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Abstract

We consider the statistical experiment given by a sample y(1); : : : ; y(n) of a

stationary Gaussian process with an unknown smooth spectral density. Asymp-

totic equivalence with a nonparametric regression in discrete Gaussian white

noise is established. The key is a local limit theorem for an increasing number

of empirical covariance coe�cients.

1 Introduction and main results

Estimation of the spectral density f(�), � 2 [��; �] of a stationary process is an

important and traditional problem of mathematical statistics. We are interested in the

function

f(�) =
1

2�

1X
k=�1

B[k]ei �k

and we observe a sample yn = y(1); : : : ; y(n) from a stationary complex-valued random

process y(n) with Ey(t) = 0, Ejy(t)j2 <1 and covariance function B[k] = Ey(t)y�(t+

k). The practical importance of spectral density estimation is in particular due to

the fact that f(�) re
ects the energy distribution of the process y(t) in the frequency

domain. More precisely, it is well-known (see eg. Gikhman and Skorohod (1969)) that

for any stationary process y(t) there exists a stochastic orthogonal measure Z(�) such

that

y(t) =
Z �

��
ei�tZ(d�)

and for any measurable set A 2 [��; �]

E

����
Z
A
Z(d�)

����2 =
Z
A
f(�)d�:

In particular if y(t) is a Gaussian process it is easy to check that y(t) can be represented

as

y(t) =
Z �

��
ei�t

q
f(�)dw(�); (1)

where w(�); � 2 [��; �] is a complex-valued Brownian motion.

When dealing with a statistical problem we usually have in mind at least two ques-

tions: how can computationally reasonable estimators for the object of interest be con-

structed, and how can their performance be assessed? The goal of the present paper is

to propose solutions in the framework of Le Cam's theory of asymptotic equivalence.

The main idea of this theory is to approximate the statistical experiment by a simpler

one for which the abovementioned problems can be solved more easily.

For simplicity we will assume from now on that the stationary process y(t) is Gaussian

and takes values in R1. Statistical inference about the spectral density f(�) is com-

monly based on the cumulative density of the observation yn. It is well known that yn
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has the density

pf(x) =
1

(2�)n=2(detBf)1=2
exp

�
�1

2
x>B�1

f x

�
; x 2 Rn; (2)

where Bf is the covariance matrix with the entries

Bf ik
= B[k � i] =

Z �

��
ei (k�i)�f(�) d�; i; k = 1; : : : ; n:

Evidently this formula is not very useful from a computational point of view when the

sample size n is large. Only in the case of the �rst order auto regression model

y(t) = �y(t� 1) + ��(t);

where �(t) 2 R1 is standard white Gaussian noise, formula (2) can be substantially

simpli�ed. Simple algebra easily reveals that

pf(x) =
1

(2��2)n=2
exp

"
� 1

2�2

nX
t=2

(xt � �xt�1)
2 � x2

1

2�2
(1� �2) +

1

2
log(1� �2)

#
:

Unfortunately, even for autoregression models of order greater that 1 exact expressions

for pf (x) are far more intricate.

There is a simple heuristic idea to overcome this di�culty. The motivation resembles

the one proposed by Mann and Wald (1943) and Whittle (1952). Let us replace (1) by

its discrete counterpart. Namely, consider the periodic Gaussian process

~y(t) =

s
2�

n

X
s

q
f(�s)e

i t�s�s; (3)

where �s 2 C is symmetric white Gaussian noise such that �s = ��
�s, Ej�sj2 = 1, and

the grid points �s are chosen in such a way that �s+1 � �s = 2�=n and ��s = ��s.
More precisely, if n is even then the index s takes values f�n=2; : : : ;�1; 1; : : : ; n=2g
and

�s =
�0s � i �00sp

2
; �s =

2�

n
s� �

n
; s > 0;

where �0s and �00s are independent N (0; 1). Otherwise, if n is odd then s takes values

f�n=2; : : : ;�1; 0; 1; : : : ; n=2g and

�0 = �0
0
; �s =

�0s � i �00sp
2

; s > 0; �s =
2�

n
s; s � 0:

Noting that n�1=2 exp(it�s) is an orthonormal system on the discrete grid one easily

obtains that the probability density ~pf(�) of the Gaussian vector ~yn = ~y(1); : : : ; ~y(n) is

given by

~pf (x) = exp

"
�1

2

X
s

 
I(�s;x)

f(�s)
+ log(2�f(�s))

!#
; (4)
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where

I(�;x) =
1

2�n

�����
nX
t=1

ei�txt

�����
2

is the periodogram. From (3) we see that the covariance matrix of the periodic process

~y(t) admits the representation

~Bf kj
= E~y(t + k)~y(t+ j) =

2�

n

X
s

ei �s(k�j)f(�s) =
1X

p=�1

B[k � j + np]: (5)

Mann, Wald and Whittle proposed to base statistical inference on (4) instead of (2).

Formula (4) appears computationally feasible since the periodogram I(�; ~yn) can be

computed in n logn times. Under some regularity conditions it is well known that this

device works for a large variety of �nite dimensional estimation problems. We refer the

reader to Dzhaparidze (1986) where various mathematical justi�cations of the Whittle

idea are discussed.

The �rst goal of the current paper is to compare the statistical models (1) and (3)

within the framework of Le Cam's theory of asymptotic equivalence. We shall see that

under common regularity conditions these statistical experiments are asymptotically

equivalent.

The cornerstone of this theory is the notion of de�ciency distance between two sta-

tistical experiments E = fPf : f 2 �g and F = fGf : f 2 �g having the same

parameter space. For the convenience of the reader we reproduce here the de�nition

of this distance following Le Cam and Yang (1990).

Let R(E ;W ) be the set of functions on � de�ned in the following way: r(f) 2 R(E ;W )

if there is an estimator f̂ in E such that EfW (f̂ ; f) � r(f).

