On Large Deviation Probabilities in Ergodic Theorem for Singularly Perturbed Stochastic Systems

Pergamenshchikov, S.M. *

June 26, 1998

Department of Applied Mathematics and Cybernetics Tomsk State University, Lenin str. 36, Tomsk 634050, Russia e-mail: pergam@vmm.tsu.tomsk.su

Abstract

We consider a two scale system of stochastic differential equations. We study asymptotic properties of integral functionals of slow component of this system and establish some large deviation type estimations for these functionals.

Keywords: fast and slow components, large deviations, stochastic differential, singular perturbations, ergodic theorem

AMS Subject Classification: 60F10

^{*}This reseach was carried out in Weierstrass Institute for Applied Analysis and Stochastics under support of the DFG, Personal Grant 436 RUS 17/58/97. The author is partially supported by the RFFI-Grant 98-01-00298.

1 Introduction

Let us consider the model describing by the system of singularly perturbed stochastic differential equations:

$$\mathrm{d}x_t^\varepsilon = f(x_t^\varepsilon, y_t^\varepsilon)\mathrm{d}t + g(x_t^\varepsilon)\mathrm{d}w_t, \qquad x_0^\varepsilon = x_0, \tag{1.1}$$

$$\varepsilon \mathrm{d} y_t^{\varepsilon} = F(y_t^{\varepsilon}) \mathrm{d} t + \beta \sqrt{\varepsilon} G(y_t^{\varepsilon}) \mathrm{d} W_t, \qquad y_0^{\varepsilon} = y_0, \tag{1.2}$$

where $W = (W_t, t \ge 0)$ and $w = (w_t, t \ge 0)$ are independent Wiener processes, and ε and β are small parameters.

The processes x^{ε} and y^{ε} can be naturally treated as slow and fast components of a stochastic dynamic system. If $\beta = 1$, then the process x^{ε} obeys the averaging principle, see Freidlin [3], Freidlin, Wentcell [4], Veretennikov [14], which means a convergence of x^{ε} to a ergodic process arising from (1.1) by substituting in place of y^{ε} its stationary distribution. The case of a small β i.e. the situation when β tends to zero together with ε , is studied in details in Kabanov and Pergamenshchikov [6]. In this situation the fast component y^{ε} converges to the root of the equation F(y) = 0. In the sequel we shall suppose that the point y = 0 is the root of this equation, that is F(0) = 0. We establish also some asymptotic expansions with respect to the parameter β for the deviations of x^{ε} from the limit process udescribed by the stochastic equation

$$\mathrm{d} u_t = a(u_t)\mathrm{d} t + g(u_t)\mathrm{d} w_t, \qquad u_0 = x_0, \tag{1.3}$$

where a(x) = f(x, 0).

In this paper, we consider a deviation problem for an integral functional

$$\int_{t_0}^T \Psi_{\varepsilon}(x_t^{\varepsilon}) \,\mathrm{d}t, \qquad (1.4)$$

where Ψ_{ε} is some smooth function.

This study is motivated by the following statistical estimation problem. Similarly to Liptser, Spokoiny [10] we consider the problem of statistical estimating the function a(x) from the observed process x^{ϵ} . One may apply usual nonparametric methods, for instance, local polynomial or kernel estimators. If Q is smooth and supported in the interval [-1, 1] kernel function, then, given a value h > 0 called a bandwidth, the kernel estimate $\hat{a}_T(x)$ is defined by

$$\widehat{a}_T(x) = rac{\int_{t_0}^T Q\left(rac{x_t^arepsilon - x}{h}
ight) \, \mathrm{d} x_t^arepsilon}{\int_{t_0}^T Q\left(rac{x_t^arepsilon - x}{h}
ight) \, \mathrm{d} t}$$

An asymptotical analysis, as $\varepsilon \to 0$, of such a statistical procedure leads to analyzing integral functionals (1.4) with

$$\Psi_{\varepsilon}(u) = rac{1}{h}Q\left(rac{u-x}{h}
ight),$$

where h depends on ε .

The paper is organized as follows. In section 2 we fix assumptions and formulate the main result. Asymptotic properties of the fast and slow components are gathered in Sections 3,4. In section 5 we get upper exponential bound in ergodic theorem for diffusion processes. Proof of the result is given in Section 6.

