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Abstract. We derive precise Ornstein-Zernike asymptotics for the decay of the two-point function

in any direction of the simple self-avoiding walk on the integer lattice Zd in any dimension d � 2

and for any super-critical value of the parameter � > �c(d). The related geometry of the equi-decay

level sets is studied as well.
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1. Introduction

Exponential decay of correlations is an essential property of many short range spin lattice systems

and sub-critical percolation models. In a variety of cases a typical argument is either based on

perturbation type estimates, or on super-multiplicativity properties which, for example, stem from

positive association of spins in the underlying �eld combined with a hard qualitative analysis to

assert that the corresponding decay rates are non-trivial. Thus a sharp characterization of the

whole of high-temperature region by the exponential decay of connectivities was accomplished in

[1] and [2] in the case of the independent percolation and the ferromagnetic spin models with pair

interactions respectively.

Many works were also devoted to the study of the, typically polynomial, prefactor near the

decay exponent. Results in this direction usually come under the umbrella name of \proving

the Ornstein-Zernike behaviour", which is a reference to the original work [12] on classical uids.

Besides providing yet another more precise formula, any such result requires an insight into the

uctuation structure of the corresponding random quantities of interest and is, moreover, naturally

related to the intrinsic geometry of the problem.

So far the results were obtained in three main directions (we do not attempt here to provide a

complete bibliography and apologize for the missing references):

1. At very high temperatures perturbation techniques such as [13] and, more recently, [11]

2. At any sub-critical temperatures, but for a more restricted class of models and only along

speci�c (for example axis) directions, using coarse graining procedures and analyzing natural

renewal structures of the models under considerations [7], [6] and references therein.

3. A completely di�erent robust approach was developed in [3], [4], [5]. It leads to powerful lower

bounds on prefactors near the decay exponents for a wide range of models, but fails to pin

these prefactors exactly.

Our work here belongs to the second category above and is, in fact, an extension of [7], [6]. In

particular we heavily rely on their ideas throughout the article. Our main result asserts complete

precise asymptotics of decay in any direction for the two-point function of the simple self-avoiding

walk on the integer lattice Zd. For the sake of convenience we formulate it as two separate theorems:

Theorem A below describes the asymptotics itself, whereas Theorem B deals with the properties

of related geometric objects.

Below we use h�; �id to denote the usual scalar product on Rd and k �kd to denote the correspond-
ing Eucledian norm. Given the value of the parameter � 2 (0;1), the full two point function

g�(x; y); x; y 2 Zd
; of the d-dimensional self-avoiding walk (SAWd) is de�ned as

g�(x; y) =
X

!:x!y

e��j!j; (1.1)

where the above sum is over all lattice self-avoiding paths ! leading from x to y, and j!j is the
number of steps in !. We assume that � is chosen above the threshold � > �c(d), so that the

expression on the right hand side of (1.1) is always �nite (see [10] for more details).

Of course, g�(x; y) = g�(0; x � y)
�
= g�(x � y), and g�(�) is symmetric in all of its arguments.

It is easy to show [10] that 8 � > �c the \bubble diagram";

Bd(�)
�
=
X
x

g�(x)
2
;



g�(x+ y)

Bd(�)
� g�(x)

Bd(�)

g�(y)

Bd(�)
; (1.2)

and, consequently, the decay rate

��(x) = � lim
n!1

1

n

log g�([nx]) (1.3)

is a well de�ned, sub-additive and homogeneous of order one function on Rd . Moreover, as we

shall see in Section 3, �� is a norm for each � > �c. By the super-multiplicativity, 8x g�(x) �
Bd expf���(x)g, and (1.3) can be restated as a logarithmic asymptotic equivalence;

g�(x) � exp
� � kxkd��

� x

kxkd
�	
:

In [7] and [6] precise rates of decay of g� were obtained along lattice directions, that is for x =

(x1; :::; xd) satisfying jxij � jx1j; i > 1. Our theorem below gives precise decay rates of the two

point function g� in any lattice direction and in any dimension d � 2:

Theorem A. In any dimension d � 2 and for every � > �c(d), uniformly in kxkd,

g�(x) =  �

�
n(x)

�s 1

(2�kxkd)d�1
e���(x)

�
1 + o(1)

�
; (1.4)

where n(x) = x=kxkd 2 Sd�1 is the unit vector in the direction of x, and the correction coe�cient

 � is an analytic function;  � : S
d�1 7! R+ .

Theorem A is a local limit result based on the peculiar renewal structure of connectivities. In

Section 2 we prove the corresponding general statement in the context of d-dimensional renewal

arrays. The proof of Theorem A is completed in Section 4, where we also obtain an exact expression

(4.16) for the correction term  �.

We shall see that the precise assymptotics of the two-point function g� are closely related to the

geometry of the balls U�(a) in the ��-norm;

U�(a)
�
=
�
x : ��(x) � a

	
:

Let us call the level sets of ��; @U
�(a), equi-decay pro�les. Since �� is homogeneous of order

one, equi-decay pro�les at di�erent values of a are just dilatations of one another. Thus it would

be enough to consider only the unit ��-ball. Set U
� �

= U�(1). The geometry of U� is studied in

Section 3, where we prove:

Theorem B. In any dimension d � 2 and for every � > �c(d) the boundary of @U� (and hence

of any equi-decay pro�le) is a compact analytic strictly convex surface whose Gaussian curvature is

uniformly bounded away from zero.

2. Ornstein-Zernike Equations

We follow [6] and say that two functions h : N � Zd 7! R+ and f : Z+� Zd 7! R+ satisfy (nor-

malized) Ornstein-Zernike equations, if

h(0; k) = �0(k) and h(n; k) =

nX
m=1

X
l2Zd

f(m; l)h(n�m; k � l): (2.1)

Intuitively, h(n; k) represents a connectivity function from the origin (0; 0) to the point (n; k) 2
N � Zd inside the d + 1-dimensional strip f0; :::ng � Zd. Our main objective here is to derive

precise large-n local asymptotics of h(n; k). Naturally this task is meaningless in the whole of the



of simplicity we assume that f is strictly positive;

f(m; l) > 0 8m � 1 and l 2 Zd
: (2.2)

More important, we assume that the \mass" of h(�; �);

mH (t)
�
= lim

n!1

1

n

log
X
k

h(n; k)e(k;t); (2.3)

is bounded for t 2 Rd in some open neighbourhood of the origin. One of the crucial steps is, then,

to verify certain analyticity properties of mH inside its e�ective domain. These properties in their

turn are intimately related to the renewal structure imposed by (2.1):

Notice that 8z 2 C d , the functions hz(n; k)
�
= ehz;kidh(n; k) and fz(n; k)

�
= ehz;kidf(n; k) also

obey Ornstein-Zernike equations. In particular, due to the non-negativity of f(�; �) the extended
(that is R

�
= R [ f1g-valued) functions

H n(t)
�
=

X
k

ht(n; k) =
X
k

eht;kidh(n; k) (2.4)

are super-multiplicative for each real t 2 Rd . Consequently mH in (2.3) is well de�ned as an

extended function. Moreover, mH is convex. Let us then de�ne the e�ective domain of mH as

DH �
=
�
t 2 Rd : mH (t) <1	:

Then the assumption on the �niteness of the mass we made earlier simply reads as 0 2 int
�DH �.

