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Abstract. { This paper studies a stochastic particle method for the numerical treatment

of Smoluchowski equation governing the coagulation of particles in a host gas. Convergence in

probability is established for the Monte Carlo estimators, when the number of particles tends to

in�nity. The deterministic limit is characterized as the solution of a discrete in time version of the

Smoluchowski equation. Under some restrictions it is shown that this stochastic �nite di�erence

scheme is convergent to the solution of the original Smoluchowski equation. Extensions on a

nonhomogeneous Smoluchowski equation are given, and in particular, a coagulation process in

an isotropic fully developed turbulent 
ow is studied.

1 Introduction

The coagulation processes of aerosol particles or clusters in a spatially homogeneous 
ow

are governed by the Smoluchowski equation (e.g., see, [22], [23]):

@nl

@t
=

1

2

X
i+j=l

Kijninj � nl

1X
i=1

Klini + Fl(t) (1:1)

with the initial conditions nl(0) = n
(0)

l ; l = 1; 2; : : : .
We use the notation: flg-cluster, for a cluster containing l monomers (or structural

units); ni, for the number density of the fig-cluster; Kij , for the coagulation coe�cient

characterizing the collision frequencies between an fig- and a fjg-clusters; and Fl(t), for

the intensity of the source of flg-clusters. We will use also the symbol �(t) for the Dirac
delta-function, and �i;j for the Kronecker's function.

Under rather general assumptions about the coagulation coe�cients Kij there are

known the existence and uniqueness results for the solution to the equation (1:1) (e.g.,

see [2]).

The structure of Kij for di�erent collision regimes is presented, e.g., in [25], [19]. In the

case of isotropic turbulent mixing of the host gas, which is the situation we are interested

in, the coe�cients Kij were derived in [21]

Kij =

 
�2�"

120�

!1=2

V1(i
1=3+ j1=3)3; (1:2)

where �" is the mean rate of dissipation of kinetic energy per unit mass, � is the kinematic

viscosity of the 
uid, and V1 is the volume of the monomer. This seems to describe

satisfactorily the evolution of the size spectrum of particles mixed by a fully developed

turbulence without taking into account the intermittency. A strong assumption however

was made by the authors [21] that the colliding particles do not much di�er in their sizes.

In the intermittent turbulence, " is considered as a random process with lognormal

distribution [4]. Thus mathematically, we have the Smoluchowski equation whose coef-

�cients are random processes. As concerning the deterministic numerical methods for

solving the deterministic Smoluchowski equation, see, e.g., [11], [8].

Generally, even linear PDE's with stochastic coe�cients are very di�cult to be solved

by conventional numerical methods. To evaluate statistical characteristics of solutions

of this kind of random equations by Monte Carlo methods, the double randomization

method is an e�cient technique (e.g., see [17]). In nonlinear case the situation is more

complicated. However it is also possible to develop the double randomization technique

(see [18]).
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It should be noted that stochastic models of the coagulation process were considered

�rst by physicists (e.g., see [3], [5], [12], [13]). In [16], [17] we suggested a series of

stochastic algorithms for solving the Smoluchowski equation and gave in [19] a convergence

justi�cation under themolecular chaos hypothesis. In [7] the authors gave the convergence

proof of the Nanbu type algorithm without the molecular chaos hypothesis; namely it was

shown that the Nanbu type algorithm converges in probability to the solution of a �nite

di�erence analog of the Smoluchowski equation.

Note that the stochastic algorithm we present is analogous to Nanbu's method for the

Boltzmann equation [15]. The relevant convergence justi�cations in the case of Boltzmann

equation are given in [24] and [1].

In this paper we extend the Nanbu type algorithm for solving the homogeneous Smolu-

chowski equation presented in [7] and [18] to the inhomogeneous case, and of our special

interest is the case when v(t; x), the velocity of the host gas, is a random �eld taken in

the form of a randomized spectral representation of the stationary isotropic high-Reynolds

number velocity �eld with the Kolmogorov energy spectrum [17], [10].

The Smoluchowski equation in the inhomogeneous case governing the coagulation of

particles dispersed by this velocity �eld v(t; x) reads

@nl(t; x)

@t
+ v(t; x) � rxnl(t; x) =

1

2

X
i+j=l

Kijninj � nl

1X
i=1

Klini + Fl(t; x); (1:3)

with the initial conditions nl(0; x) = n
(0)

l (x); l = 1; 2; : : : ; . Here nl is the concentration of

particles of size l, l = 1; 2; : : : at a point x at time t; v is the velocity of the host gas, Kij

is the coagulation coe�cient, Fl(t) is the intensity of l-cluster generation source.

