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Abstract

We observe an in�nitely dimensional Gaussian random vector x = � + v

where � is a sequence of standard Gaussian variables and v 2 l2 is an un-

known mean. Let V"(�; �") � l2 be sets which correspond to lq-ellipsoids of

power semi-axes ai = i
�s
R=" with lp-ellipsoid of semi-axes bi = i

�r
�"=" re-

moved or to similar Besov bodies Bq;t;s(R=") with Besov bodies Bp;h;r(�"=")

removed. Here � = (�;R) or � = (�; h; t; R); � = (p; q; r; s) are the pa-

rameters which de�ne the sets V" for given radiuses �" ! 0, 0 < p; q; h; t �

1; �1 < r; s <1; R > 0; "! 0 is asymptotical parameter.

For the case � is known hypothesis testing problem H0 : v = 0 versus

alternatives H";� : v 2 V"(�; �") have been considered by Ingster and Suslina

[11] in minimax setting. It was shown that there is a partition of the set of �

on to regions with di�erent types of asymptotics: classical, trivial, degenerate

and Gaussian (of two main and some "boundary" types). Also there is

essential dependence of the structure of asymptotically minimax tests on the

parameter � for the case of Gaussian asymptotics .

In this paper we consider alternative H";� : v 2 V"(�) for sets

V"(�) =
S
�2� V"(�; �"(�)). This corresponds to adaptive setting: � is un-

known, � 2 � for a compact � = K ��; � = [c; C] � R
1
+; K � �G1

[�G2

where �G2
and �G2

are regions of main tapes of Gaussian asymptotics . First

the problems of such types were studied by Spokoiny [16, 17].

For ellipsoidal case we study sharp asymptotics of minimax second kind

errors �"(�;�) = �(�; V"(�)) and construct asymptotically minimax tests.

These asymptotics are analogous to degenerate type. For Besov bodies case

we obtain exact rates and construct minimax consistent tests. Analogous

exact rates are obtained in a signal detection problem for continuous variant

of white Gaussian noise model: alternatives correspond to Besov or Sobolev

balls with Sobolev or Besov balls removed.

The study is based on results [11] and on an extension of methods of this

paper for degenerate case.

1 Introduction

1.1 Minimax setting

Let an in�nitely-dimensional Gaussian random vector x = �+v be observed where

� is a sequence of standard independent Gaussian random variables with zero mean

and unit variance, v 2 l2 is an unknown mean sequence.

We consider the problem of testing null hypothesis H0 : v = 0 on a sequence v

and consider families of alternatives H" : v 2 V". Here V" = fvg is a given family

of sets in the sequence space l2, "! 0 is an asymptotical parameter.

These problems are studied in asymptotically minimax setting (as " ! 0). A

family of (randomized) tests  " =  "(x);  "(x) 2 [0; 1] is characterized by the

families of the �rst kind errors �( ") = E0( ") and by the supremum of the second
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kind errors

�( "; V") = sup
v2V"

�( "; v) �( "; v) = Ev(1�  "):

Here and later Ev stands for the mean value with respect to the measure Pv which

corresponds to an observation x = � + v; v 2 l2. For �xed � 2 (0; 1) minimax

distinguishability is characterized by asymptotics of values

�(�; V") = inf
 2	�

�( ; V"); 	� = f : �( ) � �g:

It is clear that

0 � �(�; V") � 1� �:

The problem is called trivial, if �(�; V") = 1� � for any � 2 (0; 1).

The problem of sharp asymptotics is to investigate asymptotics of values �(�; V")

(up to vanishing term, as "! 0) and to construct asymptotically minimax families

of tests  ";�, such that, as "! 0,

�( "; �) = � + o(1); �( ";�; V") = �(�; V") + o(1):

The problem of the rates is to obtain conditions of distinguishability:

�(�; V")! 0

and to construct minimax consistent families of tests  ";�:

�( "; �) = � + o(1); �( ";�; V") = o(1);

or to obtain conditions of indistinguishability (asymptotical triviality):

�(�; V")! 1� �:

1.2 Alternatives type of ellipsoids and Sobolev or Besov

balls and bodies

Certainly, the main point for this setting is a family of alternatives V". It is clear

that sets V" must not contain any points which are close enough to zero. Also

often sets V" must not be "wide" enough (see [9] for discussion). Simple enough

and important class of such sets V" = V"(�; �") are ellipsoids with "small" ellipsoids

removed:

V"(�; �") = Eq;s(R=") n Ep;r(�"="); � = (�;R); � = (p; q; r; s) 2 �; (1.1)

here Ep;r(R=") is lp-ellipsoid in sequence space of of power sequence of semi-axes

ai = i
�r
R=":

Ep;r(R) = fv 2 l2 :
1X
i=1

i
rpjvijp < (R=")pg
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with evident modi�cation for p =1. The factor "�1 corresponds to normalization

in white Gaussian noise model (1.10) (see later). We denote

� = f(p; q; r; s) : 0 < p; q � 1; �1 < r; s <1g;

a family �" > 0; �" ! 0 is given. The case r = 0 corresponds to lp-balls removed.

(later in this section we explain the reasons that we consider cases r 6= 0.)

For ellipsoidal case with particular 0 < p; q � 1; s > 0 and lp-balls removed

problems of sharp asymptotics had been studied by Ermakov [4] (the case p=q=2),

by Ingster [8, 9] (0 < p = q � 1) , by Suslina [18, 19] (0 < p; q <1; p 6= q). The

case of Besov body with L2-ball removed have been studied by Ingster and Suslina

[12].

The results of these papers show that di�erent types of asymptotics arise in

these problems. Full description of sharp asymptotics for ellipsoidal case (� 2 �)

had been obtained by Ingster and Suslina [11]. It was described a partition of the

set � onto regions with di�erent types of asymptotics: �C (classical), �T (trivial),

�D (degenerate) and �Gl
; l = 1; :::; 5 (Gaussian of two main: l = 1; 2 and some

"boundary" types: l=3, 4, 5). Asymptotically minimax families of tests for the

regions �D and �Gl
(minimax consistent for the region �C ) were constructed as

well.

Remind main results [11]. If p; q <1; then put :

� = �(�) = qs�pr; � = �(�) = pq(s�r); I = I(�) = 2q(p�2)s�2p(q�2)r+p�q;

if q =1, then I = I(�) = 2s(p� 2)� 2rp� 1;

rp =

8><
>:
�1=4 + 1=p; if p � 2 ,

�1=2p; if 2 < p <1 ,

0; if p =1 .

Trivial type corresponds to equality: �(�; V") = 1� � for small enough R and

�"=". The set �T is de�ned by the inequality r � rp and joint with following

inequalities. If p; q <1, then8>>><
>>>:
� � 0 & � � 0 & I � 0; if 2 > p > q ,

� � q � p & I � 0; if 2 < p < q ,

� � 0 & � � 0; if p � 2; p > q ,

� � q � p; if p � 2; p � q or p = q > 2.

If q =1; p <1, then

�
s� r � 1=p; if p < 2 ,

s� r � 1=p & I � 0; if p � 2 ,

and if p =1; q � 1, then s � r and r � 0.

Classical type of the rates is characterized by relations:

�(�; V")! 1�� if and only if �"="! 0; �(�; V")! 0 if and only if �"="!1:
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The region �C is de�ned by the inequality: r < rp:

Degenerate type of sharp asymptotics is de�ned by the relation

�(�; V") = (1� �)�

0
@
s
2 log(R=�")

s� r
� �

s=(s�r)
"

R
�r=(s�r)

"
�1

1
A+ o(1): (1.2)

Here and later � stands for distribution function of a standard Gaussian distribu-

tion. Degenerate type arises in the region � 2 �D where

�D = f� 2 �T : s > r > 0; � � 0g

and �T is the complement of �T .

The relations (1.2) implies the following rates in the region �D. Introduce

critical radiuses of removing sets (rates in Lepski and Spokoiny [14], Spokoiny

[17]) :

�
�

"
(�) = R

�
"=R)2log "�1

�(s�r)=2s
:

Put �(�) = (2=s)(s�r)=2s: Then for any � 2 (0; 1) one has

�(�; V")! 0 if lim inf �"=�
�

"
(�) > �(�); (1.3)

and

�(�; V")! 1� � if lim sup �"=�
�

"
(�) < �(�): (1.4)

Gaussian types are described by the relations

�(�; V") = �(T� � u"(�; �")) + o(1); (1.5)

Here T� stands for (1��)-quantile of distribution function of a standard Gaussian

distribution : �(T�) = 1��. The function u"(�; �") = u" is characterized minimax

distinguishability in the problem. For two main types one has:

u
2
"
(�; �") � d(�)(�"=R)

Ak(�)("=R)�Bk(�); k = 1; 2; (1.6)

where d(�) is a positive bounded function. For the type G1 one has:

B1(�) = 4; A1(�) =

8<
:

p(4�q+4sq)

pq(s�r)+p�q
; if q <1

p(4s�1)

p(s�r)�1
; if q =1

and for the type G2 one has:

A2(�) =

(
p(1+2sq)

qs�pr
; if q <1

2p; if q =1

B2(�) =

8<
:

2pq(s�r)+p�q

qs�pr
; if q <1

2p(s�r)�1

s
; if q =1

:
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The region �G = [5
l=1�Gl

is the complement of �T [ �C [ �D. Boundary types

�Gl
; l = 3; 4; 5 correspond to equalities I = 0 and r = rp; the main regions �Gl

; l =

1; 2 correspond to inequalities I < 0 and I > 0.