De�nition 1 The de�ciency �(E ;F) of E with respect to F is the smallest number

� 2 [0; 1] such that for every loss function W; 0 � W (�; �) � 1 and every r2 2 R(F ;W )

there is r1 2 R(E ;W ) such that r1(f) � r2(f) + � for all f 2 �.

De�nition 2 The distance �(E ;F) between two experiments E and F is the maximum

of �(E ;F) and �(F ; E).

Upper bounds for the �-distance between experiments can be obtained from the follow-

ing general principle, proposed in Le Cam and Yang (1991). Assume that for di�erent

f , measures Pf and Gf are absolutely continuous. Consider the likelihood processes

�1(f) = dPf=dPf0 ; �2(f) = dGf=dGf0 corresponding to the experiment E and F
respectively. Assume that there are versions ��i (f) of �i(f) de�ned on a common

probability space. Then

� (E ;F) � 1

2
sup
f2�

E j��
1
(f)� ��

2
(f)j : (6)
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The main di�culty here is the construction of a common probability space (a coupling),

with versions of �i(f) which are close to each other. Sometimes this probability space

is straightforward, as shown by Brown and Low (1996). But in many cases more

involved couplings are needed. Using functional versions of the Hungarian construction,

Nussbaum (1996) established asymptotic equivalence of the i. i. d. experiment on an

interval (with a density of H�older smoothness exceeding 1=2) and a Gaussian white

noise model. Another variant of the Hungarian construction was used by Grama and

Nussbaum (1997) for proving asymptotic equivalence of non-Gaussian and Gaussian

regression.

It is well known that asymptotic equivalence of nonparametric experiments depends on

the size of the underlying functional class. It is assumed from now on that the spectral

density f(�) belongs to the functional class �� consisting of all functions satisfying the

following conditions:

� 0 < m � f(�) �M for all � 2 [��; �]

�
1X
k=1

k2�B2[k] � Q <1:

We consider a sample yn from a stationary Gaussian process y(t) with unknown f 2
� � ��. The corresponding statistical experiment will be denoted as

En(�) =
�
Rn;Bn;

�
Pn
f ; f 2 �

��
;

where Pn
f is the Gaussian measure in Rn with probability density (2) and Bn is the

Borel �-algebra. Along with the experiment En(�) we consider the experiment given

by observations of the periodic Gaussian process ~y(t)

~En(�) =
�
Rn;Bn;

�
~Pn
f ; f 2 �

��
;

where ~Pn
f is the Gaussian measure with the density (4). Our �rst result is a local

version of asymptotic equivalence of the experiments En(�) and ~En(�).

Theorem 1 Let �n � �� with � > 1=2 be a sequence of sets such that

lim
n!1

sup
f;f02�n

(kf (1=2) � f
(1=2)
0

k2 +max
�
jf(�)� f0(�)j2) = 0;

where f (1=2)(�) is the derivative of the order 1=2 of f(�). Then

lim
n!1

�(En(�); ~En(�)) = 0:
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Remark 1 Note that in both experiments there exist estimators f̂n such that for

� > 1=2

lim
n!1

sup
f2��

�
Efkf̂ (1=2)n � f (1=2)k2 +Ef max

�
jf̂n(�)� f(�)j2

�
n(2��1)=2� <1:

Thus the globalization arguments developed in Nussbaum (1996) and the above theo-

rem imply that if � � ��, � > 1=2 then

lim
n!1

�(En(�); ~En(�)) = 0:

In Theorem 1 we used a trivial construction of the common probability space:

yn = B1=2�; ~yn = ~B1=2�;

where � is N (0; E). Therefore asymptotic equivalence in this theorem is constructive,

as in Brown and Low (1996) (i. e. the corresponding Markov kernels can easily be

written down, and serve as "recipes" for obtaining optimal procedures).

The statistical experiment ~En(�) is of course simpler than En(�) but assessing the per-
formance of an estimator still remains a di�cult problem. Taking the Fourier transform

in (3) we obtain an equivalent representation of ~En(�)

Xk =
q
f(�k) �k; where Xk =

1p
2�n

nX
t=1

y(t)ei�kt;

and �k 2 C is a symmetric white Gaussian noise. So if the spectral density f depends

only on a �nite dimensional unknown parameter, then one could use the theory of

local asymptotic normality to assess the performance of an estimator. This theory is

well developed, cf. Ibragimov and Khasminskii (1981) or Bickel, Klaassen, Ritov and

Wellner (1993).

In the framework of Le Cam's theory our next step is to �nd a simpler statistical

experiment than En(�). In order to re
ect accurately the statistical nature of the

spectral density estimation problem, we approximate this experiment by a regression

model of minimal dimensionality. Let �Nn

s be a symmetric uniform grid with step

2�=Nn and
~Rn(�) =

�
Rn;Bn;

�
~Gn
f ; f 2 �

��
be the experiment associated with the following Gaussian regression model

Ys = f(�Nn

s ) +

s
Nn

n
f(�Nn

s )�s; �Nn

s 2 (0; �]; (7)

where �s are i.i.d. N (0; 1).
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Theorem 2 Let � � �� with � > 1 and let a sequence of integers Nn be such that

Nn �
q
n= log1+" n, for some " > 0 and

lim
n!1

n

N
2�
n

= 0:

Then the experiment ~En(�) is asymptotically equivalent to ~Rn(�).

A �nal step is to apply a variance stabilizing transform to the data (7), cp. Grama and

Nussbaum (1997), which in this case amounts to taking (essentially) the logarithm of

the Ys. Let

Rn(�) =
�
Rn;Bn;

�
Gn

f ; f 2 �
��

be the experiment associated with the Gaussian regression model

Ys = log(f(�Nn

s )) +

s
Nn

n
�s; �Nn

s 2 [0; �] (8)

Theorem 3 Under the conditions of theorem 2, the experiment ~En(�) is asymptotically

equivalent to Rn(�).