2 The spatially homogeneous case

2.1 Description of the algorithm

Here we describe the stochastic algorithm for the spatially homogeneous Smoluchowski

equation

@

@t
nl(t) =

1

2

X
i+j=l

Kij ni(t)nj(t)� nl(t)
1X
i=1

Kil ni(t); l = 1; 2; : : : ; (2:1)

with the initial condition

nl(0) = n
(0)

l ; l = 1; 2; : : : : (2:2)

Concerning the initial value, we assume that

n
(0)

l � 0 ; l = 1; 2; : : : ; (2:3)

n
(0)

l = 0 ; l > L0 ; (2:4)

and

max
l

n
(0)

l > 0 : (2:5)
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Concerning the coagulation kernel K ; we assume that

inf
i;j�1

Kij > 0 (2:6)

and

Kij = Kji ; i; j = 1; 2; : : : : (2:7)

Let us consider a stochastic particle system, where each particle is characterized by

its size l = 1; 2; : : : : The state of the system is determined by the sequence

N1(t); N2(t); : : : ; (2:8)

where Nl(t) is the number of particles of size l at time t � 0 : The system depends on a

parameter N = 1; 2; : : : ; and its state is de�ned at discrete moments

t
(N)

k ; k = 0; 1; : : : ; t
(N)

0 = 0 ;

according to the rules following below. Between these points the system does not change.

Initial state: At time zero the system consists of N particles approximating the

initial value in condition (2.2). More precisely, let

N =
X
l�1

Nl(0) (2:9)

and

Nl(0)

c
(N)

0

! n
(0)

l in probability as N !1 ; l = 1; 2; : : : ; (2:10)

for some appropriate normalizing sequence c
(N)
0 : In correspondence with (2.4), we

assume that

Nl(0) = 0 ; l > L0 : (2:11)

Time evolution: Given the state of the system (2.8) at time t
(N)

k ; for some k =

0; 1; : : : ; and a normalizing sequence c
(N)

k ; the state at time t
(N)

k+1 is constructed in several

steps.

1. Choose the time increment

�
(N)

k =
�

max
1�i�2kL0

�P
j�1

Nj(t
(N)

k
)

c
(N)

k

Kij

� ; (2:12)

where

0 < � � 1 (2:13)

is a discretization parameter, and de�ne

t
(N)

k+1 = t
(N)

k +�
(N)

k : (2:14)
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2. Denote

N 0

1 = N 0

1(t
(N)

k+1) := N1(t
(N)

k ); N 0

2 = N 0

2(t
(N)

k+1) := N2(t
(N)

k ); : : : : (2:15)

3. For each particle of size l ; where l = 1; 2; : : : ; examine with the reaction proba-

bility

P
(N)

l :=
1

2
�

(N)

k

X
j�1

Nj(t
(N)

k )

c
(N)

k

Klj ; (2:16)

whether it interacts with any other particle.

3.1 If yes, then �nd the random size m of the reaction partner according to the size

distribution

p
(N)

l;m :=
Nm(t

(N)

k )KlmP
j�1Nj(t

(N)

k )Klj

; m = 1; 2; : : : ; (2:17)

and change

N 0

l := N 0

l � 1 ; N 0

m := N 0

m � 1 ; N 0

l+m := N 0

l+m + 1 : (2:18)

Note that the probabilities (2.16), (2.17) are the same for all particles of the same size.

3.2 If no, then do not change anything.

4. To keep all components non-negative truncate the system if necessary, i.e., we

de�ne

~Nl(t
(N)

k+1) := max(0; N 0

l (t
(N)

k+1)) ; l = 1; 2; : : : : (2:19)

5. Check whether the number of particles satis�es

X
l�1

~Nl(t
(N)

k+1) �
N

2
: (2:20)

5.1 If yes, then double the system, i.e., we de�ne

Nl(t
(N)

k+1) := 2 ~Nl(t
(N)

k+1) ; c
(N)

k+1 := 2 c
(N)

k : (2:21)

5.2 If no, then do not change anything, i.e., de�ne

Nl(t
(N)

k+1) :=
~Nl(t

(N)

k+1) ; c
(N)

k+1 := c
(N)

k : (2:22)

An appropriate choice of the initial normalizing sequence is

c
(N)

0 =
NP

l�1 n
(0)

l

(2:23)

thus depending on the normalization of (2.1)-(2.2). In the case
P

l�1 n
(0)

l = 1 one simply

obtains

c
(N)
0 = N : (2:24)
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The other normalizing sequences satisfy c
(N)

k = 2�
(N)

k c
(N)

0 ; where �
(N)

k is the (random)

number of those time steps up to t
(N)

k at which the doubling procedure (2.21) took place.

Thus, one obtains

c
(N)

0 � c
(N)

k � 2k c
(N)

0 ; k = 0; 1; : : : : (2:25)

During one time step, the largest non-zero component of the sequence (Nl) may in-

crease at most by a factor 2 (cf. (2.18)). Thus, according to (2.11), one obtains

Nl(t
(N)

k ) = 0 ; l > 2k L0 ; k = 0; 1; : : : : (2:26)

Consequently, the in�nite sums in (2.12), (2.16) and (2.17) are actually �nite.

2.2 Convergence results

We consider a discrete approximation to Eq. (2.1), namely

n̂l(tk+1) = n̂l(tk) + �k

0
@1
2

X
i+j=l

Kij n̂i(tk) n̂j(tk)� n̂l(tk)
X
i�1

Kil n̂i(tk)

1
A ; (2:27)

l = 1; 2; : : : ; k = 0; 1; : : : ;

with the initial condition

n̂l(0) = n
(0)

l ; l = 1; 2; : : : : (2:28)

The time steps are de�ned as

�k =
�

max
1�i�2kL0

nP
j�1 n̂j(tk)Kij

o ; (2:29)

where � is the parameter from (2.12), (2.13), and

tk+1 = tk +�k ; k = 0; 1; : : : ; t0 = 0 : (2:30)

The following result is proved in [7].

