique ¥(x) := x € H*(Q) such that (3.4)-(3.5) and (3.6)-(3.8) hold.
This defines a mapping ¥ : M — M and any fixed point of ¥ leads to a solution to the
system in (Dgz), i.e. to (2.4a)—(2.4e). Therefore, it is sufficient to prove that ¥ has a fixed
point.

We test (3.5) by hm, apply Green’s formula, Lemma 3.2, Hélder’s inequality, (3.4), (3.11),
and Young’s inequality to conclude that

C2 [ 12y
SCO |Q| + hm / Cm’&' do + / (_coem—l - hmgm + A&(X)Xm—l) (X - Xm—l))’&'dm
r Q
Ca -
<Cs+ - 1%l 71.q) - (3.12)

10



Owing to (A1), we have ws > 0 for all s € D(8), w € B(s). Therefore, by testing (3.7) by %
and applying (A3), Green’s formula, (3.6), (3.11), Holder’s inequality, (3.12), and Young’s
inequality, we get

X[l < Cs L& ||X||2
2

N Xm—
Cs ||X||12ql(n) < th—l + 03(x> Xm-1) — X' (X, Xm—1)1

Hence, we see that x € M; with

C

Therefore, we observe that M; is a nonempty, convex, compact set in L*(Q2) and, by con-
struction, that ¥ maps M/ into itself. Thanks to Lemma 3.7, ¥ is on M/ continuous. Now,
Schauder’s fixed point theorem yields the existence of a fixed point of ¥ in M. O

Lemma 3.7. ¥: M — M is L?(Q)-continuous.

Proof. Let x7, x5 in M be arbitrary, and
X1 =9(x1), X2 =Y¥(x3), X =xi—Xz X:=X1—Xe

Combining (3.4)—(3.5), (3.6)—(3.8), and the definition of ¥, we find 4y, % € H*(Q), &1,6& €
L?(Q) such that

i1 >0, 42>0, &€EPB(R), &EP(R) aein Q, (3.13)
1 1
—Co (T - T) — hmkA (’&1 - ’&2)
U1 Ug
= )‘I (XI;Xm—l)(X* - Xm—l) - A&(X;;Xm—l)(xs - Xm—l) a.e. in Q; (314)
nh— —eAx+ & — & = — N, Xm—1)T1 + A3(X3s Xm—1)i2
+03(X1) Xm-1) — 0a(X3, Xm-1) ae.in £, (3.15)
L) e sy, Ko aem T (3.16)
on on

Testing (3.14) by @ := 4y — U2, integrating by parts, and using (3.16), (3.13), Lemma 3.2,
Holder’s inequality, Lemma 3.6, and Young’s inequality, we deduce

2

— 6 ||| 71
Vv U1Uo 2 (Q)

/ Xl;Xm 1 X + ()‘I (Xl;XTﬂ 1) )‘fi(X;Xm—l)) (X; - Xm—l)),&’dm
0

* ~ * CG ~
<Cr Xl l1all, < Csllx*ll; + =7 1l (3.17)

Co
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We test (3.15) by x and use (3.13), the monotonicity of 5, (A3), (3.16), and the generalized
Holder’s inequality (see Lemma AP.2) to derive
Co [IXl[7r: (qy < 12003 Xm-1)13 1816 1% ll6 + [1A(x3, Xm-1) = 2a(x3, Xm-1) |3 | 22l6 I Xl6
+ lloa(xi, Xm-1) = 9403 Xm—-1)ll [IX]5 -
Because of Lemma 3.6, (AP.1), (3.17), and (3.12), we see

Co 1%/ 72y < Crollx*llz 1%l ey -

Hence, thanks to Young’s inequality, we have shown that ¥ is L?(Q)-continuous. O

4 Uniform estimates

In this section, uniform estimates for the solutions to the time—discrete scheme are derived.
Assume that (A1)-(A6) hold and that |Z| < A*, where h* and C} are positive constants
such that (2.7) is satisfied.

Let 8* := 0¢* and ¢* : R — [0, co] be either ¢ or the function defined by

S) = {¢(s>, if|s| < B, (1)

00, otherwise,

for some B > ||x°||,- In the light of (A1), we see that ¢* is a convex, lower semicontinuous
function with

0 S QZS S qs* on [R, 0 e D(ﬁ*), lIltD(,B*) 7£ 0, 0 € B*(O), ¢*|D(,5*) - ¢|D(,5*) . (42)

Now, a modified version of the time-discrete scheme is considered, where £ in (Dz), i.e. in
(2.4b), is replaced by B*. Let any solution to this scheme be given.

In the sequel, C;, for = € N, will always denote positive generic constants, independent of
the decomposition Z, the considered choice of ¢*, and the solution itself.

Remark 4.1.
Recalling (2.4a), (2.4b), (2.4e), (2.4f), (A4), and the definition of ¢*, we see that

1 * * * .
0<tm=1— Xm€D(B")CDB), &m€f(Xm)=0¢(xm)ae in
m (4.3)
2 OXm .
xm € H*(Q), 8—:0 ae.in I, V0O<m<K.
n
Applying (2.4c), Green’s formula, and (2.4e), we deduce that
/ c09m — m + Am — Am-t vdz — K/Vum o Vudz
B B
0 0
—/’ymumvda = /gmvdaz —/Cmvda, Vve H'(Q), 1<m<K, (4.4)
r 0 T

with
Ao = A(X0)s Am = Amo1 + Ad(xmy Xm-1)(Xm — Xm-1) a.e. in Q, V1 <m< K. (4.5)

12



The following Lemmas use ideas from [HSZ96, SZ93, CS97, Hor93, HS, Lau93, Lau94, Kle97a]

Lemma 4.1.  a) There is a positive constant Cy such that
16" (xo)ll1 + llollz + [1ACx0)lly + [1Xolls + 1 Xa(x0, x0)l2 + lloa(xos xo)ll2 + Xoll 2y
+ 190l &1 () 1 Low () + w0l 2y ooy + I0(Go)]]; < Cr (4.6)
b) Let x_1 € L*(Q) be defined by
Xo — X-1 1 ' -
T e eAxo + o + 04(X0, X0) = —Aa(X0, Xo)uo a.e. in €, (4.7)

with ko := |Z|. We have a positive constant Cy such that

b (2=

2

Proof. If ¢* = ¢, we use the initial condition (2.4f), (A2), (A4), Sobolev’s embedding
Theorem, (A6), and (4.5) to show that (4.6) is satisfied. If ¢* # ¢, in addition, (4.1) and
B > ||x°||.. are applied. Combining (4.7), (4.6), and (A3) leads to (4.8). O

