
On Large Deviation Probabilities

in Ergodic Theorem for Singularly Perturbed

Stochastic Systems

Pergamenshchikov, S.M. �

June 26, 1998

Department of Applied Mathematics and Cybernetics

Tomsk State University,

Lenin str. 36, Tomsk 634050, Russia

e-mail: pergam@vmm.tsu.tomsk.su

Abstract

We consider a two scale system of stochastic di�erential equations. We

study asymptotic properties of integral functionals of slow component of this

system and establish some large deviation type estimations for these func-

tionals.

Keywords: fast and slow components, large deviations, stochastic di�erential,

singular perturbations, ergodic theorem

AMS Subject Classi�cation: 60F10

�This reseach was carried out in Weierstrass Institute for Applied Analysis and Stochastics

under support of the DFG, Personal Grant 436 RUS 17/58/97. The author is partially supported

by the RFFI-Grant 98-01-00298.



1 Introduction

Let us consider the model describing by the system of singularly perturbed stochas-

tic di�erential equations:

dx"
t
= f(x"

t
; y

"

t
)dt+ g(x"

t
)dwt; x

"

0 = x0; (1.1)

"dy"
t
= F (y"

t
)dt+ �

p
"G(y"

t
)dWt; y

"

0 = y0; (1.2)

where W = (Wt ; t � 0) and w = (wt ; t � 0) are independent Wiener processes,

and " and � are small parameters.

The processes x
" and y

" can be naturally treated as slow and fast components of

a stochastic dynamic system. If � = 1 , then the process x
" obeys the averaging

principle, see Freidlin [3], Freidlin, Wentcell [4], Veretennikov [14], which means a

convergence of x" to a ergodic process arising from (1.1) by substituting in place of

y
" its stationary distribution. The case of a small � i.e. the situation when � tends

to zero together with " , is studied in details in Kabanov and Pergamenshchikov

[6]. In this situation the fast component y
" converges to the root of the equation

F (y) = 0 : In the sequel we shall suppose that the point y = 0 is the root of this

equation, that is F (0) = 0: We establish also some asymptotic expansions with

respect to the parameter � for the deviations of x
" from the limit process u

described by the stochastic equation

dut = a(ut)dt+ g(ut)dwt; u0 = x0; (1.3)

where a(x) = f(x; 0) .

In this paper, we consider a deviation problem for an integral functionalZ
T

t0

	"(x
"

t
) dt; (1.4)

where 	" is some smooth function.

This study is motivated by the following statistical estimation problem. Similarly

to Liptser, Spokoiny [10] we consider the problem of statistical estimating the

function a(x) from the observed process x": One may apply usual nonparametric

methods, for instance, local polynomial or kernel estimators. If Q is smooth and

supported in the interval [�1; 1] kernel function, then, given a value h > 0 called

a bandwidth, the kernel estimate baT (x) is de�ned by

baT (x) =
R
T

t0
Q

�
x"
t
�x

h

�
dx"

tR
T

t0
Q

�
x"
t
�x

h

�
dt

:

An asymptotical analysis, as " ! 0; of such a statistical procedure leads to ana-

lyzing integral functionals (1.4) with

	"(u) =
1

h
Q

�
u� x

h

�
;
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where h depends on ":

The paper is organized as follows. In section 2 we �x assumptions and formulate the

main result. Asymptotic properties of the fast and slow components are gathered

in Sections 3,4. In section 5 we get upper exponential bound in ergodic theorem

for di�usion processes. Proof of the result is given in Section 6.

2 The main results

First we formulate the necessary conditions on the functions

f , g , F and G entering in the model

equations (1.1) and (1.2), and then state the results.

Below we suppose the following conditions to be ful�lled:

(A1) the functions F with values in R
n and

G with values in the set of n�l -matrices

are continuous and locally Lipschitz and satisfy the condition

of linear growth;

(A2) the point y = 0 is a root of the equation F (y) = 0 ,

and a solution eys of the di�erential equation

deys = F (eys)ds; ey0 = y0; (2.1)

has the limit zero at s =1 ,

lim
s!1

eys = 0; (2.2)

(A3) the function F is di�erentiable with a locally Lipschitz

derivative F
0(x) which is for every x

a n�n -matrix, and all eigenvalues of F 0(0) have

a strictly negative real part.

Note that the assumption (A1) ensures existence and uniqueness of the solution of

the equation (1.2) (Gikhman, Skorochod [5]).