Theorem 2.1. Let the assumptions (2.9)-(2.11) be ful�lled. Then

Nl(t
(N)

k )

c
(N)

k

! n̂l(tk) in probability as N !1; l = 1; 2; : : : ; k = 0; 1; : : : ; (2:31)

where n̂l is the solution of (2.27) and Nl(t
(N)

k ) ; c
(N)

k were de�ned previously.

It is convenient to work with the normalized equation

@

@t
fl(t) =

1

2

X
i+j=l

kij fi(t) fl�i(t)� fl(t)
1X
i=1

kil fi(t); l = 1; 2; : : : ; (2:32)

with initial conditions fl(0) = n
(0)

l =n, and kij = Kij=K11. Then the obvious relation is

true:

nl(t) = nfl(nK11t); where n =
1X
i=1

n
(0)

i : (2:33)
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Let us denote by f̂l(tk) the �nite di�erence approximation to fl(t) constructed accord-

ing to (2:27). The following convergence result and estimations are given in [18]:

Theorem 2.2. Assume that there exists a solution fl(t), l = 1; : : : to (2:32) with initial

conditions n
(0)

1 = n, n
(0)

l = 0 for l � 2, continuous on the interval [0; T ], and there exist

Kmax, such that Kmax = max
ij

kij and Kmin, such that 0 < Kmin = min
ij

kij .

For each � 2 (0; 1) and k � 0

1: �D1 � �(tk) � �D2; D1 =
1

Kmax

; D2 =
eTKmax=2

Kmin

: (2:34)

2: max
l
jfl(tk)� f̂l(tk)j � C1�; C1 = eTKmaxh2(h1 +

h3

h2
) ; (2:35)

where

h1 =
9

4
K2

maxD
2
2; h2 = 2KmaxD2;

h3 =
9

4
K2

maxD
2
2e

TK2
maxD2(KmaxD2 + 1) +

9

4
K2

maxD
2
2 :

3:
1X

l=2k+1+1

jfl(tk)� f̂l(tk)j � C2�
2; C2 = eTKmaxh2(h1 +

h3

h2
); (2:36)

where

h1 =
3

4
K2

maxD
2
2 +

27

8
K3

maxD
3
2; h2 =

5

2
KmaxD2 +

7

2
K2

maxD
2
2;

h3 =
3

4
K2

maxD
2
2F +

27

24
K3

maxD
3
2; F = C1 +

3

2
Kmax +

9

4
K2

maxD
2
2;

Note that these results can be generalized to the case when the Smoluchowski equation

(1:1) has a constant source: Fl(t) = const; the main idea is described in [18].

3 Nonhomogeneous case

Let us rewrite the equation (1.3) in the vector form and introduce the superscript E to

indicate that we are in an Eulerian coordinate system:

@nE(t; x)

@t
+ v(t; x) � rxn

E(t; x) = K(nE(t; x)) + F (t; x);

nE(0; x) = n(0)(x); x 2 R3; t 2 [0; T ]:

(3:1)

Here

nE(t; x) =
n
nEi (t; x)

o1
i=1

; n(0)(x) =
n
n
(0)

i (x)
o1
i=1

; F (t; x) = fFi(t; x)g
1

i=1 ;

K(nE(t; x)) =

8<
:12

X
i+j=l

Kijn
E
i (t; x)n

E
j (t; x)� nEl (t; x)

1X
i=1

Kiln
E
i (t; x)

9=
;
1

l=1

:
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We denote by X(t; x0) the Lagrangian trajectory de�ned as the solution to the Cauchy

problem:
@X(t; x0)

@t
= v (t;X(t; x0)) ; t 2 [0; T ]; X(0; x0) = x0: (3:2)

We assume that the velocity �eld v(t; x) is incompressible, which implies that for each

x0 and t 2 [0; T ] there exists a unique solution X(t; x0) to (3:2) and conversely, for each

x and t 2 [0; T ] there exists a unique x0, such that X(t; x0) = x. Thus the following

one-to-one-correspondent transformation is de�ned:

Xt : x0 ! x; Xt(x0) = X(t; x0):

From incompressibility it follows that the Jacobian of this transformation is equal to 1:
DXt(x0)

Dx0
= 1 for each x0 and t 2 [0; T ]: In what follows, we use the change of variables

from the Eulerian (x; t) to the Lagrangian coordinates (x0; t) where x0 = X�1
t (x).

