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1 Introduction

Let us consider the model describing by the system of singularly perturbed stochas-
tic differential equations:

edy; = F(y§)dt + BveG(ys)dWs, Y5 = Yo, (1.2)

where W = (W;, t > 0) and w = (w;, t > 0) are independent Wiener processes,
and € and (@ are small parameters.

The processes z° and y® can be naturally treated as slow and fast components of
a stochastic dynamic system. If 8 = 1, then the process x° obeys the averaging
principle, see Freidlin [3], Freidlin, Wentcell [4], Veretennikov [14], which means a
convergence of z° to a ergodic process arising from (1.1) by substituting in place of
y® its stationary distribution. The case of a small 3 i.e. the situation when 3 tends
to zero together with e, is studied in details in Kabanov and Pergamenshchikov
[6]. In this situation the fast component y° converges to the root of the equation
F(y) = 0. In the sequel we shall suppose that the point y = 0 is the root of this
equation, that is F'(0) = 0. We establish also some asymptotic expansions with
respect to the parameter ( for the deviations of z° from the limit process u
described by the stochastic equation

dus = a(us)dt + g(us)dwy, Uy = T, (1.3)

where a(z) = f(z,0).
In this paper, we consider a deviation problem for an integral functional

T
/ W, (af) dt, (1.4)
to

where W, is some smooth function.

This study is motivated by the following statistical estimation problem. Similarly
to Liptser, Spokoiny [10] we consider the problem of statistical estimating the
function a(z) from the observed process z°. One may apply usual nonparametric
methods, for instance, local polynomial or kernel estimators. If ) is smooth and
supported in the interval [—1, 1] kernel function, then, given a value A > 0 called
a bandwidth, the kernel estimate ar(z) is defined by

oo () de
Chhe(%E)a

An asymptotical analysis, as € — 0, of such a statistical procedure leads to ana-
lyzing integral functionals (1.4) with

V() = 3Q (“ - x) ,

1




where h depends on ¢.

The paper is organized as follows. In section 2 we fix assumptions and formulate the
main result. Asymptotic properties of the fast and slow components are gathered
in Sections 3,4. In section 5 we get upper exponential bound in ergodic theorem
for diffusion processes. Proof of the result is given in Section 6.

2 The main results

First we formulate the necessary conditions on the functions
f, g, F and G entering in the model
equations (1.1) and (1.2), and then state the results.
Below we suppose the following conditions to be fulfilled:
(A;) the functions F' with values in R™ and
G with values in the set of nx[-matrices

are continuous and locally Lipschitz and satisfy the condition

of linear growth;

(As) the point y = 0 is a root of the equation F(y) =0,

and a solution y, of the differential equation

dgs = F(gS)dsa gO = Yo, (21)
has the limit zero at s = oo,
sll)rgo Us = 0; (2.2)

(A3) the function F is differentiable with a locally Lipschitz
derivative F'(z) which is for every z
a mXxn-matrix, and all eigenvalues of F’(0) have

a strictly negative real part.

Note that the assumption (A;) ensures existence and uniqueness of the solution of
the equation (1.2) (Gikhman, Skorochod [5]).

Furthermore, we suppose that the functions f(-,-), g(-) and a(-) = f(-,0) satisfy
the following conditions:

(B;1) the function f(z,y) has a bounded continuous derivatives until second order;

(Bs) the function g is bounded, positive and separated away from zero,

Gmin S g(fﬂ) S Gmax

for some positive constants gmin < Gmax ;



(B3) the function g is two times differentiable and its second derivative g” satisfies
the Lipschitz condition;

(B4) the function a;(u) defined by

ar(u) = a(u)/g(u) — g'(u)/2
is differentiable with a strictly negative derivative aj i.e. for some vy > 0

ay(u) < —v Yu. (2.3)

For example, the condition (By) is fulfilled with a(u) = —u, g(u) = a +7/4 —
arctan(u?)/2, 0<a <2-—m/4.