Furthermore, we suppose that the functions f(�; �) , g(�) and a(�) = f(�; 0) satisfy

the following conditions:

(B1) the function f(x; y) has a bounded continuous derivatives until second order;

(B2) the function g is bounded, positive and separated away from zero,

gmin � g(x) � gmax

for some positive constants gmin < gmax ;
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(B3) the function g is two times di�erentiable and its second derivative g00 satis�es

the Lipschitz condition;

(B4) the function a1(u) de�ned by

a1(u) = a(u)=g(u)� g
0(u)=2

is di�erentiable with a strictly negative derivative a
0

1 i.e. for some  > 0

a
0

1(u) � � 8u: (2.3)

For example, the condition (B4) is ful�lled with a(u) = �u; g(u) = � + �=4 �
arctan(u2)=2; 0 < � < 2� �=4:

The assumptions (B1) through (B3) ensure existence and uniqueness of the solu-

tion of equations (1.1), (1.3), see Liptser and Shiryaev [9]. Moreover, (Gikhman,

Skorochod [5]) under (B2) , (B3) and (B4) the process (1.3) is ergodic with the

stationary density

q(x) =

exp

�
2

xR
0

a(u)

g2(u)
du

�

g2(x)
1R
�1

g�2(z) exp

�
2

zR
0

a(u)

g2(u)
du

�
dz

: (2.4)

We set

m" =

Z
1

�1

	"(x)q(x) dx; m
(1)
"

=

Z
1

�1

_	"(x)q(x) dx;

jjj	"jjj =
Z
1

�1

j	"(x)j dx; �" = sup
�1<x<1

j	"(x)j;

�
(1)
"

= sup
�1<x<1

j _	"(x)j; �
(2)
"

= sup
�1<x<1

j�	"(x)j:

We suppose that the function 	" satis�es the following conditions:

(C1) the function 	"(�) is twice continuously di�erentiable;

(C2)

lim sup
"!0

jm"j <1; lim sup
"!0

jjj	"jjj <1;

(C3)

lim sup
"!0

jjj _	"jjj

jm(1)
" j

<1;

(C4)

lim
"!0

("�(1)
"

+ "
2
�
(2)
"
) = 0:
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Let us denote

N" = lnT"=":

We also assume that the parameters �; "; T" satisfy the conditions:

(D1)

lim
"!0

�N
2
"
= 0;

(D2)

lim
"!0

"=� = 0;

(D3)

lim
"!0

N
2
"
=T" = 0;

(D4)

lim
"!0

�"=T" = 0;

(D5)

lim
"!0

�
3
N

4
"
(m(1)

"
)2 = 0; lim

"!0
�
3
N

4
"
�
(2)
"

= 0:

Theorem 2.1 Suppose that conditions (A1) � (A3); (B1) � (B4) are ful�lled, the

function 	"(�) satis�es the conditions (C1)� (C4), the parameters �; "; T" satisfy

the limiting relationships (D1)� (D5): Then for any � > 0 and t0 = o(T")

lim sup
"!0

1

N2
"

lnP

����� 1T"
Z

T"

t0

	"(x
"

t
) dt�m"

���� > �

�
� ��;

where � is some positive constant.

Let a function Q(�) be twice continuously di�erentiable function and supported

to the interval [�1; 1] and a function h = h" such that:

lim
"!0

h" = 0; lim
"!0

T"h" =1; lim
"!0

"=h
2
"
= 0; lim

"!0
�(N")

4=3
=h" = 0: (2.5)

Then function

	"(u) =
1

h
Q

�
u� x

h

�
satis�es the conditions (C1)� (C4) and (D4)� (D5):

Theorem 2.2 Suppose that conditions (A1) � (A3); (B1) � (B4) are ful�lled, the

parameters �; "; T"; h satisfy the limiting relationships (D1) � (D3) and (2.5).

Then for any � > 0 there exists � > 0 such that

lim sup
"!0

1

N2
"

lnP

����� 1

T"h

Z
T"

t0

Q

�
x
"

t
� x

h

�
dt�Q0

���� > �

�
� ��;
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where

Q0 = q(x)

Z 1

�1

Q(z) dz

and t0 = o(T"):

Theorem 2.2 follows directly from Theorem 2.2.

3 Asymptotical properties of the fast component

As it has been shown in [7] we can represent the solution of (1.2) in the form

yt = v
"

t
+ �y

"

1(t) + ��y(t; "); 0 � t � T; (3.1)

where v"
t
is a boundary function satisfying equation

"
dv

"

t

dt
= F (v"

t
); v0 = y0; (3.2)

and the coe�cient y"1(t); 0 � t � T; is determined by the linear stochastic di�er-

ential equation

"dy
"

1(t) = F
0(v"

t
)y"1(t)dt+

p
"G(v"

t
)dWt y1(0) = 0: (3.3)

Further we need the following lemmas.

Lemma 3.1 Let �(t; s) be the l� l fundamental matrix for linear di�erential equa-

tion

d�(t; s)

dt
= At�(t; s); �(s; s) = I; t � s; (3.4)

where I is the unit matrix of order l; and At; t � 0 is deterministic function

having the following property

lim
t!1

At = A; (3.5)

where A is a matrix whose all eigenvalues have negative real parts. Then for the

matrix �(t; s) the following exponential bound can be stated:

j�(t; s)j � L expf��(t� s)g; (3.6)

for some constants L; � > 0:
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Proof see in [7]. Further, we need to consider linear stochastic di�erential equation

d�t = At�tdt+GtdWt; �0 = 0; (3.7)

supposing the following conditions:

(E1) At is a deterministic function with values in the set of the matrices with the

fundamental matrix having exponential bound (3.6).