The solution to the nonhomogeneous equation (3:1) is then expressed through

nE(t; x) = nL(t;X�(t; x)); (3:3)

where nL solves the problem

@nL(t; x0)

@t
= K(nL(t; x0) + F (t;X(t; x0)); (3:4)

nL(0; x0) = n(0)(x0); x0 2 R3; t 2 [0; T ]; (3:5)

and the trajectory X� is de�ned by

@X�(�; x)

@�
= �v(t� �;X�(�; x)); X�(0; x) = x: (3:6)

Let us introduce a function � = f�i(S; t)g
1

i=1 which is de�ned as a solution of the

following homogeneous problem:

@�(S; t)

@t
= K(�(S; t)) + F (t); �(S; 0) = S; (3:7)

where S is a given vector S = fSig
1

i=1 :

3.1 The point source

Let us consider the case of a point source situated at a point x�. In this case the equation

(3.1) reads
@nE(t; x)

@t
+ v(t; x) � rxn

E(t; x) = K(nE(t; x));

nE(0; x) = 0; x 6= x�; x 2 R3; t 2 [0; T ]:

nE(t; x�) = SP (t) :

(3:8)

In Lagrangian coordinates this takes the form

@nL(t; x0)

@t
= K(nL(t; x0)); nL(0; x0) = 0; x0 6= x�; (3:9)

nL(t;X�1
t (x�)) = SP (t): (3:10)
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We assume here �rst for simplicity that the velocity v depends only on x. Let us take

a point x0T = X�1
T (x�) and consider the set of points of the trajectory X(t; x0T ) which

arrives at x� at the time T . We denote this set by G0:

G0 = fx0 2 R3 : x0 = X(t; x0T); where X(T; x0T ) = x�gt2[0;T ] :

Now we can de�ne on the set G0 a transformation �x� which relates each x0 2 G0 with

the time t at which a trajectory started at x0 arrives at the point x�, i.e., it is de�ned by

X(�x�(x0); x0) = x�.

Then we can write for each t that nL(t;X�1
t (x�)) = SP (t) is equivalent that for each

x0 2 G0 n
L(�x�(x0); x0) = SP (�x�(x0)).

After this remark we conclude that the equation (3:9)-(3:10) implies that

@nL(t; x0)

@t
= K(nL(t; x0)); n

L(0; x0) = 0; x0 2 R3
nG0:

which means that in x0 2 R3
n G0, the function nL(t; x0) is zero, and in G0, it is de�ned

by

@nL(t; x0)

@t
= K(nL(t; x0)); n

L(0; x0) = 0;

nL(�x�(x0); x0) = SP (�x�(x0)) :

Thus let us consider the problem

@nL(t; x0)

@t
= K(nL(t; x0)); n

L(0; x0) = 0;

nL(�x�(x0); x0) = SP (�x�(x0)) ; x0 2 G0:

(3:11)

We �x x0 and the corresponding � = �x�(x0). Then obviously the solution to (3:11) is

zero in the interval 0 � t � � , while in the interval � � t � T , it is de�ned from

@nL(t; x0)

@t
= K(nL(t; x0)); n

L(�; x0) = S(� ):

Using the shift t0 = t� � we �nd that

@nL(t0; x0)

@t0
= K(nL(t0; x0)); n

L(0; x0) = SP (� ) for 0 � t0 � T � �:

Thus,

nL(t; x0) = �(SP (� ); t� � ); � � t � T; x0 2 G0

while nL(t; x0) � 0 if 0 � t � �; x0 2 G0, or x0 =2 G0. Here �(S; t) is the function de�ned

in (3:7) with F (t) � 0. From this, we �nd the solution in Eulerian coordinates for all

x 2 fX(t; x�)gt2[0;T ]

nE(T; x) = �(SP (� );T � � ); x = X(�; x�); � = �x�(X
�1
T (x)); (3:12)

and nE(T; x) = 0 if x =2 fX(t; x�)gt2[0;T ].
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3.2 Instantaneous source

Let us consider the case F (x; t) = 0, and let D = supp SI(x), SI(x) being a given initial

distribution.

Thus we solve the problem

@nE(t; x)

@t
+ v(t; x) � rxn

E(t; x) = K(nE(t; x));

nE(0; x) = SI(x); x 2 R3; t 2 [0; T ]:

(3:13)

and let us �rst consider the case when v is a deterministic velocity �eld.

Proposition 3.1.

The following relation is true for all t 2 [0; T ]:

Z



nE(t; x)dx =
Z
D

�(SI(x0); t)�(X(t; x0) 2 
) dx0; (3:14)

� is de�ned by (3:7) with F (t) � 0, X(t; x0) is the Lagrangian trajectory de�ned in (3:2),
and � is the indicator function: � = 1 if X(t; x0) 2 
, and � = 0 otherwise.

Proof. Let us denote Dt = fx 2 R3 : x = X(t; x0); x0 2 Dg : Then from (3:3) we get

Z



nE(t; x)dx =
Z


\Dt

nE(t; x)dx =
Z
Dt

nE(t; x)�(x 2 
)dx:

Since the Jacobian is equal to 1, we get from (3:14) and (3:7)

Z
Dt

nE(t; x)�(x 2 
) dx =

Z
Dt

nE(t;X(t; x0))�(X(t; x0) 2 
)dX(t; x0)

=

Z
D

�(SI(x0); t)�(X(t; x0) 2 
)
DX(t; x0)

DX0

dx0 =
Z
D

�(SI(x0); t)�(X(t; x0) 2 
) dx0:

2

Note that from (3:14) it follows that

Z
R3

nE(t; x)dx =
Z
D

�(SI(x0); t) dx0

does not depend on the velocity v.

Let us now consider the equation (3:8), where v(t; x) is a random velocity �eld with

the probability density function (pdf) pE(v; t; x). We de�ne the Lagrangian pdf through

pL(t; xjx0) = h�(X(t; x0)� x)i: (3:15)

Proposition 3.2. For each x and t 2 [0; T ] the expectation of nE can be represented as

follows

hnE(t; x)i =
Z
D

�(SI(x0); t)pL(t; x jx0)dx0; (3:16)

9



where �(SI(x0); t) is de�ned in (3:7).