Lemma 4.2. There are two positive constants Cs, Cy such that

max (116mlly + [10(0m)l; + Xl 3oy + ||¢<xm>||1)

< O (4.8)

0<m<K
X K
m—1
+ Z hm ||um||Hl(Q) + Z h ‘|‘ Z ||Xm - Xm—l”}zr{l(g) S 037 (49)
2 m=1
a0} (xm, xom- s <c. (4.10)

Proof. Testing (2.4d) by (Xm — Xm-1), taking the sum from m = 1 to m = k, and using
(A3), Green’s formula, (4.3), (AP.5), (4.6), (4.2), (4.5), Schwarz’s inequality, and Young’s

inequality, we deduce
5 Z b

1'nlQ

2 k
Xm 1 £ £
+ 2Vl + Z 19 5m = Fxtm-alls + 16060l

m=1

Let @ := min (ﬁ, Géﬁ), with CF,C5 as in (A2) and (A6). For 1 < m < K, we insert

UV = hm@ — AUy, in (4.4), use (4.3) and that % is the derivative of the convex function
—In(s), take the sum from m = 1 to m = k, and apply Lemma 3.2, (4.6), and Young's
inequality, to show that

k
o / (= 1n(86)) do + aco [8ell, + Co > b [[emll2s e

0 m=1

<C7+Z/ m — Ame1)(tm — @) dz . (4.12)

1'nlQ
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Because of (4.5), (A6), (A2), (4.6), Young’s inequality, and the definition of «, we have

k 2
1 m—
_aZ/ —)\mldaz§08—|—§/ (xe)de + =2 Zh X 12
m=1 0
Hence, by using Lemma AP.8 and adding (4.12) to (4.11), we deduce
c X 2 ¢
- Xm-1 2
G 1041, + co 180 + Co 3 b [y + 2 Z L
m=1 m 2

€ 1 1
+E 3 19 Gt = xm I 21800l < oo+ 23 B fofem )2 (413)
m=1 T m=1

Since (A6), (2.7), and |Z| < h* yield

loa(xms xm-1)ll3 < O3 | 160 )1y + 160m-1)]I +/1d$ , V1<m<K, (414)
Q

hi

5. ||Uzli(Xk;Xk—1)

5 [é(xk)lly + Cr1 (R lIxe-1ll, + 1),
Cn

||2—4

we obtain from (4.13), (A5), the discrete version of Gronwall’s lemma, and (4.6) that (4.9)
is satisfied. Therefore, (4.10) holds because of (4.14). O

Lemma 4.3. There exists a constant Ciy such that

2 K 2
22 (HL |y ||um||§{1(m) £ b ||
2
— Xm-1 Xm — Xm-1  Xm-1— Xm-2
—&m1 T 1 —I—; I b ,
2 K
+ Z B hmm 2 + "; [t — 1|31 ) < Ca, (4.15)
with x_1, ho as in Lemma 4.1.
Proof. Inserting v = — (U — Um—1) in (4.4), taking the sum from m = 1 to m = k, and

applying (4.3), (AP.5), (AP.4), Lemma 3.2, (4.9), (4.6), the generalized Holder’s inequality,
hm < 2hp_1, and Young’s inequality, we deduce that
Co -1
Zh hmm . ‘|‘ Cis ||uk||H1(Q) + 0132 [Um — Um-— 1||H1(Q)
_ )‘m
<Cl4 + Z / 1 — um_l) dz . (416)

1'nlQ
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For 2 <m < K, we test the difference of (2.4d) for m and m — 1 by ¥»2X== By applying
(A3), Green’s formula (4.3), the monotonicity of 8, (4.5), and (AP.5), we obtaln that

2 2

m m m m & m - Xm-— m—1"—" Xm—
H\[X X1__H\/—X1X2_|_277th 1_X;LX2
2 m m—1 2
+5hm v (X - Xm— 1) H é-m 1 Xm Xm—1
 hm |l
Am — Am m
S—/ (7h S — X 17hx - ) dz
P ™m ™m
+ [ (0Ultmsxms) — i) 222 e, (4.17)
f ™m
with  Aj 1 = Ag(Xm-1,Xm-2), Tgm_1:= 0g(Xm-1,Xm—2) a.e. in Q. (4.18)

Testing the difference of (2.4d) for m =1 and (4.7) by ¥-*¢ and using the same argumen-
tation as above, we deduce that (4.17) holds also for m = 1 with

Ao = Ag(X0,X0), Oggo :=0g(Xo,X0) ae in . (4.19)

Summing up (4.17) from m = 1 to m = k, adding the resulting estimate to (4.16), and using
(A3), (4.9), and (4.8), we conclude that

2 k 2
c_n Xk — Xk-1 c_n Xm — Xm-1 N Xm—-1 — Xm-2
2 hk 9 —I_ 2 Tnzzl hm hm—l 2
X 2 ‘ Xm — X
—I_ClSZh m-1 —I_ (gm_gm—l)mhim
HI(Q) m=1 m 1
Uy, — Umn—1
—I- Py ‘|‘ Cis ||uk||H1(Q) + 013; [t — U 1||H1(Q)
<C16-|-I1k‘|'12 ks (4.20)
— Am — Am—
with I = Z/ ()\fim ) :f L - 1) Upm_1 dzT, (4.21)
Ly = Z/ oh(Xms Xm—1) — O'dm 1) Xm th Lde. (4.22)

Using (4.5), the generalized Hélder’s inequality, and Schwarz’s inequality, we deduce that

k
) \V IS,k Z hm—l ||um—1||27
2 m=1

Xm = Xm-1
hom

I < | max
’ 1<m<k

k
with I3 Z

m=1

— Xy(Xm Xom=1) |- (4.23)
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Now, owing to (AP.1), (4.9), (4.6), and Young’s inequality, we observe that

2
Il kE — C—T’ ma. M + 01713,k. (424)
1<m<k hom )
Since = = + & holds for p; := %p, we obtain, by (4.18), (4.19), (A6), the generalized

Holder’s 1nequahty, hm < 2hm_1, (AP.1), and (4.9), that

IS,k Scls Z h m
m—1

m=2

2
Xm — Xm-1
b

Xm—-1 — Xm-2

P
+ 1 b

h

2
p1

@ﬁ@+mmgu)<cm§y

2
(IIXﬁlIIg + |Ialle + |zl + 1)
¥4 ¥4

B2
Cro—L
+ 19|Z|

2
Xml

m

6

2—-p

2
X1 — Xo

h

Because of p < 1, we can use the Gagliardo—Nirenberg inequality (see Lemma AP.5) and
Young’s inequality to deduce