In a similar way we de�ne

Fn(t) =
X
k

ehk;tidf(n; k) 2 �R+ :

In general the existence of the mass of f(�; �) cannot be asserted. We, nonetheless, de�ne:

mF(t)
�
= lim sup

n!1

1

n

log Fn(t):

Clearly, mF is also convex , and, since,

8 (n; k) 2 Z+� Zd 0 � f(n; k) � h(n; k); (2.5)

mF is �nite on DH .
Because of the non-negativity of the coe�cients (2.5) the functions H n and Fn are well de�ned

and analytic in the open strip SH � C d ,

SH =
�
z 2 C d : Re(z) 2 int

�DH �	:
Summing out the Zd-variable k in the Ornstein-Zernike equations (2.1) for hz and fz , we obtain

that 8z 2 SH , the functions H n(z) and Fn(z) obey the usual renewal relation

H 0(z) = 1 and H n(z) =

nX
m=1

Fm (z)H n�m (z): (2.6)

These renewal relations have a dramatic impact once a separation of masses type condition is

assumed:

Theorem 2.1. Assume that t0 2 int
�DH � is such that,

mH (t0) > mF(t0): (2.7)

Then 9 a complex neighbourhood UCd of t0 in C d , such that:

(a) For n large enough,

H n(z) 6= 0 on UCd : (2.8)



uniformly in z 2 UCd ,
1

n

log H n(z) � mH (z) =
1

n

log�(z) + o

�
e�n�

�
; (2.9)

where,

�(z) =
�X

n

ne�nmH(z)Fn(z)
��1

6= 0

is analytic on UCd .
(c) If, furthermore, the Hessian D2

mH (t0) of mH at t0;

D
2
mH (t0) is positively de�nite; (2.10)

then the following asymptotic (in n) description of h(n; k) for k=n close to x0
�
= rmH (t0)

is valid: Let (n; k) 2 N � Zd be such that

k

n

= rmH (t) (2.11)

for some t 2 UCd \ Rd . Then,

h(n; k) =
�(t)p

(2n�)ddetD2
mH (t)

exp
n
� nm

�
H (
k

n

)
o�

1 + o(1)
�
; (2.12)

where m�
H is the Fenchel-Young transform of mH .

The proof of the �rst part of the theorem is, to a large extent, built upon the ideas and techniques

of [6] and [7]. The link to the local limit behaviour of h comes with the Lee-Yang type condition

(2.8) which was apparently overlooked in the later papers.

Notice, �rst of all, that under the mass-gap condition (2.7) of the theorem, the sequence

e�nmH(t0)Fn(t0) is a proper probability distribution,X
n

e�nmH(t0)Fn(t0) = 1: (2.13)

Indeed, by the virtue of (2.7), the function

�(r)
�
=

X
n

r
ne�nmH(t0)Fn(t0)

is well de�ned and continuous for r 2 [0; emH(t0)�mF(t0)) � [0; 1]. If �(1) > 1, then one can �nd

r 2 (0; 1), such that �(r) = 1. Thus rne�nmH(t0)Fn(t0) becomes a proper probability distribution

which generates via the renewal relation the sequence rne�nmH(t0)H n(t0). Consequently, by the

renewal theorem,

lim
n!1

r
ne�nmH(t0)H n(t0) =

�X
n

nr
ne�nmH(t0)Fn(t0)

��1

> 0;

which implies mH (t0) = mH (t0)� log r; a contradiction.

If, on the other hand, �(1) < 1, then, by continuity, �(r) < 1 for values of r slightly larger than

1 as well. By the renewal theorem this means that for such r-s,

lim
n!1

r
ne�nmH(t0)H n(t0) = 0;

which again contradicts the de�nition mH (t0) = limn!1 1=n log H n(t0):

Since by convexity both mH and mF are continuous on DH , the mass-gap condition (2.7) persists

in some neighbourhood URd1 of t0. Applying the above reasoning for each point t 2 URd1 , we conclude

that,

8t 2 URd1 (t0) mH (t) > mF(t) and
X
n

e�nmH(t)Fn(t) = 1: (2.14)



assertion (2.8). De�ne the function � via

�(�; z) =
X
n

en�Fn(z)� 1:

Due to the mass-gap condition (2.14) � is well de�ned and analytic in some C � C d neighbourhood

of (�mH (t0); t0). Moreover,

@�

@�

��mH (t0); t0
�
=
X
n

ne�nmH(t0)Fn(t0) 2 (0;1);

which again follows by (2.7) Therefore, by the analytic implicit function theorem, one can �nd a

neighbourhood UC2 of �mH (t0) in C , a C d -neighbourhood UCd3 � SH of t0 and an analytic function

� : UCd3 7! UC2 , such that

�(�(z); z) � 0 on UCd3 ;

and, moreover,

8(s; z) 2 UC2 � UC
d

3 �(s; z) = 0 , s = �(z): (2.15)

Remark 2.2. Since by (2.14) �(�mH (t); t) � 0 on some Rd -neighbourhood URd1 of t0, one identi�es

� as the analytic continuation of �mH on

UCd3 \
n
z : Re(z) 2 URd1

o
:

By itself, however, the analyticity of mH by no means implies the convergence claim (2.9). Neither

it is particularly useful for the derivation of local limit results of the type (2.12).

Let us thus de�ne a new function 	;

	(z; s) =
X
n

e�nmH(z)Fn(z)s
n
:

Conditions (2.2) and (2.15) imply, that there exists a number � > 0 and a C d -neighbourhood UCd
of t0, such that 8z 2 UCd ,�

s 2 C : jsj < 1 + �

	 \ �s 2 C : 	(z; s) = 1
	

= f1g: (2.16)

De�ne rn(z)
�
= e�nmH(z)Fn(z) and ln(z)

�
= e�nmH(z)H n(z)). Then the above condition reads as�

s 2 C : jsj < 1 + �

	 \ �s 2 C : R(s) = 1
	

= f1g; (2.17)

where R(s)
�
=
P

n rns
n is the generating function of the rn-sequence.