Proof. Note, that

hnE(t; x)i =
Z
nE(t; x)pE(v; t; x)dv =

=

Z Z
R3

nE(t;X(t; x0))� (X(t; x0)� x) pE(v; t;X(t; x0))dX(t; x0)dv:

By Proposition 3.1 and from the incompressibility we �nd

hnE(t; x)i =
Z Z

D

�(SI(x0); t)� (X(t; x0)� x) pE(v; t;X(t; x0))dx0dv =

=

Z
D

�(SI(x0); t)

�Z
� (X(t; x0)� x) pE(v; t;X(t; x0))dv

�
dx0:

Hence from the formal relationZ
� (X(t; x0)� x) pE(v; t;X(t; x0))dv = h� (X(t; x0)� x)i

we conclude with (3:16). 2

4 Algorithm description in inhomogeneous case

Here we describe the simulation algorithms which follow from the representation of the

solution in Lagrangian coordinates. Indeed, the solution to (3:1) is calculated from (3:3)

where the trajectory X�(t; x) is obtained by solving the equation (3:6).
Note that in particular case when F (t; x) = F (t), the algorithms is simpler since the

solution in this case can be expressed through the solution to the homogeneous equation

(3:7): nE(t; x) = �(S(X�(t; x)); t). We consider also the next two important cases.

4.1 Point source

We �rst formulate the algorithm of calculation of the solution nE(t; x) to the inhomoge-

neous problem (3:8) at a time instant t = T and for a set of points xi which we specify

below. For simplicity, we take the source SP in the form: (SP
1 ; 0; : : : ; 0).

� First we choose a mesh in the interval [0; sup
t2[0;T ]

SP
1 (t)K11T ] :

0 = t0 � t1 � : : : � tM1 = sup
t2[0;T ]

SP
1 (t)K11T

and calculate the solution to (2:32) with the initial conditions f1(0) = 1; fl(0) = 0

for l � 2 for all the mesh points by the algorithms constructed for the homogeneous

case.

� Take a subdivision of [0; T ]: 0 = �0 � �1 � : : : � �M = T and �nd xi = X(�i; x�),

i = 1; : : : ;M (say, using the Euler scheme) from

@X(t; x�)

@t
= v(X(t; x�)); X(0; x�) = x�: (4:1)

10



� For each xi we approximate the solution nE using the representation (3:12) and

(2:32):

nEl (T; xi) � SP
1 (T � �i)fl

�
min
j
ftj : tj � SP

1 (T � �i)K11�ig
�
:

Note that this algorithm gives the solution only at the points xi which belong to the

trajectory de�ned by (4:1).

4.2 Instantaneous source

We �rst describe the algorithm for calculating the solution to (3:13) in a point x at a

time t. In this case, to use the direct Lagrangian trajectories is not a proper choice. It

is quite natural to use the backward trajectories which start in the point x at the time

t. It is especially e�cient if the domain D is su�ciently large. Thus let us describe the

technique based on the backward Lagrangian trajectories.

Adjoint algorithm.

The backward Lagrangian trajectory starting in the point x is de�ned as the solution

X�(t; x), 0 � t � T to

@X�(t; x)

@t
= �v(X�(t; x)); X�(0; x) = x: (4:2)

By (3:3) we �nd from (2:33) that the solution is then represented as

nE(t; x) = �(SI(X�(t; x); t): (4:3)

Note that in the case considered we assume SI
l (x) = 0; l � 2, then

nE(t; x) = SI
1(X

�(t; x))f(SI
1(X

�(t; x))K11t): (4:4)

From this follows that it is possible to calculate the solution nE(t; x) for all desired phase

points (x; t) by solving the equation (2:32) only once. Indeed, in the implementation of

the algorithm, one �rst precalculates once the solution to (2:32), and then use it for all

points X�(t; x).

Thus the relation (4:3) de�nes the adjoint algorithm: one constructs the backward

trajectory from (4:2) and calculates the solution from (4:3).

The adjoint algorithm is also convenient to apply to the evaluation of the integral of

nE(t; x) over a domain 
. This algorithms follows from the relation

Z



nE(t; x) dx = IEp

nE(t; �)

p(�)
;

where the expectation is taken over the random points � distributed in 
 with a density

p(x). For instance, p(x) can be chosen as a uniform distribution. This relation shows

that to evaluate the integral, one �rst choose a random point x1 in 
 with respect to the

density p(x), then constructs the trajectory which starts in x1 and calculate nE(t; x) =

SI
1(X

�(t; x1))f(S
I
1(X

�(t; x1))K11t). Then the �nal result is obtained by averaging over a

su�cient number of such trajectories.

11



Remark 4.1. It is clear that the adjoint algorithm is e�cient if the size of the domain

D is considerably larger than that of 
. Otherwise, it is recommended to use the direct

trajectories which start in D and apply the relation (3:14).

