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PRICING VIA ANTICIPATIVE STOCHASTIC CALCULUS 

ECKHARD PLATEN AND ROLANDO REBOLLEDO 

AnsTRACT. The paper proposes a general model for pricing of derivative securities 
with different maturity. The underlying dynamics follows stochastic equations in-
volving anticipative stochastic integrals. These equations are solved explicitly and 
structural properties of solutions are studied. 

1. INTRODUCTION 

Term structures of interest rates play an important role in finance and are used 

for pricing interest rate dependent securities as bonds with different maturities. Fur-

thenuore, derivative securities written on other assets depend on bonds. Therefore 

it is extremely important to have a simple and reliable model fqr bonds oased on a 

Oexible stochastic structure of interest rates. Within this paper we will describe a 

general model of bond price processes. Further we will discuss conditions under which 

assets discounted by bonds have a martingale behaviour. This structural property is 

of crucial importance in derivative security pricing. 

Black and Scholes [2] described in their fundamental paper a simple and robust 

model for pricing options on given risky assets. Up to now there seems to be no 
·" 

equivalent simple model for pricing bonds. One reason may have been that a bond 

P(t, T) at time t with maturity T must have at expiration the fixed value P(T, T) == 1 

almost surely. Obviously it is difficult in the framework of nonanticipative stochastic 
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2 ECKHARD PLATEN AND ROLANDO REBOLLEDO 

analysis to model such a stochastic process which is driven by a Brownian motion 

and reaches a fixed value at a future time T almost surely. Another reason might 

have been that bonds discounted with respect to certain reference processes and also 

assets discounted by bonds have to show a martingale property in a good security 

model. Nevertheless there are several interesting and important approaches which 

deal with the modelling of bond price dynamics. For an impression of the diversity of 

bond pricing models we like to refer the reader e.g. to Heath, J arrow and Morton [9], 

Harrison and Pliska [8], El Karoui, Myneni and Vishwanathan [12], Hull and White 

[11], Black, Derman and Toy [1], Ho and Lee [10], Brennan and Schwartz [3], Cox, 

Ingersoll and Ross [6], Vasicek [17]. 

Within this paper our first aim is to use anticipative stochastic equations (see 

[4], [14], [13]) to model a price dynamics which includes also bonds. Secondly, we 

will analyze the volatility dynamics in terms of maturity times. Consistently, the 

evolution of prices with different maturities in a risk neutral situation will be derived 

in terms of few very well interpretable parameters. 

2. THE PRICE DYNAMICS 

2.1. Description of the model. Let us start from a given filtered probability space 

(!1, :F, F, IP'), lF == (:Ft)t~o, fulfilling the usual conditions. We will introduce later the 

probability space required by anticipative stochastic differential equations. 

We first consider a positive continuous process µ(T) == (µ(t, T); t ~ 0) which could 

be anticipative. This represents the average return process. In some cases we will 

take µ(·, T) == r, where r == (r(t); t ~ 0) is an adapted process which describes the 

term structure of interest rates. We call r(t) the spot rate at time t ~ 0. 

We also introduce the driving \Viener process W == (W(t); t ~ 0) assumed to be 

defined over our filtered probability space, IF-adapted and W(O) == 0. To keep our 

notations shnple we write our formulae just for a one-dimensional standard Wiener 
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process but our results hold analogously in the multidimensional case. 

It is now our aim to model the evolution of the price P(t, T) at time t :=:; T of a 

T-maturity contingent claim H which is a random variable on our probability space. 

That is a security that claims H for certain at a specified maturity date T. Thus we 

have to fulfill a terminal condition for the price at maturity: 

(2.1) P(T,T) = H. 