2

2
Xm 1 Xm — Xm-1

015
Crrlap < —7 Z - .

+Cxn Z hm, (4.25)

2

Defining gq; := —2q we have 1 = -4+ 24 qil. It follows from (4.22), (4.18), (4.19), (A6), and
the generalized Holder’s 1nequahty that

2
Xm — Xm-1 Xm—-1 — Xm-2
L <C b, || F—2 by || F—
2,k SC02 Z ( I + 1 e )
m=2 91 q1
Xm - Xm—
e + [IxEslle + |IxGalle +1) |22
¢ e e hm q
+ Cashe | X200 (s + x@lls +1) || 22
ha @ ! ! h @

Using (AP.1), (4.9), Young’s inequality, (A5), the Gagliardo-Nirenberg inequality, and ¢ <
4, we obtain that

2 2
XTR1 Xml

HY(Q)

(4.26)

-|-024Zh

12k<%2h

m

16



Combining (4.20), (4.24)-(4.26), and (4.9), we conclude that

2 k 2

Xk — Xk-1 Cn Xm — Xm-1 Xm-1 — Xm-2
- [ S— _I_ - —_
2 hk 9 2 Tnzzzl hm hm—l 2

k k
C 2 : Xm 1 2 + (é- _é- )Xm_Xm—l
2 m Hl(n) m m-—1 hm .
m=1

-1
hm\/um m—1

2
Xm — Xm-1
hm

S

<(Cys —|— max
4 1<m<k

-I- Ci3 ||uk||Hl(Q) + Ci3 Z ||t — Ui 1||HI(Q)

(4.27)

2

By taking the maximum from m = 1 to m = K, we see that (4.15) holds, because of
(4.6). 0

Lemma 4.4. There exists a positive constant Cyg such that

8% lemll, + max xm sy < Cae (4.28)

Proof. To test (2.4d) by &y, we use the Yosida approximation 83 of 8*, which is, see [Bré71,

p. 104], a nondecreasing, Lipschitz continuous function on R. The construction of the Yosida
approximation and 0 € 8(0) yield that 0 = ﬁ (0), for all m € N.

Since 1 is the derivative of a convex function on R, we can apply [Bré71, Corollary 13] to

show that for every n € N there exists a unique Xmn € H*(Q) and a unique {mn € L2(Q)
such that

Xmn — EAXmmn + mn = fm  ae. in (D, (4.29)
mmn =PBL(Xmn) ae. in Q, Oxmm =0 a.e.in T, (4.30)
" on
with f, € L*(Q) defined by
fm = _)‘ZJ(XWH Xm—l)um + U(IJ(XTM Xm—l) + Xm — hi (Xm o Xm—l) : (431)

Since B1 is globally Lipschitz—continuous on R and, by Sobolev’s embedding Theorem,
Xmn € H"®(Q), we obtain, by [MM79, Theorem 1], that 8% (Xmn) = &mn € H(Q) and,

by [MM72, Lemma 2.1 and Remark 2.1], that for this function the generalized chain rules
holds. Therefore, since 81 is nondecreasing on R, we see that

n

/ Vémn) - Vmn dz = / (51 )'(Xm,n) (VXmn)? dz > 0. (4.32)

n
Q
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We test (4.29) by &m n, and use Green’s formula, (4.32), (4.30), and Young’s inequality, to
derive

1
fm = Xmnllz + 5 [[€mnlly - (4.33)

N | —

||€m,n||§ S /(fm - Xm,n)gm,n d:II S

!
Testing (4.29) by Xmn» and using Green’s formula, (4.30), 0 € B%(0), the monotonicity of
B%, and Young’s inequality, we observe that the sequence (Xmn)nen is bounded in H'(f).

HTénce, the sequence (&mn)nen is bounded in L?(Q), because of (4.33). Comparing the terms
in (4.29), using (4.30) and Lemma AP.4, we see that (Xmn)nen is also bounded in H2(Q).
Thus, there is a ¥ € H*(Q) and a £ € L*(Q) such that, for some subsequences,

Xmm; — X weaklyin H?*(Q), strongly in H'(Q), (4.34)
bmm; — & weakly in  L*(Q). (4.35)
Now, a passage to the limit in (4.29)—(4.30) and using [Bar76, Cha. II Prob. 1.1(iv)] lead to
_ _ O
x € D(B*), ¢(€pf(x), x—eAx+é=fn aein Q, 6—: =0 ae in T.

Since (4.31), (4.3), and (2.4d), yield that (Xm,&n) is also a solution to this system, which
has, by [Bré71, Corollary 13], a unique solution, we see that x,, = x and &, = £. Now,
(4.33)—(4.35), (4.31), (4.10), (A3), and (4.15) lead to
1 5 1
- < Z
el <

Applying (A6), the generalized Holder’s inequality, p < 1, (AP.1), (4.9), and (4.15), we
obtain

||fm - Xm||§ < Cor+ Cas ||A:1(Xm7Xm—1)um||§ . (4.36)

| Ag(Xm» Xm—1)tm]|,
<2500, 0) [ [Jum|l, + Cas (Ixm — Ollg + [xm=1 = Olls) (IXBll6 + |[Xo0cillg + 1) lumll
<Cso. (4.37)

Comparing the terms in (2.4d), and using (A3), (4.15), (4.10), (4.36), and (4.37), we see
that

Xm — Xm—
||5AXm||2 = thil ‘I’ gm - U&(Xm;Xm—l) ‘I’ )‘:1 (Xm;Xm—l)um S 031-
m 2
Now, using Lemma AP.4, (4.9), and (4.3), we conclude ||Xm||H2(Q) < (3. Combining this
with (4.36), (4.37), and (4.6), we see that (4.28) is satisfied. O
Lemma 4.5. There exists a positive constant Czz such that
)‘m - )‘m—l Hm - Hm—l
!
e, (nxd(xm,xm_onw e R Hlm)*)
K 3 3 2
m ~— ‘m-1
. oy < Cla. :
* z—:1 i hm H(Q) " OglaSXK Al () < Ca (4.38)
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Proof. By looking at the terms in (4.4) and using (4.15) and Lemma 3.2, we see that

Hm — Hm—l —|— )\m - )‘m—l

- - < Cia. (4.39)

HY(Q)

maXx
1<m<K

Co

Thanks to (4.28), Sobolev’s embedding Theorem, and (A6), we have

0Lk [ Xml| 160y +  Jax 1 Aa(Xm> Xm-1)l oo < Css. (4.40)

Combining this with (A6), and [MM79, Theorem 1], we see that A;(xm,Xm-1) € H"*(Q)
and

 ax [V A4(xms Xm-1)llg < Cao.