On the other hand, rn and ln are in the (complex) renewal relation:

l0(z) = 1 and ln(z) =

nX
m=1

rm(z)ln�m(z): (2.18)

Moreover, possibly after shrinking UCd , one easily veri�es, that 8z 2 UCd ,X
n

nrn(z) 6= 0; (2.19)

and there exists � > 0, such that X
n

en�jrn(z)j < 1: (2.20)

One can now check that under (2.17)-(2.20) the conclusion of the usual renewal theorem pertains

to the complex case as well, that is

lim
n!1

ln(z) = lim
n!1

e�nmH(z)H n(z) =
�X

n

nrn(z)
��1

= �(z) 6= 0: (2.21)



As soon as (2.8) is established, we easily obtain that

mH (z) = lim
n!1

1

n

log H n(z)
�
= lim

n!1
mH ;n(z) (2.22)

on UCd in the sense of analytic functions. Indeed, we know that mH is analytic on UCd , and that

(2.22) holds for the real values z 2 U \ Rd � DH . Consequently, it remains to show that the

sequence fmH ;ng is compact or, equivalently, that it is uniformly bounded on UCd . To this end set

un(z)
�
= H n(z)

1
n :

By (2.5), jun(z)j � un(Re(z)): Therefore, fung is a uniformly bounded sequence of analytic func-

tions on UCd . We claim that fung is, in addition, uniformly bounded away from zero on UCd .
Indeed, for real values of z;

8z 2 U \ Rd � DH lim
n!1

un(z) = emH(z):

Thus, the Vitali's theorem implies that the limit

u(z)
�
= lim

n!1
un(z) (2.23)

exists and is an analytic function on UCd . Since, by (2.21), un 6= 0 on UCd for all n 2 N, and

u(z) = emH(z) 6= 0 on UCd \ Rd as well, it follows from Hurwitz's theorem [17] that u 6= 0 on UCd
at all. As a result,

lim
n!1

inf
z2UC

d

��
un(z)

�� = inf
z2UC

d

��
u(z)

��
> 0:

Since mH ;n = log un on UCd , the assertion (2.22) follows.

In order to check a more re�ned convergence statement (2.9) we follow [7] and notice that (2.17)

and (2.19) imply that for each z 2 UCd the function

s 7! 1

1�	(z; s)

has only one pole s = 1 on
�
s : jsj < 1+ �

	
, and, moreover, this pole is simple. Thus, the following

representation is valid:

1

1�	(z; s)
=

 (z; s)

1� s

; (2.24)

where

 : UCd � �s : jsj < 1 + �

	 7! C

is analytic. Writing

 (z; s) =

1X
n=0

 n(z)s
n
;

we conclude that, after shrinking UCd if necessary, one can �nd two positive numbers c; � > 0, such

that the coe�cients  n satisfy ��
 n(z)

�� � ce��n (2.25)

uniformly in z 2 UCd . On the other hand, due to the renewal relation
1X
n=0

e�nmH(z)H n(z)s
n =

1

1�	(z; s)
;

(2.21) and the representation formula (2.24) already imply that

e�nmH(z)H n(z) =

nX
k=0

 k(z) = �(z) �
1X

k=n+1

 n(z);



The local limit asymptotic (2.12) follows now in a standard way (see [8] for a general but

nonetheless lucid exposition) provided a simple decay estimate on characteristic functions, which

we prove in Proposition 2.3 below.

We can assume without any loss of generality that

detD2
mH 6= 0 8t 2 URd �

= UCd \ Rd
: (2.26)

Let now t 2 URd and a couple (n; k) 2 Z� Zd be as in the assumptions of the theorem, that is

k=n = rmH (t), or, by duality, 

t;

k

n

�
d
= mH (t) + m

�
H (
k

n

): (2.27)

Then, using the de�nition (2.4) of the tilted two-point function ht;

h(n; k) = e�ht;kidH n(t)
ht(n; k)

H n(t)
: (2.28)

We treat both terms on the right hand side of (2.28) separately: By (2.9) and (2.27),

e�ht;kidH n(t) = exp
n
� n

�ht; k
n

id � 1

n

log H n(t)
�o

= �(t)e�m
�

H
(k=n)

�
1 + o(1)

�
:

(2.29)

As for the second term in (2.28), notice that ht(n; �)=H n(t) is a proper probability distribution. By

the Fourier inversion formula,

ht(n; k)

H n(t)
=

1

(2�)d

Z
Td

H n(t+ i�)

H n(t)
e�ihk;�idd�: (2.30)

We then assert that the integral on the right hand side in (2.30) above is essentially Gaussian with

the covariance matrix given by the inverse of nD2
mH ;n(t). Indeed, for the values of j� j su�ciently

small the point t+ i� belongs to UCd , and one can, therefore, expand:

1

n

log
H n(t+ i�)

H n(t)
= ihrmH ;n(t); �id � 1

2
hD2

mH ;n(t)�; �id + o

�k�k2d�;
in this region. Due to the non-degeneracy assumption (2.26) and the convergence result (2.9) one

can �nd a positive number c > 0, such that

hD2
mH ;n(t)�; �id � ck�k2d;

simultaneously for all t+ i� 2 UCd and n large enough. Moreover, as it follows from (2.9) and the

Cauchy formula,

nrmH ;n(t) � nrmH (t) = nrmH ;n(t) � k =
r�(t)
�(t)

+ o

�
e��n

�
:

Consequently, there exists � > 0, such that uniformly in t 2 URd and k�kd < �,

H n(t+ i�)

H n(t)
e�ihk;�id

= exp
n
� n

2
hD2

mH ;n(t)�; �id + ihr log �(t); �id + no

�k�k2d�o� 1 + o(1)
�
;

and, furthermore, ���H n(t+ i�)

H n(t)

��� � expf�cn
2
k�k2dg:

As a result we obtain that,Z
j� j��

H n(t+ i�)

H n(t)
e�ihk;�idd� =

s
(2�)d

n
ddetD2

mH (t)

�
1 + o(1)

�
;



The remaining range of values of � is controlled by the following proposition

Proposition 2.3. Let t0 2 intDH , and assume that mH (t0) > mF(t0). Then, there exists a small

