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Abstract. We prove that for a class of massless r� interface models on Z2 an introduction of an

arbitrary small pinning self-potential leads to exponential decay of correlation, or, in other words,

to creation of mass.

In this note we study a family of e�ective interface models over Z2 with the formal Hamiltonian

H given by

H(�) =
X
i�j

V (�i � �j); (1)

where the summation is over all nearest neighbours i � j of Z2, and the following two assumptions

are made on the interaction potential V :

� V is even and smooth

� There exists a constant cV � 1, such that

1

cV
� V 00(t) � cV 8t 2 R: (2)

Remark 1. No further assumptions on cV are made, and, in fact, we expect that the results of the

paper remain true if only the lower bound in (2) is assumed. Also, though we do not stipulate it

explicitly at each particular instance, the values of all the positive constants we use below depend

on cV .

Given a set A � Z
2 with a �nite complement Ac

�
= Z

2 n A, we use PA to denote the �nite

volume Gibbs measure on 
A
�
= R

Ac with the Hamiltonian H and zero boundary conditions on

A;

PA(d�) =
1

Z(A)
e�H(�)

Y
i2Ac

dhi
Y
j2A

�0(dhj): (3)

It is well known that PA delocalizes as Ac % Z
2; maybe the easiest way to see this is to use the

reverse Brascamp-Lieb inequality [DGI] which implies that the variance of �0 under PA dominates

the corresponding Gaussian variance. If, however, an, essentially arbitrary small, pinning self-

potential is added to H, then the situations radically changes, and the in�nite volume Gibbs

state exists in the usual sense. This phenomenon has been �rst worked out in the Gaussian case

(cV = 1) in [DMRR]. Our main reference [DV] contains a proof of the localization for a fairly

general class of interactions and self-potentials. In this note we prove that in the case of the family

of random interfaces as in (1), the delocalization/localization transition is sharp in the sense that

it always comes together with the exponential decay of correlations, or, using the language of a

more physically oriented literature, with the creation of mass.

For simplicity, but also in order to give a cleaner exposition of otherwise more general renormal-

ization ideas behind the proof, we consider here only the case of the so called �-pinning, thereby
generalizing recent results of [BB] on purely Gaussian �elds (that is again cV = 1):
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Given a box �N
�
= [�N; :::; N ]2 � Z

2 and a number J 2 R (which characterizes the strength of

the pinning) we de�ne the following measure P̂N on R
�
N :

P̂N (d�) =
1

ẐN
e�H(�)

Y
i2�

N

�
d�i + eJ�0(d�i)

� Y
j2Z2n�

N

�0(d�j): (4)

Notice that the case J = �1 corresponds to the original measure on R
�
N with the Hamiltonian

(1), which delocalizes as N !1.

Lemma 2. For every J 2 R there exists an exponent (mass) m = m(J) > 0 and a constant

c1 = c1(J) <1, such that

C ov
P̂
N

�
�i;�j

�
� c1e

�mki�jk (5)

uniformly in N and in i; j 2 Z
2.

Of course, there is nothing to prove if either i or j lies outside of �N . In fact, the sub-index N
is superuous - all the estimates we use and obtain simply do not depend on a particular �N , and

the only reason we need it is to make the de�nitions mathematically meaningful. From now on we

shall drop the sub-index N from the notation.

A right way to think about (4) is as of the joint distribution of the �eld of random interface

heights f�igi2Z2 and the random \dry" set A;

A �
=
�
i 2 Z

2 : �i = 0
	
:

Integrating out all the height variables � in (4) we arrive to the following probability distribution

for A;

P̂ (A = A)
�
= �(A) =

1

Ẑ
eJjAjZ(A) =

eJjAjZ(A)P
D eJjDjZ(D)

; (6)

where the partition function Z(A) is the same as in (3).

Using the probabilistic weights f�(A)g one can rewrite P̂ as the convex combination,

P̂(�) =
X
A

�(A)PA(�): (7)

Since under each PA the distribution of �i is symmetric for every i 2 Z2, this gives rise to the

following decomposition of the covariances:

C ov
P̂

�
�i;�j

�
=
X
A

�(A)h�i;�jiA: (8)

At this point we shall utilize the random walk representation of h�i;�jiA which has been �rst

developed in the PDE context in [HS]. We follow the approach of [DGI], where the Hel�er-Sj�ostrand

representation was put on the probabilistic tracks:

One constructs a stochastic process
�
�(t);X(t)

�
, where:

� �(�) is a di�usion on R
Ac with the invariant measure PA.