2 The main results

- First we formulate the necessary conditions on the functions f, g, F and G entering in the model equations (1.1) and (1.2), and then state the results. Below we suppose the following conditions to be fulfilled:
- (A_1) the functions F with values in \mathbb{R}^n and

G with values in the set of $n \times l$ -matrices

are continuous and locally Lipschitz and satisfy the condition of linear growth;

 (A_2) the point y = 0 is a root of the equation F(y) = 0, and a solution \tilde{y}_s of the differential equation

$$\mathrm{d}\widetilde{y}_s = F(\widetilde{y}_s)\mathrm{d}s, \qquad \widetilde{y}_0 = y_0, \tag{2.1}$$

has the limit zero at $s = \infty$,

$$\lim_{s \to \infty} \tilde{y}_s = 0; \tag{2.2}$$

(A₃) the function F is differentiable with a locally Lipschitz derivative F'(x) which is for every x
a n×n-matrix, and all eigenvalues of F'(0) have a strictly negative real part.

Note that the assumption (A_1) ensures existence and uniqueness of the solution of the equation (1.2) (Gikhman, Skorochod [5]).

Furthermore, we suppose that the functions $f(\cdot, \cdot)$, $g(\cdot)$ and $a(\cdot) = f(\cdot, 0)$ satisfy the following conditions:

- (B_1) the function f(x, y) has a bounded continuous derivatives until second order;
- (B_2) the function g is bounded, positive and separated away from zero,

$$g_{\min} \leq g(x) \leq g_{\max}$$

for some positive constants $g_{\min} < g_{\max}$;

- (B_3) the function g is two times differentiable and its second derivative g'' satisfies the Lipschitz condition;
- (B_4) the function $a_1(u)$ defined by

$$a_1(u) = a(u)/g(u) - g'(u)/2$$

is differentiable with a strictly negative derivative a'_1 i.e. for some $\gamma > 0$

$$a_1'(u) \le -\gamma \qquad \forall u.$$
 (2.3)

For example, the condition (B_4) is fulfilled with a(u) = -u, $g(u) = \alpha + \pi/4 - \arctan(u^2)/2$, $0 < \alpha < 2 - \pi/4$.

The assumptions (B_1) through (B_3) ensure existence and uniqueness of the solution of equations (1.1), (1.3), see Liptser and Shiryaev [9]. Moreover, (Gikhman, Skorochod [5]) under (B_2) , (B_3) and (B_4) the process (1.3) is ergodic with the stationary density

$$q(x) = \frac{\exp\left\{2\int_{0}^{x} \frac{a(u)}{g^{2}(u)} \mathrm{d}u\right\}}{g^{2}(x)\int_{-\infty}^{\infty} g^{-2}(z) \exp\left\{2\int_{0}^{z} \frac{a(u)}{g^{2}(u)} \mathrm{d}u\right\} \mathrm{d}z}.$$
(2.4)

We set

· -. .

$$egin{aligned} m_arepsilon &= \int_{-\infty}^\infty \Psi_arepsilon(x) q(x) \,\mathrm{d} x, & m_arepsilon^{(1)} = \int_{-\infty}^\infty \dot{\Psi}_arepsilon(x) q(x) \,\mathrm{d} x, \ & |||\Psi_arepsilon||| = \int_{-\infty}^\infty |\Psi_arepsilon(x)| \,\mathrm{d} x, & \mu_arepsilon &= \sup_{-\infty < x < \infty} |\Psi_arepsilon(x)|, \ & \mu_arepsilon^{(1)} &= \sup_{-\infty < x < \infty} |\dot{\Psi}_arepsilon(x)|, & \mu_arepsilon^{(2)} &= \sup_{-\infty < x < \infty} |\ddot{\Psi}_arepsilon(x)|. \end{aligned}$$

We suppose that the function Ψ_{ε} satisfies the following conditions:

 (C_1) the function $\Psi_{\varepsilon}(\cdot)$ is twice continuously differentiable;

$$(C_2) \ \limsup_{arepsilon o 0} |m_arepsilon| < \infty, \ \ \limsup_{arepsilon o 0} |||\Psi_arepsilon||| < \infty;$$

$$(C_3) \qquad \qquad \limsup_{\varepsilon \to 0} \frac{|||\dot{\Psi}_{\varepsilon}|||}{|m_{\varepsilon}^{(1)}|} < \infty;$$

$$(C_4) \qquad \qquad \qquad \lim_{\varepsilon \to 0} (\varepsilon \mu_{\varepsilon}^{(1)} + \varepsilon^2 \mu_{\varepsilon}^{(2)}) = 0.$$

Let us denote

$$N_{\varepsilon} = \ln T_{\varepsilon} / \varepsilon.$$

We also assume that the parameters β , ε , T_{ε} satisfy the conditions:

- $(D_1) \qquad \qquad \lim_{\varepsilon \to 0} \beta N_{\varepsilon}^2 = 0;$
- $(D_2) \qquad \qquad \lim_{\varepsilon \to 0} \varepsilon / \beta = 0;$

$$(D_3) \\ \lim_{\varepsilon \to 0} N_{\varepsilon}^2 / T_{\varepsilon} = 0;$$

 (D_4)

$$\lim_{\varepsilon \to 0} \mu_{\varepsilon} / T_{\varepsilon} = 0;$$

 (D_5)

$$\lim_{\varepsilon \to 0} \beta^3 N_{\varepsilon}^4 (m_{\varepsilon}^{(1)})^2 = 0, \quad \lim_{\varepsilon \to 0} \beta^3 N_{\varepsilon}^4 \mu_{\varepsilon}^{(2)} = 0.$$