Therefore, owing to (4.5), Young’s inequality, the generalized Hélder’s inequality, (4.40),
(4.15), and Sobolev’s embedding Theorem, we have

)‘m_)‘m—l 2 K )\m_)‘m—l 2
b e P L V(ihm 2

Xm = Xm-1
hom

)

K
Xm — Xm—
#23 o Dt I [ (22520

< !
< max (1P40m x|

2

2

m=1
- Xm — Xm-1 ||
2N b IV (X X1 ) |12 || 22— < O
—I_ ’m’z::l || d(X y X 1)”6 hm , ~ 37
Combining this with (4.39) and (4.6), we see that (4.38) is satisfied. O

Lemma 4.6. We have 8,, € H*(Q) for 0 <m < K.

Proof. We have 6, € H'() by (2.4f) and (A4). For 1 <m < K with 6,,_; € H*(Q), we
define the approximation 8,,, € H*(2) N L*(Q) for b, by

-1
Omp = (um + l) a.e.in ), VnéeN.
n

The Lebesgue dominated convergence theorem and 6, € L*(Q) yield that

Omn — Om strongly in  L*(Q). (4.41)

n— 00

By applying (4.4) with v = 62, and using (4.3), Hélder’s inequality, Lemma 3.2, (4.38),
(AP.1), and Young’s inequality, we see that this sequence is bounded in H*(2). Combining
this with (4.41), we conclude that 6,, € H'(Q). O
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Lemma 4.7. There exists a constant Csg such that

max (16, < Cas (4.42)

Proof. We multiply (2.4c) by A, and use (4.5). Summing up the resulting equation for
m =1 tom =1, we find

cob; + X, + & Z Ao AUy, = ol + Ao + Z hmgm a.e. in . (4.43)

m=1 m=1

We test (4.43) by h; - Au;, take the sum from ¢ = 1 to ¢ = k, and apply Green’s formula,
(2.4e), (4.3), 6., € H'(Q), (AP.3), (AP.2), Lemma 3.2, and Schwarz’s inequality, to derive

cozhz me + 5 th A} + =2 Zh 16252y
=1
<Cse + / (<c000 + o + Z hzgz) Z h; Auz) dz — Z Bt /gi+1 Z P Aty daz

0 m=1

—I—Zh/V)\ o Vu,dz —I—Zh / (viu; — ;) do .

Now, by utilizing Young’s inequality, (4.6), Lemma 3.2, (4.15), (4.38), and hp, < 2hp,_1, we
derive

VuZ

k
Z v“’" Zh Aum + = Zh At
" k-1
<Cio+Cu Y _ hm ZhiAui (4.44)
m=1 1=1 2

By applying the discrete version of Gronwall’s lemma, we get a uniform upper bound for
the left-hand side of (4.44). Looking at the terms in (4.43) and applying (4.38), (4.6), and
Lemma 3.2, we see that (4.42) holds. O

Lemma 4.8. There are two positive constant Cys, Cy3 such that

max([[umllon) + 116mll gy o)

0<m<K
+§:h tn — o | ‘em_e’"‘l V<o (4.45)
m=1 " m 2 hm 2 N . ‘
K
> bn [[um|32(0) < Cls. (4.46)

m=1
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Proof. We deduce, by Lemma 3.2, (4.38), and (AP.1), that

k
>
m=1

Thanks to (4.3)-(4.6), (4.15), (4.38), (4.42), and Lemma 3.2, we can apply Moser’s technique
as in [Kle97a, Lemma 6.11 and 6.12, for € > 0 fixed], and derive, by using (4.6), that

2
< Clag.
6

. )‘m - )‘m—l
gm hm

max (||um||L°°(Q) —I_ ||0m||Loc(Q)) S 045.

0<m<K

Combining this with u,, € H%(Q) C C(f), (4.3), (4.15), and Hélder’s inequality, we see that
(4.45) holds. Now, by looking at the terms in (2.4c), and using (4.5), (4.38), and Lemma
3.2, we see that

K
Z hom || Aty |3 < Cl.

m=1
Now, Lemma AP.4 yields that (4.46) is satisfied, because of (2.4e), Lemma 3.2, and (4.15).
]
Lemma 4.9. We have
A(xk) = Aklle < Car|Z], V1<k<K. (4.47)

If at least one of the assumptions @ C R? or N, = X, is satisfied, we have
| A(xk) — Aell, < Cag|Z|, V1<Ek<LK. (4.48)
Proof. Applying (4.5), (A2), the mean value theorem, (A6), (4.28), and Sobolev’s embed-

ding Theorem, we deduce

2
Xm — Xm-1

- a.e.in . (4.49)

k
[A(xk) — Ak| < Clao Z h72n
m=1

Hence, recalling Holder’s inequality, the Gagliardo-Nirenberg inequality, and (4.15), we

conclude
k 10
% % Xm — Xm—1 8
N N e
s som = xma ||© || Xom = Xomea || :
§051|Z|§th me_l . ""Tm—l < Cs; |Z|° .
m=1 () 2
Thus, we have shown (4.47).
We use (4.49) and Hoélder’s inequality to show that
k Xom — X 4
2 2 m — Xm-—1
[A(xk) — Aell, < Cs3|Z] Z:lhm TR, \

Therefore, if @ C R?, recalling the Gagliardo-Nirenberg inequality and (4.15) leads to (4.48).
If X, = X, then (3.2) and (4.5) yield that A(xx) = Ax. Hence, (4.48) is satisfied. O
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5 Proof of Theorem 2.1 and Corollary 2.1

We assume that (A1)-(A6) hold.

In the framework of Theorem 2.1, we obtain from (A6) that we have positive constants A*
and Cf such that (2.7) is satisfied. We assume that |Z| < h*.

In the framework of Corollary 2.1, it is part of the assumptions that |Z| < A* where A* and
C? are positive constants fulfilling (2.7).

Because of (A4) and Sobolev’s embedding Theorem, we see that ||x°||_, is finite.

For any B > ||x°||,,, we can consider ¢* as in (4.1), 8*, and the corresponding modified
version of the time—discrete scheme as in the last section. Lemma 3.3 yields that there exists
a solution (03, uB xB, 551)5:0 to this modified version of the scheme. Since the assumptions
used in the last section are satisfied, the estimates derived therein hold for this solution.
Now, because of (4.28) and Sobolev’s embedding Theorem, there is some positive constant

C', independent of B, such that

0Sm<K HXELHC@) <" (5.1)

Now, we consider B := C' + ||x°||., + 2. Thanks to (4.1), 8* = 8¢*, and B8 = 04, we have

5*|[_c'—1,c'+1] = 5|[_c'—1,c'+1] :

This yields, by (4.3) and (5.1), that the solution to the modified version of scheme is also a
solution to the unmodified version of the scheme (Dgz).