Remark 2 The proof of the above results is based on a local limit theorem for the

empirical covariance function

�B[k;yn] =
1

n

nX
t=1

~y(t)~y(t + k); k = 0; : : : ; Nn � 1:

Therefore the approximations are constructive, to the same degree as the approxima-

tion of i. i. d. zero mean Gaussian data with unknown variance by a one dimensional

Gaussian shift (see Nussbaum (1998)).

For extending the above result to larger functional classes than Sobolev balls with

smoothness greater than 1, one could directly use the results of Grama and Nussbaum

(1997). However these are based on the Hungarian construction, and therefore we can

no longer exhibit realistic recipes (Markov kernels) for the asymptotic equivalence. Let

�0� be a subset in �� such that any function from �0� is of H�older smoothness �

jf(y)� f(x)j � Cjy � xj�:

Theorem 4 If �n � �0� with � > 1=2 then the experiments En(�n) and ~En(�n) are

asymptotically equivalent to Rn(�).
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2 The periodic Gaussian experiment

Let yn
0
be a sample of the length n from the stationary Gaussian process y(t) with the

spectral density f0(�) and ~y0 its periodic counterpart. Consider two likelihood ratios

�1(f) =
pf(y

n
0
)

pf0(y
n
0 )

=

 
detBf0

detBf

!
1=2

exp

�
�1

2
yn
0

TB�1

f yn
0
+

1

2
yn
0

TB�1

f0
yn
0

�

=

 
detBf0

detBf

!
1=2

exp

�
�1

2
�TB�1

f Bf0� +
1

2
�T �

�

and

�2(f) =
~pf (~y

n
0
)

~pf0(~y
n
0
)
=

 
det ~Bf0

det ~Bf

!1=2

exp

�
�1

2
~ynT
0

~B�1

f ~yn
0
+

1

2
~ynT
0

~B�1

f0
~yn
0

�

=

 
det ~Bf0

det ~Bf

!1=2

exp

�
�1

2
�T ~B�1

f
~Bf0� +

1

2
�T �

�
;

where � � N (0; E). In the following lemma we estimate the Hellinger distance

H2(�1;�2) =
1

2
E
h
�
1=2
1

(f)� �
1=2
2

(f)
i
2

between the above likelihood processes.

Lemma 1 Uniformly in f; f0 2 �� with � > 1=2 as n!1

H2(�1;�2) � C(m;M)

�
max
�
jf(�)� f0(�)j2kf (1=2)0

k2 + kf (1=2) � f
(1=2)
0

k2
�
;

where C(m;M) is a constant which does not depend on n, and where f (1=2)(�) denotes
the derivative of order 1=2 of f(�).

Proof. By simple algebra one easily obtains

H2(�1;�2) = 1�
 
detBf det ~Bf

detBf0 det
~Bf0

det2
�
1

2
B�1

f Bf0 +
1

2
~B�1

f
~Bf0

�!�1=4
(9)

= 1� det�1=2
�
1

2
(B�1

f Bf0)
1=2( ~B�1

f
~Bf0)

�1=2 +
1

2
(B�1

f Bf0)
�1=2( ~B�1

f
~Bf0)

1=2

�
:

Denote for brevity

A+ =
1

2
(B�1

f Bf0)
1=2( ~B�1

f
~Bf0)

�1=2 +
1

2
(B�1

f Bf0)
�1=2( ~B�1

f
~Bf0)

1=2;

A� =
1

2
(B�1

f Bf0)
1=2( ~B�1

f
~Bf0)

�1=2 � 1

2
(B�1

f Bf0)
�1=2( ~B�1

f
~Bf0)

1=2:
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Let sk[A] be s-numbers of the matrix A. It is well-known that if the spectral den-

sity f(�) is strictly bounded from below and from above then s1[Bf ], s1[ ~Bf ], s1[B
�1

f ],

s1[ ~B
�1

f ] are bounded from above (see eg. Dzhaparidze (1986) or Davies (1973)). There-

fore denoting �B = Bf � Bf0; � ~B = ~Bf � ~Bf0 and using elementary properties of

s{numbers we obtain from (9)

H2(�; ~�) � 1� exp

 
�1

4

nX
k=1

log s2k[A+]

!
� 1

4

nX
k=1

log s2k[A�] (10)

� 1

4

nX
k=1

�
s2k [A+]� 1

�
=

1

4

nX
k=1

s2k [A�] � C(m;M)
nX

k=1

s2k[B
�1

f Bf0
~B�1

f0
~Bf � E]

� C(m;M)
nX

k=1

s2k[B
�1

f0
Bf � ~B�1

f0
~Bf ] � C(m;M)

nX
k=1

s2k[B
�1

f0
�B � ~B�1

f0
� ~B]

� C(m;M)
nX

k=1

s2k[
~B�1

f0
(�B �� ~B)] + C(m;M)

nX
k=1

s2k[(B
�1

f0
� ~B�1

f0
)�B]

� C(m;M)
nX

k=1

s2k[�B �� ~B] + C(m;M)s2
1
[�B]

nX
k=1

s2k[Bf0 � ~Bf0 ]:

Next, note that

nX
k=1

s2k[Bf0 � ~Bf0 ] =
nX

k;l=1

0
@X
p6=0

Bf0[k � l + np]

1
A

2

(11)

� 2
nX

k;l=1

0
@X
jpj>1

Bf0 [k � l + np]

1
A

2

+ 2
nX

k;l=1

(Bf0[k � l + n] +Bf0 [k � l � n])
2
:

It is easy to see that

nX
k;l=1

B2

f0
[k � l � n] � 2

X
k

jkjB2

f0
[k] =

Z �

��
jf (1=2)

0
(�)j2 d�: (12)

On the other hand, the Cauchy{Schwartz inequality yields

nX
k;l=1

0
@X
jpj>1

Bf0 [k � l + np]

1
A

2

� n
nX

k=�n

0
@X
jpj>1

Bf0 [k + np]

1
A

2

� n
nX

k=�n

X
jpj>1

jk + npj2�B2

f0
[k + np]

X
jqj>1

jk + nqj�2�

� n1�2�
nX

k=�n

X
jpj>1

jk + npj2�B2

f0
[k + np] � n1�2�

X
jkj�n

jkj2�B2

f0
[k] � kf 1=2

0
k2:

Thus by (11) and (12)
nX

k=1

s2k[Bf0 � ~Bf0] = Ckf (1=2)0 k2: (13)
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With similar arguments we get

nX
k=1

s2k[�B �� ~B] � Ckf (1=2) � f
(1=2)
0

k2:

Thus the assertion of the lemma follows immediately from the above inequality and

(10), (13).