� > 0, such that for each � > 0,

lim sup
n!1

max
t2Rd:jt�t0j��

max
j� j>�

1

n

log

��H n(t+ i�)
��

H n(t)
< 0: (2.31)

Proof. By convexity we can assume that � is chosen so small, that the closed �-ball URd� around t0
is still in int

�DH �, and, moreover,
min

jt�t0j��

�
mH (t)�mF(t)

�
�
= 2a > 0: (2.32)

Set bF�n(t) = max
j� j��

jFn(t+ i�)j < Fn(t):

Then, for each t 2 URd� , X
n

e�nmH(t)bF�n(t) <

X
n

e�nmH(t)Fn(t) � 1;

where the second equality above follows by (2.14). Furthermore, the function

(�; t) 7!
X
n

en(��mH(t))bF�n(t);
is well de�ned and continuous on (�; t) 2 [0; a]�URd� . Consequently, one can pick �� > 0 such that

max
t2UR

d
�

X
n

en(���mH(t))bF�n(t) < 1: (2.33)

Let now bH �
n(t) be the renewal sequence generated by bF�n(t), that is,

bH �
0 (t) = 1 and bH �

n(t) =

nX
m+1

bF�m (t)bH �
n(t)

Then, for every n 2 N and every t 2 URd� ,bH �
n(t) � max

j� j��

��H n(t+ i�)
��
:

On the other hand, by the usual renewal theorem and elementary continuity considerations, (2.33)

implies that

lim
n!1

max
t2UR

d
�

en(���mH(t)) bH �
n(t) = 0;

and (2.31) follows.

3. Geometry of Equi-Decay Profiles

For any � > �x the decay rate �� is indeed an equivalent norm on Rd : a straightforward one-

shortest path estimate implies that g�(x) � exp(��Pi jxij). On the other hand, for each x 2 Zd

the function � 7! g�(x) is di�erentiable on (�c(d);1). Moreover, for � 2 (�c(d);1),

d

d�

�� 1

kxkd log g�(x)
	

=
X

!:0!x

j!j
kxkd

e��j!j

g�(x)
� 1:

Consequently,

0 <

� � �c

2
� min

�2Sd�1
��(�) � max

�2Sd�1
��(�) � �

p
d < 1; (3.1)



with any sub-additive homogeneous of order one function satisfying a two-sided bound like (3.1)

above. The �rst one has been already de�ned - it is the unit closed ball U� in the ��-norm. The

second one is given by

K� �
=

\
�2Sd�1

n
t 2 Rd : ht; �id � ��(�)

o
; (3.2)

Of course, �� is just the support function of K�. In two dimensions K� has the meaning of

its own being the Wul� shape for the scaling model of self-avoiding polygons [9], and we, rather

frivolously, shall refer to K� as to the Wul� shape in the general case of SAWd; d � 2. In any

dimension, however, U� and K� are polar convex sets, that is:

K� =
n
t : max

x2U�
ht; xid � 1

o
or, equivalently,

U� =
n
x : max

t2K�
ht; xid � 1

o (3.3)

In particular, the geometry of @U� can be recovered from that of @K� and vice versa. For example,

if @K� is smooth and strictly convex, then �� is di�erentiable, and, moreover, the map r�� is a

bijection from @U� to @K� . In such a case for any x 2 @U� the point t
�
= r��(x) 2 @K� satis�es:

ht; xid = 1 = max
s2@K�

hs; xid = max
y2@U�

ht; yid; (3.4)

and we shall call x and t conjugate points.

An excellent reference on the theory of convex bodies is [16]. In our case it happens to be more

convenient �rst to derive results on the geometry of the Wul� shape K�. A necessary translation

tool to the U�-geometry is given by the following rather standard fact:

Proposition 3.1. Assume that @K� is an analytic strictly convex surface whose Gaussian cur-

vature is uniformly bounded away from zero. Then the same is also true for @U�, that is the

conclusions of Theorem A hold. Moreover the Gaussian curvatures of @U� and @K� at any two

conjugate points x and t are just reciprocals of one another.

At this stage it is worthwhile to dwell on the properties of �� and K� in more details. First of

all,

t 2 K� , sup
x2Rd

n
hx; tid � ��(x)

o
� 0

, sup
�2Sd�1

n
h�; tid � ��(�)

o
� 0:

(3.5)

Similarly,

t 2 int
�
K�
� , sup

�2Sd�1

n
h�; tid � ��(�)

o
< 0: (3.6)

Moreover, �� obviously inherits reection symmetries from Zd. In particular,

��(x1; :::; xd) = ��(jx1j; :::; jxdj) = ��(x�(1); :::; x�(d)); (3.7)

for every x = (x1; :::; xd) 2 Rd and any permutation � of the index set f1; :::; dg. Consequently,

both K� and U� are symmetric with respect to all reections across coordinate hyperplanes. This

implies among other things that �� is non-decreasing in each jxij;
jxij � jyij; i = 1; :::; d ) ��(x) � ��(y): (3.8)

Indeed, the one-dimensional function t 7! ��(x1; :::; xd�1; t) is convex and symmetric around zero

for every �xed choice of x1; :::; xd�1. Consequently, it is non-decreasing on R+ .



sup
�2Sk�1

n
h�; tik � ��

�
(�; 0)

�o � 0 ) ~t 2K�
: (3.9)

In order to see this assume on the contrary that ~t does not belong to K�, which, by (3.5), means

that there exists x = (u; v) 2 Rk � Rd�k such that

hx; ~tid � ��(x) = hu; tik � ��(u; v) > 0:

In view of the lower bound on (3.1) �� the u component of x certainly di�ers from zero, u 6= 0.

Thus, by (3.8),

0 < hx; ~tid � ��(x) � kukk
n
h u

kukk
; tik � ��(

u

kukk
; 0)
o
;

a contradiction.

We state now our main result on the geometric properties of K� :

Theorem 3.2. For every d � 2 and � > �c(d), the Wul� shape K� of SAWd is a compact strictly

convex body with the analytic boundary @K� . Moreover the Gaussian curvature of @K� is uniformly

bounded below by some positive constant � = �(d; �) > 0.

By Proposition 3.1 all the conclusions of Theorem B instantly follow.

The proof of Theorem 3.2 is based on the results on renewal type structures obtained in Section 2

which, in their turn, rely on the techniques and ideas of [7] and [10].