� Given a trajectory �(�) of the process �, X(t) is an, in general inhomogeneous, transient

random walk on Ac [ @Ac � Z
2 with the life-time

�A
�
= infft : X(t) 2 Ag;

and the time-dependent jump rates

a(i; j; t) =

(
V 00
�
�i(t)� �j(t)

�
; if i � j

0; otherwise
(9)



Let us use EAi;� to denote the law of
�
X(t);�(t)

�
starting from the point (i; �) 2 Ac�R

Ac . Then

([HS],[DGI]),

h�i; �jiA =

�
EAi;�

Z �
A

0

IfX(s)=jgds

�
A

: (10)

Substituting the latter expression into (8),

C ov
P̂

�
�i;�j

�
=
X
A

�(A)

�
EAi;�

Z �
A

0

IfX(s)=jgds

�
A

: (11)

It is very easy now to explain the logic behind the proof of Lemma 2: The expression

EAi;�

Z �
A

0

IfX(s)=jgds

describes the time spent by the random walk X(�) starting at i in the site j before being killed upon
entering the dry set A which, for the purpose, could be considered as a random killing obstacle. In

order to prove that this time is exponentially (in ki � jk) small one needs an appropriate density

estimate on A and a certain path-wise control on the exit distributions of X(�). In the Gaussian

case considered in [BB], X(�) happens to be just the simple random walk on Z2 which is completely

decoupled from the di�usion part �(�), and, thus, behaving independently of A and the initial

condition � 2 R
Ac . This lead in [BB] to a resummation argument, which substantially facilitated

the matter. One of the main di�culties in the non-Gaussian case we consider here is the dependence

of the distribution of X(�) on the realization of the dry set A and on the sample path of the di�usion

�. We still have very little to say about this dependence. However, due to the basic assumption

(2) on the interaction potential V , the jump rates a(i; j; t) in (9) are uniformly bounded above and

below:

1

cV
� a(i; j; t) � cV : (12)

In particular one always has a rough control over probabilities of hitting distributions. For example,

if the random walk X enters a box Bl of linear size l which is known to contain a dry site; it would

be convenient to call such a box \dirty", then the probability that X hits this site (and consequently

dies there) before leaving Bl should be bounded below by some positive number p = p(l) > 0. Thus

if the realisation A of the random dry set A is such, that on its way from i to j the walk X cannot

avoid visiting less than �ki � jk disjoint dirty l-boxes, the probability that it eventually reaches j
before being killed should be bounded above by something like

(1� p(l))�ki�jk :

Proposition 5 below makes this computation precise.

The crux of the matter, however, is to ensure that on a certain �nite l-scale the density of the

dirty l-boxes is so high, that only with exponentially small probabilities the realization A of A
enables an �-clean passage from i to j. A statement of this sort is given in Proposition 4.

Once the renormalization approach sketched above is accepted as the strategy of the proof, the

�rst drive of an associative thinking is to try to compare the distribution of A on di�erent l-scales
with, say, independent Bernoulli percolation or other known models with controllable decay of

connectivities. This we have tried and failed, and, at least in the case of Z2, such a comparison is

unlikely.

The relevant statistical properties of the random dry set A on various �nite length scales are

captured in the following estimate which generalizes the key Proposition 5.1 in [DV]



Theorem 3. For each J 2 R there exists a number R = R(J) < 1 and exponent � = �(J) > 0,

such that whenever a �nite set B � Z
2 admits a decomposition

B =

n_
l=1

Bl (13)

into connected disjoint components B1; :::; Bn with

diam
�
Bl
�
� R; l = 1; :::; n; (14)

the following exponential upper bound on having all of B \clean of dry points" holds:X
A\B=;

�(A) � e��jBj: (15)

We relegate the proof of Theorem 3 to the end of the paper, and, assuming for the moment its

validity, directly proceed to the proof of the mass-generation claim of Lemma 2.