For instance, in the case of a bond we have H == 1. We introduce the following 

stochastic equation for the price with maturity T: 

(2.2) 

P(t, T) = P(T, T) - t µ(s,T)P(s, T)ds - { o-(s, T)P(s, T)8W(s), (0 '.S: t '.S: T) 

where the second stochastic integral, the Skorokhod integral, has an anticipative 

integrand (see [14]) involving the volatility process a(T) == (a( t, T); 0 :=:; t ::=; T) 

which is not adapted and will be specified in the section below. We use J( ... )8W( s) 

to denote the Skorokhod integral instead of the symbol J( ... )dW(s) which is reserved 

to write the ·customary stochastic integral with an adapted process as integrand. 

To continue with the description of main features of the model, let us analyze how 

to overcome the difficulty of having a final and not initial condition for our equation. 

The idea we exploit is very simple: take the maturity time T not as a final but as 

an initial time of a backward evolution. In order to preserve Wiener measure by time 

reversal we introduce the operator R over processes: 

(2.3) RV(t) == V(T - t) - V(T), (t E [O, T]), 

where V is any process. This operator is called the time reversal operator. Notice 

that RR == identity and vV == RvV is a Brownian motion with respect to the filtration 

IB == (Bt; t E [O, T]) it generates. 
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Define X(t) == RP(t, T) + P(T, T) == P(T - t, T) and o:(t) == -µ(T - t, T), f3(t) == 
a(T - t, T), 0 :::; t ::=; T. We assume /3 satisfies regularity conditions, which we will 

specify below,under which Skorokhod indefinite integrals exist. Equation (2.2) is then 

transformed into 

(2.4) X(t) = P(T, T) +Jo' a( s)X(s )ds +Jo' ,6(s )X(s )OvV{s). 

Notice that now we have X(O) == P(T, T), which is equivalent to the terminal condi-

tion (2.1). 
We take (2.4) as our fundamental equation to describe the price dynamics. To give 

an explicit solution we need to introduce first. some additional notations and tools 

from Anticipative Stochastic Calculus: that is the aim of the next section. Before we 

go into those technical details, let us give the expression we obtain for P by solving 

(2.4) and reversing time afterwards. 

2.2. Explicit expression for price and yield. The solution to (2.2) obtained by 

time reversal on ~he solution of (2.4) is given by 

(2.5) 

P(t, T) = P(T, T) exp [- (t a(s, T)OW(s) - ~ { a2(s, T)ds + { µ(s, T)ds )] , 

for all 0 ::=; t ::=; T and follows from Corollary 1 which we are going to prove in section 

3 .. 

We recall that the yield associated to a price at maturity T is a process Y defined 

by 

(2.6) · Y( ) == log P(T, T) - log P(t, T) ( T) t T-t . , o::=;t::=; . 

In our case, the explicit expression for the yield is 

(2.7) Y(t) = T ~ t (t a(s, T)OW(s) - ~ { a2(s, T)ds + { µ(s, T)ds). 
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2.3. Observed processes. Coefficients are in general anticipating in the expression 

above and cannot be known by an observation at time t before the maturity time 

T. In general one will try also in pricing to deal with observed quantities. For this 

reason we study projections of such coefficients with respect to the filtration IF which 

is a model of available information. This leads us to consider the so called optional 

projections of our coefficents. They coincide with predictable projections because of 

continuity assumptions. These projections have been introduced in the development 

of the General Theory of Processes. Given a process V we recall that its optional 

projection °V with respect to IF is the unique process (up to indistinguishability) 

given as the conditional expectation 

0 V(r) == IE(V(r)/Fr), 

for all stopping times r of the filtration IF (see [7]). 

To construct a convenient link to dynamics with nonanticipative integrands we 

interpret the optional projections 0 µ(t, T) and 0 <J(t, T) as the observed quantities at 

time t and we can introduce another equation for an observed price P inspired by 

(2.2): 

(2.8) 

f>(t, T) = f>(T, T) - t 0 µ(s, T)f>(s, T)ds - t 0 u(s,T)dW(s), (t E [O, T]). 