It is convenient to consider from now on self-avoiding walks with values in Zd+1 = Z � Zd, so

that d = 1 corresponds to SAW2. The �rst component !1 of ! is singled out. We recall some

terminology from [10]. Let [a; b] = fj 2 N : a � j � bg and consider a self-avoiding path ! de�ned

on [a; b]. We call ! a bridge if

!1(a) < !1(j) � !1(b) ; a < j � b:

The initial point of ! is x = !(a) and the �nal point is y = !(b); for such a bridge we write

! : x
b! y. The span of a bridge is !1(b) � !1(a). Assume that the span of ! is at least 2; a

break point of ! is an integer k 2 N, !1(a) < k < !1(b), such that there exists r 2 [a; b] with the

properties

!1(j) � k ; 8j � r and !1(j) > k ; 8j > r:

A bridge is called irreducible if it has span 1 or if it has no break point. If x = !(a) and y = !(b),

then for such an irreducible bridge we write ! : x
ib! y.

We de�ne vertical cylinders Cn ;

Cn �
=
n
x = (m; k) 2 Z� Zd : 0 � m � n

o
:

Let (n; k) 2 Cn; the cylindrical two-point function h(n; k) is de�ned as:

h(n; k) =
X

!:(0;0)
b
!(n;k)

e��j!j: (3.10)

Obviously, h is super-multiplicative, and the limit

�
H
� (x)

�
= � 1

n

lim
n!1

log h(n; [nx]) (3.11)

is a well de�ned and everywhere �nite (provided � > �c(d+1)) convex function on Rd . The relation

between full and cylindrical decay rates is as expected:

Proposition 3.3. Assume that � > �c(d+ 1). Then,

�
H
� (�) � ��(1; �): (3.12)



��(1; x) � �
H
� (x);

for every x 2 Rd . We need, thereby, to establish the reverse inequality. It is enough to consider

only x-s with rational entries; x 2 Qd . Our approach is built upon similar arguments in Section 6

in [14]:

For any A � Zd+1 and x; y 2 A, let us de�ne
gA(x; y)

�
=

X
!:x!y

!�A

e��j!j:

Let @A to denote the outer boundary of A;

@A =
�
z 2 Zd+1 nA : d(z;A) = 1

	
:

Clearly,

gA(x; y) � g�(x; y) �
X

z2Zd+1nA

g�(x; z)g(y; z)

� g�(x; y) � exp
�� c1(�)d(fx; yg; @A)

�
;

(3.13)

where the latter inequality follows from (3.1). We �x next two (large) numbers l; n 2 N, such that

lx 2 Zd. Iterating (1.2) in the cylindrical region Cnl, we obtain,

h(nl; nlx) �
� 1

Bd(�)

�n�1
n�1Y
k=0

gCnl
(uk; uk+1);

where uk
�
= (kl; klx) 2 Cnl: Consequently,

�
H
� (x) = � lim

n!1

1

nl

h(nl; nlx) = � lim
l!1

lim
n!1

1

nl

h(nl; nlx)

� lim
l!1

logBd(�)

l

� lim
l!1

1

l

lim
n!1

1

n

n�1X
k=0

log gCnl(uk; uk+1)

= � lim
l!1

1

l

lim
n!1

1

n

n�1X
k=0

log gCnl(uk; uk+1):

On the other hand, by (3.13),

lim
n!1

1

n

n�1X
k=0

log gCnl(uk; uk+1) = log g�
�
(l; lx)

�
;

and (3.12) follows.

The above proposition asserts that both full and cylindrical two-point functions have the same

leading term in the logarithmic asymptotic of decay for every direction (1; x); x 2 Rd . Thus, once

(3.12) is veri�ed, geometric properties of the SAWd Wul� shape K� can be recovered from the

analysis of cylindrical two-point functions. On the other hand, there is already a natural renewal

mechanism behind the production of cylindrical connectivities h(�; �). Too see this let us follow

[7], [10] and to de�ne yet another set of connectivities, the irreducible ones (called direct in [7]).

The irreducible two-point function f is de�ned as

f(n; k) =
X

!:(0;0)
ib
!(n;k)

e��j!j: (3.14)

Clearly, the functions h and f satisfy the Ornstein-Zernike equations (2.1) of Section 1. We then

go on and de�ne all the quantities (that is mH , DH , mF , H n , Fn , ... ) as it was done there. The

following lemma generalizes the separation of decay rates statement in [7]:



(3.14) respectively. Then, int(DH ) in not empty and 8t 2 int(DH ),
mH (t) > mF(t); (3.15)

and, moreover,

det
�
D

2
mH (t)

�
> 0: (3.16)

Proof. First of all let us check that int(DH ) is not empty:
Since h-connectivities are bounded above by the g ones we, in view of the leftmost inequality in

(3.1), obtain: X
k

h(n; k)eht;kid �
X
k

eht;kid��
p
n2+kkk2

d

for some � small enough. Consequently, the above sum is bounded above uniformly in n for ktkd < �,

that is �
t 2 Rd : ktk < �

	 � int(DH ):
Let t 2 Rd and set t̂ = (t; 0); we de�ne the susceptibility

�d+1(t)
�
=

X
y2Zd+1

g(y)eht̂;yid+1
:

We claim, that the susceptibility �d+1 is �nite,

�d+1(t) < 1; (3.17)

whenever t 2 int(DH ). This is the crucial fact: The �nitness of the susceptibility was a backbone

of the original ingeneous proof [7] of the separation of masses in the particular case t = 0. Let us

recall the impact of such a condition on the properties of H n -s and Fn -s. Let:

G n(t)
�
=
X
k

g(n; k)eht;kid : (3.18)

Then, exactly as in [7],

H n(t) � G n(t) � �d+1(t)
2H n(t): (3.19)

Since H n(t) is super-multiplicative and G n(t) sub-multiplicative, it follows that

�d+1(t)
�2enmH(t) � H n(t) � enmH(t): (3.20)

Therefore, as it follows from the renewal theory,X
n

e�nmH(t)Fn(t) = 1 and
X
n

ne�nmH(t)Fn(t) <1: (3.21)

The latter two relations already set up the stage for the renormalization procedure of [7] (or for

the more polished version of it in [10]), which extends to our case without problems due to simple

cancellations of tilted exponents along self-avoiding paths.