Calculation of the expectations in the case of random velocity

The adjoint algorithm is used also when we calculate the expectation hnE(t; x)i. In-

deed, by averaging (4:3) over the random velocities we get

hnE(t; x)i = hSI
1(X

�(t; x))f(SI
1(X

�(t; x))K11t)i: (4:5)

Thus the algorithm reads as follows: �rst construct a sample of the random velocity �eld

v(t; x), then calculate the solution nE(t; x) by the adjoint algorithm; the �nal result is

obtained by averaging over a large number of samples of the velocity �eld.

5 Coagulation in a fully developed turbulence

There are many di�erent mechanisms that bring two particles to each others: Brownian

di�usion, gravitational sedimentation, free molecule collisions, turbulent motion of the

host gas, acoustic waves, the density, concentration and temperature gradients, particle

electric charges, etc. We will deal here mainly with the case of coagulation of particles in

a fully developed turbulence whose small scale statistical structure is speci�ed by �", the

kinetic energy dissipation rate, and �, the kinematic viscosity. We assume that �" speci�es
the 
ow in average small scales, and suppose that the 
uctuations are caused only by the

large scale velocity 
uctuations. It means that we assume that the coagulation coe�cient

(5.2) is deterministic, and the velocity v is random. The model for v is described in details

in Sect.5.2. We refer to this as to a stochastic case. The deterministic case is governed

by the solution to Smoluchowski equation with the average velocity. Since we deal with

the case hvi = 0, this means that the deterministic case is governed by the standard

homogeneous Smoluchowski equation.

The main problem is to study the di�erence between the stochastic and deterministic

cases. In this section we present this comparison for a series of examples. Of special

interest is a situation, when a so-called coagulation homogenisation happens, i.e., a case

when the stochastic solution approaches to the deterministic solution of the Smoluchowski

equation with the average velocity �eld. On the other hand, the cases when there is a big

di�erence between the stochastic and deterministic cases is also of much practical interest.

5.1 Formulation of the problem

Let us now study the in
uence of the velocity 
uctuations to the coagulation process,

governed by the equation

@nE(t; x)

@t
+ v(t; x) � rxn

E(t; x) = K
�
nE(t; x)

�
;

nE1 (0; x) = SI(x); suppSI(x) = D; nEl (0; x) = 0; l � 2

t 2 [0; T ]

(5:1)

with turbulent coagulation coe�cient (1:2):

Kij =

 
�2�"

120�

!1=2

V1
�
i1=3 + j1=3

�3
(5:2)
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and random velocity �eld v(t; x) with Kolmogorov's energy spectrum. A randomized

model for simulation such a �eld is described in the next section.

It is interesting to consider it in the comparison with the process governed by the same

equation but with hv(t; x)i instead of v(t; x):

@�n(t; x)

@t
= K (�n(t; x)) ;

�n1(0; x) = SI(x); suppSI(x) = D; �nl(0; x) = 0; l � 2;

t 2 [0; T ]:

(5:3)

For the simplicity we suppose that D is a sphere of radius R, and consider the cases

(1) SI(x) = S;

(2) SI(x) =

 
1 �

jxj

R

!
S:

(5:4)

As we will see later, these two cases lead to essentially di�erent results since they present

spatially uniform and non-uniform initial distribution in the domain D which in turn,

according to the representation (3:14), (4:4) give di�erent contributions to the solution.

The following notations will be used


r is a sphere of radius r,

Inl(r; t) is the number of particles of size l in 
r at a time t

Inl(r; t) =
Z

r

nEl (t; x)dx; (5:5)

In(r; t) is the number of all particles in 
r at the time t

In(r; t) =
Z

r

X
i

nEi (t; x)dx; (5:6)

Ms(r; t) for the mean size of the particle in 
r at the time t

Ms(r; t) =

R

r

P
i in

E
i (t; x) dxR


r

P
i n

E
i (t; x) dx

; (5:7)

and Sp(r; t; l) is the relative number of clusters of size l in 
r at the time t

Sp(r; t; l) =

R

r

nEl (t; x) dxR

r

P
i n

E
i (t; x) dx

: (5:8)

To specify the same functionals in the case of (5:3) we use the bars.

In calculations, it is convenient to deal with dimensionless functions of dimensionless

arguments. We choose the following normalization: for each l

nl(t; x)

S
= g1(t

0; x0;R0; L0; �); (5:9)
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�nl(t; x)

S
= g2(t

0; x0;R0; �): (5:10)

Here

t0 =
t

��
; x0 =

x

�
; R0 =

R

�
; L0 =

L

�
;

where � and �� are the inner spatial and temporal Kolmogorov scales, L is the integral

spatial scale of the velocity �eld. The argument � in the dimensionless functions g1 and g2
is de�ned as � = V1S which is the total volume occupied by monomers in a unit volume. In

this problem � determines the coagulation rate relative to the rate of velocity 
uctuations;

indeed, Tc = ��=� is a characteristic coagulation time. We have taken � = 0:0039 which

can be considered as a low coagulation rate which corresponds to the situation that during

the time when the initial volume is enlarged 8 times via the transport by the velocity 
ow

v, the total number of clusters is decreased 10 times.

The parameters were chosen as L0 = 1000, R0 = 100. We compare the functionals

(5:6) for the problems (5:1) and (5:3) in the following way. We study the behaviour of

the expectations of the total number of clusters in 
r (5:6) as a function of r0 = r=�,

for a �xed time t0. The same is done for the mean cluster size (5:7). In addition, the

expectation of the size spectrum (5:8) is calculated.