(E2) the function Gt is bounded, i.e. jGtj � K; 0 � t � T:

Lemma 3.2 Let stochastic process �t be the solution of the equation (3.7) in which

the coe�cients satisfy the conditions (E1) � (E2): Then there is a constant � > 0

such that for any T > 0 and � > 0

P (k�kT > �) � 8T expf���2=K2g; (3.8)

where k�kT = sup0�t�T :

Proof. Let us consider l - dimensional process �t

d�t = ��tdt+GtdWt; �0 = 0: (3.9)

It is well known [6] that for any markovian moment � with values in [0; T ] and any

integer m � 1

Ej�� j2m � 2m(2m� 1)!!
�
K

2
=2
�m

T: (3.10)

Further, we de�ne �t = �t � �t: It follows from (3.6) and (3.7) that

d�t = At�tdt+ (At + I)�tdt; �0 = 0: (3.11)

This implies

�t =

Z
t

0

�(t; s)(As + I)�sds; (3.12)

where �(t; s) is de�ned by (3.4). Then using (E1) we estimate the term (3.12) in

the following way

j�tj � L

Z
t

0

expf��(t� s)g jAs + Ij j�sjds � Lk�kT (3.13)

for some constant L > 0: Hence for some constant L > 0

k�kT � Lk�kT ; (3.14)

and therefore

P (k�kT > �) � P (k��k � �=L) ; (3.15)
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where

� = infft � 0 : j�tj � �=Lg ^ T: (3.16)

Then using the Chebyshev exponential inequality and (3.10) we get

P (k�kT > �) � expf���2=L2gE expf�j�� j2g =

= expf���2=L2g
1X

m=0

�
m

m!
Ej�� j2m �

= 2T expf���2=L2g
1X

m=0

m(2m� 1)!!

m!

�
�K

2

2

�m

=

= 2T expf���2=L2g
1X

m=0

m
�
�K

2
�m

:

By setting here � = 1=2K2 we obtain (3.8). 2

We use these lemmas to study asymptotic properties of expansion (3.1).

Proposition 3.1 Let the conditions (A1) � (A3) be ful�lled.Then the boundary

function (3.2) satis�es the inequality

jv"
t
j � L expf��t="g; (3.17)

for some constants L > 0 and � > 0:

Proof see in [1].

Proposition 3.2 Let the conditions (A1)�(A3) be ful�lled. Then the process (3.3)

satis�es the inequality

P (ky"1kT � N") � L expf��N2
"
g; (3.18)

for su�ciently small " and for some constant � > 0:

Proof. We make the change of time in the equation (3.3), by setting r = t=" andey1(r) = y
"

1(r"): Then

dey1(t) = F
0(eyt)ey1(t)dt+G(eyt)dfWt; ; ey1(0) = 0; (3.19)

where eyt is solution of the equation (1.1), fWt = Wt"=
p
": Then

P (ky"1kT � N") = P
�
key1kT=" � N"

�
and the inequality (3.18) follows from lemmas 3.1-3.2. 2
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Proposition 3.3 Let the conditions (A1)� (A3) and (D1) be ful�lled. Then there

exists a constant L� such that

P
�
k�ykT � L

?
�N

2
"

�
� L expf��N2

"
g (3.20)

for su�ciently small " > 0:

Proof. We apply again the change of time now in the expansion (3.1), by letting

ey"
r
= y

"

r"
; eyr = v

"

r"
; ey1(r) = y

"

1(r");
e�y(r) = �y(r"; ");

where

dey"
r
= F (ey"

r
)dr + �G(ey"

r
)dfWr; ey"0 = y0; (3.21)

the function eyr satis�es the equation (2.1) and ey1(r) is the solution of the equation

(3.19). Then

de�y(t) = �
�1 (F (ey"

t
)� F (eyt)� �F

0(eyt)ey1(t)) dt+ (G(ey"
t
)�G(eyt))dfWt =

= F
0(eyt)e�y(t)dt+ r

(1)
t dt+ r

(2)
t dfWt;

e�y(0) = 0; (3.22)

where

r
(1)
t = �

�1 (F (ey"
t
)� F (eyt)� �F

0(eyt)ey1(t))� F
0(eyt)e�y(t);

r
(2)
t = G(ey"

t
)�G(eyt):

De�ne the stopping time �0 as

�0 = infft � 0 : jey1(t)j � N"g ^ T="; (3.23)

Then taking into account inequality (3.18) we derive for su�ciently small " > 0

P (�0 < T=") = P
�
key1kT=" � N"

�
= P (ky1kT � N") � expf��N2

"
g (3.24)

with some constant � > 0:

Now we set

�� = infft � 0 : je�y(t)j � �g ^ �0; (3.25)

where

� = L
�

�N
2
"
: (3.26)

The constant L� will be chosen later. Further we set

er(i)t = r
(i)
t^��

; i = 1; 2: (3.27)
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Then by making use of condition (A3) we obtain the following inequality

jer(1)t j � L

�
jey1(t ^ ��)j2 + je�y(t ^ ��)j2

�
� �

� L�(N2
"
+ �

2) � L�N
2
"
: (3.28)

Similarly we get

jer(2)t j � L

�
jey1(t ^ ��)j+ je�y(t ^ ��)j

�
� �

� L�(N" + �) � L�N" (3.29)

for some a constant L > 0:

Further on the set ft � ��g we represent e�y in the following form

e�y(t) = �
(1)
t + �

(2)
t ; (3.30)

where

d�
(1)
t = F

0(eyt)�(1)t dt+ er(1)t dt; �
(1)
0 = 0:

d�
(2)
t = F

0(eyt)�(2)t dt+ er(2)t dWt; �
(2)
0 = 0:

By the Cauchy formula for linear equations we obtain that

�
(1)
��

=

Z
��

0

e�(t; s)er(1)
s
ds;

where e�(t; s) is the fundamental matrix of the system

de�(t; s)
dt

= F
0(eyt)e�(t; s); e�(s; s) = I: (3.31)

The conditions (A2)� (A3) and Lemma 3.1 imply the exponential bound (3.6) for

this matrix. Therefore, it follows from (3.28) that

j�(1)
��
j � L�N

2
"

for some constant L > 0: Taking into account condition (D1) we choose L
� in (3.26)

such that

j�(1)
��
j � �=2: (3.32)

Then

P (k�ykT � �) = P

�
ke�ykT=" � �

�
� P

�
ke�yk�0 � �

�
+ P (�0 < T=") =

P

�
je�y(��)j = �

�
+ P (�0 < T=") � P

�
j�(1)
��
j+ j�(2)

��
j � �

�
+ P (�0 < T=") :

Taking into account the inequality (3.32) we get that

P (k�ykT � �) � P
�
k�(2)kT=" � �=2

�
+ P (�0 < T=") :

Now Proposition 3.3 holds by virtue of Lemma 3.2 and inequality (3.29). 2

As a corollary of Proposition 3.2 and Proposition 3.3 we obtain
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Proposition 3.4 Under the conditions of Proposition 3.3 the process (3.1) satis-

�es the inequality

P (ky" � v
"kT � �N") � L expf��N2

"
g (3.33)

for some a constant � > 0 and for su�ciently small ":

Proposition 3.5 Let the conditions (A1)� (A3) and (D1)� (D2) be ful�lled. We

suppose also that

lim
"!0

�
�1 expf��t0="g = 0 (3.34)

for any � > 0: Then there exists some constant � > 0 such that for any �xed

0 < t0 < T and for su�ciently small " > 0

P (ky"kt0;T � �N") � L expf��N2
"
g; (3.35)

where ky"kt0;T = supt0�t�T jy
"

t
j:

Proof of this proposition follows from Proposition 3.1, the condition (3.34) and

Proposition 3.4.

4 Asymptotical properties of the slow component

We set

S(x) =

Z
x

0

dz

g(z)
(4.1)

It follows from the condition (B2) that this function has a positive bounded deriva-

tive and therefore one can de�ne the function s(x) as the solution of the equation

S(s(x)) = x (4.2)

for all x 2 (�1;1), and

s
0(x) = g(s(x)) > 0: (4.3)

Next, we set

bx"
t
= S(x"

t
): (4.4)

Then we obtain from (4.1) and (1.2), using the also Ito's formula that

dbx"
t
= bf(bx"

t
; y

"

t
)dt+ d!t; bx"0 = bx0 = S(x0); (4.5)

where

bf(x; y) = f(s(x); y)

g(s(x))
�
g
0(s(x))

2
: (4.6)
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Following to [12] we represent the solution of the equation (4.5) in the following

way:

bx"
t
= bu"

t
+ �bx"1(t) + ��

"

x
(t); (4.7)

where

dbu"
t
= bf(bu"

t
; v

"

t
)dt+ d!t; bu"0 = bx0; (4.8)

the function v
"

t
is de�ned by (3.2), the coe�cient bx"1(t) satis�es the equation
dbx"1(t)
dt

= bfx(t; ")bx"1(t) + bf ?
y
(t; ")y"1(t); bx"1(0) = 0; (4.9)

where bfx(t; ") = bfx(bu"t ; v"t ); bfy(t; ") = bfy(bu"t ; v"t ); the process y"1(t) is the solution

of the stochastic di�erential equation (3.3) and ? denote transposition. We need

some properties of the asymptotical expansion (4.7). We de�ne

dbut = b(but)dt+ d!t; ; bu0 = bx0; (4.10)

where

b(u) = bf(u; 0): (4.11)

Proposition 4.1 Let the conditions (A1)� (A3) and (B1)� (B4) be ful�lled. Then

the process (4.8) satis�es the following inequality

sup
t�t0

jbu"
t
� butj � L" expf�t0g (4.12)

for any t0 � 0 and for some �xed constants L > 0 and  > 0:

Proof. At �rst, we shall show that

sup
t�0

jbu"
t
� butj � L" (4.13)

for some a constant L > 0: We set

�"

t
= bu"

t
� but:

In view of (4.8) and (4.10)

d�"

t

dt
= �

"

t
�"

t
+ r

"

t
; �"

0 = 0; (4.14)

where �"
t
= (b(bu"

t
)� b(but))=�"

t
; and r

"

t
= bf(bu"

t
; v

"

t
)� bf(bu"

t
; 0):

By (2.3) and (4.3)
_b(u) � �

11



for all u 2 (�1;+1); and therefore

�
"

t
� �: (4.15)

Using the Lipschitz condition on the function f and the inequality (3.13) we obtain

jr"
t
j � Ljv"

t
j � L expf��t="g: (4.16)

Then solving the equation (4.14) on the interval [0; t] we get

�"

t
=

Z
t

0

r
"

s
expf

Z
t

s

�
"

u
dug ds:

Then (4.13) follows from (4.15) and (4.16). Similarly, we can represent �"

t
on the

interval [t1; t] (t1 = t0=2) in the form

�"

t
= expf

Z
t

t1

�
"

s
dsg�"

t1
+

Z
t

t1

r
"

s
expf

Z
t

s

�
"

u
dug ds

and taking into account (4.13) we arrive at (4.12). Hence Proposition 4.1. 2

Further we need the next auxiliary lemma.