It remains to show the uniqueness of the solution. Assume that we have two solutions

(GS),uS),XS),gg))K and (Hﬁ),uﬁﬁ),xﬁ),gﬁ))K to the scheme (Dz). Hence, the esti-
mates in the last seg}ci_(())n are valid for both SOluti%I_lg.

In the sequel, C;, for = € N, will always denote positive generic constants, independent of
the decomposition Z and the considered solutions.

Thanks to (2.4f), we have 0(()1) = 0(()2), ugl) = ugz)) Xg1) = ng), (()1) = (()2) a.e. on f).

To prove by induction that the two solutions coincide, we now assume that 1 < m < K is
given such that

HS)—1 = 07(3)—17 u’f’r]l:)—]. = u’f’z)—]J Xy(yll)—1 = X’f’z)—l =:x" ae in . (5.2)

(1) _,(2) (1) (2)

Now, let um := Um U’ aNd X = Xm' — Xm

Using (2.4b), (2.4¢), (2.4e), Green’s formula, and (5.2), we deduce

1 2) _ " Um :

07(11) — 07(11) = MONE a.e.in €, (5.3)
]- _um * * * *

h_/ (COW + )\fi(Xy(vll)aX ) (XS’I]I:) - X ) - )‘fi(Xy(vzl)aX ) (Xy(vzl) - X )) vdz
m Um Um

—K/Vumondaz —/’ymumvda: =0, Vve HY(Q).
Q r
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This yields for v = —h,,upm, by Lemma 3.2,

2

Um
o || ———| + hmCi ||um||12r{1(n)
NG 2
< / M2 X" Xt dz + / (O, %) = 22, %) (XD — x Y umdz.  (5.4)
0 0

Recalling (2.4d) and (5.2), we have
Xm * *
ny ™ = elxm + €00 = € — o3(xi) x7) + ou (i x)

=X (Xg),x*) Um — ()‘:1 (Xg),x*) — X (Xffl),x*)) u?® ae. in Q. (5.5)

Testing this equation by X, and using (A3), Green’s formula, (2.4¢), (2.4b), and the mono-
tonicity of 8, and adding the resulting estimate to (5.4), we obtain, by (4.45),

C
Ca [[umlly + hmCt [|tm|l77: (qy + . xmll5 + € 1 Vxmll5 < In + I, (5.6)
with T := / (MO x™) = 2, %)) (R = X um — ) dz,  (5.7)
0
L= / (@55 x*) = o2, X)) X dez (5.8)
0

Now, we consider the framework of Corollary 2.1 and Theorem 2.1 separately.

If we are in the framework of Corollary 2.1, the uniqueness needs only to be shown under
the additional assumption that (2.8) holds. Therefore, we have I; = 0 and

c c
I, < 2|"Z| (Xm)” dz < 2 [lxml 5 -
Q m
Hence, (5.6), (5.3), and (5.5) yield that
Um = xm =0, 60 =92 1) _ @) 50 in Q. (5.9)

This finishes the proof of Corollary 2.1.

Now, we consider the framework of Theorem 2.1. (A6), (4.28), and Sobolev’s embedding
Theorem yield that

IS0, ) — A2, x*)

Hence, by applying the generalized Holder’s inequality, (4.28), (4.45), and Young’s inequality,
we deduce

+ (), x*) — ou(x, x*)

< Cs|xm| ae. in Q.

I + I <Cs||xmll, (HX,(fL) - Xm—lHoo | tm ], + Huy(yzl)Hoo [Xmll,) + Ca x5

Cs
S5 3 + Ca llxmll5 -
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Therefore, if we assume that | Z] < 2507’4, we obtain 1 +1, < % ||um||2—|—22—”m ||Xm]|, - Combining
this with (5.6), (5.3), and (5.5), we see that (5.9) is satisfied.

Since we have shown that the scheme has a unique solution, if |Z| is sufficiently small,
Theorem 2.1 is proved. O

6 Proof of Theorem 2.2 and Theorem 2.3

We assume that (A1)-(A4) and (A6) hold. Thanks to (A6), we have positive constants
h* and C} such that (2.7) is satisfied.

6.1 Properties of the approximations

In this section, we only consider decompositions Z with (A5) and |Z| sufficiently small.
Hence, Theorem 2.1 yields that there exists a unique solution to the time—discrete scheme

(Dgz). Let ( wZ %%, € ) be the corresponding approximations derived from the solution
to (Dgz) as in Remark 2.3.

For (Am)E_, as in (4.5), we define the piecewise linear function PX analogously to xZ. The

. . . =7 =7 ~Z =Z
piecewise constant functions 8°, u?, xZ, 7%, (", g%, A~ are defined analogously to ¢, and

xZ € L>(0,T; H*(Q)) is defined by

Xz(t) = Xm-—1; Vie (tm—17 ) K (61)
Then, by the definition of the approximations, (2.4a)—(2. ) nd (4.5), we have
)

6% 2% 3% ¢ H'(0,T; H'(Q)), u? € L*(0,T; Hz( ), 4% € L*(|Z|,T; H}(Q)), (6.2a)
$7 € B0, T; H()), %o € L°(0,T; HA(8), (6.2b)
¢ € 1=(0,T; I3(1)), (6.2c)
1 _

0<u? 0<a?, g —7 YZ,SZZ Z € D(B), §Z €ep (YZ) a.e.in S, (6.2d)
coé\tz + )\tZ 1 kAT = §Z a.e.in  Qr, (6.2¢)
nS(\tZ — 5AYZ + EZ — U;(YZ,XZ) = —)\Q(YZ,XZ)EZ a.e.in 7, (6.2f)

ow?  _, ., -z Ox? ox? :
K =7 —(, = 0, = 0 ae.in Ip, (6.2g)

07(,0) = 6°, @Z(-,0)=v°, XZ(-,0)=x" AZ(-,0)=XAx") ae in €.  (6.2h)

In the sequel, C;, for = € N, will always denote positive generic constants, independent of
the decomposition Z.