It remains, therefore, to prove (3.17). By the left hand side inequality in (3.1),

lim
A!1

lim
n!1

log
X

kkkd>A

h(n; k) = �1:

Thus standard large deviations computations with moment generating functions imply,

t 2 int(DH ) ) mH (t) = sup
x2Rd

n
ht; xid � �

H
� (x)

o
:

In view of the Proposition 3.3 the latter supremum can be rewritten as

sup
x2Rd

� ht; xid � �
H
� (x)

	
= sup

r>0
r sup
�2Sd�1

� ht; �id � ��(
1

r

; �)
	
< 1:



lim sup
r!1

sup
�2Sd�1

� ht; �id � ��(
1

r

; �)
	 � 0;

which, by the continuity of ��, means that

sup
�2Sd�1

� ht; �id � ��(0; �)
	 � 0:

By (3.9) this implies that the point t̂ = (t; 0) lies inside the SAWd Wul� shape K�. Repeating

these computations in a small neighbourhood of t in DH , we conclude that actually,
t̂ 2 intK�

:

Thus, by (3.6)

sup
�2Sd

n
ht̂; �id+1 � ��(�)

o
< ��;

for some small positive �. Combining this with the sub-additive bound (1.2), we obtain that for

each x 2 Zd+1;

g�(x) � Bd+1(�) exp
�� kxkd+1��(

x

kxkd+1

)
	

� Bd+1(�) exp
�� ht̂; xid+1 � �kxkd+1

	
:

(3.22)

It follows that X
x6=0

g�(x)e
ht̂;xid+1 � Bd+1(�)

X
x6=0

e��kxkd+1
< 1;

which is precisely (3.17) we are after.

Notice, by the way, that the above argument has the following implication: For any point t 2 Rd

and the point t̂
�
= (t; 0) 2 Rd+1 ,

t 2 int
�DH � () t̂ 2 int

�
K�
�
: (3.23)

Finally, let us turn to the proof of the non-degeneracy condition (3.16). Fix t 2 int(DH ) and
recall, mH ;n(t)

�
= 1=n log H n(t). By the �rst part of Theorem 2.1, the sequence fmH ;ng converges

to mH in a complex neighbourhood of t in the sense of analytic functions. In particular,

D2
mH (t) = lim

n!1
D2
mH ;n(t):

Thus, it su�ces to show that

lim inf
n!1

inf
�2Sd�1



D2
mH ;n(t)�; �

�
d
> 0: (3.24)

It would be convenient to de�ne some additional notation: Given a bridge ! we use X(!) to denote

the Zd coordinate of its endpoint. A probability measure Pn on the set of bridges (with the starting

point at the origin) of span n, is de�ned via

Pn(!) =
e��j!j+ht;X(!)id

H n(t)
:

Notice that, 

D2
mH ;n(t)�; �

�
d
= VarPn

�h�;X(!)id
�
: (3.25)

In a similar way, we de�ne a probability measure Qn on the set of irreducible bridges of span n;

Qn(!) =
e��j!j+ht;X(!)id

Fn(t)
:

At last we de�ne a probability distribution � on Z+;

�(k) = e�kmH(t)Fk (t):



distribution �, and let 
� to denote the corresponding product measure. Set

R(n) �
=

�9k : kX
1

Ni = n

	
;

that is R(n) is the event that n belongs to the range of the Z+-random walk with steps Ni. Due

to the renewal relation (2.6),


 �

�R(n)� = e�nmH(t)H n(t) � const > 0: (3.26)

For every realization of fNig in R(n) we de�ne the hitting time k(n) via
k(n)X
i=1

Ni = n:

With this notation,

Pn
�
X(!) = x

�
=

1


�(R(n))
nX

k=1

X
n1+:::nk=n

kY
1

�(ni)

kO
1

Qni

� kX
i=1

X(!i) = x

�
:

(3.27)

Consequently, by the conditional variance formula,

VarPn
�h�;X(!)id

� � 1


�(R(n))
nX

k=1

X
n1+:::nk=n

kY
1

�(ni)
� kX

i=1

VarQni

�h�;X(!)id
��
:

(3.28)

On the other hand, using crude straightforward estimates on the weights of irreducible bridges, one

easily veri�es that 8R 2 Z+, there exists a constant c = c(R) > 0, such that

min
m�R

inf
�2Sd�1

VarQm
�h�;X(!)id

� � c(R): (3.29)

A look at (3.29), (3.28) and (3.25) reveals that the desired bound (3.24) follows as soon as we show

that with 
�(�jR(n))-probability bounded away from zero, a number of irreducible bridges in the

decomposition (3.27) of Pn is proportional to n. This is already a soft task to perform, thanks

to the exponential decay of the tails of �-distribution. Pick, for example, two numbers � > 0 and

T <1, and notice that the right hand side of (3.28) is bounded below by

�n c(R)
 �

� k(n)X
1

IfNi�Rg � �n

��R(n)�
� �n c(R)

n

 �

�R(n)� � 
��k(n) < n

T

+ 1
� � 
�� [n=T ]X

k=1

IfNi�Rg < �n

�o
:

Because of (3.26) it remains only �rst to choose T su�ciently large, and then to choose � su�ciently

small, and (3.24) follows.

Let now x0 2 Rd be such that x0 = rmH (t0) for some t0 2 int(DH ). By the very de�nition of ��
and by (2.12) �H� = m

�
H in some Rd -neighbourhood of x0. This means by duality that,

hx0; t0id = mH (t0) + �
H
� (x0): (3.30)

Also, the positivity of det
�
D

2
mH (t0)

�
implies strict convexity ofmH at t0 which is the dual property

to the di�erentiability of �H� at x0 Let us see what all this means in (d+ 1)-dimensions:

First of all the point ~t0
�
= (t0;�mH (t0)) lies on the boundary of the Wul� shape @K� ;

~
t0 2 @K�

: (3.31)



sense that

0 = h~t0; ~x0id+1 � ��(~x0) = max
x2Rd

n
h~t0; ~xid+1 � ��(x; 1)

o
;

where, as in the case of x0, we have de�ned ~x
�
= (x; 1). (3.31) then instantly follows from (3.5) and

(3.6). Furthermore, applying the very same line of reasoning in a small neighbourhood U � int(DH )
of t0, we readily obtain that the map

U 3 t 7! �
t;�mH (t)

�
(3.32)

is actually a parametrization of @K� near ~t0. Consequently, @K
� is strictly convex at ~t0. Analyticity

of @K� in a neighbourhood of ~t0 follows by Theorem 2.1, whereas

�K(~t0)
�
=

det
�
D

2
mH (t0)

��
1 + krmH (t0)k2d

�(d+2)=2
=

det
�
D

2
mH (t0)

��
1 + kx0k2d

�(d+2)=2
(3.33)

is identi�ed in this way as the Gaussian curvature of @K� at ~t0.