Theorem 2.1 Suppose that conditions $(A_1) - (A_3), (B_1) - (B_4)$ are fulfilled, the function $\Psi_{\varepsilon}(\cdot)$ satisfies the conditions $(C_1) - (C_4)$, the parameters β , ε , T_{ε} satisfy the limiting relationships $(D_1) - (D_5)$. Then for any $\lambda > 0$ and $t_0 = o(T_{\varepsilon})$

$$\limsup_{\varepsilon \to 0} \frac{1}{N_{\varepsilon}^2} \ln P\left(\left| \frac{1}{T_{\varepsilon}} \int_{t_0}^{T_{\varepsilon}} \Psi_{\varepsilon}(x_t^{\varepsilon}) \, \mathrm{d}t - m_{\varepsilon} \right| > \lambda \right) \leq -\kappa,$$

where κ is some positive constant.

Let a function $Q(\cdot)$ be twice continuously differentiable function and supported to the interval [-1, 1] and a function $h = h_{\varepsilon}$ such that:

$$\lim_{\varepsilon \to 0} h_{\varepsilon} = 0, \quad \lim_{\varepsilon \to 0} T_{\varepsilon} h_{\varepsilon} = \infty, \quad \lim_{\varepsilon \to 0} \varepsilon / h_{\varepsilon}^2 = 0, \quad \lim_{\varepsilon \to 0} \beta (N_{\varepsilon})^{4/3} / h_{\varepsilon} = 0.$$
(2.5)

Then function

$$\Psi_{\varepsilon}(u) = \frac{1}{h}Q\left(\frac{u-x}{h}\right)$$

satisfies the conditions $(C_1) - (C_4)$ and $(D_4) - (D_5)$.

Theorem 2.2 Suppose that conditions $(A_1) - (A_3), (B_1) - (B_4)$ are fulfilled, the parameters β , ε , T_{ε} , h satisfy the limiting relationships $(D_1) - (D_3)$ and (2.5). Then for any $\lambda > 0$ there exists $\kappa > 0$ such that

$$\limsup_{\varepsilon \to 0} \frac{1}{N_{\varepsilon}^2} \ln P\left(\left| \frac{1}{T_{\varepsilon} h} \int_{t_0}^{T_{\varepsilon}} Q\left(\frac{x_t^{\varepsilon} - x}{h} \right) \, dt - Q_0 \right| > \lambda \right) \leq -\kappa,$$

where

$$Q_0=q(x)\int_{-1}^1Q(z)\,\mathrm{d} z$$

and $t_0 = o(T_{\varepsilon})$.

Theorem 2.2 follows directly from Theorem 2.2.

3 Asymptotical properties of the fast component

As it has been shown in [7] we can represent the solution of (1.2) in the form

$$y_t = v_t^{\varepsilon} + \beta y_1^{\varepsilon}(t) + \beta \delta_y(t, \varepsilon), \quad 0 \le t \le T,$$
(3.1)

where v^{ε}_t is a boundary function satisfying equation

$$\varepsilon \frac{dv_t^{\varepsilon}}{dt} = F(v_t^{\varepsilon}), \quad v_0 = y_0,$$
(3.2)

and the coefficient $y_1^{\varepsilon}(t)$, $0 \le t \le T$, is determined by the linear stochastic differential equation

$$\varepsilon dy_1^{\varepsilon}(t) = F'(v_t^{\varepsilon})y_1^{\varepsilon}(t)dt + \sqrt{\varepsilon}G(v_t^{\varepsilon})dW_t \quad y_1(0) = 0.$$
(3.3)

Further we need the following lemmas.

Lemma 3.1 Let $\Phi(t, s)$ be the $l \times l$ fundamental matrix for linear differential equation

$$\frac{d\Phi(t,s)}{dt} = A_t \Phi(t,s), \quad \Phi(s,s) = I, \quad t \ge s, \tag{3.4}$$

where I is the unit matrix of order l, and A_t , $t \ge 0$ is deterministic function having the following property

$$\lim_{t \to \infty} A_t = A, \tag{3.5}$$

where A is a matrix whose all eigenvalues have negative real parts. Then for the matrix $\Phi(t, s)$ the following exponential bound can be stated:

$$|\Phi(t,s)| \le L \exp\{-\kappa(t-s)\},\tag{3.6}$$

for some constants $L, \kappa > 0$.