Lemma 4.1 Under the conditions (A1)� (A3) the process (3.3) has the property:

for all t � s

jEy"1(t)(y
"

1(s))
?j � Le

��(t�s)=" (4.17)

for some �xed constants L > 0 and  > 0:

Proof. First note that

Ey
"

1(t)(y
"

1(s))
? = Eey1(t=")(ey1(s="))?;

where ey1 is de�ned by (3.15). It follows from (3.15) that

Eey1(t=")(ey1(s="))? = �(t="; s=")Eey1(s=")(ey1(s="))?;
where

�(t; s)

dt
= F

0(eyt)�(t; s); �(s; s) = I:

Taking into account the condition (A2) and Lemma 3.1 we obtain the inequality

(4.17). Hence Lemma 4.1. 2

Proposition 4.2 Under the conditions (A1) � (A3) and (B1)� (B3) the solution

of the equation (4.9) for all integer numbers m � 1 and some positive constant L

satis�es the inequality:

sup
t�0

E
�
(bx"1(t))2m jFwT	 � (2m� 1)!!(L")m; (4.18)

where Fw
T
= �fwt; 0 � t � Tg:

12



Proof. We can represent the solution of (4.9) as

bx"1(t) =
Z

t

0

bf �
y
(s; ")y"1(s)�"(t; s) (4.19)

with

�"(t; s) = expf
Z

t

s

bfx(r; ") drg:
Since the process (3.3) is Gaussian, and the Wiener processes (!t; t � 0); (Wt; t � 0)

are independent, the process (4.19) is conditionally (with respect to F!
T
) Gaussian

with E fbx"1(t)jFwT g = 0 and

E
�
(bx"1(t))2 jFwT	 = 2

Z
t

0

�"(t; s)

Z
t

s

bf ?
y
(s; ")Ey"1(s)(y

"

1(�))
? bfy(�; ")�"(t; �) d� ds:

Note that by (4.6) and conditions (B1)� (B4)

bfx(x; y) � _a1(s(x)) _s(x) + Ljyj (4.20)

for some positive constants 1 > 0 and L > 0: Therefore, using the inequality (3.13)

we get

�"(t; s) � expf�1(t� s) + L

Z
t

s

e
���="

d�g � e
�1(t�s): (4.21)

Then taking into account (4.17) we obtain

E
�
(bx"1(t))2 jFwT	 � L"

for some constant L > 0 and hence (4.18). 2

In the sequel we need

Lemma 4.2 Let �t be a scalar random process satisfying the linear stochastic dif-

ferential equation

d�t = �t�t dt+ d!t; �0 = 0; (4.22)

where !t is a standard Wiener process and the coe�cient �t satis�es the inequality

�t � � (4.23)

for some constant  > 0: Then for any integer m � 1

E (k�kT )
2m � 1 + 8�1(�1 + 

�2)mm4
m!T; (4.24)

where k�kT = sup0�t�T j�tj; and T > 0:

13



Proof. One can show (see, for example, [6]) that for any stopping time � with

values in the interval [0; T ]

Ej�� j2m � m(2m� 1)!!T=(2)m�1: (4.25)

We have also

E(k�kT )2m = 2m

Z
1

0

a
2m�1

Pfk�kT > ag da � 1 + 2m

Z
1

1

a
2m�1

Pfj��aj � ag da;

where

�a = infft � 0 : j�tj � ag ^ T:

By letting � = m
2m we obtain

E(k�kT )2m � 1 + 2m

Z
�

1

j��aj2m

a
da+ 2m

Z
1

�

j��aj4m

a2
da �

� 1 +
2m2(2m� 1)!!T ln�

(2)m�1
+

4m2(4m� 1)!!T

�(2)2m�1
�

� 1 +
8m3

m!T lnm

m�1
+

8m2(2m)!T

2m�1m2m

and hence (4.24). 2

We set

D" = fky"1kT � N"; k�ykT � L
�

�N
2
"
g; (4.26)

where �y is de�ned by (3.1), L� is a constant which ful�lls inequality (3.19).