Notice that P is not the .optional projection of P. I_~1deed P is even not an F-adapted 

process though 0 µ( ·, T) and 0 <J( ·, T) do. By a similar technique as will be applied for 

the case of anticipative coefficients we obtain 

(2.9) 

P(t, T) = P(T, T) exp [- (t "u(s, T)dW(s)-__ ~ { 0 u2(s, T)ds + { 0 µ(s, T)ds)] , 

for all 0 ~ t ~ T. 
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We also associate to the price P an observed yield which is given by 

(2.lO)Y(t) == -- 0 a(s,T)dW(s) - - 0 a-(s,T)ds + 0 µ(s,T)ds . - 1 (1.T 1 1.T ? 1.T ) 
T-t t 2 t ,, t 

We remark that the difference between P and P (respectively between Y and Y) 
represents for the observer a measure of the risk due to incomplete information about 

the future. 

The following section is rather technical and we refer the interested reader to [ 14] 

and [5] for more details. First we will sketch an intuitive description of what we need 

from anticipative stochastic calculus which we will specify afterwards. Despite the 

fact that this calculus is still rather technical we will see that it provides a powerful 

approach to basic problems which are easy to solve in deterministic but very complex 

in stochastic evolution. 

3. ANTICIPATIVE STOCHASTIC CALCULUS TECHNIQUES 

To state the model we fix the maturity time T throughout this section. Our 

probability space n is the space of continuous real functions C([O, T], IR), endowed 

with the uniform topology; the canonical process on n is defined to be Wt(w) == w(t); 

Bt is the sigma-field generated by vVs, s :::; t; B( I) denotes the sigma field generated 

by VVt for all t E I, where I is a subset of [O, T]; the probability we consider over n is 
the Wiener measure IP' under whichthe process W becomes a Brownian motion. The 

reversed process W == RW is also a Brownian motion under this probability measure. 

The filtration associated to W is denoted by IF== (:Ft; t E [O, T]). We complete all 

a-fields by IP' and keep the same notations for them. Our starting point here will be 

equation (2.4) which we are going to solve explicitly. By a time reversal argument 

we will come to equation (2.2) with anticipative integrands and deduce its solution 

P. 
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3.l. Introducing the Skorokhod integral. In some cases the Skorokhod integral 

can be understood as a limit of a special class of Riemann sums. Indeed, assume 

u E L 2 ([0, T] x 0). Given a partition 7r : 0 == t0 < t,1 < ... < tn == T consider over 

[O, T] x n the O"-field B1f generated by all sets of the form ]tk, tk+l] x Fk> where Fk runs 

over the O"-field B(]tk, tk+l]c). We construct the conditional expectation Ev( u/B1f) of 

u with respect to B1f and the finite measure dv == dIPdt over [O, T] x 0: 

v-almost surely on [O, T] x n. 
It can be observed that if 7r is refined then the O"-field B1f grows up to the product of 

the Borel O" field of [O, T] with B([O, T]). Therefore, by the Martingale Limit Theorem, 

we have 

(3.2) 

LI-almost surely and in L2([0, T] x n), as 7r is refined. 

Now, we can integrate the above process E 11 ( u/B1f) with respect to the Wiener 

process in a simple form: 

We let again 7r vary by taking finer partitions. If the sum (3.3) has a limit in L2(0), 

then we can define its limit as flu( s )8Mi( s ), since u is approached by the integrands 

in (3.3) according to (3.2). 

However, this is not the general Skorokhod integral and the construction presented 

above does not allow to understand the integral as the adjoint of a derivative, which 

is also a useful notion when dealing with anticipative processes. To go further, we 

resume below very briefiy the connections between the Skorokhod integral and the 

Malliavin derivative. 
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3.2. Malliavin derivative and Skorokhod integral. First, we let c;(IR-n) de-

note the set of all infinitely differentiable functions f from ~n into IR, such that f 
together with all its derivatives have polynomial growth order. Let S denote the set 

of all smooth real random variables; that is the class of all F : n -t IR, for which 

there exists a finite collection ti, ... , tm E [O, T], and a function f E c;(~n ), such 

that 

(3.4) F == J(W(t1), ... , W(tm)) 

The set Sis dense in L 2(D) with the norm II · 112· For every F in S, the derivative 

DtF is defined to be the process 

(3.5) 

for all 0 :::; t :::; T. 