Proof see in [7]. Further, we need to consider linear stochastic differential equation

$$d\xi_t = A_t \xi_t dt + G_t dW_t, \quad \xi_0 = 0, \tag{3.7}$$

supposing the following conditions:

 (E_1) A_t is a deterministic function with values in the set of the matrices with the fundamental matrix having exponential bound (3.6).

(E₂) the function G_t is bounded, i.e. $|G_t| \leq K$, $0 \leq t \leq T$.

Lemma 3.2 Let stochastic process ξ_t be the solution of the equation (3.7) in which the coefficients satisfy the conditions $(E_1) - (E_2)$. Then there is a constant $\kappa > 0$ such that for any T > 0 and $\lambda > 0$

$$P\left(\|\xi\|_T > \lambda\right) \le 8T \exp\{-\kappa \lambda^2 / K^2\},\tag{3.8}$$

where $\|\xi\|_T = \sup_{0 \le t \le T}$.

Proof. Let us consider l - dimensional process η_t

$$d\eta_t = -\eta_t dt + G_t dW_t, \quad \eta_0 = 0.$$
(3.9)

It is well known [6] that for any markovian moment τ with values in [0, T] and any integer $m \geq 1$

$$E|\eta_{\tau}|^{2m} \le 2m(2m-1)!! (K^2/2)^m T.$$
 (3.10)

Further, we define $\Delta_t = \xi_t - \eta_t$. It follows from (3.6) and (3.7) that

$$d\Delta_t = A_t \Delta_t dt + (A_t + I)\eta_t dt, \quad \Delta_0 = 0.$$
(3.11)

This implies

$$\Delta_t = \int_0^t \Phi(t,s) (A_s + I) \eta_s ds, \qquad (3.12)$$

where $\Phi(t, s)$ is defined by (3.4). Then using (E_1) we estimate the term (3.12) in the following way

$$|\Delta_t| \le L \int_0^t \exp\{-\kappa(t-s)\} |A_s + I| |\eta_s| ds \le L \|\eta\|_T$$
(3.13)

for some constant L > 0. Hence for some constant L > 0

$$\|\xi\|_{T} \le L \|\eta\|_{T}, \tag{3.14}$$

and therefore

$$P\left(\|\xi\|_{T} > \lambda\right) \le P\left(\|\eta_{\tau}\| \ge \lambda/L\right),\tag{3.15}$$

where

$$\tau = \inf\{t \ge 0 : |\eta_t| \ge \lambda/L\} \land T.$$
(3.16)

Then using the Chebyshev exponential inequality and (3.10) we get

$$P\left(||\xi||_{T} > \lambda\right) \leq \exp\{-\kappa\lambda^{2}/L^{2}\}E\exp\{\kappa|\eta_{\tau}|^{2}\} =$$

$$= \exp\{-\kappa\lambda^{2}/L^{2}\}\sum_{m=0}^{\infty}\frac{\kappa^{m}}{m!}E|\eta_{\tau}|^{2m} \leq$$

$$= 2T\exp\{-\kappa\lambda^{2}/L^{2}\}\sum_{m=0}^{\infty}\frac{m(2m-1)!!}{m!}\left(\frac{\kappa K^{2}}{2}\right)^{m} =$$

$$= 2T\exp\{-\kappa\lambda^{2}/L^{2}\}\sum_{m=0}^{\infty}m\left(\kappa K^{2}\right)^{m}.$$

By setting here $\kappa = 1/2K^2$ we obtain (3.8). \Box

We use these lemmas to study asymptotic properties of expansion (3.1).

Proposition 3.1 Let the conditions $(A_1) - (A_3)$ be fulfilled. Then the boundary function (3.2) satisfies the inequality

$$|v_t^{\varepsilon}| \le L \exp\{-\kappa t/\varepsilon\},\tag{3.17}$$

for some constants L > 0 and $\kappa > 0$.

Proof see in [1].

Proposition 3.2 Let the conditions $(A_1) - (A_3)$ be fulfilled. Then the process (3.3) satisfies the inequality

$$P\left(\|y_1^{\varepsilon}\|_T \ge N_{\varepsilon}\right) \le L \exp\{-\kappa N_{\varepsilon}^2\},\tag{3.18}$$

for sufficiently small ε and for some constant $\kappa > 0$.