The relations (1.5), (1.6) imply exact rates for the regions �Gl
; l = 1; 2:

�(�; V")! 0 if and only if �"=�
�

"
(�)!1; (1.7)

�(�; V")! 1� � if and only if �"=�
�

"
(�)! 0 (1.8)

where critical radiuses �
�

"
(�) are are de�ned by the relations

�
�

"
(�) = "

Bk(�)=Ak(�); k = 1; 2: (1.9)

The partition of the planes of parameters fr; sg onto regions with the asymp-

totics of di�erent types for �xed values 0 < p <1; 0 < q � 1 is presented on the

�g. 1-4. Here

x
� = (1=4� 1=p; 1=4� 1=q); y� = (�1=2p; �1=2q)

with evident modi�cation for q =1.
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Certainly, the problem under consideration is equivalent to well known problem

of testing H0 : s = 0 versus a family of alternatives H" : s 2 S" � L2(0; 1) in

Gaussian white noise model:

dX"(t) = s(t)dt+ "dW (t); t 2 [0; 1]; s 2 L2(0; 1); " > 0; (1.10)
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for a �xed orthonormal basis f�ig. It su�ces to consider sequences of normalized

empirical Fourier coe�cients xi and sets V" = fv"(s); s 2 S"g of normalized Fourier
coe�cients:

xi = "
�1
Z 1

0
�i(t)dX"(t); vi;"(s) = "

�1
Z 1

0
�i(t)s(t)dt:

Minimax hypothesis testing problem for Gaussian white noise model is de�ned

by a family of sets S" � L2(0; 1). Analogously to above, Sobolev or Besov balls

with "small" Sobolev or Besov balls removed are most interesting and important

functional sets S" in this problem:

S"(~� ; �") = S
�

q
(R) n S�

p
(�"); ~� = (~�; h; t; R); ~� = (p; q; �; �)

or

S"(~� ; �") = B
�

q;t
(R) n E�

p;h
(�"); ~� = (~�; h; t; R):

Here S�
q
(R) is subset of Sobolev ball of a radius R of � > 0-smooth functions in

Lq-norm, 1 � q � 1, (or subset of Lq-ball for � = 0) which is contained in L2(0; 1),

B
�

q;t
(R) is similar subset of Besov ball (see Triebel [20] for de�nitions).

For the case of Sobolev balls with Lp-balls removed (� = 0) and for particular

p; q; � > 0 exact rates have been studied by Ingster [6] (p = q = 2) and [7]

(p � 2; p � q or 2 � p = q � 1, by Lepski and Spokoiny [14] and by Ingster and

Suslina [12] (p = 2; q < 2). Critical radiuses were calculated in these papers. If

p < 1, then these critical radiuses imply relations analogous to (1.7); if p = 1,

then relations analogous to (1.3), (1.4) hold but with di�erent �1(�); �2(�) in

these relations. It was shown by Lepski [13] and by Lepski and Tsybakov [15] that

�1(�) = �2(�) for the case p = q =1.

The case of Besov balls with Lp-balls removed have been studied by Spokoiny

[17]. It was described 3 types of rates (which are analogous to the types G1; G2

and D ); critical radiuses ( up to log log-factor for the types analogous to G1; G2)

have been obtained in this paper. For Besov bodies case almost full description of

the rates have been obtained by Ingster and Suslina [11].

These studies were based on the wavelet transformation s ! v = fv�;jg; v�;j =
(s; ��;j)=" where �i; i = (�; j) 2 J , is some orthonormal pyramidal sequence of

wavelet functions; here J = fi = (�; j) : � = 1; : : : ;max(1; 2j); �j(0) � j < 1
(see Cohen et al. [2]; Donoho et al. [3]; Spokoiny [17] for example). To simplify

notations, we assume j(0) = 0 later.

Using well known embedding theorems [2, 3] one can reduce the problem of

the rates for alternatives S" = S"(~� ; �") in functional space to similar problem

for alternatives V" = V"(~� ; �") in the space of sequences of normalized wavelet

coe�cients where V"(�; �") is Besov body with "small" Besov body removed:

V"(�; �") = Bq;t;s(R=") nBp;h;r(�"="); � = (�; h; t; R)

and the relations between parameters ~� and � are de�ned by equalities

r = � + 1=2� 1=p; s = � + 1=2� 1=q: (1.11)
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Remind that Bp;h;r(R) = fv =2 l2 : fr;p;h(v) � Rg is Besov ball of the radius R > 0

where if p; h <1, then

fr;p;h(v) =

0
BB@X

j

0
B@2jr

0
@ 2jX
�=1

jv�;jjp
1
A
1=p
1
CA
h
1
CCA
1=h

;

if p < h =1, then

fr;p;h(v) = sup
j

0
B@2jr

0
@ 2jX
�=1

jv�;jjp
1
A
1=p
1
CA ;

if h � p =1, then we have analogous modi�cations.

There are some reasons that we consider cases of removing ellipsoids, Besov

bodies and balls with r 6= 0 and � 6= 0 in [11] and here.

First, if p 6= 2, then Lp-ball in the functional space (� = 0) roughly corresponds

not to lp-ball in sequense space but to ellipsoid or Besov body with r = 1=2� 1=p.

Next, the cases � 6= 0 correspond to hypothesis testing on derivatives or on

integrals of a signal which is of interest in many problems.

Particularly, the case � = �1 in the model of unknown distribution density

corresponds to hypothesis testing problem on distribution function where classical

asymptotics hold. It is of interest to describe the \boundary" between classical

and nonclassical asymptotics (the results of [11] give the answer on this question,

see above).

It was shown in [11] that (with an exception of "boundary" types) the rates do

not depend on parameters t; h. The same partition of the set � = f�g onto regions
with di�erent types of the rates holds for Besov bodies case. The relations (1.7)

and (1.3), (1.4) (may be, with di�erent �1(�); �2(�)) hold in this regions. By the

relation (1.11) it implies similar partition of the set ~� = f~�g for the cases of Besov
and Sobolev balls which extends results of previous papers. For example, vertical

half-lines on the �g. 1 { 4 correspond to Sobolev or Besov balls with parameters

q; � = s� 1=2 + 1=q and Lp-balls removed: � = r � 1=2 + 1=p = 0.

Minimax consistent families of tests were constructed for Besov bodies case. By

applying inverse wavelet transformation, this yields minimax consistent families of

tests for the cases of Besov and Sobolev balls.

1.3 Adaptive setting

Important point in results [16] and [11] is that asymptotically minimax families of

tests for ellipsoidal case (or minimax consistent families of tests for Besov bodies

case) do not depend on parameters �;R; �" for � 2 �D. It means that there exists

common family of tests which is asymptotically minimax (or consistent) for all � 2
�D (and uniformly on any compact � = K � D; D = [c; C] � R

1
+; K � Int(�D);

analogously one can propose common family of minimax consistent tests for K �

8



Int(�C). Certainly it is necessary to consider alternatives V"(�) = V"(�; �"(�)) with

inf
�
�"(�)=�

�

"
(�) � �(�)

only. It means that these tests are asymptotically minimax (or minimax consistent)

for the "union" alternatives

V"(�) =
[
�2�

V"(�; �"(�)):

However it does not hold for K � �G: there exists essential dependence of

the structure of asymptotically minimax (or consistent) families of tests on � or

�; � 2 �G. This implies the problem: to construct common family of tests which

has good minimax or consistent properties for all �; � 2 �G or for � 2 K � �G
with wide enough subsets K. Of cause, radiuses of removing sets must depend on

� and be large enough to obtain the minimax consistent tests:

inf
�
�"(�)=�

�

"
(�)!1; (1.12)

here ��
"
(�) are de�ned by (1.12) ( we assume R be bounded away from 0 and 1).

One has the same question for the cases of Besov bodies, for Sobolev and Besov

balls (critical radiuses are de�ned by (1.12), (1.11)). This problem is of importance

from practical point of view by, as usual, an statistician has not information on a

degree and (or) on a norm to measure a smoothness of alternatives and a distance

from null-hypothesis.

Following to Spokoiny [16, 17] who starts considerations of this problem, we call

this setting as adaptive. Asymptotics of minimax second kind errors for "union"

alternatives V"(�) we call as adaptive as well (sharp or rate).

The case of the known p = 2; q � p; � = 0 (Lp-balls removed) and unknown

smoothness � from any interval (�0; �1) have been considered by Spokoiny [16]. It

was shown in [16] that it is not possible to construct any tests with the property

(1.12) : it is necessary to increase critical radiuses up to any power of log log "�1.

For these increased critical radiuses "adaptive" families of tests  " =  ";p have

been constructed by Spokoiny [17] in Besov bodies case with Lp-balls removed.

Under analogous to (1.3) assumptions with increased critical radiuses these tests

are minimax consistent uniformly on any compact K 2 (�G1
[ �G2

) \ f� = 0; p =

const; I 6= 0g).

2 Main results

The goal of this paper is to obtain sharp adaptive asymptotics for ellipsoidal case

and exact adaptive rates for the case of Besov with Besov bodies removed for the

main regions �G of Gaussian asymptotics. To simplicity we do not consider the

boundary cases and some sub-manifolds in these regions. Certainly these results

give adaptive rates for white Gaussian noise model (Sobolev or Besov balls with

"small" balls removed).
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Let us describe sharp adaptive asymptotics for these regions in ellipsoidal case.

Assume � � K �D where D � [c; C] � R
1
+ and K is a compact, K � �G1

[ �G2
.

Let a family of the radiuses �"(�); � = (�;R) 2 � is given. Put

V"(�) =
[
�2�

V"(�; �"(�)):

Let us consider the family of functions u"(�; �"(�)) in (1.5), (1.6) and put

u"(�) = inf
�2�

u"(�; �"(�)); H" =
q
2 log log "�1 � u"(�):

Theorem 1 Assume K has not intersection with 3-dimensional sub-manifolds

fI = 0g, fp = qg, fp = 2g and f� = 0g where � = sq(4� p)� rp(4� q). Then:

1. Following upper bounds hold:

�(�; V"(�)) � (1� �)�(H") + o(1):

2. Assume that for any � > 0 there exists an open set � = �(�) � K and

a function R(�); � 2 � such that � = (�;R(�)) 2 � and u"(�) < u"(�) + � for

� 2 �. Then following lower bounds hold:

�(�; V"(�)) � (1� �)�(H") + o(1):

The Theorem 1 shows that under assumption n.2

�(�; V"(�)) = (1� �)�(H") + o(1):

Remark 2.1. The assumption of n.2 means that in�mum u"(�) is \essential".

We can use weaker assumption: there exists an interval inK which is not \tangent"

to the hyper-surfaces f�(�) = constg; the function �(�) is de�ned by (3.35), (3.41)

later. More exactly, it is enough to assume that the set �(K) contains nontrivial

interval. However it is possible to show that for any �nite number � we can provide

better lower bounds.

Remark 2.2. The asympotics in Theorem 1 are close to degenerate type. In

fact, it is shown in the next section that there is close connection between adaptive

problem and hypothesis testing problems for degenerate type.