Proof of Theorem 1. This follows now directly from the above lemma, (6) and the

well-known inequality Ej�1(f)� �2(f)j � H(�1;�2):

In the sequel we will need some simple results about the Hellinger distance between

Gaussian distributions. Denote by H(~pf ; ~pg) the Hellinger distance between the densi-

ties ~pf(x) and ~pg(x), x 2 Rn de�ned by (4).

Lemma 2

H2(~pf ; ~pg) �
1

4

X
s

0
@ 4

vuutf(�s)

g(�s)
� 4

vuutg(�s)

f(�s)

1
A

2

:

Proof. By simple algebra one obtains

H2(~pf ; ~pg) = 1�
�
det ~Bf det ~Bgdet

2

�
1

2
~B�1

f +
1

2
~B�1

g

���1=4

= 1� det�1=2
�
1

2
~B
�1=2
f

~B1=2
g +

1

2
~B
1=2
f

~B�1=2
g

�
:

The eigenvalues of the matrix ~B
�1=2
f

~B1=2
g + ~B

1=2
f

~B�1=2
g take the values f�1=2(�s)g

1=2(�s)+

f 1=2(�s)g
�1=2(�s): Thus we get from the above equation

H2(~pf ; ~pg) = 1� exp

2
4�1

2

X
s

log

0
@1
2

vuutf(�s)

g(�s)
+

1

2

vuutg(�s)

f(�s)

1
A
3
5

� 1� exp

2
4�1

2

X
s

0
@1
2

vuutf(�s)

g(�s)
+

1

2

vuutg(�s)

f(�s)
��1

1
A
3
5

= 1� exp

2
64�1

4

X
s

0
@ 4

vuutf(�s)

g(�s)
� 4

vuutg(�s)

f(�s)

1
A

2
3
75

� 1

4

X
s

0
@ 4

vuutf(�s)

g(�s)
� 4

vuutg(�s)

f(�s)

1
A

2

:
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Consider two Gaussian processes

ŷf(t) =

s
2�

n

X
s

ei �stf(�s)�s; ŷg(t) =

s
2�

n

X
s

ei �stg(�s)�s;

where �s 2 R1 is a symmetric white Gaussian noise. Let p̂f (x) and p̂g(x), x 2 Rn be the

joint probability densities of ŷf(0); : : : ; ŷf(N �1) and ŷg(0); : : : ; ŷg(N �1) respectively.

Lemma 3 Assume that f(�); g(�) � m > 0 and f(�); g(�) �M <1. Then

H2(p̂f ; p̂g) �
C(m;M)N

n

X
s

(f(�s)� g(�s))
2:

Proof. It is similar to the proof of Lemma 1 and is omitted.

3 The regression model

In this section we compare the experiment given by (3) with the regression model (7).

Note that the likelihood process (see (4)) can be rewritten in the following equivalent

form

~pf(~y
n) = exp

(
� 1

4�

X
p

~B[p; ~yn]
X
s

ei�sp

f(�s)
� 1

2

X
s

log (2�f (�s))

)
;

where the empirical covariance function

~B[p; ~yn] =
1

n

nX
t=1

~y(t) ~y(t+ p) =
2�

n

X
s

ei �spIn (�s; ~y
n) : (14)

is a su�cient statistic. Similar to the scheme for proving asymptotic equivalence pro-

posed in Nussbaum (1998), our �rst step is to study the distribution of these values as

n!1. Using (3) and (14) we obtain that

�p =
p
n
�
~B[p; ~yn]� ~Bf 0p

�
=

2�p
n

X
s

ei�spf (�s)
�
j�sj2 � 1

�
; (15)

where ~Bf kj
is de�ned in (5).

Consider the accompanying Gaussian vector

�k =
2�p
n

X
s

f(�s)e
i �sk�0s;

where �0s 2 R1 is symmetric white Gaussian noise. Denote by pN� (x) and pN� (x),

x 2 RN the probability densities corresponding to random variables �p and �p, for

p = 0; : : : ; N � 1. Further considerations are crucially based on the following fact.

10



Lemma 4 Let N2 � n log�1�" n for some " > 0. Then uniformly in f(�) such that

0 < m � f(�) � M <1
Z
RN

���pN� (x)� pN� (x)
��� dx � CNp

n

�
1 +

q
NdN(f)

�
; (16)

where

dN(f) = min
ck

sup
�

������f(�)�
X
jkj�N

ck cos(�k)

������
2

and the minimum is taken over ck ful�lling

X
jkj�N

ck cos(�k) � m=2 > 0:

The proof will be given in an appendix.

Proof of Theorem 2. Since f 2 �� with � > 1, we can �nd a polynomial p(�) of

order Nn such that X
s

�
f�1(�s)� p(�s)

�
2 � C(m;M)n

N2�
n

:

Therefore by Lemma 2 we can assume without loss of generality that f(�) = 1=p(�),

where p(�) is a polynomial of the order Nn. On the other hand Lemma 4 implies that

our model is equivalent to estimation of f(�) based on observations

rk = ~Bf 0k
+

2�

n

X
s

ei �skf(�s)�
0

s; jkj � Nn;

where �0s is symmetric white Gaussian noise and ~Bf 0k
are the linear functionals of f

de�ned in (5). Using Lemma 3 we see that this model is asymptotically equivalent to

the following one:

r0k =
~Bf 0k

+
2�

n

X
s

ei �sk�Nn=2f(�s)�
0

s; jkj � Nn;

where �M is the projection operator onto the space of trigonometric polynomials of

the order M . Taking the discrete Fourier transform of the above equation we arrive at

the equivalent model

Y 0

p = �Nf(�p) +
1p
n
�p;

where

�p =
1p
n

X
jkj<Nn

X
s

ei (�s��
Nn
p )k�Nn=2f(�s)�

0

s:

11



Noting that for any jkj < Nn

1

n

X
jsj�n=2

�
�Nn=2f(�s)

�
2

ei �sk =
1

Nn

X
jsj�Nn=2

�
�Nn=2f(�Nn

s )
�
2

ei�
N

s
k;

we have E�p�p+u = N�u
�
�Nn=2f(�Nn

p )
�
2

, for p; u � 0. Hence we can represent the

observations Y 0

p in the form

Y 0

p = �Nnf(�Nn

p ) +

s
Nn

n
�Nn=2f(�Nn

p )�p;

where �s 2 R1 is a symmetric white Gaussian noise. The above formula proves the

theorem since the square of the Hellinger distance between the probability densities of

Yp from (7) and Y 0

p is estimated from above as

n

N

X
p

h
�Nn=2f(�Nn

p )
i
�1
h
f(�Nn

p )��Nn=2f(�Nn

p )
i
2

+
X
p

2
4
 

f(�Nn

p )

�Nn=2f(�Nn

p )

!1=4

�
 
�Nn=2f(�Nn

p )

f(�Nn

p )

!1=4
3
5
2

= o (1):

4 The variance stabilizing transform

In this section we compare the heteroscedastic regression model given by (7) with the

Gaussian shift model (8). Let � be N (0; 1). Consider the random variables

�(") = �1 f� > �1="g ; �0(") = log(1 + "�("))=":

Lemma 5 As "! 0

H(L[�];L[�(")]) = O("); (17)

H(L[�0(")];L[�(")]) = O("): (18)

Proof. We have for the densities p�(")(x), p�0(")(x)

p�(")(x) =
1fx > �1="gp
2�Pf� > �1="g

exp

 
�x

2

2

!
;

p�0(")(x) =
1p

2�Pf� > �1="g
exp

 
�x

2

2

!
exp

 
"x� x2

2
g("x)

!
;

12



where g(t) = t�2(exp(t)� 1)2 � 1: By simple algebra

H2(L[�];L[�(")]) = 1�
Z
1

�1

�
p�(x)p�(")(x)

�
1=2

dx

= 1� 1

P1=2 f� > �1="g
1p
2�

Z
1

�1="
exp

 
�x

2

2

!
dx

= 1�P1=2 f� > �1="g = O("2):

Let h" = (2 log "�2)
1=2

then we have by the Cauchy-Schwartz inequality

H2(L[�0(")];L[�(")]) = 1�
Z
1

�1

�
p�0(")(x)p�(")(x)

�
1=2

dx

� 1�
Z
jxj�h"

�
p�0(")(x)p�(")(x)

�
1=2

dx +P1=2 fj�(")j > h"gP1=2 fj�0(")j > h"g :

According to the de�nition of h"

P fj�(")j > h"g = O("2);

P fj�0(")j > h"g = O("2):

Also, noting that g(t) = t+t2=4+O(t3); t! 0 and using Taylor expansion one obtains

Z
jxj�h"

�
p�0(")(x)p�(")(x)

�
1=2

dx

=
1

P1=2 f� > �1="g
1p
2�

Z h"

�h"

exp

 
�x

2

2
+ "x� x2

2
g("x)

!
dx

=
1

P1=2 f� > �1="g
1p
2�

Z h"

�h"

exp

 
�x

2

2

! 
1 + "x� "x3

2
+O("2x6)

!
dx

= 1 +O("2):

Proof of Theorem 3. Let us denote Sn = fs : �Nn

s 2 (0; �]g and "n = (Nn=n)
1=2

;

we use �s = �Nn

s for the grid points. The experiment generated by the observations

logmaxf ~Ys; 0g; s 2 Sn

where
~Ys = f(�s) + "nf(�s)�s

is equivalent to the experiment generated by the observations

Zs = logY
0

s ; s 2 Sn

where

Y
0

s = f(�s) + "nf(�s)�s("n);

13



�s("n) =

(
�s; when �i � �1="n
0; otherwise,

where �s � N(0; 1) are i. i. d. Let us prove that this experiment is in turn asymptotically

equivalent to the experiment generated by observations

Z
0

s = log f(�s) + "n�s("n):

Using that H2(L[�1];L[�2]) = H2(L[a�1 + b];L[a�2 + b]), a > 0 we have by (18)

H2 (L[(Zs)s2Sn];L[(Z 0

s)s2Sn]) � 2
X
s2Sn

H2 (L[Zs];L[Z 0

s])

= NnH
2(L[�1("n)];L["�1 log(1 + "�1("n)]) � O

�
N2

n=n
�
= o (1):

Let Ys be given by (8). Then with the same arguments and (17) we get

H2 (L((Z 0

s)s2Sn);L((Ys)s2Sn)) � 2
X
s2Sn

H2 (L(Z 0

s);L(Ys))

= NnH
2(L[�1("n)];L[�1]) � O

�
N2

n=n
�
= o (1):

5 Appendix

We begin the proof of Lemma 4 with some simple results about Gaussian random

variables.

Lemma 6 Let �k 2 R1 be i.i.d. N (0; 1). Then uniformly in m

E

 
NX
i=1

�2i

!m
� (N + 2m)m:

Proof. It easily follows from the characteristic functions method. Let Dm be the

operator that takes the derivative of order m of a function q(t) at t = 0

Dmq(t) =
dmq(t)

dtm

�����
t=0

:

Then evidently

E

 
NX
i=1

�2i

!m
= Dm exp

(
t

NX
i=1

�2i

)
= Dm(1� 2t)�N=2 =

mY
p=1

(N + 2p):

Sightly more complicated arguments lead to the following result:

14



Lemma 7 Let �i 2 R1 be i.i.d. N (0; 1). Then uniformly in m and k

E

 
NX
i=1

j�ijk
!m

�
�
(Cm)k=2�1kk=2

�m
(N +m)m; (19)

E

 
NX
i=1

�2k+1

i

!m
�

�
(Cm)2k�1(2k + 1)2k+1

�m=2
(N +m)m=2; (20)

where C is a generic constant.