D is a closed operator, its domain is denoted IIJP, with norm 

(3.6) 

where II · 11 2 denotes the L2 (D) norm. IIJP is the closure of S with respect to the 

norm II · lli,2 . We also denote by 1L1•2 the class of processes u E L2([0, T] x D) such 

that u(t) E [JP for almost all t, and there exists a measurable version of the two 

parameter process Dsu(t) which satisfies E(J0T J~(Dsu(t))2 dsdt) < oo. For u E JL1,2 

we extend (3.6) by defining 

(3.7) 

The adjoint D* of D is the Skorokhod integral. D* is a closed and unbounded 

operator defined over a domain Dom(D*) included in L2([0, T] x D), taking values 

in L2 (D). The couple (Dom(D*), D*) is characterized as follows: 
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(i) Dom(D*) is defined as the sef of all u E L2 ([0, T] x 0), such that 

(3.8) IE(f D,Fu(t)dt)I :::;. cl1Fll2, 
for all F in S, where c > 0 is a constant which depends only on u. 

(ii) If u belongs to Dom(D*) then D*( u) is the element of L2(0) defined by 

(3.9) E(F D*( u)) = E(f D1Fu(t)dt), 

for any FE S. 

The indefinite Skorokhod integral process is constructed for processes u such that 

ul[o,t] belongs to Dom(D*) for ail t E [O,T]. So that J~u(s)81V{s) == D*(ul[o,tJ), and 

it holds 

(3.10) R(l u(s)81V{s))(t) =lo u(T - s)OW(s), (t E [O, 1]), 

where W == RW. Indeed this follows from the definition of the Skorokhod integral: 

integration with respect to Wis connected through duality with Ds; integration with 

respect to W is connected with DT-:-s' so that for all t E [O, T] and all F E S we have 

JEtF £)-u(s))81V{s)) JEtfoT D ,F( -u( s) )l[T-t,TI ( s )ds) 

JEt }~ T DT_,Fu(T - r) l 10,11 ( r) dr) 

JF.tF lo u(T - r)OW(r)). 

3.3. The linear stochastic differential equation. To introduce the equation we 

first make basic assumptions on the coefficients. 

• The coefficient /3 : [O, T] x n ~ IR.is considered to be continuous in time, mea-

surable in w and uniformly bounded. Furthermore we assume that ( s, w) H-

D sf3( t) exists and belongs to ic:c([O, T] x fl), for all t E [O, T]. 

• The coefficient a : [O, T] x n ~ IR is assumed to be continuous in the time 

. variable, measurable in w and uniformly bounded. 
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• H is assumed to be measurable and essentially bounded. 

Theorem 1. Under the above hypotheses and notations, define 

(3.11) X(t,w) = H(w)c1(w) exp(l a(s,w)ds), 

t E [O, 1], where ct denotes Doleans exponential 

(3.12) Lt A 1 it ct:== exp( f3(s)8VV(s) - -
2 

f3 2 (s)ds), (t E [O,T]). .o .o 
Then l[o,tJf3X is Skorokhod-integrable for all t E (0, T], X E L2([0, T] x !1), and it 

is the unique solution to the equation: 

(3.13) X(t) = H + l a(s)X(s)ds + l ;3(s)X(s)8W{s), (t E [O, T]) 

Proof. We follow [5] to sketch the proof of this theorem. Our statement is a very 

rough particular case of Buckdahn's result. The interested reader is referred to his 

article for further details. The technique involves transformations on the Wiener 

space and an extension of Girsanov's Theorem. More precisely let Tt, At : n ----+ n, 
be defined by: 

(3.14) r/\s 
Ttw(s) :== w(s) +lo /3(u)du; 

(3.15) 
r/\s 

Atw(s) :== w(s) - lo /3(u)du, 

wheres, t E [O, T]. Notice that TtAt == AtTt ==identity, and that these mappings are 
~ 

continuous on n endowed with the uniform topology. 