Let us de�ne adaptive critical radius functions ��
";ad

(�) by the relation

u"(�; �
�

";ad
(�)) =

q
2 log log "�1 +O(1):

Using (1.6) one has for � 2 �Gk
; k = 1; 2

�
�

";ad
(�) � R("=R)�Bk(�)=Ak(�)((2 log log "�1)=dk(�))

1=Ak(�): (2.1)

Note the di�erence on the rates with non-adaptive critical radiuses (1.7) in the

factor (log log "�1)1=Ak(�). These adaptive critical radiuses for � = r � 1=2 + 1=p =

0; � = s� 1=2 + 1=q correspond to adaptive rates in Spokoiny [17].

10



Using the Theorem 1 one has for �1 = �2 = 1 that

if lim inf"!0 inf
�2�

�"(�)=�
�

";ad
(�) > �1; then �(�; V"(�))! 0 (2.2)

and

if limsup
"!0 sup

�2�0

�"(�)=�
�

";ad
(�) < �2; then �(�; V"(�))! 1� � (2.3)

where �0 = f(�;R(�)); � 2 �g � �; � is an open subset Int(K) and R(�); � 2 �

is any positive function.

Let us consider the Besov bodies case. Let � = (�; h; t; R) 2 � � K � D
(3)

where D(3) = D1 �D2 �D3; Dl � [cl;1]; cl > 0; l = 1; 2; D3 � [c; C] � R
1
+ and

K � �G1
[ �G2

be such compact that K has not intersection with 3-dimensional

subset fI = 0g. Let us consider the family of functions u"(�; �"(�)) from sec. 1.3

and put

u"(�) = inf
�2�

u"(�; �"(�)):

Theorem 2 There exist such constants C = C(�); c = c(�); C > c > 0 that:

1. Let

lim inf
"!0

inf u2
"
(�)= log log "�1 > C:

Then there exist such family of tests  " that �( ") = o(1) and �( "; V"(�)) = o(1).

These relations imply �(�; V"(�))! 0 for all � 2 (0; 1).

2. Assume K has nonempty set Int(K) of interior points, there exist an open

set � � Int(K) and functions h : �! D1; t : �! D2; R : �! D3, such that

�0 = f�(�) = (�; h(�); t(�); R(�)); � 2 �g � �

and

lim sup
"!0

sup
�2�0

u
2
"
(�; �"(�))= log log "

�1
< c:

Then �(�; V"(�))! (1� �) for all � 2 (0; 1).

Using the Theorem 2 we obtain

Corollary 2.1 For Besov bodies case the rates (2.2), (2.3) hold with the adaptive

critical radiuses (2.1) and some constants �1 = �1(�); �2 = �2(�); �1 > �2 > 0.

This result for � = 0; p = const corresponds to Spokoiny [17].

Next part of the paper contains the proofs.

In the sec. 3 we obtain lower bounds. In the sec. 3.1 we describe the idea of

the lower bounds. It follows to Burnashev [1] and to Ingster [8, 9] and is based

on the consideration of collections of orthogonal signals. We extend this onto

the collections of asymptotically orthogonal product priors in the sense of scalar

product which have been introduced in [10, 11]. In the sec. 3.2 we give general

estimations for mixtures of product priors. In the sec. 3.3 we present constructions
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of asymptotically orthogonal collections for ellipsoidal case This constructions are

based on the results [11]. In the sec. 3.4 we construct orthogonal collections for

Besov body case which are analogous to [16].

In the sec. 4 we construct asymptotically minimax families of adaptive tests

for ellipsoidal case. These tests are based on the partition of the set � onto small

enough sells, on constructions of tests for all sells (this construction is based on the

results [11]) and on the "union" of these tests. Of cause, we need to increase test

thresholds which implies the loss of e�ciency.

In the sec. 5 we propose minimax consistent families of adaptive tests for Besov

body case. Test procedure is presented in the sec. 5.1. This construction is close

to [17] but di�er. The main point of the study of tests is based in the results [11]

as well.

3 Lower bounds

3.1 Idea of lower bounds: asymptotically orthogonal sig-

nals

Idea of lower bounds in the problem under consideration corresponds to Burnashev

[1] and to Ingster [8, 9].

To obtain lower bounds we will use Bayesian approach. Let �" be a sequence

of probability measures (priors) on the space l2 (we will consider measures which

are supported on �nite or on denumerable sets and there are not problems of

measurability). Let P�" be a sequence of mixtures:

P�"(A) =

Z
Pv(A)�

"(dv):

Let x be in�nitely dimensional vector of random observations with unknown proba-

bility measure P . Consider Bayesian hypothesis testing problem on observations x:

H0 : P = P0; H" : P = P�":

Let �(�; �") be minimum of the second kind errors in this problem for tests of a

level �:

�(�; �") = inf
 2	�

EP�" (1�  ):

Assume

P�"(V")! 1: (3.1)

It is well known (see [9, sec. 4.1] for example) that under (3.1)

�(�; V") � �(�; �") + o(1): (3.2)

Assume that L1-distance between P0 and P
"

�
tends to 0:

EP0 jdP�"=dP0 � 1j ! 0: (3.3)
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Then Bayesian problem if asymptotically trivial:

�(�; �")! 1� �: (3.4)

The relation (3.3) follows from stronger relation on L2-distance:

EP0

 
dP�"

dP0
� 1

!2

! 0: (3.5)

Assume that P0-distributions of Bayesian likelihood ratios are asymptotically

degenerate: for some (nonrandom) sequence C" under P0-probability

dP
"

�
=dP0 = C" + o(1): (3.6)

The relation (3.6) yields (see [9, sec. 4.4] )

�(�; �") = (1� �) C" + o(1): (3.7)

We will consider priors of the type

�
" =M

�1
MX
l=1

�
"

l
; M =M" !1: (3.8)

Assume for a moment that �"
l
= �v";l , where v";1; :::v";M ; v";l 2 l2 is an orthogonal

collection in l2:

(v";l; v";k) = 0; kvlk = u"; 1 � l < k �M

and �b is Dirac mass at a point b 2 l2. It was shown by Burnashev [1] that if

exp u2
"
= o(M), then �(�; �") = (1� �) + o(1).

Also put R" =
p
2 logM" � u" . Then (see [8, 9])

�(�; �") = (1� �)�(R") + o(1):

3.2 Asymptotically orthogonal priors

3.2.1 Indistinguishability conditions

We consider priors of product type:

�
"

l
= �";l;1 � :::� �";l;n � ::: (3.9)

which correspond to sequences ��";l = (�";l;1; :::; �";l;n; :::; ) of probability measures

on the real line R1.

Following to [10, 11] introduce scalar product for sequences �� = f�ig : �r = frig

(��; �r) =
X
i

(�i; ri) =
X
i

Z
R1

Z
R1
(euv � 1) �(du)r(dv); j��k2 =

X
i

j��ik2 =
X
i

(�i; �i):

(3.10)
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Here i is either an integer for ellipsoidal case or pyramidal index i = (�; j) 2 J for

Besov body case. It is clear that

(�i; ri) = EP0;1

 
dP�i;1

dP0;1

dPri;1

dP0;1
� 1

!
= EP0;1

dP�i;1

dP0;1

dPri;1

dP0;1
� 1

where P�;1 is a mixture of one-dimensional Gaussian measures Pv;1 = N(v; 1). By

this equality

EP0

 
dP�̂

dP0
� 1

! 
dPr̂

dP0
� 1

!
=

Y
i

EP0;1

 
dP�i;1

dP0;1

dPri;1

dP0;1

!
� 1

=
Y
i

 
1 +

X
i

(�i; ri)

!
� 1 � exp (��; �r)� 1;

where

�̂ =
Y
i

�i; r̂ =
Y
i

ri:

By (3.8) this implies

EP0

 
dP�"

dP0
� 1

!2

= M
�2

MX
l;k=1

EP0

  
dP�"

l

dP0
� 1

! 
dP�"

k

dP0
� 1

!!

� M
�2

MX
l;k=1

(exp(��";l; ��";k)� 1):

The estimations above yield following indistinguishability conditions analogous

to Burnashev [1] :

Lemma 3.1 Assume M =M" !1 and

sup
1�l<k�M

(��";l; ��";k) = o(1); sup
1�l�M

exp(k��";lk2) = o(M):

Then (3.5) and (3.4) hold. If also inf1�l�M �
"

l
(V") = 1�o(1), then �"(�; V")! 1��

for any � 2 (0; 1).

3.2.2 Asymptotically sharp lower bounds

Let us consider statistics

L" = dP�"=dP0 =M
�1

MX
l=1

L";l; L";l = dP�"
l
=dP0; l";l = log

�
dP�"

l
=dP0

�
:

Denote

t" =
q
2 logM"; u";l = k��";lk; �";l;k = (��";l; ��";k)=u";lu";k; �";l = l";l=u";l + u";l=2:

Thus L";l = exp(�
�u2

";l
=2+";lu";l): Let ��(x; y) be distribution function of Gaussian

random variables X; Y with zero means, unit variance and E(XY ) = �.
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Put the assumptions

A1.

sup
1�l�M"

ju";l � t"j = O(1); sup
1�l<k�M"

�";l;k = o(t�2
"
):

Assume also for some � > 0

sup
1�l�M"

sup
x2R1

jP0(�";l < x)� �(x)j = O(M2(1+�)
"

) (3.11)

and

sup
1�l<k�M"

sup
x2R1

jP0(�";l < x; �";k < y)� ��";l;k(x; y)j = O(M2(1+�)
"

): (3.12)

The assumptions (3.11) and (3.12) are small stronger that asymptotical normality

of log-likelihood ratios l";l.