Proof. We have

E

 
NX
i=1

j�ijk
!m

= lim
A!1

E

 
NX
i=1

j�ijk1fj�ij < Ag
!m

= lim
A!1

DmE exp

 
t
NX
i=1

j�ijk1fj�ij < Ag
!

= lim
A!1

Dm

0
@ 1X
p=0

tp

p !
Ej�ijkp1fj�ij < Ag

1
A
N

= lim
A!1

Dm

0
@ mX
p=0

tp

p !
Ej�ijkp1fj�ij < Ag

1
A
N

= Dm

0
@ mX
p=0

tp

p !
Ej�ijkp

1
A
N

:

On the other hand

Dm

0
@ mX
p=0

tp

p !
Ej�ijkp

1
A
N

� Dm

0
@ mX
p=0

tp

p !
(kp)kp=2

1
A
N

� Dm

0
@ mX
p=0

tp(kp)kp=2(Cp)�p

1
A
N

� Dm

0
@ mX
p=0

tpkkp=2(Cm)(k=2�1)p

1
A
N

= Dm

0
@ 1X
p=0

tpkkp=2(Cm)(k=2�1)p

1
A
N

= Dm
�
1� tkk=2(Cm)(k=2�1)

��N

� (N +m)mkkm=2(Cm)m(k=2�1)

proving (19). The inequality (20) is proved in the same way.

Later on we will use the following result, which is an immediate consequence of the

convexity of the function jxjm, m � 1.

Lemma 8 Let �0; : : : ; �N�1 be zero mean Gaussian random variables in C with the

covariance matrix B. Then

E

0
B@X

s

������
N�1X
p=0

exp(i�sp)�p

������
k
1
CA
m

� (s1[B]N)km=2

�
n

N

�m
E

 
N�1X
l=0

j�ljk
!m

;

where s1[B] is the �rst eigenvalue of B and �k 2 C are independent N (0; 1).
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Proof. Since the matrix s1[B]E � B is nonnegative de�nite, there exist Gaussian

random variables � 0
0
; : : : ; � 0N�1 which do not depend on �0; : : : ; �N�1 and which have the

covariance matrix s1[B]E�B. Therefore �0+� 0
0
; : : : ; �N�1+� 0N�1 are independent with

the variance s1[B]. Thus by Anderson's lemma one obtains

E

0
B@X

s

������
N�1X
p=0

exp(i�sp)�p

������
k
1
CA
m

� E

0
B@X

s

������
N�1X
p=0

exp(i�sp)(�p + � 0p)

������
k
1
CA
m

(21)

� (s1[B])
km=2E

0
B@X

s

������
N�1X
p=0

exp(i�sp)�
0

p

������
k
1
CA
m

;

where �0k are independent N (0; 1). Next, by convexity of jxjm we get

E

0
B@X

s

������
N�1X
p=0

exp(i�sp)�
0

p

������
k
1
CA
m

(22)

� E

0
B@n=NX
j=0

N�1X
k=0

������
N�1X
p=0

exp

"
i p

 
2�k

N
+

2�j

n

!#
�0p

������
k
1
CA
m

�
�
n

N

�m
max
j

E

0
B@N�1X

k=0

������
N�1X
p=0

exp

"
i p

 
2�k

N
+

2�j

n

!#
�0p

������
k
1
CA
m

:

Finally noting that the following Gaussian random variables

�k =
N�1X
p=0

exp

"
i p

 
2�k

N
+

2�j

n

!#
�0p

are independent N (0;
p
N) and using (21), (22) we arrive at the assertion of the lemma.

With (15) it is not di�cult to compute the characteristic function of the random

variables �p; p 2 [0; N � 1]:

'N� (t) = E exp

0
@i N�1X

p=0

tp�p

1
A (23)

= exp

8<
:� ip

n

N�1X
p=0

tp ~Bf 0p
� 1

2

X
s

log

 
1� 4�ip

n
f (�s)Q(�s; t)

!9=
; ;

where

Q(�; t) =
N�1X
p=0

tp cos(�p):

16



Denote for brevity by

'N� (t) = exp

(
�4�2

n

X
s

f 2(�s)Q
2(�s; t)

)
(24)

the characteristic function of the random variables �p, p 2 [0; N � 1].

Lemma 9 Let N < n=2. Then

���'N� (t)
��� �

0
@1 + 32�2m2N

n

N�1X
p=0

t2p

1
A
�n=(8N)

: (25)

Proof. Since f(�) � m, we have the following upper bound for the absolute value of

the characteristic function:

���'N� (t)
��� �

Y
s

 
1 +

16�2

n
f 2 (�s)Q

2(�s; t)

!
�1=4

(26)

� exp

 
�1

4

X
s

log

 
1 +

16�2m2

n
Q2(�s; t)

!!

On the other hand, the Cauchy{Schwartz inequality yieldsX
s

Q4(�s; t) � max
k

Q2(�k; t)
X
s

Q2(�s; t) (27)

�
0
@N�1X

p=0

jtpj
1
A

2X
s

Q2(�s; t) � N
N�1X
p=0

t2p
X
s

Q2(�s; t)

� 2N

n

 X
s

Q2(�s; t)

!
2

:

Denote for brevity

E(t) =
2

n

X
s

Q2(�s; t) = 2t2
0
+

N�1X
p=0

t2p

and

GE(t) =

(
g(�s) � 0 :

X
s

g(�s) = nE(t)=2;
X
s

g2(s) � NnE2(t)=2

)
:

Then according to (27) we have

X
s

log

 
1 +

16�2m2

n
Q2(�s; t)

!
� min

g2GE(t)

X
s

log

 
1 +

16�2m2

n
g(�s)

!
:

It is easy to see from the Lagrange multiplier principle that the minimum in the right-

hand side of the above equation is attained at

g(�s) = g�(�s) =

(
G; s 2 [1; K];

0; s =2 [1; K]:
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Since g�(�s) belongs to GE(t) we get K = n=(2N), G = NE(t), and therefore

X
s

log

 
1 +

16�2m2

n
Q2(s; t)

!
�
X
s

log

 
1 +

16�2m2

n
g�(�s)

!