Proof of Lemma 2: The number R = R(J) which appears in the basic Theorem 3 sets up the

stage for the �nite scale renormalization analysis of the random dry set A. Let us pick a number

l > R; l 2 N; and de�ne the renormalized lattice

Z
2
l

�
= (2l + 1)Z2:

To distinguish between the sets on the original lattice Z2 and those on the renormalized one Z2
l we

shall always mark the latter by the super-index l. For example Bl(x; r) stands for the Z2
l lattice

box centered at x 2 Z
2
l ;

Bl(x; r)
�
=
�
y 2 Z

2
l : kx� yk � lr

	
:

Let us de�ne �l(r) as the set of all Z2
l -nearest neighbour lattice paths leading from the origin to

the boundary @Bl(x; r). With each l 2 �l(r) we associate a connected chain ~l of l-blocks on the

original lattice Z2;

~l
�
=

[
x2l

B(x; l):

Let us �x a number � 2 (0; 1). We say that a path l 2 �l is (r; �)-clean in A � Z
2, if

#
n
x 2 l : B(x; l) \A 6= ;

o
< �r:

Similarly, we say that a set A � Z
2 is (r; �)-clean if there exists a path l 2 �l(r) which is (r; �)-clean

for A. Otherwise, we shall call A (r; �)�dirty.

Proposition 4. For each � 2 (0; 1) there exist a number l0 = l0(�; J) <1 and a radius r0 = r0(�),
such that for every choice of l � l0; X

A is (r;�)�clean

� (A) � e�c2(�;l)r;

uniformly in r � r0, where c2(�; l) diverges (as l2) with l.

Proof: The condition on r0(�) is a semantic one - the only thing we want is to ensure that r > [�r].
Let us estimate the probability of the event fA is (r; �) � cleang as follows:

X
A is (r;�)�clean

� (A) �
1X
k=r

X
l2�l:jlj=k

X
A :

l
is (r;�)�clean inA

�(A): (16)



Each path l = (0; x1; :::; xk); l 2 �l, which is (r; �)-clean in A contains at most [�r] vertices
xi1 ; :::; xiM ; M � [�r], such that the corresponding l�blocks have a non-empty intersection with A;

B(xi; l) \A 6= ;; i = 1; :::;M:

Whatever happens, for a path l of length k there are at most 2k (in fact much less due to the

restriction M � [�r]) possible ways to choose a sub-family ~ldirty;

~ldirty
�
=

M[
i=1

B(xi; l);

of \dirty" block along ~l. On the other hand, �xing both ~l and its \dirty part" ~ldirty, we can use

Theorem 3 to obtain X
A\~ln~l

dirty
=;

�(A) � expf��j~l n ~ldirtyjg � e��(k�[�r])l
2

(17)

We, thus, conclude, that for any k � r and for each l 2 �l with jlj = k,X
A: 

l
is (r;�)�clean inA

�(A) � e��(J)l
2(k�[�r])+k log 2:

Using the above estimate together with the trivial bound;

#
n
l 2 �l : jlj = k

o
� 4k;

to perform the summation in (16) we arrive at the claim of Proposition 4.

Nothing in the above argument depends on the fact that the box B(0; rl) is centered at the origin.

Without any loss of generality we shall prove (5) only for the case i = 0.

Let us �x l and � as in the statement of Proposition 4. For each j with kjk > rl we use (11) and
estimate:

C ov
�
�0;�j

�
�

X
A is (r;�)�clean

� (A)

+
X

A is (r;�)�dirty

� (A)max
�

EA0;�

Z �
A

0

IfX(s)=jgds:
(18)

The �rst term in (18) has been just estimated in Proposition 4. Let us use �rl to denote the exit
time from B(0; rl). The second term in (18) could be further bounded above as

max
A is (r;�)�dirty

max
�

EA0;�
�
�A > �rl

�X
B

�(B)max
 

EBj; 

Z �
B

0

IfX(s)=jgds: (19)

It is convenient to estimate the above expression in a complete generality of time dependent

random walks with bounded jump rates a(i; j; t):
Let X(t) be the time-inhomogeneous Markov process with the transition rates as in (12). It is

always possible to homogenize it, and to consider

~X(t)
�
= (X(t); t):

We shall use ~E (i;t) to denote the law of ~X with the space-time starting point (i; t) 2 Z
2� R.