Let us consider truncated statistics L";l:

L̂";l(x) = L";l(x)1f�";l<t")g(x):

Put X" = fx : L̂";l(x) = L";l(x)g and X" be the complement of X". By (3.11)

P0(X") �
MX
l=1

P0(�";l � t") � o(1) +M"�(�t") = o(1): (3.13)

By (3.13) one can obtain (3.4) from the relation: under P0-probability

L̂" =M
�1

MX
l=1

L̂";l = C" + o(1); C" =M
�1

MX
l=1

�(t" � u";l): (3.14)

By Chebyshev inequality to obtain (3.14) it is enough to check that uniformly

on l; k = 1; :::;M; l 6= k

E0L̂";l = �(t" � u";l); E0L̂
2
";l
= o(M); Cov0(L̂";l; L̂";k) = o(1): (3.15)

To check (3.15) we use the equalities for [0; T ]-truncated moments of ran-

dom variables (X; Y ) with distribution functions F (x) = P (X < x); F (x; y) =

P (X < x; Y < y):

Z
T

0
xdF (x) =

Z
T

0
(1� F (x))dx;

Z
T

0

Z
T

0
xydF (x; y) =

Z
T

0

Z
T

0
(1� F (x; y))dxdy

which imply inequalities for di�erences of moments of bounded random variables

0 � Xl; Yl � T with distribution functions Fl(x); Fl(x; y); l = 1; 2:

jEXk

1 � EX
k

2 j � T
k sup

x

jF1(x)� F2(x)j; k = 1; 2; (3.16)

jEX1Y1 � EX2Y2j � T
2 sup
x;y

jF1(x; y)� F2(x; y)j: (3.17)
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Introduce Gaussian random variables �1; :::; �M with zero means, unit variances

and E�l�k = �";l;k; 1 � l < k �M . Put

Xl = exp(�u2
";l
=2 + u";l�l); X̂l = Xl1f�l<t"g; Tl = exp(�u2

";l
=2 + u";lt"):

By (3.18), (3.11) and (3.12) one has:

E0L̂";l = EX̂l + o(Tl=M
2(1+�)); E0L̂

2
";l
= EX̂

2
l
+ o(T 2

l
=M

2(1+�));

Cov0(L̂";l; L̂";k) = Cov(X̂l; X̂k) + o(T 2
l
=M

2(1+�)):

For Gaussian variables �1; :::; �M one has

EX̂l = P (�l + u";l < t") = �(t" � u";l);

EX̂
2
l

= exp(u2
";l
)�(t" � 2u";l) � t

�1
"

exp((t2
"
+ c

2
";l
)=2) = O(M=t")

by c";l = u";l � t" = O(1); exp(t2
"
=2) =M: Note the inequality:

sup
x;y

j��(x + a; y + b)� �(x)�(y)j � B(j�j+ jaj+ jbj) (3.18)

which holds for some B > 0 and small enough j�j; jaj; jbj. One can easily obtain

(3.18) by calculation of Hellinger distance. Using A1 and (3.18) one has

E(X̂lX̂k) = exp(�";l;ku";lu";k)�(t" � u";l � �";l;ku";k; t" � u";k � �";l;ku";l)

= �(t" � u";l)�(t" � u";k) + o(1):

The estimations above and (3.16), (3.17) imply (3.15) and following lower

bounds.

Lemma 3.2 Assume M = M" ! 1 and the assumptions A1, (3.11) { (3.12)

hold. Then (3.7) holds with C" de�ned by (3.14). If �"
l
(V") � 1� �"; l = 1; :::;M

also, then (3.8) holds for any � 2 (0; 1).

3.2.3 Sequences of symmetrical three-point measures

We need to control the assumptions of asymptotical normality (3.11) { (3.12).

To our arms it is enough to consider the case of product priors (3.9) where �";l;i =

�(z";l;i; h";l;i) are symmetrical three-point measures at the points 0 , z";l;i and �z";l;i:

�(z; h) = (1� h)�0 +
h

2
(�z + ��z) (3.19)

(or two-point measures, if h";l;i = 1) and ��";l = f�(h";;l;i; z";l;i)g correspond to two

sequences �h";l; �z";l with h";l;i 2 [0; 1]; z";l;i � 0: Here and later �b is Dirac mass at

a point b 2 R1.

For these sequences one has:

(��";l; ��";k) =
X
i

(�";l;i; �";k;i) = 2
X
i

h";l;ih";k;i sinh
2(z";l;iz";k;i=2); (3.20)
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k��";lk2 =
X
i

k�";l;ik2 = 2
X
i

h
2
";l;i

sinh2
z
2
";l;i

2
: (3.21)

The log-likelihood ratio l";l = log
�
dP�"

l
=dP0

�
is of the form

l";l =
X
i

log(1 + h";l;i�(xi; z";l;i)); �(x; z) = e
�z2=2 cosh zx� 1:

If x is a standard Gaussian variable, then

E�(x; z) = 0; E�2(x; z) = 2 sinh2
z
2

2
; E(�(x; z1)�(x; z2)) = 2 sinh2

z1z2

2
; (3.22)

and for any v 2 R1

E�(x+ v; z) = 2 sinh2
zv

2
; V ar�(x+ v; z) = 2 sinh2

z
2

2
+ (ez

2 � 1) sinh2 zv: (3.23)

Note that

1 + h�(x; z) � 1� h(e�z
2
=2 � 1) � 1� k�(h; z)k=

p
2: (3.24)

Also for an integer k > 1 one has

E�
2k(x; z) � C1(k) exp(C2(k)z

2)(E�2(x; z))k (3.25)

where C1(k) > 0; C2(k) > 0 are constants (see the Lemma 1 in [10]).

Put the assumptions:

A2. Uniformly on l; 1 � l �M" for a family ��" = f�";ig = ��";l one has:

k��"k2 � logM" � log log("�1):

A3. For some small enough � > 0 uniformly on l; 1 � l � M" for a family

��" = f�";ig = ��";l one has:

sup
i

k�";ik=k��"k = O("�0): (3.26)

A4.1. Uniformly on l; 1 � l � M for a family ��" = f�";ig = ��";l one has:

sup
i
z";i = O(1):

A4.2. For all � 2 (0; 1) uniformly on l; 1 � l �M for a family ��" = f�";ig =
��";l; �";i = �(h";i; z";i) one has:X

i

exp(�z2
";i
)k�";ik2 = O(k��"k2): (3.27)

Put I";c = fi : z2
";i
> c log "�1g: Note that under assumptions A2, A3 and A4.1

or A4.2 for any �1 2 (0; �); c > 0 one hasX
i2I";c

k�";ik2 = O("c�k��"k2) = O("c�1): (3.28)
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Lemma 3.3 Assume A1, A2, A3 and A4.1 or A4.2. Then for small enough � > 0

�1;" = sup
1�l�M"

sup
x2R1

jP0(�";l < x)� �(x)j = O("�) (3.29)

and

�2;" = sup
1�l<k�M"

sup
x2R1

jP0(�";l < x; �";k < y)� ��";l;k(x; y)j = O("�) (3.30)

where �";l;k = (��";l; ��";k)=k��";lkk��";kk:

Proof. First for any c > 0 we can assume that z2
";i
� c log "�1. In fact, by (3.28)

E0j
X
i2I";c

h";l;i�(xi; z";l;i)j2 =
X
i2I";c

E0(h";l;i�(xi; z";l;i))
2 =

X
i2I";c

k�";ik2 = O("c�1):

Note the relation: for any b 2 (0; 1) one can �nd such B > 0 that jlog(1 + x)� xj �
Bx

2 for all x � �b. Using this relation we easily get:

E0j
X
i2I";c

log(1 + h";l;i�(xi; z";l;i))j

� E0j
X
i2I";c

h";l;i�(xi; z";l;i)j+B
X
i2I";c

k�";ik2 = O("c�1=2):

These relations and Chebyshev inequality imply the possibility of rejection of

"tails". Put

l
(1)
";l

=
X
i

�
h";l;i�(xi; z";l;i)� h

2
";l;i
�(xi; z

2
";l;i

)=2
�
;

l
(2)
";l

=
X
i

�
h";l;i�(xi; z";l;i)� k�";l;ik2=2)

�
;

�
(1)
";l

= k��";lk�1(l(2)";l + j��";lk2=2) = k��";lk�1
X
i

h";l;i�(xi; z";l;i):

Note that for any b 2 (0; 1) one can �nd such B > 0 that for any x � �b

j log(1 + x)� x+ x
2
=2j � Bjxj3:

By this inequality and by (3.21), (3.22) { (3.25) one has for some B1 > 0 and small

enough c > 0; 0 < � < �0 � B1c:

E0jl";l � l
(1)
";l
j � BE0

X
i

h
3
";l;i
j�(xi; z";l;i)j3 � B1

X
i

k�";l;ik3 exp(B1z
2
";l;i

)

� B1(sup
i

k�";l;ik) "B1c
X
i

k�";l;ik2o("�):

Also by analogous estimation for small enough c > 0

E0(l
(1)
";l
� l

(2)
";l
)2 � BE0

X
i

h
4
";l;i
�
4(xi; z";l;i) = o("�):
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By E0�
(1)
";l

= 0; E0(�
(1)
";l
)2 = 1; E0(�

(1)
";l
�
(1)
";k
) = �";l;k the relations (3.29), (3.30)

follow from analogous relations for �
(1)
";l

and from one- and two-dimensional von

Bahr-Essen inequalities:

�
(1)
1;" = � A(1)

P
i h

3
";l;i
E0j�(xi; z";l;i)j3
k�";lk3

= o("�);

�
(1)
2;" = � A(2)

P
i

�
h
3
";l;i
E0j�(xi; z";l;i)j3 + h

3
";k;i

E0j�(xi; z";k;i)j3
�

((1� j�";l;ij)(k�";lk2 + k�";kk2))3=2
= o("�);

where A(l); l = 1; 2 are absolute constants. The Lemma 3.3 is proved.

3.3 Lower bounds for ellipsoids

To obtain lower bounds of the Theorem 1 we can assume that

u"(�) =
q
2 log log "�1 +O(1):

Fix small � > 0 and let � � K be such set that for any � = (�; R(�)); � 2 � one

has

u"(�) � u"(�) < u"(�) + �: (3.31)

At �rst assume � � �G1
. It was shown in [11, sec. 3.1, 6.4, 6.5] that for

any compact K � �G1
; D � R

1
+, for any � � K � D, for any b > 0, for any

� = (�;R) 2 �; �" > 0 such that b < u"((�; �") < "
�� for small enough � =

�(K; c; C) > 0 one can �nd such values m = m"(�; �"); z0 = z0;"(�; �") and such

sequences ��" = ��"(�; �") of three-point measures �i;" = �(hi;"(�; �"); zi;"(�; �")) that

the following properties hold:

P1. Uniformly on � 2 � the relations (3.26), (3.27) are ful�lled.

P2. Uniformly on � 2 �

k��"(�; �")k = u"(�; �") + o(1); �"(V"(�; �"))! 1: (3.32)

P3. Uniformly on � 2 � for some � = �(�) > 0

u
2
"
(�; �") = c0(�)mz

4
0(1 + o("�));

c1(�)m
1+pr

z
p

0 = (�"=")
p(1 + o("�));

c2(�)m
1+qs

z
q

0 = ("=R)�q(1 + o("�)):

Here cl(�); l = 0; 1; 2 are positive functions which are continuous and bounded

away from 0 and 1 on any compact K � �G1
.