5.2 Randomized model of the classical pseudo-turbulence

Let us assume that the Eulerian pseudo-turbulent velocity �eld v(x) = UE(x) has the
following partial spatial-temporal spectral tensor (e.g., see [14]):

	jl(k) =
E(k)

4�k2

�
�jl �

kjkl

k2

�
; j; l = 1; 2; 3; (5:11)

where E(k) is the energy spectrum, and k = jkj.

The energy spectrum is de�ned by

E(k) =

(
C1�"

2=3k�5=3; k0 � k � kmax,

0; otherwise
(5:12)

with the normalization

1Z
0

E(k)dk =
3

2
u20 ; (5:13)

where C1 ' 1:4 is the universal constant in the Kolmogorov-Obukhov �ve thirds law,

3u20 = hjUEj
2
i is the energy of turbulence.

In the model, the following input parameters are involved: �" is the mean rate of

dissipation of kinetic energy, k0, kmax are the minimal and maximal wave numbers, re-

spectively. The inner and external spatial scales of our model are � = 2�=kmax, and

L = 2�=k0, respectively. Therefore, since the Reynolds number is expressed by (e.g., see

[14], [4]) Re � (L
�
)
4=3

, it is naturally in our case to de�ne the model Reynolds number as

R̂e = (kmax

k0
)
4=3

.

The general simulation formula of the pseudo-turbulent velocity �eld with the tensor

(5:11) is [17]:
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UE(x; t) =
nX
j=1

q
Ej

n
(�j �
j) cos(�j) + (� j �
j) sin(�j)

o
; (5:14)

where �j = kj(
j ;x), and 
j = (

(1)

j ;

(2)

j ;

(3)

j ), j = 1; : : : ; n are independent three-

dimensional random isotropic unit vectors ; �j = (�
(1)

j ; �
(2)

j ; �
(3)

j ) and � j = (�
(1)

j ; �
(2)

j ; �
(3)

j )

are mutually independent standard Gaussian random vectors; kj ; j = 1; : : : n are random

variables with the densities

pj(k) =

8><
>:

1

Ej
E(k); k 2 �j;

0; otherwise

with

Ej =

Z
�j

E(k)dk ; j = 1; : : : ; n

and �j; j = 1; : : : ; n are nonoverlapping intervals which compose a partition of � =

(k0; kmax), the support of the spectrum.

In [20], we have chosen the partition of the spectrum support

� =
n[
j=1

�j; �j

\
�l = ;; j 6= l;

where �j = [~kj; ~kj+1), j = 1; : : : ; n, ~k1 = k0, ~kn+1 = kmax, so that

Z
�j

E(k)dk =
1

n

Z
�

E(k)dk : (5:15)

From this,

~kj+1 =
h
k
�2=3
0

�
1 �

j

n

�
+

j

n
k�2=3max

i�3=2
; j = 1; : : : ; n:

The random numbers kj are simulated by

kj =
h
~k
�2=3
j �

u20
nC1�"2=3


j
i�3=2

; j = 1; : : : ; n: (5:16)

In the above formulae, 
j, (j = 1; : : : ; n) are mutually independent random numbers

uniformly distributed in [0; 1].

Note that in [10] we have suggested a di�erent version of the simulation formula.

First, we divide the interval [k0; kmax) into n0 parts [k̂i; k̂i+1), (i = 0; : : : ; n0�1) uniformly

in logarithmic scale: k̂i = k0Q
i, i = 0; : : : ; n0, where Q is chosen so that k̂n0 = kmax.

Then in each subinterval [k̂i; k̂i+1) we apply the same subdivision (energy uniformly)

as in the formula (5:15). This algorithm provides better statistics in all parts of the

energy spectrum. The number of simulated harmonics in this model equals n0n and is

proportional to ln(R̂e).

5.3 Uniform initial conditions

Let us �rst consider the initial condition in the case (1), see (5:4).
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From (3:2) we can write out the functionals hIn(r0; t0)i and In(r0; t0) as follows:

hIn(r0; t0)i

S
=
X
i

fi(�t
0)

Z

r0

Z
D

pL(t
0; xjx0)dx0 dx; (5:17)

In(r0; t0)

S
=

8><
>:
P

i fi(�t
0) � 4

3
�r03 if r0 � R0

P
i fi(�t

0) � 4
3
�R03 if r0 > R0.

(5:18)

Analogously, for each l

hInl(r
0; t0)i

S
= fl(�t

0)

Z

r0

Z
D

pL(t
0; xjx0)dx0 dx; (5:19)

Inl(r
0; t0)

S
=

8><
>:
fl(�t

0) � 4
3
�r03 if r0 � R0

fl(�t
0) � 4

3
�R03 if r0 > R0.

(5:20)

In this case the velocity 
uctuations do not a�ect the size spectrum and the mean

cluster size, since

hMs(r0; t0)i =

P
i ifi(�t

0)P
i fi(�t

0)
= Ms(r0; t0);

hSp(r0; t0; l)i =
fl(�t

0)P
i fi(�t

0)
= Sp(r0; t0; l):

Note that these functions do not depend on the velocity v in this particular case.