Moreover, we denote by Ut(w, x) the solution to the integral equation: 

(3.16) Ut(w, x) == x + ft o:(s, Ts(w))Us(w, x)ds, .lo 
t E [O, T] which for x == H(w) is given explicitly by 

(3.17) U1(w, H) = H(T,(w)) exp(l a(s, Ts(w) )ds ). 
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Finally following the arguments in [5], the solution to the original equation (3.13) is. 

obtained in the form X(t, w) == EtUt(At(w ), H(At(w))) which reduces to the expression 

(3.11). D 

It is important to remark that ( 3.11) gives also the solution to the linear equation 

(3.13) in the case of adapted coefficients a and f3 with initial condition H == constant. 

Furthermore, in that case the assumptions on a and f3 can simply be reduced to con-

tinuity and adaptedness requirements (even less, see e.g. [16]). We will constantly 

assume the weaker conditions on a and f3 when we refer to the adapted case through-

out the paper. 

From the above theorem we can derive an explicit expression for prices. 

Corollary 1. Under the hypothesis of Theorem 1, prices with maturity T are given 

by the formula: 

(3.18) 

P(t,T) == P(T,T)exp [-( {T o-(s,T)8W(s) - ~ {T o-2(s,T)ds+ {T µ(~,T)ds)], .It 2 .It .It 
for all 0 :::; t :::; T. 

Proof. It suffices to reverse time in formula (3.11). Indeed, 

P(t,T) X(T - t) 

X(O)cT-t exp (- JoT-t µ(T - s, T)ds) 

P(T, T) exp [- ([ o-(s, T)OW(s) - ~ { o-2 (s, T)ds + { µ(s,T)ds)] . 

D 

Notice the above corollary can also be applied when coefficients µ and O' are re-

placed by their optional projections. This leads to the expression for observed prices 

in (2.9). In order to estimate differences between observed and anticipative processes 
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we need to go further into anticipative calculus. using L2-estimates on Skorokhod 

integrals. 

3.4. Estimating the gap between observed and anticipative terms. Our 

main result in this subsection is the following 

Theorem 2. Under the hypothesis of Theorem 1, for all t E [O, T], 

1 (. T T ) 1/2 
llY(t)-Y(t)ll2 < T-t[Cll !. lo Ds(o-(u,T)- 0 0-(u,T))dsdu 112 

{3.19) + ~ t lla2(s, T) - 0 a2(s, T)ll2ds 

+ {llµ(s,T)- 0 µ(s,T)i12ds], 

where C > 0 is a constant. 

Proof. Fix any t E [O, T]. Notice that we have 

Y(t) - Y(t) T ~ t [t (a(s, T) - 0 a(s, T))8W(s) 

1 J.T ? ? ) 2" t (o--(s, T) - 00-~(s, T )ds 

+ t (µ( s, T) - 0 µ( s, T))ds]. 

In what concerns Lebesgue integrals in the expression of Y(t) - Y(t) straightfor-

ward estimates follow from the triangular inequality for the L2-norm and Fubini's 

Theorem. 

To handle the stochastic integral 

t (a(s, T) - 0 a(s, T))8W(s), 
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we recall an inequality due to Meyer (see e.g. [14]). If u E Il...P, and u(t) E L4 (0), 

for all t E [O, T] then 

[[D*{ u)[[2 < C[(t (1fil1(t))2 dt)112 

(3.20) + 11 (.ff (D,u(t)) 2dsdt) 
112

112]. 