The B(0; rl) box is decomposed to the disjoint union of sub-blocks on the l-scale as:

B(0; rl) = [x2Bl(0;r)B(x; l):

To a generic point i 2 B(0; rl) we associate an l-block Bl(i) according to the following rule:

Bl(i) = B(x; l) if i 2 B(x; l) for some x 2 Z
2
l :



Given a (r; �)-dirty set A � Z
2, let us call a block B(x; l); x 2 Z

2
l , dirty if

B(x; l) \A 6= ;:

We introduce now the following family of stopping times for the process ~X(t):

T1 = inf
t�0
fBl(X(t)) is dirtyg:

S1 = inf
t�T1

fBl(X(t)) 6= Bl(X(T1))g:

T2 = inf
t�S1

fBl(X(t)) is dirtyg

::::::::::::::::::::::::::::

Sn = inf
t�Tn

fBl(X(t)) 6= Bl(X(Tn))g:

:::::::::::::::::::::::::::

The condition of A being (r; �)-dirty is readily translatable under PA to the sure event

f�rl > T�rg :

Consequently, if, as before, we use �A to denote the hitting time of the set A ,

~P(0;0)(�A > �rl) � ~P(0;0)(�A > T�r) = ~E (0;0) ~E ~X (T1)
I�
A
>S1 :::

~E ~X (T�r)
I�
A
>S�r :

We claim that each of the �r terms in the above product admits an upper bound of the form

1 �
�

1

3c2V + 1

�2l
: (20)

uniformly in all Markov chains with bounded rates condition (12) and (which is the same) in all

possible values of above stopping times.

Indeed let Bl be a box of side length l, and i; k 2 Bl . Then one strategy for a random walk

starting at i to hit k before leaving Bl is to march to k directly along some prescribed unambiguous
trajectory, say �rst horizontally and then vertically. Clearly if one pulls down the rates along such

a trajectory to the minimum value 1=cV and pushes the rates leading out of this trajectory to the

maximal value cV , then the probability to follow the trajectory itself only decreases, but to an

exactly computable value �
1

3c2V + 1

�
ki�kk

;

where the power ki�kk, of course, corresponds to the number of steps along the trajectory. Hence
(20).

As a result:

Proposition 5. Uniformly in r and in (r; �)-dirty sets A,

max
�

EA0;� (�A > �rl) � e�c3rl:

Finally, X
B

�(B)max
�
EBj;�

Z �
B

0

IfX(s)=jgds

=

1X
k=1

X
B:d(j;B)=k

�(B)max
�

EBj;�

Z �
B

0

IfX(s)=jgds;

(21)



where d(j;B)
�
= inffkj � ik : i 2 Bg.

Proceeding as in the proof of Proposition 5, we readily obtain that there exists a number M =

M(cV ) <1, such that;

max
�

EBj;�

Z �
B

0

IfX(s)=jgds � Mk;

whenever d(j;B) = k. On the other hand, by Theorem 3,X
B: d(j;B)=k

�(B) � e��k
2

;

as soon as k > R. Therefore, the sum in (21) converges, and the proof of Lemma 2 is, thereby,

concluded

Proof of Theorem 3: Let us start by introducing some additional notation: Given a �nite set B � Z
2

with the decomposition (13) into the disjoint union of connected components B1; :::; Bn we say that
another set A is a dry neighbour of B; A 2 DB , if

A \B = ; but D [ @Bl 6= ;; l = 1; :::; n:

Proposition 6. There exists a constant c4 = c4(J), such that for every �nite B � Z
2,X

A2D
B

�(A) � e�c4jBj: (22)

The proof of Proposition 6 relies on the following two basic estimates which have been proven

in [DV]:

1. There exists a number M =M(J) and a constant c5 = c5(J), such that,

inf
A2D

B

X
C�B

eJjCj
Z(A [ C)

Z(A)
� ec5jBj; (23)

whenever B is connected and diam(B) �M .