These relations imply that uniformly on � 2 � one has:

m"(�; �") = d0(�)
�
u
1=2
"
(�; �")R=")

��(�)
(1 + o("�)); (3.33)

z0;"(�; �") = d1(�)u
1=2
"
(�; �")

�
u
1=2
"
(�; �")R=")

�
��(�)=4

(1 + o("�)) (3.34)
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where

�(�) = (s+ 1=q � 1=4)�1 > 0; � 2 �G1
; (3.35)

dl(�); l = 0; 1 are positive functions which are continuous and bounded away from

0 and 1 on any compact K � �G1
.

The sequences ��"(�; �") correspond to solutions of special extreme problems

(see[11, sec. 5.4] and the relation (5.60) in [11]; also sec. 4.2 later). The sequences

hi;"(�; �") = hi(m; z0; �); zi;"(�; �") = zi(m; z0; �) correspond to solutions of special

systems of equations (see [11, sec. 6.2] and the relations (6.83), (6.84) in [11]) with,

possibly, small decreasing R, increasing �" and with "rejection of tails" (replacing

of hi;" or zi;" onto 0 for i > n
+
"
and i < n

�

"
) to obtain the second relation of the

property P2 (see [11, sec. 6.3.2 and 6.5.4]).

Let us consider two families of values � (l)
"

= �
(l) = (�(l); R(l)); ; �(l)

"
); l = 1; 2

and corresponding families m
(l)
"
= m"(�

(l)
; �

(l)
"
) , ��(l)

"
= ��"(�

(l)
; �

(l)
"
): It was shown

in [11, sec. 6.7.2, Proposition 6.4] that

P4. One can �nd such constants �l = �l(�) > 0; l = 0; 1; 2; L0 > 0; B >

0; b > 0 that for 0 < � < �0; L < L0, such �l 2 � that b < ��(l)
"
< "

��
; k�1 � �2k <

L; m
(1)
"
< m

(2)
"

and for small enough " > 0 the following inequality holds

(��(1)
"
; ��(2)

"
)

k��(1)" kk��(2)" k
� B

0
@
 
m

(1)
"

m
(2)
"

!�1
+ "

�2

1
A : (3.36)

Put

M" � log "�1=(log log "�1); �" = (log log "�1)b= log "�1; b 2 (0; 1):

By M"�" = o(1), one can construct such collections

�" = f�1;"; :::; �M;"g � �; �l;" = (�l;"; R(�l;")); �l;" 2 �; l = 1; :::;M"

that

j�(�l;")� �(�k;")j > �"; 1 � l < k �M":

By choose M"

t" =
q
2 logM" =

q
2 log log "�1 + o(1):

Thus the assumption A2 and �rst part of the assumption A1 hold.

Denote ��";l = ��"(�l;"; �"(�l;")); ml;" = m"(�l;"; �"(�l;")). Let l 6= k; ml;" < mk;".

It follows from (3.31) and (3.33) that for some B > 0; B1 > 0 one has

ml;"=mk;" � B"
j�(�l;")��(�k;")j � B"

�" � B(log "�1)�B1 : (3.37)

Put

�";l;k =
(��";l; ��";k)

k��";lkk��";kk
; 1 � l < k �M":

Using (3.36), (3.37) we have for some B2 > 0:

sup
1�l<k�M"

�";l;k � B(log "�1)�B2 = o((logM")
�1) (3.38)
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which implies the second part of the assumption A1. Using Lemmas 3.2, 3.3 and

the properties P1 { P2 of constructed sequences ��";l we obtain the lower bounds of

the Theorem 1 for the case � � �G1
.

Assume � � �G2
. Also using results [11, sec. 3.1, 6.4, 6.5], as above, for any

compact K � �G2
; D � R

1
+, for any � � K �D, for any b > 0, any � = (�;R) 2

�; �" > 0 such that b < u"((�; �") < "
�� for small enough � = �(�) > 0 one can

�nd such values n = n"(�; �"); h0 = h0;"(�; �") and such sequences ��" = ��"(�; �")

of three-point measures �i;" = �(hi;"(�; �"); zi;"(�; �")) that uniformly on � 2 � the

properties P1, P2 hold. The property P3 is replaced onto

P3a. Uniformly on � 2 � for some � = �(�) > 0

u
2
"
(�; �") = c0(�)nh

2
0(1 + o("�));

c1(�)n
1+pr

h0 = (�"=")
p(1 + o("�));

c2(�)n
1+qs

h0 = ("=R)�q(1 + o("�)):

Here cl(�); l = 0; 1; 2 are positive functions which are continuous and bounded

away from 0 and 1 on any compact in �G2
.

These relations imply that for some � = �(�) > 0

n"(�; �") = d0(�)
�
u
1=q
"
(�; �")R=")

��(�)
(1 + o("�)); (3.39)

h0;"(�; �") = d1(�)u"(�; �")
�
u
1=q
"
(�; �")R=")

�
��(�)=2

(1 + o("�)) (3.40)

where

�(�) = (s+ 1=2q)�1 > 0; � 2 �G2
; (3.41)

dl(�); l = 0; 1 are positive functions which are continuous and bounded away from

0 and 1 on any compact K � �G2
.

Let ��(l)
"

= ��"(�
(l)
; R

(l)
; �

(l)
"
); m(l)

"
= m"(�

(l)
; R

(l)
; �

(l)
"
) l = 1; 2: It was shown in

[11, sec. 6.7.2, Proposition 6.4] that

P4a. One can �nd such constants �l = �l(�) > 0; l = 0; 1; 2; L0 > 0; B >

0; b > 0 that for 0 < � < �0; L < L0, such �l 2 � that b < ��(l)
"
< "

��
; k�1 � �2k <

L; m
(1)
"
< m

(2)
"

and for small enough " > 0 the following inequality holds

(��(1)
"
; ��(2)

"
)

k��(1)" kk��(2)" k
� B

0
@
 
n
(1)
"

n
(2)
"

!�1
+ "

�2

1
A : (3.42)

Other considerations repeat the case � � �G1
.

The n.2 of the Theorem 1 is proved.

3.4 Indistinguashability conditions for Besov bodies

To obtain the lower bounds of the Theorem 2 we can assume that

c0 � u
2
"
(�; �"(�)) � c log log "�1 (3.43)
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for small enough c > 0; c0 > 0 and any (�) 2 �. We consider the cases � �
�G1

�D
3 or � � �G2

�D
3.

Following to [11, sec. 7.3] for a value B > 1 let us consider families of pyramidal

sequences of the three-point measures ��" = ��"(�; �"; B) = f�";i; i = (�; j) 2 Jg; � =
(�; t; h; R):

�";�;j =

(
�0; if j 6= j

�

(1� hj)�0 + hj(�zj + ��zj )=2; if j = j
� ; 1 � � � 2j

where �
j
� = j0; hj� = h0; zj� = 1; if � 2 �G2

;

j
� = j1; hj� = 1; zj� = z0; if � 2 �G1

;

integers j0 = j0(�; �"; B) ! 1; j1 = j1(�; �"; B) ! 1 and the positive values

h0 = h0(�; �"; B) = o(1); z0 = h0(�; �"; B) = o(1) are de�ned by the relations

(later in this section asymptotic relations are uniform on any compact in �G1
or

�G2
) (

2j1(rp+1)z
p

0 � (B�"=")
p
; 2j1(sq+1)z

q

0 � (R=B")q; if � 2 �G1
;

2j1(rp+1)h0 � (B�"=")
p
; 2(sq+1)h0 � (R=B")q; if � 2 �G2

.

In these cases

k��"(�; �"; B)k2 � u
2
"
(�; �") �

(
2j0z40 ; if � 2 �G1

,

2j1h20; if � 2 �G2

which imply (
j0 � �1(�) log2 "

�1
; if � 2 �G1

,

j1 � �2(�) log2 "
�1
; if � 2 �G2

.
(3.44)

These relations are analogous the properties P3, (3.33) and P3a, (3.39) with m =

2j1 or n = 2j0.

Also it follows from [11, sec. 7.3] that under assumption (3.43) for any B > 1

�
"(V"(�; �"(�)))! 1: (3.45)

Put

M" � log "�1= log log "�1; �" = (log log "�1)b= log "�1:

By M"�" = o(1), for any b 2 (0; 1) one can construct such collections

�" = f�1;"; :::; �M;"g � �; �l;" = (�l;"; h(�l;"); t(�l;"); R(�l;")); �l;" 2 �; l = 1; :::;M"

that

j�(�l;")� �(�k;")j > �"; 1 � l < k �M"

Put ��l = ��"(�l;"; �"(�l;"); B) with

jl =

(
j1(�l;"; �"(�l;")); if � 2 �G1

j2((�l;"; �"(�l;")); if � 2 �G2
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By choose M"; t" and (3.44)

min
1�l<k�M"

jjl � jkj � (log log "�1)b !1:

By measures in ��l are supported on one level jl, this relation implies

(��l; ��k) = 0; 1 � l < k � M"

and one can choose such c > 0 in (3.43) that for small enough � > 0

k��lk � (1� �) logM"; 1 � l � M":

Using (3.45) and the Lemma 3.1 we obtain the indistinguashability conditions

of the Theorem 2, n.2.