=
n

2N
log

 
1 +

16�2m2NE(t)

n

!
:

Hence from (26) we arrive at (25).

Proof of Lemma 4. The main idea of the proof is straightforward. We compute a

su�ciently good approximation for the characteristic function of the random variables

�l, l 2 [0; N � 1], then take its inverse Fourier transform to get an approximation for

the density pN� (�), and �nally we evaluate the L1-distance between the Gaussian density

pN� (�) and the approximation.

Let Kn = fx 2 RN : jxkj � Ang, where An = 4�M
p
logn. From the Markov

inequality with � = An=(8�
2M2) and by Taylor expansion we get

Z
x=2Kn

pN� (x) dx = P

�
max
p
j�pj > An

�

� exp(��An)
N�1X
p=0

EN exp(��p) +EN exp(���p)

� 2 exp(��An)
N�1X
p=0

E exp

(
2��p
n

X
s

cos(�sp)f(�s)(�
2

s � 1)

)

= 2 exp(��An)
N�1X
p=0

exp

(
�1

2

X
s

log

 
1� 4��p

n
cos(�sp)f(�s)

!)

� 2N exp
h
��An + 4�2M2�2(1 + o (1))

i
� Nn�1:

Since �k are Gaussian with zero mean and E�2k � 8�2M2 we evidently have

Z
x=2Kn

pN� (x) dx � Nn�1:

Therefore, in order to prove the lemma it remains to evaluate from above

D(p�; p�) =
Z
x2Kn

���pN� (x)� pN� (x)
��� dx:

Introduce the `2 and `1{norms in RN

ktk
2
=

0
@N�1X

p=0

t2k

1
A

1=2

; ktk
1
=

N�1X
p=0

jtkj:
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Assuming that t 2 Tn, where Tn = fktk1 � AN
p
logng and A is a su�ciently large

constant, one obtains by Taylor expansion and by (23), (24)

'N� (t) = 'N� (t) exp

0
@RN(t) +O(1)

 
A2N2 logn

n

!WN=2

ktk2
2

1
A ; (28)

where

RN(t) =
1

2

WNX
k=3

(�1)k+1

k

X
s

 
4�ip
n
f (�s)Q (�s; t)

!k

and W is a su�ciently large integer depending on n, which will be chosen later on.

Inverting the Fourier transform we get

D(p�; p�) =
1

(2�)N

Z
x2Kn

����
Z
RN

ei(t;x)
�
'N� (t)� 'N� (t)

�
dt

���� dx (29)

� 1

(2�)N

Z
x2Kn

����
Z
t2Tn

ei(t;x)
�
'N� (t)� 'N� (t)

�
dt

���� dx
+

mesKn

(2�)N

Z
t2Tn

�
j'N� (t)j+ j'N� (t)j

�
dt :

The last term in the right-hand side of the above inequality is evaluated by (24) and

by the Markov inequality

1

(2�)N=2

Z
t2Tn

j'N� (t)j dt �
1

(2�)N=2

Z
t2Tn

exp
n
�4�2m2 ktk2

2

o
dt

� C�N=2P

8<
:
N�1X
p=0

j�pj � AN
q
logn

9=
; � C�N=2 exp (N � AN logn=2) :

Therefore we obtain

mesKn

(2�)N

Z
t2Tn

j'N� (t)j dt � (C logn)
N=2

e�AN log n=2 � n�1: (30)

On the other hand we get from Lemma 9

mesKn

(2�)N

Z
t2Tn

j'N� (t)j dt (31)

� mesKn

(2�)N

Z
t2Tn

 
1 +

32�2m2N

n
ktk2

2

!�n=(8N)

dt

�
 
Cn logn

N

!N=2
max

ktk1�CAN
p

N log n=n

�
1 + ktk2

2

��n=(8N)+N
Z
RN

dt�
1 + ktk2

2

�N

�
 
Cn logn

N

!N=2 �
1 + C2A2N2 logn=n

��n=(8N)+N � n�1:
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In order to estimate the �rst term in the right-hand side of (29) note that according

to the assumption of the theorem we can chose the number W such that

mesKn

 
N2 logn

n

!WN=2

� n�1

and therefore by Taylor expansion and (28){(31) one obtains

D(p�; p�) � 1

(2�)N

Z
x2Kn

����
Z
t2Tn

eit
T
x
h
'N� (t)� 'N� (t)

i
dt

���� dx+O
�
n�1

�
(32)

� 1

(2�)N

WNX
m=1

1

m!

Z ����
Z
t2Tn

eit
T
x'N� (t)

h
RN (t)

im
dt

���� dx+O
�
n�1

�
:

Our next step is to estimate the leading term in the right-hand side of the above

equation. It is convenient to introduce the matrix A with the entries

Akl =
8�2

n

X
s

f 2(�s) cos(�sl) cos(�sk): (33)

Then by simple algebra one obtains

1

(2�)N

Z ����
Z
t2Tn

ei t
T x'N� (t)

h
RN (t)

im
dt

���� dx (34)

=
1

(2�)N

Z ����
Z
t2Tn

ei t
Tx�tTAt=2

h
RN(t)

im
dt

���� dx
=

1

(2�)N

Z
RN

����
Z
RN

e�x
T x=2�tT t=2

h
RN

�
A�1=2(t� ix)