We find, from (4.15), (4.28), (4.38), (4.45), and (4.46):
|7

7z
Wi (0,T;HL(R)*) N H(0,T;L2(2)) N C(Q7) n L (0,T;HL(Q)) H HLw(nT)an(o,T;Hl(n))
z z
+ Hu HC(OT] JHL(Q)) N H(0,T;L2(Q)) nC(Tr) T Hu HL2(|Z| T;H2())

+ HEZHL‘X’(OTHl(Q))nL‘X’(QT)nLZ(OTHZ(Q)) <0y, (6.3)
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HXZHWl o0 (0,T;L2(R)) N H(0,T;H (@) n C((0,TEX(@)) T HYZHL""(O T;H2(Q))

+ HXZHLoo(o,T;HZ(Q)) + ‘ < C,. (6.4)

HL‘X’(O,T;LZ(Q)) H Her‘x’(O,T;L?(Q))nHl(O,T;Hl(Q))_

The difference between the piecewise linear and the piecewise constant approximations can
be estimated, by using (4.15), (A2), (4.28), Sobolev’s embedding Theorem, (4.38), (4.45),
and (4.47):

-7 - <02 6.5
H L2(0,T;L2(Q)) N Lo (0,T; HL(2)*) Hu u HLZ(OTLZ(Q)) 3141, (6.5)
Ix* =x7 +[1%7 =7
X L*(0,T; LZ(Q)) N L2(0,T;H (1)) Xl L (0,7522(0)) N L2 (0,T;HY (Q))
+ H)\(SC\Z) - )‘ HL""(OTLZ(Q)) < 04 |Z| (66)
7= x| b 7| <oz, ©)
L% (0,T;L2(R)) N L2(0,T;H(Q)) L (0,T;L5 Q)

[27 - _ZHLZ(OTHI(Q)) < Gsv/12]- (6.8)

For the approximation of the data, we have, by (A3):

Lemma 6.1. The functions §Z,VZ,ZZ fulfill

4 _z =7
19| enagy + 17 | enioizonceyy + [ € \\LM(FW(O,T;H%M <c, (6.9)

Hg o ngLZ(O,T;Lw(Q)) + H’Y o 7ZHLoo(FT) + HC —¢ ‘ Cs |Z]. (6.10)

L2(0,T; LZ(F))

Now, estimates similar to [NSV] are used to prove the following lemma, which is important
to improve the order of the error estimate from /|Z| to |Z].

Lemma 6.2. We have a positive constant Cy such that
—// (g —EZ) (x — X%) dz dt < Cs|Z2, Vselo,T), (6.11)
0 Q

for all x,& € L*(0,T; L*(Q)) with

x € D(B), €¢€pB(x) ae in Qr. (6.12)
Proof. From (6.12), (6.2d), and 8 = 0¢, we get

__/s/(g_zz)( d“’dt<// #(x7) + T (X% — %) + 4(R7)) da dt.

For 1% : (0,T] — [0, 1] defined by

tm — 1
B

holds X7 = (1 — lZ) X7 + ZZXZ =xZ + 1 (XZ — YZ) a.e.in Q.

#(t) =

Vi€ (tmot,tm), 1 <m < K, (6.13)
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We apply the convexity of ¢, to show that

4 < // $(X7) + b(x )—I—EZ(YZ—XZ))dmdt.

Since (6.2d) and f = 0¢ yield that the integrand is a.e. non-negative, we see, by (6.13),
(2.4b), (2.4f), (A4), and B = 0¢, that

e
e

Hence, (6.11) holds because of (4.15). O

/ ¢(Xm) + ¢(Xm 1) + gm ( Xm — Xm—l)) dz

|/\
L\D|»—~ ﬁMW

Em 1 ;Lrnxm_l

IN

6.2 Error estimates

Now, we estimate the difference between the approximation and one exact solution. Here,

ideas from [CS97, Col96, Kle97a, NSV] are used.

Lemma 6.3. For every solution (6,u,x, £) to the Penrose—Fife system (PF) there are pos-
ttwe constants Chg, C11 such that

] 2 3 2
Orélsaé}é" /(u(T) U (T)) dr ‘|‘01'élsaé}§, /’Y(T) (u(T) u (T)) dr
0 HY(Q) 0 r
e IR U oy e
Vun? L2(0,T;L2(R)) pzorLa@m L2(0,T;LM(9))

+[[V (x = x7) H;(o,T;LZ(Q)) +x - SC\ZHLZ(O,T;HI(Q))ﬂLw(O,T;LZ(Q))
< CrA? 4+ Cny (|Z|2 + 12| |u - EZHLZ(O,T;LZ(Q)))
— 0, as |Z]—0, (6.15)

with A% ::/H()\(QZ)—XZ) (u—ﬂz)

dt (6.16)

1

< C12|Z| Hu—ﬂZHLZ (6.17)

(0,T5L%(9)) °

Proof. The generic constants may depend on the solution to the Penrose-Fife system.

Thanks to (2.1a), (2.1b), Sobolev’s embedding Theorem, and (A2), we have

||0||L°°(0,T;L2(Q)) + ||u’||L°°(0,T;H1(Q)) + ||u||L2(0,T;H2(Q))
+ ||X||L°°(QT) + ||)‘I(X)||L°°(QT) < Cs. (6.18)
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First, we work on the equation for § and u. Integrating the difference of (2.1e) and (6.2¢)

in time, and testing the corresponding equation by v, and using (2.1g), (2.1h), (6.2g), and
(6.2h), we obtain for all v € H'(Q),

/ (co(ﬂ(t) — é\z(t)) + Alx(¢)) — Xz(t)) vdr — K / / \V4 (u(T) — EZ(T)) e Vuvde dr

- [ [ str)~g%() drode + / [+ ) - 7)) vdo ar

+//((W(T)—VZ(T)) a?(r) — (C(T)—ZZ(T)))vda dr, Vte(0,T). (6.19)

-
D
o .

\V4 (u(T) — EZ(T)) dr eV (u — EZ) dz =: Ay + Az + A, + As. (6.20)

Owing to (6.2d), (2.1d), the generalized Holder’s inequality, (AP.1), (6.3), and (6.18), we

see that
j (Hu —@7||; + He -8 j) dt < 014j - ;gz : dt. (6.21)
5 5
We have, by Hélder’s inequality, (6.10), and Young’s inequality,
2 <ol ooy I~ 7 < ool 22 a3, (622
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" 2

1
A3 =— —0; ) (w(7) — %2 (7)) dr
'W)o/w -y
(%) ; 72 2
_F/2('v(t))2 (O/V(T) (u(r) - 7%(7)) dT) dor, (6.23)
As = — gat /V (u(T) — EZ(T)) dr || . (6.24)