Proposition 4.3 Under the conditions (A1) � (A3); (B1) � (B3) and (D1) the

process �"
x
(�) from (4.7) satis�es the inequality

E1D"
(�"

x
)
2m � (L�N2

"
)mm4

m!T (4.27)

for any integer m � 1 and some constants L > 0 and T � 1:

Proof. In view of (4.7)-(4.9) the process �"
x
obeys the equation

d�
"

x
(t) = �

"

t
�
"

x
(t) dt+ r

"

t
dt; �

"

x
(0) = 0; (4.28)

where

�
"

t
=

bf(bx"
t
; y

"

t
)� bf(bu"

t
+ �bx"1(t); y"t )

��"
x
(t)

;

r
"

t
=

bf(bu"
t
+ �bx"1(t); y"t )� bf(bu"

t
; v

"

t
)� � bfx(t; ")bx"1(t)� � bf ?

y
(t; ")by"1(t)

�

14



Taking into account the asymptotical expansion (3.1) and inequality (4.20) we get

on the set D"

�
"

t
� �1 + Ljv"

t
j+ L�N" + L

�

�
2
N

2
"
� �1=2 + Ljv"

t
j

for su�ciently small " > 0 and therefore by (3.13) for any t � sZ
t

s

�
"

u
du � �1(t� s)=2 + L

Z
t

s

e
��u="

du � �(t� s)=2 + L";

that is, for some positive constant  > 0

expf
Z

t

s

�
"

u
dug � 2e�(t�s):

Note that by (4.19) and (4.21)

kbx"1kT � Lkby"1kT (4.29)

for some constant L > 0:

Further, it is easy to get from the de�nition of the function bf in (4.6) that for some

constant L > 0

j bfxx(x; y)j � (1 + jxj+ jyj) (4.30)

for all x and y; the other second derivatives bfxy and bfyy are bounded. By applying

the �nite increments formula we obtain

jr"
t
j � Lj�y(t; ")j+ j efx(t; ")� bfx(t; ")jjbx"1j+ j efy(t; ")� bfy(t; ")jjby"1j;

where efx(t; ") = efx(bu"t + ��bx"1(t); v"t + ��y
"

1(t));efy(t; ") = efy(bu"t + ��bx"1(t); v"t + ��y
"

1(t)); 0 � � � 1:

Similarly, taking into account inequalities (4.12), (4.29) and (4.30) we obtain

jr"
t
j � L(j�y(t; ")j+ �(1 + jbutj+ �jbx"1(t)j+ �jby"1(t)j)(jbx"1(t)j2 + jby"1(t)j2)) �

� L(j�y(t; ")j+ �(1 + kbukT + �kby"1kT )kby"1k2T ):
Therefore on the set D" for su�ciently small " > 0

kr"kT � L(1 + kbukT )�N2
"

for some constant L > 0: Note that the solution of equation (4.28) can be repre-

sented in the integral form

�
"

x
(t) =

Z
t

0

r
"

s
e

R
t

s
�
"

u
du
ds:

15



Then it holds on the set D"

j�"
x
(t)j � 2

Z
t

0

jr"
s
je�(t�s) ds � L(1 + kbukT )�N2

"
:

Next we study equation (4.10). We rewrite it in the following form

dbut = (b(0) + �tbut) dt+ d!t; bu0 = bx0; (4.31)

where �t = (b(but)� b(0))=but: First, note that condition (B4) implies the inequality

�t � � (4.32)

for some constant  > 0:

By applying Cauchy formula for linear di�erential equations we can write the so-

lution of (4.31) in the form

but = bx0eR t

0
�s ds + b(0)

Z
t

0

e

R
t

s
�u du ds+ �t;

where

d�t = �t�t dt+ d!t; �0 = 0:

Inequalities (4.24) and (4.32) imply (4.27). Hence Proposition 4.3. 2

In the sequel we need upper exponential bound for the probability of large devia-

tions for bx" in the integral metric.

Let �t be a positive F!
T
- measurable random process. We set

� = f
Z

T

t0

�t dt � Kg; (4.33)

where 0 � t0 < T; K > 0:

Proposition 4.4 Under conditions (A1) � (A3); (B1) � (B3); and (D1) � (D2)

the process bx" satis�es for some constants L > 0 and � > 0 and any � > 0 and

K > 0 the inequality

P

�Z
T

t0

jbx"
t
� bu"

t
j�t dt > �; �; D"

�
� LT expf�

��
2

K2�3N2
"

g (4.34)

Proof. It follows from (4.7) that

P

�Z
T

t0

jbx"
t
� bu"

t
j�t dt > �; �; D"

�
� P (�"1 > �=2�) + P (�"2 > �=2�); (4.35)

where

�
"

1 = 1�

Z
T

t0

jbx"1(t)j�t dt; �
"

2 = 1D"
k�"

x
kT :

16



Now we show that there exists some constant � > 0 such that

E expf
�(�"1)

2

K2"
g � 2: (4.36)

Indeed, by the Hölder inequality and (4.18)

E(�"1)
2m � E1�

Z
T

t0

jbx"1(t)j2m�t dt
�Z

T

t0

�t dt

�2m�1

�

� K
2m�1

E1�

Z
T

t0

E
�
jbx"1(t)j2mjFwT	 �t dt � (2m� 1)!!(K2

L")m

and therefore

E expf
�(�"1)

2

K2"
g � 1 +

1X
m=1

(2m� 1)!!

m!
(�L)m �

1X
m=0

(2�L)m:

This implies (4.36) for 0 < � < 1=4L. By making use of the Chebyshev inequality

and (4.36) it is easy to get that

P (�"1 > �=2�) � 2 expf�
��

2

K2�2"
g (4.37)

for some constant � > 0:

Further, taking into account inequality (4.27) one can show that there exists posi-

tive constants � and L; such that

E expf
�(�"2)

2

�N2
"

g � LT:

By applying the Chebyshev inequality we obtain

P (�"2 > �=2�) � LT expf�
��

2

K2�3N2
"

g:

Combining this inequality with (4.35), (4.37) and condition (D2); we obtain (4.34).