The assumptions (B;) through (Bj) ensure existence and uniqueness of the solu-
tion of equations (1.1), (1.3), see Liptser and Shiryaev [9]. Moreover, (Gikhman,
Skorochod [5]) under (Bs), (Bs) and (B,) the process (1.3) is ergodic with the
stationary density

q(z) = = o (2.4)
2 -2 a(u
g (:L'):!og (2) exp {20fgz(u)du}dz
We set - ~
m. = / V. (2)g(z) dz, ml = / ¥, (2)q(z) dz,
el = [~ @lde, n= s e,
— 00 —oco<z< 00
p = sup | (z)), p@= sup |¥.(z).
—oo<r<oo —oo<er<oo

We suppose that the function W, satisfies the following conditions:

(C1) the function W,(-) is twice continuously differentiable;

(C2)
limsup |m,| < oo, limsup|||¥||| < o0;
e—0 e—0
(Cs) :
N
e—0 |7n6 |
(C4)

lim(ep™ + 2u®) = 0.
e—0



Let us denote
N, =InT,/e.

We also assume that the parameters (3, e, T, satisfy the conditions:

(D1)

lim ﬁNf =0;
e—0
(D2)
lime /B = 0;
e—0
(Ds)
lim N?/T, = 0;
e—0
(Da)
lim ,U'E/Te = 0;
e—0
(Ds)

lim BN (m®)? =0, lim BN pl® = 0.
e—0 e—0

Theorem 2.1 Suppose that conditions (A1) — (A4s), (B1) — (Bs) are fulfilled, the
function (- satisfies the conditions (C1) — (Cy), the parameters (3, e, T, satisfy
the limiting relationships (D1) — (Ds). Then for any A > 0 and ty = o(Ty)

1

T
—/ U (z5)dt — m,

1
limsup — In P (
T, J;,

e—0 NEZ

>)\> < —k,

where K is some positive constant.

Let a function Q(-) be twice continuously differentiable function and supported
to the interval [—1, 1] and a function h = h, such that:

. — . — . 2: . 4/3 —
ll_l;I(l)hE 0, ll_I)%TghE 00, ll_I)%E/hE 0, ll_I)I(l)ﬁ(NE) /he = 0. (2.5)

V. (u) = %Q (“ - x)

satisfies the conditions (C}) — (Cy4) and (D4) — (Ds).

Then function

Theorem 2.2 Suppose that conditions (A1) — (A4s), (B1) — (Bs) are fulfilled, the
parameters 3, e, T, h satisfy the limiting relationships (D1) — (D3) and (2.5).
Then for any A > 0 there exists k > 0 such that

1 T T; — T
dt —
Tsh/to Q( h ) o

1
lim su In P
e—0 P NEZ (




where )
= d
Qo = q(z) /1 Q(z)dz
and ty = o(Ty).

Theorem 2.2 follows directly from Theorem 2.2.

3 Asymptotical properties of the fast component
As it has been shown in [7] we can represent the solution of (1.2) in the form
ye = v; + Byi(t) + Béy(t,e), 0<t<T, (3.1)

where v is a boundary function satisfying equation

dve
€ dtt = F(vy), vy = Yo, (3.2)

and the coefficient y¢(¢), 0 <t < T, is determined by the linear stochastic differ-
ential equation

edyi(t) = F'(v§)y; (t)dt + veG(v§)dW; y.(0) = 0. (3.3)

Further we need the following lemmas.

Lemma 3.1 Let ®(t,s) be the I x 1 fundamental matriz for linear differential equa-
tion
dd(t, s)
dt

= A,@(t,s), ®(s,s)=1, t>s, (3.4)

where I is the unit matriz of order I, and A;, t > 0 is deterministic function
having the following property

lim 4, = A, (3.5)
t—o00

where A is a matriz whose all eigenvalues have negative real parts. Then for the
matriz ®(t, s) the following exponential bound can be stated:

|B(t, 5)| < Lexp{—r(t — s)}, (3:6)

for some constants L,k > 0.



Proof see in [7]. Further, we need to consider linear stochastic differential equation
dft - Atftdt + thWt, 60 - 0, (37)

supposing the following conditions:

(E;) A; is a deterministic function with values in the set of the matrices with the
fundamental matrix having exponential bound (3.6).

(Es5) the function Gy is bounded, i.e. |G| < K, 0<t<T.