Proof. We make the change of time in the equation (3.3), by setting $r = t/\varepsilon$ and $\tilde{y}_1(r) = y_1^{\varepsilon}(r\varepsilon)$. Then

$$d\widetilde{y}_1(t) = F'(\widetilde{y}_t)\widetilde{y}_1(t)dt + G(\widetilde{y}_t)d\widetilde{W}_t, \quad , \ \widetilde{y}_1(0) = 0,$$
(3.19)

where \widetilde{y}_t is solution of the equation (1.1), $\widetilde{W}_t = W_{t\varepsilon}/\sqrt{\varepsilon}$. Then

$$P\left(\|y_1^{\varepsilon}\|_T \ge N_{\varepsilon}\right) = P\left(\|\widetilde{y}_1\|_{T/{\varepsilon}} \ge N_{\varepsilon}\right)$$

and the inequality (3.18) follows from lemmas 3.1-3.2. \Box

Proposition 3.3 Let the conditions $(A_1) - (A_3)$ and (D_1) be fulfilled. Then there exists a constant L^* such that

$$P\left(\|\delta_y\|_T \ge L^*\beta N_{\varepsilon}^2\right) \le L \exp\{-\kappa N_{\varepsilon}^2\}$$
(3.20)

for sufficiently small $\varepsilon > 0$.

Proof. We apply again the change of time now in the expansion (3.1), by letting

$$\widetilde{y}_r^arepsilon = y_{rarepsilon}^arepsilon; \quad \widetilde{y}_r = v_{rarepsilon}^arepsilon; \quad \widetilde{y}_1(r) = y_1^arepsilon(rarepsilon); \quad \widetilde{\delta}_y(r) = \delta_y(rarepsilon,arepsilon),$$

where

$$d\widetilde{y}_{r}^{\varepsilon} = F(\widetilde{y}_{r}^{\varepsilon})dr + \beta G(\widetilde{y}_{r}^{\varepsilon})d\widetilde{W}_{r}, \quad \widetilde{y}_{0}^{\varepsilon} = y_{0}, \qquad (3.21)$$

the function \tilde{y}_r satisfies the equation (2.1) and $\tilde{y}_1(r)$ is the solution of the equation (3.19). Then

$$d\widetilde{\delta}_{y}(t) = \beta^{-1} \left(F(\widetilde{y}_{t}^{\varepsilon}) - F(\widetilde{y}_{t}) - \beta F'(\widetilde{y}_{t})\widetilde{y}_{1}(t) \right) dt + \left(G(\widetilde{y}_{t}^{\varepsilon}) - G(\widetilde{y}_{t}) \right) d\widetilde{W}_{t} =$$
$$= F'(\widetilde{y}_{t})\widetilde{\delta}_{y}(t) dt + r_{t}^{(1)} dt + r_{t}^{(2)} d\widetilde{W}_{t}, \quad \widetilde{\delta}_{y}(0) = 0, \qquad (3.22)$$

where

$$r_t^{(1)} = \beta^{-1} \left(F(\widetilde{y}_t^{\varepsilon}) - F(\widetilde{y}_t) - \beta F'(\widetilde{y}_t) \widetilde{y}_1(t) \right) - F'(\widetilde{y}_t) \widetilde{\delta}_y(t),$$
$$r_t^{(2)} = G(\widetilde{y}_t^{\varepsilon}) - G(\widetilde{y}_t).$$

Define the stopping time au_0 as

$$\tau_0 = \inf\{t \ge 0 : |\widetilde{y}_1(t)| \ge N_{\varepsilon}\} \wedge T/\varepsilon, \qquad (3.23)$$

Then taking into account inequality (3.18) we derive for sufficiently small $\varepsilon > 0$

$$P(\tau_0 < T/\varepsilon) = P(\|\widetilde{y}_1\|_{T/\varepsilon} \ge N_\varepsilon) = P(\|y_1\|_T \ge N_\varepsilon) \le \exp\{-\kappa N_\varepsilon^2\}$$
(3.24)

with some constant $\kappa > 0$. Now we set

$$\tau_{\nu} = \inf\{t \ge 0 : |\widetilde{\delta}_{y}(t)| \ge \nu\} \land \tau_{0}, \qquad (3.25)$$

where

$$\nu = L^* \beta N_{\varepsilon}^2. \tag{3.26}$$

The constant L^* will be chosen later. Further we set

$$\widetilde{r}_t^{(i)} = r_{t \wedge \tau_\nu}^{(i)}, \quad i = 1, 2.$$
(3.27)

Then by making use of condition (A_3) we obtain the following inequality

$$|\tilde{r}_{t}^{(1)}| \leq L\left(|\tilde{y}_{1}(t \wedge \tau_{\nu})|^{2} + |\tilde{\delta}_{y}(t \wedge \tau_{\nu})|^{2}\right)\beta \leq \\ \leq L\beta(N_{\varepsilon}^{2} + \nu^{2}) \leq L\beta N_{\varepsilon}^{2}.$$

$$(3.28)$$

Similarly we get

$$\widetilde{r}_{t}^{(2)}| \leq L\left(|\widetilde{y}_{1}(t \wedge \tau_{\nu})| + |\widetilde{\delta}_{y}(t \wedge \tau_{\nu})|\right)\beta \leq \\ \leq L\beta(N_{\varepsilon} + \nu) \leq L\beta N_{\varepsilon}$$
(3.29)

for some a constant L > 0.