Hence Proposition 4.4. 2

Proposition 4.5 Under the conditions of Proposition 4.4 the process bx" satis�es
the inequality

P

�Z
T

t0

jbx"
t
� bu"

t
j2 dt > �; D"

�
� LT expf�

��

�3N2
"
T
g (4.38)

for any � > 0 and some constants L > 0 and � > 0:

Proof of Proposition 4.5 is similar to the proof of Proposition 4.4.
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5 Upper exponential bound for the probability of

large deviations in the ergodic theorem for di�u-

sion processes

Let us consider a scalar di�usion process � satisfying the stochastic di�erential

equation

d�t = b(�t) dt+ d!t; �0 = const: (5.1)

Suppose that the function b(�) is continuously di�erentiable and

_b(x) � � (5.2)

for some constant  > 0 and all �1 < x <1:

It is well known (see, for example, [8]) that in this case the equation (5.1) has an

unique strong solution, possessing the stationary distribution with the density:

q1(y) =
expf2

R
y

0
b(z) dzgR +1

�1
expf2

R
u

0
b(z) dzg du

: (5.3)

Further, for an arbitrary continuous integrable function �(�) we de�ne

�T (�) =

R
T

0
(�(�t)�m(�)) dt

jjj�jjj
p
T

; (5.4)

where

m(�) =

Z +1

�1

�(y)q1(y) dy: (5.5)

Proposition 5.1 Let the condition (5.2) for the equation (5.1) be ful�lled. Then

there exists an universal constant � > 0 such that for any continuous integrable

function � and arbitrary T � 1

E expf�(�T (�))
2g � 2: (5.6)

Proof. We set �1(u) = �(u)�m(�): It is obvious thatZ +1

�1

�1(y) expf2
Z

y

0

b(z) dzg dy = 0: (5.7)

Let us de�ne the function

V (x) =

Z
x

0

v(u) du; v(u) = �2

Z +1

u

�1(y) expf2
Z

y

u

b(z) dzg dy: (5.8)

Now we show that

sup
�1<u<+1

jv(u)j � Ljjj�jjj (5.9)

18



for some constant L > 0:

Indeed, by applying the �nite increments formula and taking into account condition

(5.2) for u > 0 we get

jv(u)j �
Z +1

u

(j�(y)j+ jm(�)j) expf�(y � u)2 + 2jb(0)j(y � u)g dy �

� Ljjj�jjj+ Ljm(�)j
Z +1

0

expf�z2 + 2jb(0)jzg dz � Ljjj�jjj:

By (5.7) we obtain that for u � 0

jv(u)j = 2j
Z

u

�1

�1(y) expf�2

Z
u

y

b(z) dzg dyj �

� 2

Z
u

�1

j�1(y)j expf�(y � u)2 + 2jb(0)jjy � ujg dy � Ljjj�jjj:

These inequalities imply (5.9).

Next note that the function V (x) (5.8) satis�es the di�erential equation

2 _V (x)b(x) + �V = 2�1(x):

Therefore, by making use of the Itô formula we getZ
T

0

�1(�t) dt = V (�T )� V (�0)�
Z

T

0

v(�t) d!t:

It follows from inequality (5.9) that

�Z
T

0

�1(�t) dt

�2m

� 32m�1(jV (�T )j2m +

����V (�0)j2m + j
Z

T

0

v(�t) d!t

����
2m

) �

� 32m�1(L2mjjj�jjj2mj�T j2m + L
2mjjj�jjj2mj�0j2m +

����
Z

T

0

v(�t) d!t

����
2m

): (5.10)

Now we show that

sup
t�0

Ej�tj2m � (2m� 1)!!(L)m (5.11)

for some constant L > 0 and for any integer m � 1: The function b(�t) can be

represented in the form

b(�t) = b(0) + �t�t;

with �t = (b(�t)� b(0))=�t: Moreover, we get in view of condition (5.2)

�t � �; t � 0:
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By applying the Cauchy formula for linear di�erential equations we write the so-

lution of equation (5.1) as

�t = �t + �t;

where �t satis�es the ordinary di�erential equation

d�t

dt
= b(0) + �t�t; �0 = �0; (5.12)

and �t satis�es the linear stochastic di�erential equation

d�t = �t�t dt+ d!t; �0 = 0: (5.13)

It is easy to get from (5.12) that

sup
t�0

j�tj � L

for some constant L > 0: Next, the process �t satis�es for any integer m � 1 the

inequality

sup
t�0

Ej�tj2m � (2m� 1)!!=(2)m:

(see, [6]) which implies (5.11). Further, the bounds for even moments of stochastic

integrals (see, [9]) and inequality (5.9) imply that

E(

Z
T

0

v(�t) d!t)
2m � (2m� 1)!!(LT jjj�jjj2)m

for some constant L > 0: This and (5.10) provide for some L > 0; T � 1 and any

integer m � 1

E(�T (�))
2m � (2m� 1)!!Lm

and hence inequality (5.6). 2

Proposition 5.2 Under the conditions of Proposition 5.1 for any continuous in-

tegrable function � and arbitrary � � 0

P

�
j
1

T

Z
T

0

�(�t) dt�m(�)j � �

�
� 2 expf�

��
2
T

jjj�jjj2
g (T � 1):

This statement follows directly from Proposition 5.1.