Notice that our assumptions imply that a-(., T) E JLl,Z and o-(t, T) E L4(0), for all 

t E [O,T]. If we apply the above inequality to u == (o-(.,T) - 0 0-(.,T))l[t,TJ> then we 

get the desired inequality since !EU( s) == 0 for all s E [O, T] in this case. 0 

To conclude this section we would like to point out that our method works in a 

more general framework than most others considered up to now. To compare with 

preceding models, one can discuss how the observed price P is related to adapted 

prices derived before in the literature. This will be achieved for bonds in the next 

section. To simplify notations in that section we will assume our coefficients µ and 

o- to be adapted and continuous. Indeed the analysis we develop below is always 

applicable to P since 0 µ and 0 o- are adapted. Therefore structural properties we 

derive are valid for P in the general case and the estimates obtained before give a 

precise idea about closeness to P. 

4. No ARBITRAGE CONDITIONS FOR BONDS: COMPARISON WITH ADAPTED 

MODELS 

As we said before, to compare with other approaches throughout this section we 

place ourselves in the case of coefficients adapted to the filtration IF = ( Ft)tE[O,T]. 

Let us first remark on some general facts in this framework: P coincides with the 

observed bond price P, we rewrite its explicit expression (see (3.18)) as follows: 

( 4.1) 

P( t, T) = P(O, T) exp (fo' o-( s, T)dW( s) - ~lo' o-2( s, T)ds +.lo'µ( s, T)ds) , 
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for all t E [O,T], (recall that P(T, T) == 1 in the case of bonds). Now we define 

(4.2) P(t,T) 
Z(t) == P(O, T), (t E [O, T]). 

Then Z is expressed as 

( 4.3) Z == £(<1" · W +µ· ;\), 

where we use the symbol £ for the Doleans exponential of a se1i1imartingale which 

reduces to 

( 4.4) 
1 

£(S) == exp(S - 2[S, S]), 

for a continuous semimartingale S with quadratic variation [S, S] (see e.g. [16]). In 

( 4.3) the symbol '·' is used for a customary adapted stochastic integral process as it is 

common in Stochastic Analysis and ;\(t) == t is the identity semimartingale. vVe also 

have simplified the notation for <1"( ·, T) and µ( ·, T) by writing O" and µ respectively. 

Z defined in ( 4.2) is therefore a semimartingale with respect to IR It is important to 

point out that ( 4.1) tells us that the non adapted process P( ·, T) can be decomposed 

into a product of an anticipating term (P(O, T)) and an adapted process (Z), which 

· turns out to be a semimartingale under the hypotheses of this section. We call Z the 

normalized price. In our general anticipative model, the explicit expression (3.18) of 

the price shows that P(., T) cannot be adapted, even under adaptedness of µ and 

O", unless it is a constant IP-almost surely. This means that we have to circumvent 

this technical difficulty to express no arbitrage conditions in a suitable manner. The 

key is given by ( 4.1 ): structural properties depending on adaptedness are carried in 

our model by the normalized price Z. Thus, to look for conditions which exclude 

arbitrage opportunities for bonds discounted by savings accounts or assets discounted 

by bonds, means for us to have a quotient of processes ( Z / B or A/ Z) which represent 

martingales. 
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To investigate general conditions under which no arbitrage conditions occur we 

first prove an auxiliary result. We recall Yor's formula for the product of the semi-

martingale exponentials (see e.g. [16]): 

( 4.5) 

Therefore we have the following lemma. 

Lemma 1. Assume Z be given by ( 4.3) and Z' to be a semimartingale of the same 

type: 

Z' == e(er'. W' +µ'.-A), 

where W' is another Brownian motion on the same probability space and µ', a' are 

continuous adapted processes. Then the process Z / Z' is a martingale if and only if 

( 4.6) (µ - µ' + a' 2
) · A - aa' · [W, W'] == 0 

Proof. We write Z/ Z' as the quotient of Doleans exponentials applying formula ( 4.5): 

Z e(a·W+µ·.A) 
Z' e( a' · W' + µ' · .A) 

e(a · W + µ · .A)e(-a' · W' - (p,' - a'2) • .A) 

e(a · W- a'· W' + (µ- µ' +a'2
) ·.A- aa'· [W, vV']). 