Lemma 3.2 Let stochastic process & be the solution of the equation (3.7) in which
the coefficients satisfy the conditions (E1) — (E3). Then there is a constant k > 0
such that for any T >0 and A >0

P(|¢llr > A) < 8T exp{—kX*/K?}, (3.8)

where [|€]l7 = supy<icr -

Proof. Let us consider [ - dimensional process 7,
d'l']t = —T]tdt + thWt, o = 0. (39)

It is well known [6] that for any markovian moment 7 with values in [0, 7] and any
integer m > 1

En,[>™ < 2m(2m — 1)l (K*/2)™ T. (3.10)
Further, we define A; = & — n;. It follows from (3.6) and (3.7) that

This implies
t
A= / B(t, )(Ay + I)yds, (3.12)
0

where ®(t, s) is defined by (3.4). Then using (E;) we estimate the term (3.12) in
the following way

t
A < L/ exp{—r(t — 5)} [As + 1| [n:|ds < Li|nl|r (3.13)
0

for some constant L > 0. Hence for some constant L > 0

1€l < Lilnllr, (3.14)

and therefore

P ([[¢llr > A) < P(ln-ll = /L), (3.15)



where
r=inf{t >0: |n| > A/L} AT. (3.16)
Then using the Chebyshev exponential inequality and (3.10) we get

P ([lgllz > A) < exp{—rA?/L*} E exp{xln. [} =

oo K/m
= exp{—rA?/L?} Z ﬁmm?m <

— 9T exp{— m?/L?}Z 27”_1)” <”§2>m:

= 2T exp{—rA?/L*} Z (kK*)™

By setting here k = 1/2K? we obtain (3.8). O
We use these lemmas to study asymptotic properties of expansion (3.1).

Proposition 3.1 Let the conditions (A1) — (As) be fulfilled. Then the boundary
function (3.2) satisfies the inequality

vi| < Lexp{—rt/e}, (3.17)
for some constants L > 0 and k > 0.

Proof see in [1].

Proposition 3.2 Let the conditions (A;) —(As3) be fulfilled. Then the process (3.3)
satisfies the inequality

P (|45l > Ne) < Lexp{—xNZ}, (3.18)
for sufficiently small € and for some constant k > 0.

Proof. We make the change of time in the equation (3.3), by setting r = ¢/e and
y1(r) = y5(re). Then

A (t) = F' ()i (t)dt + G(@)dW,, , 7:(0) =0, (3.19)
where y; is solution of the equation (1.1), W, = Wie/+/€. Then

P (llyllr = Ne) = P ([[Fillz7e > Ne)

and the inequality (3.18) follows from lemmas 3.1-3.2. O



Proposition 3.3 Let the conditions (A1) — (As) and (D) be fulfilled. Then there
exists a constant L* such that

P (ll6,lr > L*BN?) < Lexp{—«N?} (320)
for sufficiently small € > 0.

Proof. We apply again the change of time now in the expansion (3.1), by letting

Uy =Ures Ur =Vres Ui(r) =yi(re); 6y(r) = 0y(re,€),
where
dyz = F(§2)dr + BGE)dW,, T = 1o, (3.21)

the function g, satisfies the equation (2.1) and g;(r) is the solution of the equation
(3.19). Then

do,(t) = B L (F(5E) — F(@) — BF' @)i(t)) dt + (G(F) — G(7))dW, =

= F'(5,)6,(t)dt + rMdt + r&aw,,  5,(0) =0, (3.22)

where

r) = 87N (FF) — F@) — BF G)%(t) — F'(§)3,(),
r? = G(FF) - G@)-

Define the stopping time 7, as
7o =1inf{t > 0: |y1(t)| > N} AT/e, (3.23)
Then taking into account inequality (3.18) we derive for sufficiently small £ > 0
P(m <T/e) = P ([[gillrje > Ne) = P ([la]lr > Ne) < exp{—xNZ}  (3.24)

with some constant x > 0.
Now we set

7, =inf{t > 0: [8,(t)| > v} A 7o, (3.25)
where
v = L*BNZ. (3.26)

The constant L* will be chosen later. Further we set

= =12 (3.27)



Then by making use of condition (As) we obtain the following inequality

A < L (AP + 18, Am)?) 8 <

< LB(N? + v*) < LBN?. (3.28)
Similarly we get

1 < L ([t Am) + 18, An)) 8 <

< LB(N. +v) < LAN, (3.29)

for some a constant L > 0. _
Further on the set {¢ < 7,,} we represent §, in the following form

5,(t) =&V + €2, (3.30)

where
eV = F'(g)eldt +7dt, & =o.

dg? = F'(G)eldt + 7P aw,, €7 =o.