�im
� 1ft� ix 2 Tng dtj dx

= E
���E nhRN(� � i� 0)

im
1f� � i � 0 2 Tngj�

o��� ;
where � and � 0 are independent Gaussian vectors with zero mean and the covariance

matrix A�1. The main di�culty is the evaluation of the right-hand side of the above

inequality, involving the �rst order term

rm
3
= E

�������
X
s

0
@f(�s) N�1X

p=0

cos(�sp)�p

1
A

3
�������
m

:

Represent the function f(�) in the form fN(�) + f(�) � fN(�), where fN(�) is a

polynomial of order N=2 which is symmetric and strictly bounded from below. Since

the norm of A�1 is strictly bounded from above ( see Davies (1973)) we get from the

H�older inequality and Lemma 8

rm
3

� CmE

�������
X
s

0
@fN(�s) N�1X

p=0

cos(�sp)�p

1
A

3
�������
m

(35)

+ Cmmax
�
jfN(�)� f(�)jm

�
n

N

�m
E

 
N�1X
l=0

j�ljk
!m

;
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where �l are i.i.d. N (0; 1). Representing A as A = ~A+ A� ~A, with

~Alk =
8�2

n

X
s

h
fN(�s)

i
2

cos(�sl) cos(�sk);

and once again applying the H�older inequality and Lemma 8, we get for

r̂m
3
= E

�������
X
s

0
@fN(�s)

N�1X
p=0

cos(�sp)�p

1
A

3
�������
m

the upper bound

r̂m
3

� E

�������
X
s

0
@fN(�s) N�1X

p=0

cos(�sp) ~A
�1=2�p

1
A

3
�������
m

(36)

+ Cms
m=2
1

h
(A�1=2 � ~A�1=2)(A�1=2 � ~A�1=2)T

i � n
N

�m
E

 
N�1X
l=0

j�ljk
!m

:

Let �Ns = 2�s=N be a uniform grid on [��; �]. Since
h
fN(�)

i
2

is a symmetric trigono-

metric polynomial of order N , we can represent ~A in the form

~Akl =
8�2

N

X
s

h
fN(�Ns )

i
2

cos(�Ns l) cos(�
N
s k):

Since fcos(�Ns p); p 2 [0; N�1]g are the eigenvectors of the matrix ~A, the matrix ~A�1=2

can be represented as

~A
�1=2
kl =

1

�N

X
s

1

fN(�Ns )
cos(�Ns l) cos(�

N
s k):

Hence

~A�1=2�l =

s
2

N

X
s

1

2�fN(�Ns )
cos(�Ns l)�s;

where �s are independent N (0; 1). Equivalently,

�s

2�fN(�Ns )
=

s
2

N

X
s

cos(�Ns l)
~A�1=2�l:

Thus we get

E

�������
X
s

0
@f(�s) N�1X

p=0

cos(�sp) ~A
�1=2�l

1
A

3
�������
m

(37)

=

�
n

N

�m
E

�������
X
s

0
@f(�Ns )

N�1X
p=0

cos(�Ns p)
~A�1=2�p

1
A

3
�������
m

� (CN)3m=2E

������
N�1X
p=0

�3s

������
m

:
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Noting that

s1
h
(A�1=2 � ~A�1=2)(A�1=2 � ~A�1=2)T

i
� Cs1

h
(A� ~A)(A� ~A)T

i
� C sup

�

jf(�)� fN(�)j2

one obtains from the above equation and from (35) { (37)

rm
3
�
�
CN

n

�m=2 h
mm=2Nm=2 + (dN(f))

m=2mm=2Nm
i
: (38)

Now consider the remainder terms in the right-hand side of (34). Denote for brevity

N(m) = NW logn=m. We obtain

E

������E
8<
:
WNX
k=4

1

2k

X
s

 
4�ip
n
f(�s)Q(�s; � � i� 0)

!k
1f� � i � 0 2 Tngj� 0

9=
;
������
m

(39)

� [log(WN)]
m

WNX
k=4

1

2k
E

������
X
s

 
4�ip
n
f(�s)Q(�s; � � i� 0)

!k
1f� � i � 0 2 Tng

������
m

� [log(WN)]
m

N(m)X
k=4

1

2k
E

������
X
s

 
4�ip
n
f(�s)Q(�s; � � i� 0)

!k������
m

+ [log(WN)]
m

WNX
k=W (m)

1

2k
E

������
X
s

 
4�ip
n
f(�s)Q(�s; � � i� 0)

!k
1f� � i � 0 2 Tng

������
m

Since the norm of the matrix A�1 is strictly bounded from above by some constant

which does not depend on N (cf. Davies (1973)), we get from Lemmas 7, 8

E

������
X
s

 
4�ip
n
f(�s)Q(�s; � � i� 0)

!k������
m

�
 
CmkN

n

!mk=2 ��
n

m

�m
+

�
n

N

�m�

and therefore

W (m)X
k=4

1

2k
E

������
X
s

 
4�ip
n
f(�s)Q(�s; � � i� 0)

!k������
m

�
 
CN2

n

!m
+N

 
CNm2

n

!m
: (40)

If k > N(m) we get from Lemma 6

E

������
X
s

 
4�ip
n
f(�s)Q(�s; � � i� 0)

!k
1f� � i � 0 2 Tng

������
m

� Cmknm

nkm=2
E

"
1

n

X
s

jQ(�s; � � i� 0)jk
#m

1f� � i � 0 2 Tng

� Cmknm

nkm=2
E

"
(AN

p
logn)k�2

n

X
s

jQ(�s; � � i� 0)j2
#m

� (nN)m
 
CA2N2 logn

n

!
(k=2�1)m
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and hence

WNX
k=N(m)

1

2k
E

������
X
s

 
4�ip
n
f(�s)Q(�s; � � i� 0)

!k
1f� � i � 0 2 Tng

������
m

(41)

� (nN)m
1X

k=N(m)

 
CN2 logn

n

!
(k=2�1)m

� (nN)m
 
CN2 logn

n

!WN log n=2

:

The proof of the lemma follows now from (32) and (38) { (41).
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