Further on the set $\{t \leq \tau_{\nu}\}$ we represent $\widetilde{\delta}_{y}$ in the following form

$$\widetilde{\delta}_{y}(t) = \xi_{t}^{(1)} + \xi_{t}^{(2)}, \qquad (3.30)$$

where

$$d\xi_t^{(1)} = F'(\widetilde{y}_t)\xi_t^{(1)}dt + \widetilde{r}_t^{(1)}dt, \quad \xi_0^{(1)} = 0. \ d\xi_t^{(2)} = F'(\widetilde{y}_t)\xi_t^{(2)}dt + \widetilde{r}_t^{(2)}dW_t, \quad \xi_0^{(2)} = 0.$$

By the Cauchy formula for linear equations we obtain that

$$\xi^{(1)}_{ au_
u} = \int_0^{ au_
u} \widetilde{\Phi}(t,s) \widetilde{r}^{(1)}_s ds,$$

where $\widetilde{\Phi}(t,s)$ is the fundamental matrix of the system

$$\frac{d\tilde{\Phi}(t,s)}{dt} = F'(\tilde{y}_t)\tilde{\Phi}(t,s), \quad \tilde{\Phi}(s,s) = I.$$
(3.31)

The conditions $(A_2) - (A_3)$ and Lemma 3.1 imply the exponential bound (3.6) for this matrix. Therefore, it follows from (3.28) that

$$|\xi_{\tau_{\nu}}^{(1)}| \le L\beta N_{\varepsilon}^2$$

for some constant L > 0. Taking into account condition (D_1) we choose L^* in (3.26) such that

$$|\xi_{\tau_{\nu}}^{(1)}| \le \nu/2. \tag{3.32}$$

Then

$$P\left(\|\delta_{y}\|_{T} \ge \nu\right) = P\left(\|\widetilde{\delta}_{y}\|_{T/\varepsilon} \ge \nu\right) \le P\left(\|\widetilde{\delta}_{y}\|_{\tau_{0}} \ge \nu\right) + P\left(\tau_{0} < T/\varepsilon\right) = P\left(|\widetilde{\delta}_{y}(\tau_{\nu})| = \nu\right) + P\left(\tau_{0} < T/\varepsilon\right) \le P\left(|\xi_{\tau_{\nu}}^{(1)}| + |\xi_{\tau_{\nu}}^{(2)}| \ge \nu\right) + P\left(\tau_{0} < T/\varepsilon\right).$$

Taking into account the inequality (3.32) we get that

$$P\left(\|\delta_y\|_T \ge
u
ight) \le P\left(\|\xi^{(2)}\|_{T/arepsilon} \ge
u/2
ight) + P\left(au_0 < T/arepsilon
ight).$$

Now Proposition 3.3 holds by virtue of Lemma 3.2 and inequality (3.29).

As a corollary of Proposition 3.2 and Proposition 3.3 we obtain

Proposition 3.4 Under the conditions of Proposition 3.3 the process (3.1) satisfies the inequality

$$P\left(\|y^{\varepsilon} - v^{\varepsilon}\|_{T} \ge \beta N_{\varepsilon}\right) \le L \exp\{-\kappa N_{\varepsilon}^{2}\}$$
(3.33)

for some a constant $\kappa > 0$ and for sufficiently small ε .

Proposition 3.5 Let the conditions $(A_1) - (A_3)$ and $(D_1) - (D_2)$ be fulfilled. We suppose also that

$$\lim_{\varepsilon \to 0} \beta^{-1} \exp\{-\nu t_0/\varepsilon\} = 0 \tag{3.34}$$

for any $\nu > 0$. Then there exists some constant $\kappa > 0$ such that for any fixed $0 < t_0 < T$ and for sufficiently small $\varepsilon > 0$

$$P\left(\|y^{\varepsilon}\|_{t_0,T} \ge \beta N_{\varepsilon}\right) \le L \exp\{-\kappa N_{\varepsilon}^2\},\tag{3.35}$$

where $\|y^{\varepsilon}\|_{t_0,T} = \sup_{t_0 \leq t \leq T} |y^{\varepsilon}_t|.$

Proof of this proposition follows from Proposition 3.1, the condition (3.34) and Proposition 3.4.