Proof of Theorem 3.2. We already know that @K� satis�es the assertion of the theorem at every

boundary point ~t = (t1; :::; td; td+1) 2 @K�, as soon as this point is of the form

(t1; :::; td) 2 int
�DH � and td+1 = �mH (t1; :::; td): (3.34)

It happens that due to the symmetries of K� (as reected in (3.7)) this information alone provides

all the means to �nish the proof of the theorem: Let us denote the \bad" part of @K� ,

Bad
�
@K�

� �
=
n
t 2 @K� : the assertion of Theorem 3.2 is violated at t

o
:

We claim then that Bad
�
@K�

�
= ;. Certainly if t 2 Bad

�
@K�

�
, then for every permutation � of

the index set f1; :::; d + 1g all the points�� jt�(1)j; :::;�jt�(d+1)j
�

belong to Bad
�
@K�

�
as well.

Let us now de�ne the rank of a point t 2 Rd+1 as

#(t)
�
= #

�
i : ti 6= 0

	
:

Of course, the only point of rank zero is the origin itself which does not belong to @K� at all.

Furthermore, there are exactly 2(d+1) points of rank 1 lying on @K�. These are just permutations

and reections of (0; 0; :::; 0;�mH (0)
�
, that is falling into the framework of (3.34), and thus being

\good". The rest of the proof is a rank reduction procedure: contrary to the statement of the

theorem assume that there exists a \bad" point t;

t =
�
t1; :::; td+1)

As we have just seen the rank #(t) should be then strictly larger than one. We claim that the

assumption t 2 Bad
�
@K�

�
necessarily implies the existence of another \bad" point s 2 Bad

�
@K�

�
satisfying

#
�
s

�
= #

�
t

� � 1: (3.35)

Thus Bad
�
@K�

� 6= ; would be rendered contradictory in at most d steps.

In order to verify (3.35), notice that we can assume without loss of generality that td+1 6= 0.

Writing t = (t0; td+1) 2 Rd � R we infer from the convexity and symmetries of @K� that the point

s = (t0; 0) also belongs to K�. Furthermore, s actually lies on the boundary @K�, for otherwise,

by the virtue of (3.23), the Rd -component t0 should belong to int
�DH � which contradicts the

assumption t 2 Bad
�
@K�

�
. Thus, again by the symmetry of K� with respect to ftd+1 = 0g

hyperplane and convexity, the whole linear segment
�
s; t

� � @K� . This means, in particular,

that @K� fails to be strictly convex at s. Therefore s 2 Bad
�
@K�

�
, and since by construction

#(s) = #(t)� 1, we are done



Results on the asymptotic behaviour of the cylindrical two-point function h are stated uniformly

over lattice cones

Ka
�
=
n
x = (n; k) 2 N � Zd : jkj � an

o
:

Lemma 4.1. Assume that � > �c(d+ 1). Then, 8a 2 R,

h(n; k) =
�(t)p

(2�n)ddetD2
mH (t)

e�n�
H

�
(k=n)�1 + o(1)

�
; (4.1)

uniformly in x
�
= (n; k) 2 Ka, where t = t(n; k) is given by t = r�H� (k=n), and, as in the statement

of Theorem 2.1, � is given by

�(t) =
�X

n

ne�nmH(t)Fn(t)
��1

:

Proof. By Lemma 3.4 and part c) of Theorem 2.1 local form of the asymptotics (4.1) follows as

soon as we show that the point t = t(n; k) is indeed well de�ned (that is �H� is di�erentiable at

k=n), and, moreover, t 2 int
�DH �. These are the consequences of the following claim:[

t2int(DH)

rmH (t) = Rd : (4.2)

In order to verify (4.2) , let us assume to the contrary that there exists a point x0 2 Rd , such

that x0 6= rmH (t) 8 t 2 int
�DH �. This means that the supporting hyperplaneH(x0;1) to @K

� in the

direction of the vector (x0; 1) does not touch @K
� at any point of the form (t;�mH (t)); t 2 int

�DH �.
Due to the symmetry of K� with respect to ftd+1 = 0g, and in view of the strict convexity of @K�

established in Theorem 3.2 above, this implies that H(x0;1) must then support @K� at some point

of the form (t0; 0) with t0 2 @DH . But at each such point there is already a supporting hyperplane

of the form H(y0;0) parallel to the td+1-axis. We thus infer that two distinct hyperplanes support

@K� at (t0; 0), which obviously contradicts the analyticity assertion of Theorem 3.2.

It remains only to notice that

Fa
�
=

n
t : rmH (t) 2 Ka

o
= r�H

�Ka

�
(4.3)

is a compact subset of int(DH ), which implies that (4.1) is actually a uniform estimate over (n; k) 2
Ka.

We proceed with deriving the local asymptotics for the full two-point function g� . Due to the

lattice symmetries it would be enough to derive the result uniformly over lattice cones Ka for a

su�ciently large.

As before, for a SAWd+1 lattice path ! leading from the origin to the lattice hyperplane Pn,

Pn
�
=
n
(n; k) : k 2 Zd

o
let X(!) to denote the Zd coordinate of the end point of !. Given a path ! : 0 7! Pn, all break

point of ! (if any) belong to the set f0; :::; n � 1g. A typical path should have many break points.

More precisely, let us say that ! : 0 7! Pn is irreducible if it has no break points at all. Set

D n(t) =
X

!:07!Pn
! irreducible

eht;X(!)id��j!j
:

Then, as it was in the case of Lemma 3.4, the �niteness of the susceptibility �d+1(t) enables a

straightforward generalization of the corresponding arguments in [7], which imply that for any

t 2 int(DH ) there exists a neighbourhood URd of t and constant �(t) > 0, such that

D n(s) � e
�n�(t)H n(t) � e

�n�(t)G n(t): (4.4)



It then follows easily that for every number k �xed, the generating function D kn of SAWd+1 from

the origin to Pn with exactly k break points satis�es a similar bound:

D kn(s) � e
�n�k(t)H n(t) � e

�n�k(t)G n(t) (4.5)

with some �k(t) > 0.

Now any self avoiding path ! : 0 7! (n; k) contributing to g�(n; k) either has or has not break

points. In the former case, let nl = nl(!) and n�nr = n�nr(!) to denote respectively the leftmost
and the rightmost break points of !. Accordingly we split ! into three pieces:

! = !l [ !c [ !r; (4.6)

where !l : 0 7! Pnl and !r : Pn�nr 7! Pn are irreducible, whereas !c : Pnl 7! Pn�nr is a bridge.