By the Cauchy formula for linear equations we obtain that
&) = / ®(t, s)7ds,
0

where ®(t, s) is the fundamental matrix of the system

d&ig, s) _ F(G)3(ts), B(s,s) = 1. (3.31)

The conditions (A3) — (A43) and Lemma 3.1 imply the exponential bound (3.6) for
this matrix. Therefore, it follows from (3.28) that

€| < LON?

for some constant L > 0. Taking into account condition (D;) we choose L* in (3.26)
such that

D] < v/2. (3.32)
Then
Pyl > v) = P (I8,llrje > v) < P (IBylln > v) + P (70 < T/e) =
P (|Zs“y(7,,)| - y) +P(ry < T/e) < P(IED] + [€2] > v) + P (ry < T/e).
Taking into account the inequality (3.32) we get that
P(|8,llr = v) < P (€ l7je > v/2) + P (1o < T/e).

Now Proposition 3.3 holds by virtue of Lemma 3.2 and inequality (3.29). O
As a corollary of Proposition 3.2 and Proposition 3.3 we obtain
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Proposition 3.4 Under the conditions of Proposition 3.3 the process (3.1) satis-
fies the inequality

P (|ly* — v°[jr > BN.) < Lexp{—xN?} (3.33)
for some a constant k > 0 and for sufficiently small .

Proposition 3.5 Let the conditions (Ay) — (A3) and (D) — (D3) be fulfilled. We
suppose also that

lil’% B texp{—vty/e} =0 (3.34)
e—

for any v > 0. Then there exists some constant & > 0 such thal for any fixed
0 <ty <T and for sufficiently small e > 0

P (|[y°[leo;r > BNe) < Lexp{—rNZ}, (3.35)

where HyEHto,T = SUPy<i<T [z

Proof of this proposition follows from Proposition 3.1, the condition (3.34) and
Proposition 3.4.

4 Asymptotical properties of the slow component

We set
S(z) = /Ow Az (4.1)

9(2)

It follows from the condition (By) that this function has a positive bounded deriva-
tive and therefore one can define the function s(z) as the solution of the equation

S(s(z)) ==z (4.2)
for all z € (—o0, 00), and
s'(z) = g(s(z)) > 0. (4.3)
Next, we set
7 — S(a) (1.4)

Then we obtain from (4.1) and (1.2), using the also Ito’s formula that

~

dz; = f(z7,y;)dt + dwy, 25 =T = S(xy), (4.5)

where

1) _ fels) o)



Following to [12] we represent the solution of the equation (4.5) in the following
way:

z; = uy + Bzi(t) + B0L(1), (4.7)

where

~

du; = f(ug, vy)dt + dwy, TG = Ty, (4.8)
the function v{ is defined by (3.2), the coefficient 5 (¢) satisfies the equation

dzi(t)
dt

= fuolt, )T5(t) + Fr(t,e)yi(t), 5(0) =0, (4.9)

where f,(t,e) = fo (@5, v5), fy(t,s) = fy(ﬁf,vf), the process y§(t) is the solution
of the stochastic differential equation (3.3) and * denote transposition. We need
some properties of the asymptotical expansion (4.7). We define

duy = b(uy)dt + dwy, Uy = T, (4.10)

where

~

b(u) = f(u,0). (4.11)

Proposition 4.1 Let the conditions (A1) — (As) and (By) — (By) be fulfilled. Then
the process (4.8) satisfies the following inequality

sup |uy — uy| < Le exp{—vto} (4.12)

t>to
for any ty > 0 and for some fixed constants L > 0 and v > 0.