To complete the proof it suffices to remark that for a continuous semimartingale S 

its exponential e(S) is a martingale if and only if S itself is a martingale. This is 

a straightforward consequence of Ito's formula. In our case the above condition is 

satisfied if and only if the drift term (µ - µ' + a'2
) · A - aa' · [vV, vV'] is zero. D 

4.1. Bond price discounted by a savings account. We assume as before r to 

be au adapted process which describes the term structure of interest rates and we 

denote by 

( 4.7) B( t) = exp(fo' r( u )du), (t <". 0), 
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the savings account at time t 2 0. The process B == (B(t); t 2 OJ, which is also called 

continuously instantaneous interest paying savings account (or accumulation factor), 

is lF-adapted. Our aim is to study structural properties of the discounted bond price 

P / B. This is achieved through Z: 

( 4.8) 
1 P(t,T) Z 

P(O, T) B(t) == B (t), (t E [O, T]). 

The quotient Z / B is a martingale if and only if 

lo' (µ(s, T) - r( s ))ds = 0, (t E [O, T]). 

Since both functions µ( ·, T) and r are positive and continuous, the above condition 

is equivalent to 

( 4.9) µ(t, T) == r(t), for all t E [O, T]. 

Thus we obtain in a very general setting that a bond price discounted by the accu-

mulation factor forms a martingale if and only if the expected return is exactly the 

instantaneous interest rate. And one can immediately conclude from this martingale 

property: 

( 4.10) 

P(t, T) 
P(O, T) 

P(T,T) 
B(t)lE( P(O, T)B(T) I Ft) 

IE(P(~,T) exp(- { r(s)ds)/.r,), (t E [O,T]). 

This formula is the analog to the well-known bond price used in many papers 

on security derivative pricing as e.g. [2], [9], [8] '"where the factor 1/P(0, T) can be 

cancelled out on both sides of ( 4.10) because of au assumption of adaptedness. In 

our case it is the normalized price which satisfies the relation: 

( 4.11) Z(t) =IE( exp(- tr( s )ds )/ :F,) , (t E [O, T]) 

Another approach was proposed by Cox, Ingersoll and Ross in (6]. They started from 

a stochastic differential equation for the instantaneous interest rate. Let us write this 
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equation in the general form 

( 4.12) dr(t) == g(t)dt + p(t)dW(t), 

where g and p are adapted processes with continuous trajectories and time moves on 

[O, T]. In their bond price dynamics they choose 

(4.13) ( 
a(t, T)) µ(t, T) == r(t) 1 + K p(t) , (t E [O, T]), 

where K is called the risk parameter or market price of risk. 

Now we change the probability measure !Pinto another IPv by means of a Girsanov's 

transformation. It is well known that given a continuous adapted process 7/;, the 

process 

(4.14) V(t) = W(t) - lo' ,P(s)ds, (t E [O,TJ), 

becomes a Brownian motion under IPv if and only if IPv is absolutely continuous with 

respect to IP and its Radon-Nikodym derivative is given by 

( 4.15) dIPvl.rt d!Pl == £(7/; · vV)(t), (t E [O, T]), 
Ft 

where '·I.rt' denotes the restriction of'·' to the a·-algebra :Ft. 

If Pv denotes the price obtained by an exchange ofW by V and Zv == Pv(·, T)/ Pv(O, T), 
then Zv I Bis a (If»v, IF)-martingale if and only if Zve( 1/;· vV)/ Bis a (IP, IF)-martingale. 

Thus, an application of our Lemma 1 shows that 7/; has to be chosen as 

(4.16) 
r(t) 

·7/J(t) == K p(t)' (t E [O, T]), 

to have Pv /(P(O,T)B) as a (IPv, lF)-martingale. 