By integrating (6.20) from 0 to s and using (6.16), (6.21)—(6.23), we obtain

Co f l g2 B Co r u—a2|?
30 /( o uH%—I—HH 0H)dt—|—2 — |,
0
s 2 s 2
K _z ]_ ]_ —Z
+ > \Y (u(T) —u (7’)) dr || + 5 D () (u(T) —u (7’)) dr
s
: R £2(r)
< // (A(x) = A®?) (u— %) dz dt + AZ + o // (67 - 8%) (u-u7) do at
0 0 0 0
s t
+Z —Z —Z —Z
—|—///(C(T)—C (1) — (’y(T)—’y (T))u (7’)) dr (u—u ) do dt
0T o
s t 2
2 () / _ =Z
+ TC|Z| // (D) ( (1) (u(r) —w?(7)) dr | do dt
0T 0
—: A+ AZ 4 A7y + Ag + TC16 | Z)? + Ao. (6.25)
Applying Poincaré’s inequality and Hélder’s inequality, we conclude that
s 2
Ci7 /(u(T) —EZ(T)) dr
0 Hl(Q)
K —
SE V/(u(T)—uz(T)) 80“/Hu H dr. (6.26)

Using Holder’s inequality, (A2), (6.18), (6.4), Sobolev’s embedding Theorem, and (6.5), we

derive

A+ A7 < 018/ H (X - SZZ) (u - EZ) H1 di + Cie|Z| Hu B EZHLZ(O,T;LZ(Q)) : (6.27)
0
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Partial integration with respect to time and Hélder’s inequality results in

-7 — =
Ag < / (g —C ) dt + / H’Y —’YZHLoo(p) di HuZHLw(o,T;LZ(F))

0 L2(T) 0

0 LZ(F)

- (e~

Because of the trace theorem, (6.3), (6.10), and Young’s inequality, we observe

t

=7 gy 9% ey ) | | ) =) a

LA(T)

s 2

Ag <% /(u(T) —EZ(T)) dr

1
+ 5/ / (u(T) — EZ(T)) dr dt + Cyo |Z)?.
0 0 H(N)
In the light of Holder’s inequality and (A3), we see
2
— EZ(T)) dr dt.

L(T)

8

1
A9§0210/ \/WO'Y()((T)

Hence, we get, by using Holder’s inequality, (6.25)—-(6.29), and Young’s inequality,

o) a

2

Sl [ i) - o) ar +2§}’1 / (3 =1

0 H(9)

2
2
dt —|— — EZ(T)) dr

F

u—u?

uu

L)

<Cu / 6= %) (u =), 8t + 47 + Cas 121 e = | g 030y

2

+%/ /(u(T)—aZ(T)) dr dt

0 0 H(N)
2

— EZ(T)) dr dt.

LA(T)

+ (Ca0 + TCrs) |Z|2 + 021/
0

Vool Rl

29

0 LZ(F)

de.

(6.28)

(6.29)

(6.30)



Now, estimates for x will be derived. Subtracting (6.2f) from (2.1f), we obtain that

. _ —7 _
n(xe—X7)—eA(x —X7) +E&—& —'(x) + ou(x”, x7)
=—XN(x)u+ )\&(YZ,XZ)EZ a.e.in 7. (6.31)

Testing this with x — XZ and recalling (A3), (2.1g), and (6.2g), we end up with

AN (x—QZ)HEH/V(X—YZ)'V(X‘?Z) i+ [ (66) (=59 2

< [ (00 = ailx? ) (=77 de — [ (Voou = Xl PNa?) (- 77) do
=: A+ A;. (6.32)
We have

(6.33)

I [

2 £ 7 ~
-5 V&7 -

Using (6.32), (A6), (A2), (6.18), (6.4), Sobolev’s embedding Theorem, Holder’s inequality,

(6.6), and Young’s inequality, we conclude

o= [ (00~ o/87) (e~ 2%) do + [ (GU%,5°) — ol 1) (- £7) do
0 0
~7 12 2 .
<(Cy9 HX —X H2 + Ca3|Z|° ae.in (0,T). (6.34)

In the light of (6.32), (A6), the generalized Holder’s inequality, (A2), (6.18), (6.3), (6.4),
Sobolev’s embedding Theorem, (6.6), and Young’s inequality, we see that

Ay =~ /(/\'(X) (u—a%) + (V(x) — N(X?)) ﬂZ) (x —x7) dz

-/ (X(AZ X - Aé(ﬂf))az (x - 7) da

<Cou || (w = 7%) (x = %) ||, + Cas || x — X5 + Cas | 217 (6.35)
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Combining (6.32)—(6.35), integrating in time, using (A3), (2.1h), (6.2h), (6.11), (6.6), and
adding the resulting estimate to (6.30), we get
) at
()

8 2 8

% /(u(T)—az(T)) dr —I—C'27/(Hu—u +He—e ‘

0 Hl(Q) 0

, 2
u—u?

EZ(T)) dr

uu

F

L2(r)

+ 5 xts) =27+ 5 / IV Ge=%2)15 a + 2 / Ix = %[
0 0

SAlz + AZ + 019 |Z| Hu - EZHL2(0,T;L2(Q)) + 028 |Z|2

s t 2

—I—%/ /(u(T)—EZ(T)) dr dt + (§+C22+025)/HX_552H2 dt
o |lo HL(Q) 0
+ Czl/ i(t) /’Y(T) (u(r) —@?(7)) dr dt (6.36)

L2(T)
with

Aps = (Chs + Cas) / G = %) (uw—37)|), dt
0

Using Hélder’s inequality, Young’s inequality, and the Gagliardo—Nirenberg inequality, we
obtain

) i
< [l 0§ =2 20+ [ 101

Hence, (6.36), Gronwall’s lemma, and (A3) yield that (6.14) is satisfied.
By applying (6.16), Holder’s inequality, (6.6), (6.7), and the Gagliardo—Nirenberg inequality,
we get

T T
Azg/HA(;?Z)—XZHEHu—EZH% at < 030|Z|/Hu—ﬂZH§2(Q)Hu a?||2 dt.

Hence, using Holder’s inequality, (6.18), and (6.3), we deduce that (6.17) and (6.15) are
satisfied. O

6.3 Proof of Theorem 2.2

Proof. Thanks to the estimates (6.3), (6.4), Sobolev’s embedding Theorem, and compactness
(see, e.g., [Zei90, Prop. 23.7, 23.19, Prob. 23.12]), we get (0, u, x, £, A*) fulfilling (2.1b)-(2.1c),

31



(2.9)—(2.11), and
6 c H(0,T; L*(Q)), we L=(0,T; H'(Q)), X* € Wh>(0,T;L*Q)).
such that we have, for some subsequence with |Z| — 0, the convergences (2.12)—(2.20), and
PRI weakly—star in = Wh>(0, T; L*(Q)). (6.37)

We obtain the convergences (2.12)-(2.20) for the whole sequence, if we can show that
(0,u,x,¢) is the unique solution to the Penrose-Fife system (PF). Hence, we need only
to prove this, to finish the proof of Theorem 2.2.