4 Upper bounds for ellipsoids

4.1 Methods of constructions

We need to provide such families of tests  " =  ";� that

�( ";�) � � + o(1); �( ";�; V"(�)) � (1� �)�(H") + o(1) (4.1)

where H" =
p
2 log log "�1 � u"(�):

It is enough to �nd such family  " that

�( ")! 0; �( "; V"(�)) � �(H") + o(1) (4.2)

by the relations (4.2) implies (4.1) for tests  ";� = �+ (1� �) ". The constructed
families will be unions of the collections of the tests f ";l; 1 � l �Mg:

 "(x) = max
1�l�M

 ";l(x); M =M" !1: (4.3)

For the tests (4.3) one has

�( ") �
X

1�l�M

�( ";l); �( "; v) � min
1�l�M

�( ";l; v); v 2 l2 (4.4)

and to obtain (4.2) it is enough to construct such collections of the tests  ";l and

of the sets �l � �; [1�l�M�l = � that uniformly on l; 1 � l �M

�( ";l) = o(M�1); (4.5)

�( ";l; V"(�l)) � �(H") + o(1): (4.6)

We will consider (see [11, sec. 5.3]) the tests  ";l =  (�h";l; �z";l) of the type

 (�h;�z) = 1fL�h;�z>tg[X�h;�z
; t = t" =

q
2 logM (4.7)
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which are based on the statistics

L�h;�z(x) = k��k�1
X
i

hi�(xi; zi):

Here �� = ��(�h; �z) = f�ig is a sequence of three-point measures (3.15). The set

X�h;�z = fx : supi jxij=Ti > 1g corresponds to the threshold procedure : for small

enough � > 0

(
Ti =1 if k�ik = 0 ,

Ti =
q
(2 + �)�i ; �i = log(k�ik�2)� z

2
i
(1� �) if k�ik > 0

(4.8)

(we assume Ti = 0, if supi k�ik � 1 or � � 0). These tests are de�ned by collections

�h";l = fh";i;lg; h";i;l 2 [0; 1]; �z";l = fz";i;lg; z";i;l � 0; 1 � l �M: (4.9)

Introduce families of sets

<";l = fi : �";i;l=9 � z
2
";i;l

� 9�";i;lg

and put the assumption (see the assumption B4 in [11]):

A5. Uniformly on l; 1 � l � M for some families n";l ! 1; N";l ! 1,

logn";l � logN";l, for some values � 2 (0; �0) in (4.8), where �0 > 0 is an (absolute)

constant, any i 2 <";l, any r = r(�); p = p(�); � 2 �l and small enough �
0

> 0 one

has:

j�";i;l � logN";lj < ��";i;l; N
��

0

";l
< i=n";l < N

�
0

";l
; n

rp

";l
N

1=2
"

= O((�"(�)=")
p)N �

0

";l
)

(we denote r = r(�); p = p(�) the components r; p of the vector � 2 �).

It follows from [11], the Corollary 5.2 that under assumptions A2, A3 and A4.1

or A4.2 joint with A5 on the collections (4.9) one has for small enough �1 > 0; �2 > 0

�( ";l) = �(�t") + o("�1) = o(M�1); (4.10)

�( ";l; V"(�l)) � �(t" � inf
v2V

0

"
(�l)

(��";l; ��v)=k��";lk) + o("�1): (4.11)

Here

V
0

"
(�l) =

[
�2�l

V"(�; �
0

"
(�)); �

0

"
(�) = (1� n

��2
"

)�"(�); ��v = f�vig: (4.12)

Thus it is enough to construct such family of collections (4.9) that the assump-

tions A2, A3 and A4.1 or A4.2 joint with A5 hold and such family of partitions

�l � �; [1�l�M�l = � that

min
1�l�M

inf
v2V

0

"
(�l)

(��";l; ��v)=k��";lk) � u"(�) + o(1): (4.13)
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4.2 The construction of collections of tests

To obtain the upper bounds we can assume

u"(�) = inf
�2�

u"(�; �"(�)) � sup
�2�

u"(�; �"(�)) � u"(�) + o(1) �
q
2 log log "�1: (4.14)

In fact, let u"(�; �"(�)) > u"(�) + b; b > 0: Then, by making �"(�) smaller and by

u"(�; �") is monotone and asymptotic continuous on �" (see [11, sec. 5, the Remarks

5.3 { 5.5]) we get the case u"(�; �"(�)) = u"(�)+o(1) and obtain wider alternatives

V"(�; �"(�)).

Let us consider partitions of � onto M = M" sells �l of following type. Let

� = �(1) [ �(2) where �(k) = f� 2 � : �(�) 2 K
(k)g corresponds to subsets

K
(k) = K \ �Gk

; k = 1; 2. The partitions of �(k) correspond to partitions of K(k)

by levels of the function �(�) with the step

��

"
� 1

(log log "�1)b log "�1

and to the partitions of the other parameters ( p; q; r; R ) with the step �" �
(log log "�1)�b. These yield

M" � log "�1(log log "�1)B; B = 5b;

which implies the Assumption A2.

For � 2 � let us consider the radiuses �
0

"
(�) which are de�ned by (4.10) and

the sequences fh";i(�; �0

"
(�)); z";i(�; �

0

"
(�))g which were constructed in [11, sec. 6]

(also see sec. 3.2 above. The sequences ��"(�; �") = f�(h";i(�; �"); z";i(�; �"))g of

the three-point measures (3.19) provide the minimum in extreme problem

u"(�; �") = k��"(�; �")k = inf
��2�"(�;�")

k��k

where

�"(�; �") = f�� :
X
i

E�ii
rpjvjp � (�"=")

p
;
X
i

E�ii
sqjvjq � (R=")qg; 0 < p; q <1

with evident modi�cation for q =1. By the relation (see the Lemma 5.1 in [11])

inf
��2�"(�;�")

(��"(�; �"); ��)=k��"(�; �")k = u"(�; �")

and by the embedding

f��v; v 2 V"(�; �")g � �"(�; �")

these relations imply the inequality

inf
v2V"(�;�")

(��"(�; �"); ��v)=k��"(�; �")k � u"(�; �"): (4.15)
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Put
�hl;" = fh";l;ig; �zl" = fz";l;ig; ��";l = f�(h";l;i; z";l;i)g

where

h";l;i = sup
�2�l

h";i(�; �
0

"
(�)); z";l;i = sup

�2�l

z";i(�; �
0

"
(�)):

It is clear that for any � 2 �l; v 2 l2
(��";l; ��v) � (��"(�; �

0

"
); ��v) � u"(�; �

0

"
)

and u"(�; �
0

"
) = u"(�) + o(1) by continuous properties of the functions u"(�; �").

Thus it is enough to show that

u
�

";l
= k��";lk � u"(�) + o(1) (4.16)

and the collections of sequences ���
";l
; 1 � l � M satisfy to the Assumptions A3 {

A5.

Remind that the families �h"(�; �"); �z"(�; �") are de�ned by families

m"(�; �"); z0;"(�; �"); � 2 �G1

or by families

n"(�; �"); z0;"(�; �"); � 2 �G2

and by functions cl(�); l = 0; 1; 2 with the properties P3 and P3a (see sec. 3.3).

Also it follows from the representation of these functions (see [11], the relations

(6.100), (6.127) ) that cl(�); l = 0; 1; 2 are uniformly continuous and smooth on

any compact K which has not intersection with sub-manifolds fI = 0g; fp =

qg; fp = 2g and f� = 0g. This implies Lipchisian properties of the functions

dl(�); l = 0; 1 in the relations (3.33) - (3.35), (3.39) - (3.41).

By these relations one has the relations for the values

m
(k)
"

= m"(�k; �
0

"
(�k)); z

(k)
0;" = z0;"(�k; �

0

"
(�k)); k = 1; 2 :

uniformly on �1; �2 2 �(1) for some � > 0

m
(1)
"

m
(2)
"

=
d0(�1)

d0(�2)

(u
1=2
";1R1)

�(�1)

(u
1=2
";2R2)�(�2)

"
�(�2)��(�1)(1 + o("�));

z
(1)
0;"

z
(2)
0;"

=
d1(�1)

d1(�2)

u
1=2
";1 (u

1=2
";1R1)

��(�1)=4

u
1=2
";2 (u

1=2
";2R2)��(�2)=4

"
(�(�1)��(�2))=4(1 + o("�));

or for the values n(k)
"

= n"(�k; �
0

"
(�k)); h

(k)
0;" = h0;"(�k; �

0

"
(�k)); k = 1; 2: uniformly

on �1; �2 2 �(2) for some � > 0

n
(1)
"

n
(2)
"

=
d0(�1)

d0(�2)

(u
1=q1
";1 R1)

�(�1)

(u
1=q2
";2 R2)�(�2)

"
�(�2)��(�1)(1 + o("�));

h
(1)
0;"

h
(2)
0;"

=
d1(�1)

d1(�2)

u";1(u
1=q1
";1 R1)

��(�1)=2

u";2(u
1=q2
";2 R2)��(�2)=2

"
(�2(�1)��2(�2))=2(1 + o("�));
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here u";k = u";1(�k; �
0

"
(�k)), the function �(�) is de�ned by (3.35) and (3.41).

By the choose of partitions one has

sup
�k2�l; k=1;2

jr1� r2j+ js1� s2j+ jp1� p2j+ jq�11 � q�12 j+ jR1�R2j = O(�") (4.17)

Also by the relations above, by (4.14) and by Lipchisian properties of the func-

tions dl(�); l = 0; 1 one has for �l � �(1)

sup
�k2�l; k=1;2

jm(1)
"
=m

(2)
"
� 1j+ j~z(1)0;"=z

(2)
0;" � 1j = O((log log "�1)�b) (4.18)

and for �l � �(2)

sup
�k2�l; k=1;2

jn(1)
"
=n

(2)
"
� 1j+ j~h(1)0;"=h

(2)
0;" � 1j = O((log log "�1)�b): (4.19)

It follows from [11, Proposition 6.3] that if K has not intersection with sub-

manifolds fI = 0g; fp = qg; fp = 2g and f� = 0g, then the relations (4.17)

{ (4.19) imply for b > 1=2

u
�

";l
= u"(Vl)(1 +O((log log "�1)�b) = u"(�) + o(1)

which imply (4.16). Also using the Propositions 6.1, 6.2 and by the Corollaries

6.1, 6.2 in [11] (where the asymptotics of the sequences �h"(�); �h"(�) are described)

analogously to the estimations in [11, sec. 6.3.2, sec. 6.5.4] one can check that the

Assumptions A2, A3 and A4.1 (for p � q) or A4.2 joint with A5 (for p > q) hold.

Thus the upper bounds of the Theorem 1, n. 1 are proved.

5 Upper bounds for Besov bodies

5.1 Test procedure

For Besov bodies case we can assume u"(�)=
p
log log "�1 > C + o(1) for large

enough C = C(�) > 0. Under this assumption wee need to construct such family

of tests  " that

�( ")! 0; �( "; V"(�))! 0: (5.1)

We assume later without loss of generality that uniformly on � 2 �

u"(�; �"(�)) � C

q
log log "�1: (5.2)

Using standard embedding properties we can assume that t = 1 and h � p.

For this case the asymptotics of the values u"(�; �"(�)) have been studied in [11,

sec. 7]. We may use methods analogous to previous section which are based on

small enough partitions of � onto sells f�lg and on using of unions of tests for all

sells. However we prefer to give direct constructions.
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First, put

 ";0 = 1X";0
; X";0 = fmax

j
max
1�i�2j

fjxijj > T";jg (5.3)

where

T";j =

8<
:
q
2(log 2)J";0 if j < J";0,q
2(log 2)j + 2 log j); if j � J";0

; J";0 � log log "�1:

Note that these tests provide distinguishability for the region D of degenerate type

(see sec. 1.2 and [11, Theorem 7]).