Proof. At first, we shall show that

sup |[u; — uy| < Le (4.13)
£>0

for some a constant L > 0. We set
In view of (4.8) and (4.10)

dAS
dt

= KAS 475, A =0, (4.14)

where w5 = (b(@) — b(@:))/A;, and rf = F(@5, vf) — f(@5,0).
By (2.3) and (4.3)



for all u € (—o0, +00), and therefore

K< —. (4.15)

Using the Lipschitz condition on the function f and the inequality (3.13) we obtain
18] < Ljuf| < Lexp{—at/e). (4.16)

Then solving the equation (4.14) on the interval [0, {] we get

t ¢
A = / s exp{/ K, du} ds.
0 s

Then (4.13) follows from (4.15) and (4.16). Similarly, we can represent A¢ on the
interval [t,t] (t; = to/2) in the form

t ¢ t
Af = exp{/ Ky ds}AS +/ e exp{/ k,du} ds
t1 t1 s

and taking into account (4.13) we arrive at (4.12). Hence Proposition 4.1. O
Further we need the next auxiliary lemma.

Lemma 4.1 Under the conditions (A;) — (A3) the process (3.8) has the property:
forallt > s

| By; (1) (i (s))*] < Le™ =/ (4.17)
for some fized constants L > 0 and v > 0.
Proof. First note that
Eyi(t)(yi(s))" = Eyu(t/e)(y(s/e))",
where y; is defined by (3.15). It follows from (3.15) that
Eyi(t/e)(y1(s/e))" = ®(t/e, s/) Eyi(s/e)(wi(s/e))",

where
d(t, s)
dt
Taking into account the condition (A43) and Lemma 3.1 we obtain the inequality
(4.17). Hence Lemma 4.1. O

= F'(7,)®(t,s), ®(s,s)=1.

Proposition 4.2 Under the conditions (A;) — (As) and (B;) — (Bs) the solution
of the equation (4.9) for all integer numbers m > 1 and some positive constant L
satisfies the inequality:

sup E {(Z5(¢))*™ |F} < (2m — 1)!(Le)™, (4.18)

>0

where Fj = o{w;,0 <t < T}.
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Proof. We can represent the solution of (4.9) as

310) = [ i ewieeds) (419)
with .
Pe(t, s) = exp{/ fz(r, g)dr}.

Since the process (3.3) is Gaussian, and the Wiener processes (wy, t > 0), (W;,t > 0)
are independent, the process (4.19) is conditionally (with respect to F;) Gaussian
with E {z5(t)|F7} = 0 and

E{(#(t))|Fp} = 2/0 ¢e(t, 8)/ F(5,€) By (5)(45(0))* 1, (0,€) de(1, 0) dO ds.

Note that by (4.6) and conditions (B;) — (By)

~

fo(z,y) < a1(s(x))s(z) + Lly| (4.20)

for some positive constants y; > 0 and L > 0. Therefore, using the inequality (3.13)
we get

t
6.t 5) < expl—m(t—s) + L / e=/% dg}y < e=m(t=9), (4.21)

Then taking into account (4.17) we obtain

E{(#i(t)"|Fp} < Le

for some constant L > 0 and hence (4.18). O
In the sequel we need

Lemma 4.2 Let n; be a scalar random process satisfying the linear stochastic dif-
ferential equation
dny = aymp dt + dwg, m9 =0, (4.22)
where w; is a standard Wiener process and the coefficient oy satisfies the inequality
o < (4.23)
for some constant v > 0. Then for any integer m > 1
E(Inllo)™ <148y (v !+ m*m!T, (4.24)

where ||n||r = supy<i<r [n¢|, and T > 0.

13



Proof. One can show (see, for example, [6]) that for any stopping time 7 with
values in the interval [0, T]

En. ™ < m(2m — )T/ (2y)™ . (4.25)

We have also
E(lnley™ =2m [~ @ P{llnlle > a}da < 1+ 2m [0 P{jn, | > o} da
0 1

where
T, =1nf{t > 0:|m| > a} AT.

By letting A = m?™ we obtain

2 g |7 2m > |nx, |4m
E(||77||T)m§1+2m/ “7da+2m/ 1™ 4 <
1 a A a

2m?(2m — )T In XA 4m?(4m — DYIT

<1
ST (2y)mt A(2y)2mt
8m*m!TInm  8m?(2m)!T
S 1 + ,-mel ,-YmelmZm
and hence (4.24). O
We set,
D. = {|lyillr < Ne, ||6,]lr < L*BNZ}, (4.26)

where ¢, is defined by (3.1), L* is a constant which fulfills inequality (3.19).
Proposition 4.3 Under the conditions (A1) — (As), (B1) — (Bs) and (D) the
process 05(-) from (4.7) satisfies the inequality

E1p, (65)°™ < (LBN2)™m*m!T (4.27)
for any integer m > 1 and some constants L > 0 and T > 1.