Thanks to the convergences for X in (2.18), (6.4), the Aubin compactness lemma (see, e.g.,
[Lio69, p. 58]), and (6.6), we also get
SC\Z — X, YZ — X, XZ — x strongly in Lz(O,T;Lz(Q)). (6.38)
Hence, after possibly extracting a further subsequence, we have
X7 — x, XZ — X a.e. in Q7.

This yields, thanks to (A2), (A6), (6.4), and the Lebesgue dominated convergence theorem,
that

Mx7) — A Xa(x%x7) — XN(x), oalx?,x7) — o'(x) strongly in  L*(Qr).

(6.39)

Thus, (6.37), (6.6), and (6.7) yield that A* = A(x) a.e. on Qr. Hence, using (2.12)-(2.20),

(6.37)—(6.39), and (6.3)-(6.10), we can pass to the limit in (6.2a)-(6.2h) and obtain that

(0,u,x,&) is a solution to the Penrose-Fife system (PF). Details can be found in [Kle97a,

Sec. 8]. It remains to show that this solution is unique.

Let (6*,u*,x*,&*) be any solution to the Penrose-Fife system (PF). Since we can apply

Lemma 6.3 for this solution, using (6.15) and the convergences (2.12)—(2.19) yields that

0*=0, u' =u, x"=x aein Qr.

Comparing the terms in (2.1f), we see that the two solutions coincide. O

6.4 Proof of Theorem 2.3

Proof. Thanks to (2.1d), (6.2d), Hélder’s inequality, (2.9), (2.10), and (6.3), we have

u—u?

Vua? || g2,y

Moreover, we have x —xZ € C([0,T]; L*(Q)), because of (6.2b) and (2.1b). Hence, we obtain
from (6.14) and Young’s inequality that

< Cs

_7Z12 i
Hu - HLZ(O,T;LZ(Q)) + HH -0 L2(0,T;L%(R)) —

E] 2 s 2
Az = orélsag}g" / (u(T) — ﬂZ(T)) dr + orélsag}é" /’Y(T) (u(T) - EZ(T)) dr
0 Hl(Q) 0 r
_72 1 —Z‘ 2
_ — |0 -6
" 20, I = a0z + Ca L2(0,75L%(12))
~7Z112 z 2
+x-% HLZ(o,T;Hl(n))nC([o,T];LZ(n)) < CioA” + C5 |21 (6.40)
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Therefore, by comparing the terms in (6.19), and using (6.10) and (6.3), we get

2

Co (0 — @\Z) + A(x) _z

< Ca(As+12%). (6.41)
Lo (0,T3HY(Q)")

Now, (A2), (6.18), (6.4), (6.6), (6.7), L(Q) C H(Q)*, (6.2a), and (2.1a) yield that

2
< Ca (A3 +12%). (6.42)

He _ 9% <
(O THHY(R)")

Thanks to (6.17) and Young’s inequality, we deduce

Ci0A? <

1Cs Hu - ﬂZHiP(O,T;LZ(Q)) +Css |27 .

Hence, (6.40), (6.42), and (6.5) yield that (2.21) holds with |Z| replaced by |Z|%
If we assume that at least one of the assumptions  C R? or X, = X, is satisfied, applying
(6.16), Schwarz’s inequality, (4.48), (6.7), (6.6), and Young’s inequality leads to

1
< Cor |2 + g5 Ju -

Combining this with (6.40), (6.42), and (6.5), we see that (2.21) is satisfied. O

CloAZ S 036 |Z| Hu —

EZHLZ(O,T;LZ(Q)) EZHLZ(O,T;LZ(Q)) :

A Appendix

For convenience, we list some inequalities and equalities used throughout this paper.

Lemma AP.1 (Young’s inequality). Fora,b€ R, 0 >0,p>1, qg:= £ it holds

p—1’

1 1 1 1
ab< —af” + ~|B*, ab< —o~®Vaf" + ~o b,
p q p q
s—1

jaf?* [BPE) < s (ﬁ) a4 o b, Vo<s<1.

Lemma AP.2 (Generalized Holder’s inequality). For a bounded, open domain Q C
RY with N € N, p,p1,p2,p3 € [1,00], f1 € LP(Q), fo € LP2(Q), and f3 € LP*(Q) such that
1 1 1 1
e
P p2 P3P

we have f1- fo- f3 € LP(Q) and
1f1- f2 - fallpegay < W fall sy I F2ll L2 oy | f3ll Los ay -

Thanks to Sobolev’s embedding Theorem, we have

Lemma AP.3. For a bounded, open domain Q C RY with N € {2,3} and Lipschitz bound-
ary, there is a positive constant C such that

[97],8 0y = Nelsa) < C 1ol Vo€ HY@), (0,6l (AP)
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The following classical elliptic estimate can be found in [Ama93, Remark 9.3 d].

Lemma AP.4. For a bounded, open domain Q with 02 smooth there is a positive constant

C such that

2

Ov

on

HZ(T)

lolzrsay < C | 1Av]1Z2(qy + +ollzagy ) s Vv e H(Q).
(@) (@) (@)

In particular, for all v € H*(Q) with g—z =0 a.e. on I,

[oll3ay < € (180130 + 0] 22(a) ) -

The following version of the Gagliardo—Nirenberg inequality is a special case of those con-

sidered in [Zhe95, Th. 1.1.4ii]
Lemma AP.5. Let Q C RN with N € {2,3} be a bounded domain with &Q smooth. Let

2 < p<6 be given and a := % — 3 Then there is a positive constant C such that
P
a 1—a a 1-&
[ellzeqay < Cllullmay lullzzy s, lullzs@) < C llullgzay el @ -

If Q C R?, then the first estimate is also satisfied for a =1 — %.
Elementary calculations lead to

Lemma AP.6. Forn € N, ag,a1,...,0,, by, b1,...,b, € R, we have

=1 =1
n 2 n 2 n
ZaiZaj = % (Z ai> + %Zaf, (AP.3)
=1 7=1 =1 =1
n n—1
Z Cl,z(bZ — bi—l) = anbn — a1b0 — Z (a,i_|_1 — ai) bZ (AP4)
=1 =1

Lemma AP.7. Let H be a Hilbert space with scalar-product (-,-)g and norm ||-||;. Then
we have

1 1 1
(0,0 = byar = 5 lallly — 5 b5+ 5 la— bl Va,be . (4P5)

The next lemma follows form elementary analysis.

Lemma AP.8. Let a,b> 0 be giwven. Then there exists a constant C > 0, such that

gs—l—b|1ns| <as—blns+C, Vs>0.
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