Next, for j � J";0 let us consider statistics

lj = 2�(j+1)=2
2jX
�=1

(x2
�j
� 1)

and note that

E0lj = 0; E0l
2
j
= 1; E0l

4
j
= O(1); (5.4)

Evlj = 2�(j+1)=2
2jX
�=1

v
2
�j
; V arvlj � 1 + 2�(j�1)

2jX
�=1

v
2
�j
: (5.5)

Put

 ";1 = 1X";1
; X";1 = fmax

J";0�j

lj=Tj > 1g; Tj = 2
q
log j: (5.6)

At last, �x a value c 2 (0; log2 2=C2(2)) where C2(2) is the constant from (3.25)

and put

K = K(j) = (log log j)=2; K(c; j) = K + cj
1=2
:

For levels

j : J";0 � j � J";1 � (log log "�1) log "�1

let us consider collections of statistics

lj;k =
2jX
�=1

l�;j;k = (2j�1 sinh2(z2
j;k
=2))�1=2

2jX
�=1

�(x�j; zj;k); 1 � k � K(c; j)

where

zj;k =

(
e
k�1

=
p
log j; 1 � k � Kp

k �K; K < k � K(c; j)

which correspond to normalized sequences of measures

��j;k = ��j(zj;k) = f��j(zj;k); 1 � � � 2jg;

supported on the level j:

��j(z) = �(h(z; j); z); h(z; j) = (2j+1 sinh2(z2=2))�1=2; k��j(z)k = 1: (5.7)
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Put

 ";j;k = 1lj;k>tj ; tj =
q
2 log j:

We consider the tests

 " = maxf ";0;  ";1; max
J";0�j�J";1

max
1�k�K(c;j)

 ";j;kg: (5.8)

Remark 5.1. The structure of the tests (5.8) is close to adaptive tests which have

been proposed by Spokoiny [17]. Particularly, the tests  ";0;  ";1 are analogous to

the tests �n;1; �n;2; n
�1=2 = " in [17]. The main di�erence is that we use the tests

max1�k�K(c;j)  ";j;k in place of the tests �n;p;j and maxk �n;p;�k;j which are based on

the statistics
P
� jx�jjp and

P
�(jx�jjp1(jx�jj > �k) for �xed p > 2.

Remark 5.2. It follows from the considerations later that we can use the tests

 ";0;  ";1 only, if it is known that � 2 �G1
. Also, it follows from the Remark 5.3 to

the Proposition 5.1 later that if it is known that s > r for p > q or s+1=q > r+1=p

for p � q, then we can consider only �nite number j � J";1 in the tests  ";0;  ";1
also.

5.2 First kind errors

To estimate �rst kind errors note that

�( ") � �( ";0) + �( ";1) +
X

J";0�j�J";1

X
1�k�K(c;j)

�( ";j;k): (5.9)

First, one can see that

�( ";0) �
X
j�J";0

2j+1�(�Tj) �
X
j�J";0

1

j(log j)3=2
= o(1): (5.10)

Next, using Gaussian approximation, Bahr-Essen inequality and relations (5.5),

one can easily check that

�( ";1) �
X
j�J";0

�
2�(�2

q
log j) +O(2�j=2)

�
= o(1): (5.11)

At last, note that E0lj;k = 0; V ar0lj;k = k��j;kk2 = 1 by (3.22), (3.25) and by

d = 1�Bc= log 2 > 0; B = C2(2), we get:

Rj;k =
X
�

E0l
4
�;j;k = O

�
2�j exp(Bcj)

�
= O(2�jd)

which yield the asymptotic normality of statistics lj;k and estimations of the accu-

racy in Bahr-Essen inequality. Using this inequality, we get:

X
J";0�j�J";1

X
1�k�K(c;j)

P0(lj;k > tj) �
X

J";0�j�J";1

X
1�k�K(c;j)

(2�(�tj) +O(Rj;k)) = o(1):

These relations and (5.9) imply �( ") = o(1).
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5.3 Second kind errors for particular tests

To obtain the second relation in (5.1) under assumption (5.2), for any family � =

�" 2 �; v = v" 2 V" = V"(�"; �"(�")) one needs to �nd such l = l"(v"); l = 0; 1 or

l = (j; k); j = j"; k = k"; J";0 � j � J";1; 1 � k � K(c; j) that

�( ";l; v")! 0: (5.12)

First, let us consider such families v" 2 l2 lim sup
�;j
jv";�;jj=T";j > 1 (we assume

later without loss of generality that there exist all limits under consideration as

"!1.) One can easily see that for all such families that

�( ";0(v")) � inf
�;j

�(T";j � v";�;j) = o(1):

Next, let us consider such families v" 2 l2 that

lim sup
j�J";0

Hj(v")=Tj > 1; Hj(v) = Evlj = 2�(j+1)=2
2jX
�=1

v
2
�j
:

Using Chebyshev inequality and relations (5.5) one can easily see that for all such

families

�( ";1(v")) � inf
j

1 + 2�(j�3)=2Hj(v")

(Hj(v")� Tj)2
= o(1):

At last, for any (j; k) : J";0 � j � J";0; 1 � k � K(c; j); let us consider families

v" 2 l2 : lim sup
�;j

jv";�;jj=T";j � 1; limHj;k(v")=tj > 1

where

Hj;k(v) = Evlj;k = (��j;k; ��v) = 2hj;k
X
�

sinh2(v�jzj;k=2):

Using the relations (3.23), the equality

e
x2 � 1 = 2ex

2

sinh2(x2=2)

and inequality

sinh2 x � e
x sinh2(x=2)

one can see that for all such families

V arvlj;k � 1 + hj;k sinh
2(z2

j;k
=2) exp(zj;kT";j;0 + z

2
j;k
)Hj;k(v)

� 1 + 2�j=2 exp(zj;kT";j;0 + z
2
j;k
=2)Hj;k(v):

For small enough c > 0 by the inequality

zj;kT";j;0 + z
2
j;k
=2 � ((2 log 2)1=2c+ c

2
=2)j < (log 2=2)j

and using Chebyshev inequality, we get:

�( ";j;k(v")) � V arvlj;k=(Hj;k(v")� tj)
2 = o(1)
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for all families v" under consideration.

Note that the set X" = fx :  "(x) = 0g is convex and symmetrical on all

coordinates x�j. By Anderson's lemma (see Ibragimov and Khasminskii [5]) this

implies the inequality

�( "(v)) � �( "(~v));

where

~v = ~v(J"); ~v�j =

�
v�j; if (�j) 2 J"
0; if (�j) =2 J" ;

for any �xed family of subsets J" � J = f(�j)g.
The estimation above show that to obtain (5.12) it is enough to establish the

following

Lemma 5.1 Under assumptions above one can �nd such constant C = C(�) > 0

in (5.2) that for all families �" 2 �, all families v":

v" 2 V" = V"(�"; �"(�")) : limsup
�j

jv�jj=T";j � 1 (5.13)

there exist values �" = o(1) and sets J" � fJ";0 � j � J";1g such that ~v" = ~v"(J") 2
~V" = V"(�"; ~�"(�")) with ~�" = (1� �")�" and either

lim sup
j

Hj(~v")=Tj = lim sup
j2J"

Hj(v")=Tj > 1; J" � fj � J";0g (5.14)

or

lim sup
j

sup
1�k�K(c;j)

Hj;k(~v")=tj = lim sup
j2J"

sup
1�k�K(c;j)

Hj;k(v")=tj > 1: (5.15)

5.4 Proof of the Lemma 5.1

Let ~u" be the values u"(�"; ~�"(�")) corresponding to ~�"(�) = (1 � �")�"(�); values

�" = o(1) will be de�ned concretely below. It follows from investigation of extreme

problem in [11, sec. 7] 1 that under assumptions (5.2) and for t = 1; 0 < h � p

one has:

u"(�; ~�") � u"(�; �")

uniformly on � 2 � which imply

~u" � u" = u"(�"; �"(�")):

Remind that for t =1; h � p

u"(�; �") = k��"(�; �")k = inf
��2j�"(�;�")

k��k

1
To simplicity the only the case p 6= q is considered in [11, sec 7.1]. For the case p = q one

can easily see that all necessary hold true also.
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where

�"(�; �") = f�� :
X
j

(2rhj
X
�

E��j jvjp)h=p � (�"=")
h
; sup

j

2sqj
X
�

E��j jvjq � (R=")qg:

Also (see [11, sec. 7])

��j;"(�; �") = �(hj((�; �"); zj((�; �"))

are three-point measures and there exist such values

z0 = z0;"(�; �"); j1 = j1;"(�; �"); if � 2 �G1

or

h0 = h0;"(�; �"); j0 = j0;"(�; �"); if � 2 �G2

and functions dl(�); l = 0; 1; 2 which are bounded away from 0 and 1 that for

� 2 �G1

u
2
"
(�; �") � d0(�)z

4
02

j1;

�
�"

"

�p
� d1(�)z

p

02
(1+rp)j1;

�
R

"

�q
� d2(�)z

q

02
(1+sq)j1 (5.16)

or for � 2 �G2

u
2
"
(�; �") � d0(�)h

2
02
j0;

�
�"

"

�p
� d1(�)h02

(1+rp)j0 ;

�
R

"

�q
� d2(�)h02

(1+sq)j0: (5.17)

Note that the relations (5.16), (5.17) and the assumption (5.2) imply that uniformly

on � 2 �

j
�

"
� log "�1; j�

"
=

�
j1; if �" 2 �G1

j0; if �" 2 �G2

: (5.18)

Also if �" 2 �G1
, then r + 1=p� 1=4 > 0; s+ 1=q � 1=4 > 0 and

(�"=") � u
1=2
"
2j1(r+1=p�1=4); (R=") � u

1=2
"
2j1(s+1=q�1=4); (5.19)

if �" 2 �G2
, then r + 1=2p > 0; s+ 1=2q > 0 and

(�"=") � u
1=p
"
2j1(r+1=2p); (R=") � u

1=q
"
2j1(s+1=2q): (5.20)

Let ~�" = f~�";jg = ��"(�"; ~�") be the family of sequences which corresponds to ~�":

k~�"k � u"(�"; �") � C

q
log log "�1: (5.21)

One can easily see (compare with Lemma 5.1 in [11] and sec. 4.2 above)

k��"(�; �")k�1 inf
v2V"(�;�")

(��"(�; �"); ��v) � k��"(�; �")k (5.22)

which implies that for all ~v = ~v" 2 ~V"

k~�"k�1
X
j

2h";j
X
�

sinh2(z";j~v�j=2) =
X
j

r";j(��";j; ��~v") � C

q
log log "�1(1 + o(1))

(5.23)

32



where

r
2
";j

=
2jk��";jk2
k~�"k2

=
2jh2

";j
sinh2(z2

";j
=2)P

j 2
jh2";j sinh

2(z2";j=2)
;
X
j

r
2
";j

= 1

and ��";j = ��j(z";j); k��";jk = 1 are normalized sequences de�ned by (5.7).