Proof. In view of (4.7)-(4.9) the process ¢ obeys the equation

doE(t) = KSO5(t) dt + rEdt, 65(0) =0, (4.28)
where R R
' Bo: (1) ’
o BT, 57) — F@, ) — 814,207 (1) — BI(4,2)FE (1)
T B

14



Taking into account the asymptotical expansion (3.1) and inequality (4.20) we get
on the set D,

k; < —vy + L|vi| + LBN, + L"‘ﬁQNE2 < —m/2 + L|v§|

for sufficiently small € > 0 and therefore by (3.13) for any ¢ > s

t t
/H;Zdug—'yl(t—s)/Z—i—L/ e ™/fdu < —yt —s)/2 + Le,

that is, for some positive constant v > 0

t
exp{/ KE du} < 2e77E9),

Note that by (4.19) and (4.21)
125l < Ll|gT[lr (4.29)

for some constant L > 0. R
Further, it is easy to get from the definition of the function f in (4.6) that for some
constant L > 0

[foa(2,9) < (1+ |2 + [y]) (4.30)

for all z and y; the other second derivatives j/‘;y and j/‘;y are bounded. By applying
the finite increments formula we obtain

Ir| < LISy (8 €)] + | ult,2) = Fult, )5 + 1 Fy(t,2) = fy (8, )1,

where

Fo(t,€) = Ju(@; + 66%5(1), o] + 0843 (1)),
Fy(t,€) = (@ +08%5(), 05 + 00y (1)), 0<O<1.
Similarly, taking into account inequalities (4.12), (4.29) and (4.30) we obtain

il < L(16, (¢, €)1 + B+ [ + BT (6)] + BlZ (W) (1ZT (O + [FE(6))) <

< L(|6,(t,€)| + B + @z + BlFEI2) 17:]17).
Therefore on the set D, for sufficiently small € > 0

Il < L(1 + [all) BV

for some constant L > 0. Note that the solution of equation (4.28) can be repre-
sented in the integral form

t
6 (t) = / réels radu g,
0

15



Then it holds on the set D,
t
MWNS{/VW”““%SLO+WMWW-
0

Next we study equation (4.10). We rewrite it in the following form
du; = (b(0) + ayuy) dt + dw;, TUo = T, (4.31)
where oy = (b(u;) — b(0))/u,. First, note that condition (B,) implies the inequality
ap < —v (4.32)

for some constant v > 0.
By applying Cauchy formula for linear differential equations we can write the so-
lution of (4.31) in the form

t
ﬁt = f()efotas ds + b(O) / ef:a“ du ds + M,
0

where
dn, = aym dt + dw,, 19 = 0.

Inequalities (4.24) and (4.32) imply (4.27). Hence Proposition 4.3. O
In the sequel we need upper exponential bound for the probability of large devia-
tions for z° in the integral metric.

Let (; be a positive F7. - measurable random process. We set

r— {/tT Gdt < K, (4.33)

where 0 <ty < T, K > 0.

Proposition 4.4 Under conditions (A1) — (A43), (B1) — (Bs), and (Dy) — (Ds)
the process T¢ satisfies for some constants L > 0 and Kk > 0 and any A > 0 and
K > 0 the inequality

K2

T
P([ -dad>x 1 D) < LTep(-

to

Proof. Tt follows from (4.7) that

T
P(/|ﬁ—ﬁ&ﬁ>&fnm)sP%>Aﬂm+P%>Aﬂm, (4.35)

to
where

T
p%:n/|ﬁummu o = 1p,

to

0 |-
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Now we show that there exists some constant x > 0 such that

Ee p{ (pl)

~}<2 (4.36)

Indeed, by the Holder inequality and (4.18)
T T 2m—1
B < [ o ([ aa) <
to to

< szlElp/ E{|z5(t)""|Fp} G dt < (2m — 1)II(K?Le)™

to

and therefore

k(p%)? >, (2m — >
E exp{ I(é)zlg}gl—i—z(T )i ZZH;L
m=0

m=1

This implies (4.36) for 0 < k < 1/4L. By making use of the Chebyshev inequality
and (4.36) it is easy to get that

)\2

P(p; > A/208) < 2exp{— K257 e} (4.37)

for some constant x > 0.
Further, taking into account inequality (4.27) one can show that there exists posi-
tive constants k and L, such that

£\2
Eexp{ﬁﬁ(%} < LT.