6 Proof of Theorem 2.1

To prove Theorem 2.1 we need the following lemmas.
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Lemma 6.1 Let for the process (1.3) the conditions (B2) � (B4) be ful�lled, the

function 	" satisfy the condition (C1)� (C2) and T" satisfy the conditions (D3)�
(D4): Then for any � > 0 there exists � > 0 such that

lim sup
"!0

1

N2
"

lnP

����� 1T"
Z

T"

t0

	"(ut) dt�m"

���� > �

�
� ��; (6.1)

where t0 = o(T").

Proof. By change of variables but = S(ut); where S(�) is de�ned by (4.1), we

transform equation (1.3) to equation (4.10) with function b(u) satisfying inequality

(5.2). Then

P

����� 1T"
Z

T"

t0

	"(ut) dt�m"

���� > �

�
� P

����� 1T"
Z

t0

0

'"(but) dt
���� > �=2

�
+

+P

����� 1T"
Z

T"

0

'"(but) dt�m"

���� > �=2

�
; (6.2)

where

'"(u) = 	"(s(u)):

Next note that

jjj'jjj =
Z +1

�1

j	"(s(u))j du =

Z +1

�1

j	"(u)j
1

g(u)
du � Ljjj	"jjj:

Now we estimate the �rst term in the right side of inequality (6.2). If t0 � 1 then����
Z

t0

0

'"(but) dt
���� � �"

and by condition (D4)

P

�
1

T"

����
Z

t0

0

'"(but) dt
���� > �=2

�
= 0

for su�ciently small " > 0: Now let t0 > 1: Then taking into account condition

(C2) we obtain for su�ciently small " > 0

P

�
1

T"

����
Z

t0

0

'"(but) dt
���� > �=2

�
� P

����� 1t0
Z

t0

0

'"(but) dt�m"

���� > T"�=4t0

�
: (6.3)

Therefore, by applying Proposition 5.2 and inequalities (6.2)-(6.3) and taking into

account condition (D3) we come to (6.1). Hence Lemma 6.1. 2
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Lemma 6.2 Suppose that conditions (A1) � (A3); (B1) � (B4) are ful�lled, the

parameters �; "; T" satisfy the limiting relationships (D1) � (D5): Then for any

� > 0 there exists � > 0 such that

P

�Z
T"

t0

j	"(x
"

t
)� 	"(ut)j dt > �T"

�
� e

��N2
" (6.4)

for su�ciently small " > 0:

Proof. First, note that Proposition 3.2 and Proposition 3.3 imply the following

inequality

P (Dc

"
) � e

��N
2
" (6.5)

for some constant � > 0: We set

�" = f
Z

T"

t0

j _	"(ut)j dt < T"m
(1)
"
g: (6.6)

It follows from inequality (6.1) that

P (�c

"
) � e

��N
2
" (6.7)

for some constant � > 0:

By applying the �nite increments formula we obtain

j	"(x
"

t
)� 	"(ut)j � jx"

t
� utjj _	"(ut)j+ �

(2)
"
jx"

t
� utj2

and taking into account inequality (4.13) we get the inequality

j	"(x
"

t
)� 	"(ut)j � jx"

t
� u

"

t
jj _	"(ut)j+ �

(2)
"
jx"

t
� u

"

t
j2 + "�

(1)
"

+ "
2
�
(2)
"
:

It follows from condition (B2) that the function s(�); de�ned by (4.2), satis�es the

Lipschitz condition. Therefore for some constant L > 0

j	"(x
"

t
)�	"(ut)j � L

�
jbx"

t
� bu"

t
jj _	(ut)j+ jbx"

t
� bu"

t
j2 + "�

(1)
"

+ "
2
�
(2)
"

�
:

Then

P

�Z
T"

t0

j	"(x
"

t
)� 	"(ut)j dt > �T"

�
�

� P

�Z
T"

t0

jbx"
t
� bu"

t
jj _	"(ut)j dt > T"�=4L; �"; D"

�
+

+P

�Z
T"

t0

jbx"
t
� bu"

t
j2 dt > T"�=4L�

(2)
"
; D"

�
+ P (�c

"
) + P (Dc

"
):

Combining Propositions 4.4 - 4.5, inequalities (6.5), (6.7) and limiting relationships

(D5) we obtain inequality (6.4). Hence Lemma 6.2. 2

Lemma 6.1 and Lemma 6.2 imply the assertion of Theorem 2.1.
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