4 Asymptotical properties of the slow component

We set

$$S(x) = \int_0^x \frac{dz}{g(z)} \tag{4.1}$$

It follows from the condition (B_2) that this function has a positive bounded derivative and therefore one can define the function s(x) as the solution of the equation

$$S(s(x)) = x \tag{4.2}$$

for all $x \in (-\infty, \infty)$, and

$$s'(x) = g(s(x)) > 0.$$
 (4.3)

Next, we set

$$\widehat{x}_t^\varepsilon = S(x_t^\varepsilon). \tag{4.4}$$

Then we obtain from (4.1) and (1.2), using the also Ito's formula that

$$d\widehat{x}_t^{\varepsilon} = \widehat{f}(\widehat{x}_t^{\varepsilon}, y_t^{\varepsilon})dt + d\omega_t, \quad \widehat{x}_0^{\varepsilon} = \widehat{x}_0 = S(x_0), \tag{4.5}$$

where

$$\widehat{f}(x,y) = \frac{f(s(x),y)}{g(s(x))} - \frac{g'(s(x))}{2}.$$
(4.6)

Following to [12] we represent the solution of the equation (4.5) in the following way:

$$\widehat{x}_t^{\varepsilon} = \widehat{u}_t^{\varepsilon} + \beta \widehat{x}_1^{\varepsilon}(t) + \beta \delta_x^{\varepsilon}(t), \qquad (4.7)$$

where

$$d\widehat{u}_t^{\varepsilon} = \widehat{f}(\widehat{u}_t^{\varepsilon}, v_t^{\varepsilon})dt + d\omega_t, \quad \widehat{u}_0^{\varepsilon} = \widehat{x}_0,$$
(4.8)

the function v_t^{ε} is defined by (3.2), the coefficient $\hat{x}_1^{\varepsilon}(t)$ satisfies the equation

$$\frac{d\widehat{x}_{1}^{\varepsilon}(t)}{dt} = \widehat{f}_{x}(t,\varepsilon)\widehat{x}_{1}^{\varepsilon}(t) + \widehat{f}_{y}^{\star}(t,\varepsilon)y_{1}^{\varepsilon}(t), \quad \widehat{x}_{1}^{\varepsilon}(0) = 0,$$
(4.9)

where $\widehat{f_x}(t,\varepsilon) = \widehat{f_x}(\widehat{u}_t^{\varepsilon}, v_t^{\varepsilon})$, $\widehat{f_y}(t,\varepsilon) = \widehat{f_y}(\widehat{u}_t^{\varepsilon}, v_t^{\varepsilon})$, the process $y_1^{\varepsilon}(t)$ is the solution of the stochastic differential equation (3.3) and \star denote transposition. We need some properties of the asymptotical expansion (4.7). We define

$$d\widehat{u}_t = b(\widehat{u}_t)dt + d\omega_t, \quad , \widehat{u}_0 = \widehat{x}_0, \tag{4.10}$$

where

$$b(u) = \widehat{f}(u,0). \tag{4.11}$$

Proposition 4.1 Let the conditions $(A_1) - (A_3)$ and $(B_1) - (B_4)$ be fulfilled. Then the process (4.8) satisfies the following inequality

$$\sup_{t \ge t_0} |\widehat{u}_t^{\varepsilon} - \widehat{u}_t| \le L\varepsilon \exp\{-\gamma t_0\}$$
(4.12)

for any $t_0 \ge 0$ and for some fixed constants L > 0 and $\gamma > 0$.

Proof. At first, we shall show that

$$\sup_{t \ge 0} |\widehat{u}_t^{\varepsilon} - \widehat{u}_t| \le L\varepsilon \tag{4.13}$$

for some a constant L > 0. We set

$$\Delta_t^\varepsilon = \widehat{u}_t^\varepsilon - \widehat{u}_t$$

In view of (4.8) and (4.10)

$$\frac{d\Delta_t^{\varepsilon}}{dt} = \kappa_t^{\varepsilon} \Delta_t^{\varepsilon} + r_t^{\varepsilon}, \quad \Delta_0^{\varepsilon} = 0,$$
(4.14)

where $\kappa_t^{\varepsilon} = (b(\widehat{u}_t^{\varepsilon}) - b(\widehat{u}_t))/\Delta_t^{\varepsilon}$, and $r_t^{\varepsilon} = \widehat{f}(\widehat{u}_t^{\varepsilon}, v_t^{\varepsilon}) - \widehat{f}(\widehat{u}_t^{\varepsilon}, 0)$. By (2.3) and (4.3) $\dot{b}(u) < -\gamma$

$$b(u) \leq -\gamma$$

for all $u \in (-\infty, +\infty)$, and therefore

$$\kappa_t^{\varepsilon} \le -\gamma. \tag{4.15}$$

Using the Lipschitz condition on the function f and the inequality (3.13) we obtain

$$|r_t^{\varepsilon}| \le L |v_t^{\varepsilon}| \le L \exp\{-\alpha t/\varepsilon\}.$$
(4.16)