In [15] an alternative bond price is suggested which differs from both of the above. 

The average return process is taken as 

( 4.17) µ(t, T) = r(t) + a2 (t, T), (t E [O, T]). 
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This equation involves a certain risk premium represented by the square of the volatil-

-ity of the bond price process. One ob.tains easily the following representation for this 

bond price: 

( 4.18) P(t,T) = [Jm:exp(t r(s)ds)/F,)r, (t E [0,71). 

After a transformation of measures similar to the above with the choice 

( 4.19) 1/;(t) == -(}(t, T), (t E [O, T]), 

the price ( 4.18) discounted by the savings account becomes a martingale with respect 

to the new measure. 

We do not go further in the consideration of other examples of bond price models. 

We postpone to the next section the crucial question about which, among all these 

different models, could be useful in more general derivative security pricing. 

4.2. Assets discounted by bonds. Au important problem in derivative pricing is 

to describe the risk neutral measure under which a given asset, discounted by a bond, 

becomes a martingale. As au illustration we consider a continuous adapted asset A 

which is the solution of a linear stochastic differential equation 

( 4.20) dA.(t) == a(t)A.(t)dt + b(t)A.(t)dvV'(t), 

where W' is another Wiener process (possibly independent of vV) and a, b are adapted 

processes. We may interpret A in many different ways, e.g. as a savings account, as 

a stock, also as a derivative price in an incomplete market (for example an option 

price on a stock with stochastic volatility). 

Our aim is then to analyze structural properties of the quotient A/ P. To apply 

Lemma 1 we identify Z' with A/A(O), ()1 with band µ' with a. That is: 
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~ == Z' == t'(b · W +a· A) A(O) 
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Now we exchange the role of Z and Z' in Lemma 1. Thus, Z' / Z is a martingale if 

and only if 

( 4.22) (a - µ(·, T) + o-2
(·, T)) ·A - a(·, T)b · [W', W] == 0. 

The following particular applications of the above analysis cover in principle most 

. practically important cases. We notice that they lead to sufficient conditions to 

obtain the martingale property for the discounted asset A/ P: 

( 1) The case of independent Brownian motions W, W'. Then [W, W'] == 0 and 

( 4.22) reduces to 

( 4.23) fo\µ( s, T) - a( s) - cr2 ( s, T) )ds = 0, (t E [O, T]) . 

A sufficient condition to obtain the martingale property is then 

( 4.24) µ(t, T) - a2(t, T) == a(t), (t E (0, T]). 

The above condition is easily fulfilled for any maturity as follows from [15]: 

choose the bond as in (4.18) withµ given by (4.17) and a== r. This case is 

similar to the measure transformation proposed in [12], however our approach 

is more direct. 

The choice of a bond price in a form different from ( 4.18) would consequently 

impose a to be maturity-dependent to fulfill condition ( 4.24). This would 

complicate the whole analysis. That is why we claim the more natural choice 

is given by ( 4.18). 

(2) Assume W and W' to be dependent, then [W, W'] ~ 0 and ( 4.22) has to be 

solved with additional assumptions. In particular, when drscounting bonds by 

bonds one may assume W == vV' so that [W, W'] == A, (where A(t) == t for all 
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t E [O, T]). Therefore, a sufficient condition to obtain the martingale property 

in this case is 

( 4.25) µ(t, T) - a(t) - a 2(t, T) - b(t)a(t, T) == 0, (t E [O, T]). 

When considering the bond price according to ( 4.18) the analysis remains 

simple in this case, though we have to perform a measure transformation: it 

is always a technique of semimartingale exponentials which is applied, as 111 

the examples already studied. 

As we mentioned at the beginning of the paper, our aim was to present a general 

approach to security derivative pricing by means of anticipative stochastic analysis. 

We hope our discussion in the last section illustrates the advantages of the proposed 

method. We will continue to consider further related issues in more detail in a 

forthcoming paper. 
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