2. Let A 6= ; and i 2 Z
2 n A. Then,

Z(A [ fig)
Z(A)

�
c6(J)p
d(i; A)

: (24)

The above estimates are linked to the claim of Proposition 6 in the following way:

X
A2D

B

�(A) �

0
@ inf
A2D

B

X
C1�B1

:::
X

Cn�Bn

Z(A [n1 Cl)
Z(A)

eJ
P
n

1 jClj

1
A
�1

:

If, for some m 2 [1; :::; n � 1], we regroup B as

B = B+ [B� �
= fB1; :::; Bmg

[
fBm+1; :::; Bng ;

then, since A [m1 Cl always belongs to D[n
m+1Bl

, we obtain the following decoupling estimate:

inf
A2D

B

X
C1�B1

:::
X

Cn�Bn

Z(A [n1 Cl)
Z(A)

eJ
P
n

1 jClj

� inf
A2D+

B

X
C1�B1

:::
X

Cm�Bm

Z(A [m1 Cl)

Z(A)
eJ
P
m

1 jC
l
j

� inf
A2D�

B

X
Cm+1�Bm+1

:::
X

Cn�Bn

Z(A [nm+1 Cl)

Z(A)
eJ
P
n

m+1 jClj:

(25)



In particular, the claim (22) directly follows from the estimate (23) whenever diam(Bl) > M
for each l = 1; :::; n. In fact, in view of (23) and (25), it remains to study only the case when all

connected components of B are small; diam(Bl) < M ; l = 1; :::; n.
In the latter situation, however, we can use (24) and estimate;

Z(A [ Cl)

Z(A)
�
�

c6p
2M + 1

�
jC
l
j

;

for every l; A 2 DB
l
and Cl � Bl. Therefore,

inf
A2D

B

X
C1�B1

:::
X

Cn�Bn

Z(A [n1 Cl)
Z(A)

eJ
P
n

l=1 jClj �
nY
1

�
1 +

c6p
2M + 1

�
jB
l
j

;

and (22) follows.

Remark 7. One could hope to deduce from Proposition 6 the claim of Theorem 3 even without

the additional assumption (14). We were not able to do so, and, moreover, even not sure that the

corresponding statement would be true | the entropy cancelation forced by the condition (14)

could well be essential for the validity of the claim. We would like to stress, however, that within

the framework of the renormalization approach we try to develop there is absolutely no point to

relax (14).

The rest of the proof is an adaptation of the ideas of [DV] to the case of multiply connected sets:

First of all, for any �nite D � Z
2 let us denote its k-enlargement D(k) as

D(k) �
=
�
i 2 Z

2 : d(i;D) � k
	
:

Assume now that B =
Wn
1 Bl is as in the assumptions of Theorem 3, that is the diameter of each

connected component Bl of B is bounded below, diam(Bl) � R; i = 1; :::; n.
We have to show that the bound (15) holds uniformly in such B-s as soon as R is chosen large

enough.

Let us say that a tuple k = (k1; :::; kn) of n natural numbers is B-admissible if:

� k1 2 N (no restriction).

� either k2 = 0, or the sets B
(k1)
1 and B

(k2)
2 are disjoint.

� either k3 = 0, or the set B
(k3)
3 is disjoint from

B
(k1)
1 [B

(k2)
2 :

� ...................................

� either kn = 0, or the set B
(kn)
n is disjoint from

n�1[
1

B
(k
l
)

l :

For any B-admissible tuple k we set

B(k) �
=

n[
1

B
(k
l
)

l
:

This construction enjoys the following two properties:

1. For any A \B = ; there is the unique B-admissible tuple k, such that,

A 2 DB(k) :



Indeed, this tuple k = (k1; :::; kn) can be constructed in the following way:

k1 = max
�
k : B

(k)
1 \A = ;g

k2 = max
�
k > 0 : B

(k)
2 \ (A [B

(k1)
1 ) = ;g

�
�
�

kn = max
�
k > 0 : B(k)

n \ (A [n�11 B
(k
l
)

l ) = ;g

with the convention that the maximum over an empty set equals zero.

2. For any B-admissible tuple k = (k1; :::; kn);���B(k)
��� � jBj+

nX
1

kl:

This follows directly from the de�nition of the B-admissibility.

Using Proposition 6 we, thereby, obtain:X
A\B=;

�(A) =
X

B�admissible k

X
A2D

(k)

B

�(A)

�
X

B�admissible k

e�c4(jBj+
P
k
l
)

� e�c4jBj
�
1� e�c4

�
�n

:

By the assumption (14), n � jBj=R. Thus it remains to choose R = R(J) so large that,

�(J)
�
= c4(J) +

log(1� e�c4(J))

R
> 0;

and (15) follows.
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