Note, by the way, that !l (!r) obey cylindrical boundary conditions on the right (respectively on

the left):

!l �
n
(m; k) 2 Z� Zd : m � nl

o
and !r �

n
(m; k) 2 Z� Zd : m � n� nr

o
:

(4.7)

The path decomposition (4.6) induces the decomposition of the Zd-coordinate of the end point

X(!);

k = X(!) = X(!l) + X(!c) + X(!r):

On the other hand X(!l) + X(!r) could be equivalently viewed as the Zd-coordinate of the end

point of the path ~! which goes from the origin to the lattice hyperplane Pnl+nr and has exactly

one break point. Thus, using d1(�; �) to denote the two point function with exactly one break point;
d1(p; l) =

X
~!:07!(p;l)

one break point

e��j!j;

we obtain:

g�(n; k) = d(n; k) +

nX
p=1

X
l2Zd

d1(p; l)h(n � p; k � l); (4.8)

where d(�; �), of course, denotes the irreducible two-point function.
In order to �gure out what is the main contribution to the right hand side above, notice, �rst of

all, that due to the exact asymptotics of h-connectivities derived in Lemma 4.1, there is always a

lower bound,

g�(n; k) > h(n; k) � exp
�� n�

H
� (
k

n

) � ca log n
	
; (4.9)

which holds uniformly in Ka for some ca > 0 large enough.

We are going to test various terms in (4.8) against this lower bound. The main tool for doing so is

the following simple form of the exponential Chebychev inequality adapted to discrete distributions:

For any Z�Zd non-negative array u(�; �) de�ne the moment generation function Un : Rd 7! �R+ ; n =

1; 2; :::,

Un(t) =
X
l2Zd

u(n; l)eht;lid :

Then, for each t 2 Rd and every (n; k),

u(n; k) � Un(t)e
�ht;kid

: (4.10)

Set now t = t(k; n) = r�H� (k=n). Thus, for example,
d(n; k) � D n(t)e

�ht;kid = e
�n(�H� (k=n)+mH(t))D n(t):

As a result, comparing with the lower bound (4.9), we infer from (4.4) that for some �a > 0,

d(n; k) � e��ang�(n; k) uniformly in (n; k) 2 Ka. In other words the d(n; k)-term can be simply

dropped down from (4.8).



g�(n; k) =
X
p�n�

X
klkd�n

d1(p; l)h(n � p; k � l)
�
1 + o(1)

�
: (4.11)

Indeed, in order to rule out p > n
� just use (4.10) with the very same t = t(n; k) as above and

u(n; k)
�
=

X
p>n�

X
l2Zd

d1(p; l)h(n� p; k � l) � e�hk;tid
X
p>n�

D 1
p(t)H n�p(t)

� e
�n�H

�
(k=n)

X
p>n�

epmH(t)D 1
p(t):

But by (4.5) the latter quantity is already bounded above by exp
� � n�

H
� (k=n) � �1(t)n

�
=2
	
.

Moreover, by (4.3) this translates into a uniform estimate over Ka.

Finally, for every p < n
� �xed, rede�ne u(�; �) as
u(n; k)

�
=

X
klkd>n

d1(p; l)h(n� p; k � l):

Then, using the fact that t(n; k) 2 int
�DH �, and hence, by (3.23), (t; 0) 2 int

�
K�
�
, we infer that

there exists � > 0, such that

Un

�
t(n; k)

� � e�nmH(t)��n


uniformly in Ka. By the lower bound (4.9) and the exponential Chebychev inequality (4.10) the

proof of (4.11) is, thereby, concluded.

Choosing � and  in (4.11) su�ciently small we notice that by virtue of (4.1),

h(n� p; k � l)

h(n; k)
= exp

�� pmH (t) + ht; lid
	�
1 + o(1)

�
; (4.12)

uniformly in (n; k) 2 Ka, where, as before, t = t(k; n) satis�es t = r�H� (k=n).
Substituting (4.12) into (4.8) we, obtain:

g�(x) = g�(n; k) = h(n; k)
X
p

e�pmH(t)D 1
m (t)

�
1 + o(1)

�
: (4.13)

By (4.5) and compactness of Fa in (4.3) the prefactor near h(n; k) above is uniformly bounded

over Ka.

In view of the h-asymptotics (4.1) we, thereby, obtain uniformly in x = (n; k) 2 Ka;

g�(n; k) =
�(t)

P
p e

�pmH(t)D 1
m(t)p

(2�n)ddetD2
mH (t)

e
�n�H� (k=n)

�
1 + o(1)

�
; (4.14)

By Proposition 3.3; n�H� (k=n) = ��(n; k) = ��(x). Moreover, by (3.33),

n
ddetD2

mH (t) = n
d
�
1 +

k
n

2 �d+2
2
�K(t̂)

= kxkdd+1�K(t̂)
�
1 +

k
n

2
d

�
;

(4.15)

where �K(t̂) is the Gaussian curvature of @K� at the boundary point t̂ = (�mH (t); t) 2 @K� .

Notice that the point t̂ is conjugate in the sense of (3.4) to the point x̂;

x̂

�
=

1

��(n; k)
(n; k) 2 @U�

:

Indeed,

hx̂; t̂id+1 =
�nmH (t) + ht; kid

��(n; k)
= 1:



kxkdd+1

�
1 + kk=nk2d

�
�U(x̂)

:

Consequently,

g�(x) = 	�(x)

s
1

(2�kxkd+1)d
e���(x)

�
1 + o(1)

�
;

whith the prefactor 	� given by,

	�(x) =
�(t)

P
p e

�pmH(t)D 1
p(t)q

�K(t̂)
�
1 + kk=nk2d

�
= �(t)

X
p

e�pmH(t)D 1
p(t)

s
�U(x̂)�

1 + kk=nk2d
� ; (4.16)

where, as before, x = (n; k); x̂ = x=��(x) and t = t(x) = t(x=kxkd+1) satis�es t = r�H� (k=n). This
already comes very close to the main assertion (1.4) of Theorem A. To conclude the proof: 	� is

clearly homogeneous of order zero. Thus we can de�ne

 �

� x

kxkd+1

�
=  �

�
n(x)

� �
= 	�(x):

On the other hand, because of the non-degeneracy (3.16) of the Hessian detD2
mH , �

H
� is analytic

as the Legendre transform of the analytic function [8]. Consequently the tilt t = t(x) = r�H� (k=n)
is also analytic, as well as the sum of the exponentially fast convergent series

P
p e

�pmH(t)D 1
p(t).

Finally the analyticity of �(t) was already asserted in Theorem 2.1.
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