By applying the Chebyshev inequality we obtain

K2

P(ps > A/26) < LTGXP{—W}-

Combining this inequality with (4.35), (4.37) and condition (D;), we obtain (4.34).
Hence Proposition 4.4. O

Proposition 4.5 Under the conditions of Proposition 4./ the process T° satisfies
the inequality

T
KA
2
P</| —up|“dt > A, D><LTexp{ B3N2T} (4.38)

to

for any A > 0 and some constants L > 0 and k > 0.

Proof of Proposition 4.5 is similar to the proof of Proposition 4.4.
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5 Upper exponential bound for the probability of
large deviations in the ergodic theorem for diffu-
sion processes

Let us consider a scalar diffusion process & satisfying the stochastic differential
equation

d€¢; = b(&) dt + dwy, & = const. (5.1)

Suppose that the function b(+) is continuously differentiable and

b(z) < —v (5.2)

for some constant v > 0 and all —o0 < z < oo.
It is well known (see, for example, [8]) that in this case the equation (5.1) has an
unique strong solution, possessing the stationary distribution with the density:

_ exp{2 [ b(z) dz}

()= fj;o exp{2 [ b(z) dz} du’ (5:3)

Further, for an arbitrary continuous integrable function ¢(-) we define

Jy (&) —m(9)) dt
Ap($) = , 5.4
"= elvT 64
where
+oo

m(@)= [ éyaly)dy. (5.5)

Proposition 5.1 Let the condition (5.2) for the equation (5.1) be fulfilled. Then
there exists an universal constant k > 0 such that for any continuous integrable
function ¢ and arbitrary T > 1

Eexp{s(Ar(¢))’} < 2. (5.6)
Proof. We set ¢;(u) = ¢(u) — m(¢). It is obvious that
" 1) expl2 /0 "b(2) dz} dy = 0. (5.7)

Let us define the function

V(z) = /Omv(u) du, v(u)= -2

+oo

#1(y) exp{2 /y b(z)dz} dy. (5.8)

u

Now we show that

sup  [o(u)| < L[|¢l]] (5.9)

—oo<u<+oo

18



for some constant L > 0.
Indeed, by applying the finite increments formula and taking into account condition
(5.2) for u > 0 we get

o(u)| < / oo(|¢(y)l +[m(g)]) exp{—v(y — v)* + 2/b(0)|(y — u)} dy <

+oo
< L|lg[ll + L|m(</))|/0 exp{—v2" +2[b(0)|2} dz < LIl|¢]||.

By (5.7) we obtain that for u <0

o) =2 [~ piwesi-2 [ ) dshay] <
<2 [ 1ouw)lexp{—ay — w)? + 2b(0)ly — ul}dy < L[4l

These inequalities imply (5.9).
Next note that the function V(z) (5.8) satisfies the differential equation

2V (2)b(z) + V = 26, ().

Therefore, by making use of the It6 formula we get

/0 bu() dt = V(Er) — V(&) — / 0(€,) dr.

It follows from inequality (5.9) that

T 2m T 2m
( | e dt) < P AV (e + \V(sm?m I RCLYBE
T 2m
< 3L (L[| g [ 4 L7 g] € + \ | verds] . 10
Now we show that
sup E|&*™ < (2m — 1)IY(L)™ (5.11)

>0

for some constant L > 0 and for any integer m > 1. The function b(&;) can be
represented in the form

b(&:) = b(0) + &,
with oy = (b(&;) — b(0))/&;. Moreover, we get in view of condition (5.2)

atS_’Ya tZO
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By applying the Cauchy formula for linear differential equations we write the so-
lution of equation (5.1) as

& = G + M,
where &; satisfies the ordinary differential equation
d
B b0) + ot G =6 (5.12)

and 7; satisfies the linear stochastic differential equation
dn; = aymy dt + dwy, 19 = 0. (5.13)
It is easy to get from (5.12) that

sup |G| < L
>0

for some constant L > 0. Next, the process 7, satisfies for any integer m > 1 the
inequality

s1>1£)E|77t|2m < (2m — D)/ (29)™.
t_

(see, |6]) which implies (5.11). Further, the bounds for even moments of stochastic
integrals (see, [9]) and inequality (5.9) imply that