It follows from the study of extreme problem in [11] (see [11], Proposition 7.1,

where asymptotics of the sequences h";j = h";j(�; �"); z";j = z";j(�; �") have been

described, and [11, sec. 7.2] where asymptotics (5.16) and (5.16) are established)

that for all �" 2 � there exist values a = a(�) > 0 and b = b(�) > 0 such that for

small enough "

r";j � a2�bjj�j
�

"
j (5.24)

where j�
"
is de�ned by (5.18). The relation (5.24) implies that

X
j

r";j(1 + jj � j
�

"
j) � B = B(�)

and using (5.23) one has:

sup
j

(��";j; ��~v"))=(1 + jj � j
�

"
j) � C1

q
log log "�1(1 + o(1)); C1 = C=B: (5.25)

We can assume later without loss of generality that � = �(�") 2 �G1
or � =

�(�") 2 �G2
and consider di�erently these cases. Also without loss of generality we

can assume that various necessary relations later between parameters p; q; r; s hold

true for all small enough " > 0.

The following simple proposition will be used later.

Proposition 5.1 For a set J" � J denote

a
p

j = 2rpj
X
�

jv�jjp; D"(J") =
X
j2J"

a
h

j
=(�"=")

h
:

Assume (5.2) and v = v" satisfy to (5.13). For any � > 0 put J�
"
= fj < J";0g:

Then D"(J
�

"
) = o(1).

Proof of the Proposition 5.1. Note that under assumption (5.13) we have:

a
p

j = O(J
p=2
";0 2

(rp+1)j); j < J";0

which implies

X
j<J";0

a
h

j
= O(J

h=2
";0 2

(rh+h=p)J";0) = O((log "�1)B)

for some B > 0. From the other hand, under assumptions (5.2) the relations

(5.19), (5.20), (5.18) imply: (�"=") = o("�b) for some b > 0. These relations imply

D"(J
�

"
) = o(1).

Remark 5.3. Assume p > q; � = s� r > 0 or p � q; � = s+�r+1=q�1=p > 0

and put (J+
"
) = fj > (J";1g. Then analogous estimations show that D"(J

+
"
) = o(1).
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In fact, note the inequalities:

2sqj
X
�

jv�jjq � (R=")q

and

(
nX
i=1

jxijp)1=p � (
nX
i=1

jxijq)1=q; if p > q; (n�1
nX
i=1

jxijp)1=p � (n�1
nX
i=1

jxijq)1=q; if p � q:

Using these inequalities, we get: aj � 2��j: It follows from (5.19), (5.20), (5.18)

that (R=�") = O("�B) for some B = B(�) > 0 which imply

D"(J
+
"
) = O((R=�")

h2��hJ";1) = o(1):

5.4.1 The case � 2 �G1

Note that this case corresponds to all p � q; p � 2 and it is possible for q < p � 2

and for 2 < p < q (see Fig. 1 { 4 above).

First, assume p � q; p � 2 (we omit index "). These relations imply (see [11,

Proposition 7.1]) 2 then there exists � = �(�) > 0 such that if � 2 �1
G
\ �, then

sup
j

z";j(�")2
�max(j;j1) = o(1) (5.26)

Fix small enough � > 0 and put

J" = fj =2 J�
"
g; �" = D"(J"):

Using the Proposition 5.1 we have: ~v" 2 ~V" with �" = o(1):

Using (5.26) and (5.13) one has:

sup
�j

jv�jjz";j = o(1);

and by sinh x � x as x = o(1), we get:

(��";j; ��v) � Hj(v): (5.27)

Using (5.25), we obtain :

sup
j

Hj(~v")=(1 + jj � j
�

"
j) � C1

q
log log "�1(1 + o(1)); C1 = C=B(�) (5.28)

and if C1 > 2, this relation and (5.18) imply (5.14).

2
The case p 6= q is considered in [11, Proposition 7.1] only. For the case p = q one can easily

see that if p � 2, then h";j = 1; maxj<j1
z";j = o("

�
) and z";j = 0 for j > j1 ; if p > 2, then

z";j = z(p) for all (�; j); h";j = 0 for j > j0. Thus we can assume z";j = 0 for j > j
�

"
in the case

p = q.
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Next, assume q < p � 2 or 2 < p < q. Remind that inclusion � 2 �G1
implies

the relation: I = I(�) < 0 where I = 2qs(p� 2)� 2pr(q � 2) + p� q:

Denote

b";j = 2jrp
X
�

jv�;jjp=(�"=")p: (5.29)

Fix � > 0 and let J� = J
�

"
(v") = J

1
"
(v") \ J0" where

J
1
"
(v") = fj � J";0 : Hj(v")=Tj < 2g;

J
0
"

=

(
fj > j1(1 + �)g; if q < p � 2;

fJ";0 � j < j1(1� �)g; if q > p > 2
:

Proposition 5.2 Under assumptions above there exist � = �(�;�) > 0 such that

sup
j2J�

b";j2
� jj�j1j = o(1):

Proof of the Proposition 5.2. Using Holder inequality, for q < p � 2 or 2 < p < q

one can obtain that

X
�

jv�;jjp �
 X

�

jv�;jj2
!(q�p)=(q�2)  X

�

jv�;jjq
!(p�2)=(q�2)

:

Because X
�

jv�;jjq � (R=")p;
X
�

jv�;jj2 � 4(log j)1=22j=2;

using relations (5.19), (5.2), after simple arithmetical calculations, we get:

b";j � Bu
(q�p)=2
"

(log j)(q�p)=2(q�2)2�I(j�j1)=2(q�2)

which implies necessary relation.

Put

J" = fj =2 (J�
"
\ J�g; �" = D"(J"):

Using the Propositions 5.1, 5.2 we easily get : ~v" 2 ~V" with �" = o(1).

It follows from [11, Proposition 7.1] that there exists � = �(�) > 0 such that if

� 2 �G1
\ �, q < p � 2 or 2 < p < q, then

sup
j =2J0"

z";j(�")2
�max(j;j1) = o(1) (5.30)

which imply (��";j; ��v) � Hj(v) uniformly on j =2 J0" . Using (5.25), we obtain (5.28)

which imply (5.14).
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5.4.2 The case � 2 �G2

This case corresponds to all p > q; p > 2 with � = sq � rp > 0 and it is possible

for 2 < p � q and for 2 � p > q, if I > 0 and � > 0 (see Fig. 1 { 4 above).

First, assume 2 < p � q. Put

J" = fj =2 J�
"
g; �" = D"(J"):

Using the Proposition 5.1 we have: ~v" 2 ~V" with �" = o(1).

Fix small enough � > 0. It follows from [11, Proposition 7.1] that there exists

A = A(�) > 0; � = �(�) > 0 such that if � 2 �G2
\ �; 2 < p � q, then

z";j �
�
A; if j � j0(1 + �),

2��j; if j > j0(1 + �)
(5.31)

which imply (��";j; ��v) � Hj(v) uniformly on j > j0(1 + �).

For j � j0(1 + �) put

k = k";j = minfk : zj;k � z";jg:

Note that 1 � k � O(K(j)) because (5.31). If z";j < zj;1 = 1=
p
log j, then

z";jjv�jj � 2, and by choosing zj;k we have:

sinh2(z";jv�j=2)= sinh(z
2
";j
=2) � c1 sinh

2(zk;jv�j=2)= sinh(z
2
k;j
=2)

for some (absolute) constant c1. This relation implies

Hj;k"(~v") = (��j;k";
��~v") � c1(��";j; ��~v"): (5.32)

Thus, using (5.25) we get:

maxf sup
j�j0(1+�)

Hj;k";j
(~v")=(1 + jj � j

1
"
j); sup

j�j0(1+�)

Hj(1 + jj � j
1
"
j)g

� C1

q
log log "�1(1 + o(1)); C1 = c1C=B(�):

This relation and (5.18) imply (5.14) or (5.15).

Next, assume 2 < p; q < p or 2 � p > q. It follows from [11, Proposition 7.1]

that there exists A = A(�) > 0; � = �(�) > 0 such that if � 2 �G2
\ �; q < p � 2

or 2 < p; p > q, then

z";j �
�
A; if j � j0;

A
p
1 + j � j0; if j > j0

: (5.33)

Fix small enough � > 0, such that z";j < K(c; j)=2 for j � j0(1 + �). Denote

J
1 = fj > j0(1 + �)g.

Proposition 5.3 Under assumptions above there exist � = �(�;�) > 0 such that

sup
j2J1

b";j2
�(j�j0) = o(1):
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Proof of the Proposition 5.3. By p � q, using the inequality

X
�

jv�;jjp � max
�
jv�;jjp�q

X
�

jv�;jjq

and because X
�

jv�;jjq � (R=")p; max
�
jv�;jj � 2(log j)1=2;

using also relations (5.19), (5.2), after simple arithmetical calculations, we get:

b";j � B(log j)(p�q)=22��(j�j0); � = �(�) > 0

which implies necessary relation.

For j � j0(1 + �) put

k = k";j = minfk : zj;k = k=j
1=2 � z";jg:

Note that 1 � k � K(c; j) because (5.33). Then, analogously to (5.32), we can

�nd such (absolute) constant c1 that

Hj;k"(~v") = (��j;k";
��~v") � c1(��";j; ��~v"):

Thus, using (5.25) we get:

sup
j

Hj;k";j
(~v")=(1 + jj � j

�

"
j) � C2

q
log log "�1(1 + o(1)); C2 = c1C=B(�):

This relation and (5.18) imply (5.15).
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