The turbulent dispersion causes the di�erence in the distribution of particles over the

domains 
r for di�erent values of r.
In Figs.1 and 2 we present the total number of clusters in 
r0 as a function of r0,

for stochastic and deterministic cases at the time instants t0 = 1:25 and t0 = 55, respec-

tively. Here
hIn(r0; t0)i

S
corresponds to the stochastic case (dashed), and

In(r0; t0)

S
is the

deterministic case (solid).

From Fig.1 it is clearly seen that the stochastic and deterministic cases are very close

if the time t � ��. The reason of it is that the main part of particles remains still in

D, the domain where the monomers were generated. However for larger times (50��) the
turbulent dispersion a�ects the total number of clusters in the domains 
r0 (Fig.2.) since

after this time, the clusters are dispersed over a larger domain 
r0,r
0
� 700, while the

number of clusters in the domain D becomes 50 times smaller.

The same picture remains true for the functions Inl(r
0; t0) and Inl(r

0; t0). Indeed, the

relations (5:17)-(5:20) yield

hInl(r
0; t0)i = C(t0)hIn(r0; t0)i; Inl(r

0; t0) = C(t0)In(r0; t0): (5:21)

where C(t0) is a constant not depending on r0.
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5.4 Linear initial conditions

We consider here the problems (5:1) and (5:3) with the initial conditions SI(x) = (1�
jxj

R
)S:

Then we �nd from (2:33) by a change of integration variable

Inl(
r0 ; t
0)=S =

�
4

3
�R03

�
�

3

�t0

�t0Z
�(1� r0

R0 )t0

u

�t0

 
1�

u

�t0

!2

fl(u) du; (5:22)

In(
r0; t
0)=S =

�
4

3
�R03

�
�

3

�t0

�t0Z
�(1� r0

R0 )t0

u

�t0

 
1 �

u

�t0

!2  X
i

fi(u)

!
du; (5:23)

Ms(
r0 ; t
0) =

�
r0

R0

�3
�

�
1 � 0:75 r0

R0

�
3

�t0

�t0R
�(1� r0

R0 )t0

u
�t0

�
1� u

�t0

�2P
i fi(u) du

(5:24)

and

Sp(
r0; t
0; l) =

�t0R
�(1� r0

R0 )t0

u
�t0

�
1 � u

�t0

�2
fl(u) du

�t0R
�(1� r0

R0 )t0

u
�t0

�
1� u

�t0

�2P
i fi(u) du

: (5:25)

In this case the velocity 
uctuations in
uence the formation of particle size spectrum.

In Fig.3 and Fig.4 we plot hSp(r0; t0; l)i (dashed lines show the con�dence interval) and

Sp(r0; t0; l) at time instants t0 = 1:25 and t0 = 55, respectively, for r0 = 0:1R0 in both cases.

The di�erence between the stochastic and deterministic cases is seen for l-mers, l > 4 at

the time t � ��, and l > 10 at t � 50��. This di�erence decreases with the growth of r0.
Note that at r0 = R0 this di�erence is already not seen in Figs.5,6 where we plot the same

curves as in Figs.3,4, but for r0 = R0. This can be explained by the following arguments:

for larger domains 
r0 , the averaging is carried out over trajectories which have therefore

longer living times. The averaging is then similar to the case of uniform initial conditions

where the di�erence between the stochastic and deterministic cases is small.

Thus the size spectra in stochastic and deterministic cases are di�erent, namely the

number of large clusters in stochastic case is smaller than that in the deterministic case.

Therefore, the expectation of the mean cluster size is less than the mean cluster size in

the deterministic case. This is clearly seen from Figs.7 and 8. Note that this e�ect is

more pronounced for small r0 (r0 � 0:5R0 = 50 at time t0 = 1:25). With the growth of

time, the average of the mean cluster size approaches a constant value slowly dependent

on r0 (see Fig.8).

Remark 5.1. Note, that in both solutions to (5:1) and to (5:3) we use one and the same

solution fl(t) to the homogeneous coagulation equation. Thus the con�dential interval is

calculated with respect to the random velocity �eld v(t; x), taking �xed solution fl(t).
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Fig. 1. Uniform initial conditions. The mean number of clusters hIn(
r0; t)i=S (dashed line)

in the domain 
r0 at a time instant t=�� = 1:25 compared against �In(
r0 ; t)=S (solid line). We

show both the whole picture (left) and a zoom (right).
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Fig. 2. The same, as in Fig.1, but for t=�� = 55.
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Fig.3 Linear initial conditions. The size distribution hSp(r0; t; i)i (dashed lines show the con�-

dential interval) in the domain 
r0 , r
0 = 0:1R0, at a time instant t=�� = 1:25.
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Fig.4 The same, as in Fig.3, but for t=�� = 55.
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Fig.5 The same, as in Fig.3, but for r0 = R0.
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Fig.6 The same, as in Fig.5, but for t=�� = 55.
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Fig.7. Linear initial conditions. The mean size of particle hMs(r0; t)i (dashed lines show the

con�dential interval) in the domain 
r0 at a time instant t=�� = 1:25 in the comparison with
�Ms(r0; t) (solid line).
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Fig.8. Linear initial conditions. The same, as in Fig.7, but for t=�� = 55.
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