B / 0(€) dwr)?™ < (2m — DI(LT||]]2)"

for some constant L > 0. This and (5.10) provide for some L > 0, 7" > 1 and any
integer m > 1
E(Ar(4))*™ < (2m — 1)IL™

and hence inequality (5.6). O

Proposition 5.2 Under the conditions of Proposition 5.1 for any continuous in-
tegrable function ¢ and arbitrary A > 0

KN2T

e =20

P <|%/0T o(&) dt —m(9)| > A) < 2exp{—

This statement follows directly from Proposition 5.1.

6 Proof of Theorem 2.1

To prove Theorem 2.1 we need the following lemmas.
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Lemma 6.1 Let for the process (1.8) the conditions (Bz) — (Ba4) be fulfilled, the
function V. satisfy the condition (C1) — (Cs) and T, satisfy the conditions (D3) —
(D4). Then for any A > 0 there exists k > 0 such that

1

Te
—_— / U, (u) dt — m,

1
limsup — In P <
1. s,

e—0 NEZ

> A) < —k, (6.1)

where to = o(Ty).

Proof. By change of variables u; = S(u;), where S(-) is defined by (4.1), we
transform equation (1.3) to equation (4.10) with function b(u) satisfying inequality

(5.2). Then
> A) < p( !

1 fo
P ( —/ 0 (Uy) dt‘ > A/2> +
TE 0

Te
— v, dt — m,
T /to (ut) m

Te
—/ e (Uy) dt — m,
0

> A/2> , (6.2)

where

Next note that

el =/ N |\1:e<s(u>>|du=/ L) du < L))

1
o o g(u)

Now we estimate the first term in the right side of inequality (6.2). If t; < 1 then

to
/ gos(at) dt‘ S He
0
and by condition (D)
1
pl=
(TE

for sufficiently small € > 0. Now let {; > 1. Then taking into account condition
(C3) we obtain for sufficiently small € > 0

1
Pl
G
Therefore, by applying Proposition 5.2 and inequalities (6.2)-(6.3) and taking into
account condition (D3) we come to (6.1). Hence Lemma 6.1. O

/Oto 0. (@) dt‘ > )\/2> ~0

to
T / Pe (at) dt — me
0

/Oto 0. (@) dt‘ > A/2> <p < tl

> m/%) . (6.3)
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Lemma 6.2 Suppose that conditions (A1) — (A3), (B1) — (Bs) are fulfilled, the
parameters 3, e, T, satisfy the limiting relationships (D;) — (Ds). Then for any
A > 0 there exists k > 0 such that

TE
P < / W, (25) — . (u)| dt > ATE> < ¢ n? (6.4)
to

for sufficiently small € > 0.

Proof. First, note that Proposition 3.2 and Proposition 3.3 imply the following
inequality

P(Df) < e ®N¢ (6.5)

for some constant kK > 0. We set
T.
P, ={ / B (w)] dt < TomY. (6.6)
to

It follows from inequality (6.1) that
P(re) < e ™ (6.7)

for some constant x > 0.
By applying the finite increments formula we obtain

[Wo(2f) = We(ue)| < [af — wel [ We(ur)| + u@P|af — wl?
and taking into account inequality (4.13) we get the inequality
|We(2) = Welur)| < [af — wfl[We(ur)| + 1l |af — g +epl) + 2u?).

€

It follows from condition (Bs) that the function s(-), defined by (4.2), satisfies the
Lipschitz condition. Therefore for some constant L > 0

W) — Welwo)| < L (185 — B[ N(u)| + (35 — B2 + el + 22

Then .
P(/|mwn—%wmw>mgs

to

T. .
<P </ |zf — U5 ||V (uy)| dt > TeA/AL, T, DE> +

to

T

+P (/ 25 — a2 dt > TA/4Lu?, DE> + P(T¢) + P(DY).
to

Combining Propositions 4.4 - 4.5, inequalities (6.5), (6.7) and limiting relationships

(Ds5) we obtain inequality (6.4). Hence Lemma 6.2. O

Lemma 6.1 and Lemma 6.2 imply the assertion of Theorem 2.1.
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