Then solving the equation (4.14) on the interval [0, t] we get

$$\Delta^arepsilon_t = \int_0^t r^arepsilon_s \exp\{\int_s^t \kappa^arepsilon_u \, du\} \, ds.$$

Then (4.13) follows from (4.15) and (4.16). Similarly, we can represent Δ_t^{ε} on the interval $[t_1, t] (t_1 = t_0/2)$ in the form

$$\Delta_t^arepsilon = \exp\{\int_{t_1}^t \kappa_s^arepsilon \, ds \} \Delta_{t_1}^arepsilon + \int_{t_1}^t r_s^arepsilon \exp\{\int_s^t \kappa_u^arepsilon \, du\} \, ds$$

and taking into account (4.13) we arrive at (4.12). Hence Proposition 4.1. \Box Further we need the next auxiliary lemma.

Lemma 4.1 Under the conditions $(A_1) - (A_3)$ the process (3.3) has the property: for all $t \ge s$

$$|Ey_1^{\varepsilon}(t)(y_1^{\varepsilon}(s))^{\star}| \le Le^{-\kappa(t-s)/\varepsilon}$$
(4.17)

for some fixed constants L > 0 and $\gamma > 0$.

Proof. First note that

$$Ey_1^{\varepsilon}(t)(y_1^{\varepsilon}(s))^{\star} = E\widetilde{y}_1(t/\varepsilon)(\widetilde{y}_1(s/\varepsilon))^{\star},$$

where \tilde{y}_1 is defined by (3.15). It follows from (3.15) that

$$E\widetilde{y}_1(t/\varepsilon)(\widetilde{y}_1(s/\varepsilon))^{\star} = \Phi(t/\varepsilon, s/\varepsilon)E\widetilde{y}_1(s/\varepsilon)(\widetilde{y}_1(s/\varepsilon))^{\star},$$

where

$$rac{\Phi(t,s)}{dt} = F'(\widetilde{y}_t) \Phi(t,s), \quad \Phi(s,s) = I.$$

Taking into account the condition (A_2) and Lemma 3.1 we obtain the inequality (4.17). Hence Lemma 4.1. \Box

Proposition 4.2 Under the conditions $(A_1) - (A_3)$ and $(B_1) - (B_3)$ the solution of the equation (4.9) for all integer numbers $m \ge 1$ and some positive constant L satisfies the inequality:

$$\sup_{t\geq 0} E\left\{ \left(\widehat{x}_{1}^{\varepsilon}(t)\right)^{2m} | F_{T}^{w} \right\} \leq (2m-1)!!(L\varepsilon)^{m},$$

$$(4.18)$$

where $F_T^w = \sigma\{w_t, 0 \le t \le T\}.$

Proof. We can represent the solution of (4.9) as

$$\widehat{x}_{1}^{\varepsilon}(t) = \int_{0}^{t} \widehat{f}_{y}^{*}(s,\varepsilon) y_{1}^{\varepsilon}(s) \phi_{\varepsilon}(t,s)$$
(4.19)

with

$$\phi_arepsilon(t,s) = \exp\{\int_s^t \widehat{f_x}(r,arepsilon)\,dr\}.$$

Since the process (3.3) is Gaussian, and the Wiener processes $(\omega_t, t \ge 0), (W_t, t \ge 0)$ are independent, the process (4.19) is conditionally (with respect to F_T^{ω}) Gaussian with $E\{\hat{x}_1^{\varepsilon}(t)|F_T^{w}\}=0$ and

$$E\left\{\left(\widehat{x}_{1}^{\varepsilon}(t)\right)^{2}|F_{T}^{w}\right\}=2\int_{0}^{t}\phi_{\varepsilon}(t,s)\int_{s}^{t}\widehat{f}_{y}^{\star}(s,\varepsilon)Ey_{1}^{\varepsilon}(s)(y_{1}^{\varepsilon}(\theta))^{\star}\widehat{f}_{y}(\theta,\varepsilon)\phi_{\varepsilon}(t,\theta)\,d\theta\,ds.$$

Note that by (4.6) and conditions $(B_1) - (B_4)$

$$\widehat{f}_x(x,y) \le \dot{a}_1(s(x))\dot{s}(x) + L|y| \tag{4.20}$$

for some positive constants $\gamma_1 > 0$ and L > 0. Therefore, using the inequality (3.13) we get

$$\phi_{\varepsilon}(t,s) \le \exp\{-\gamma_1(t-s) + L \int_s^t e^{-\alpha\theta/\varepsilon} d\theta\} \le e^{-\gamma_1(t-s)}.$$
(4.21)

Then taking into account (4.17) we obtain

$$E\left\{\left(\widehat{x}_{1}^{\varepsilon}(t)\right)^{2}|F_{T}^{w}\right\}\leq L\varepsilon$$

for some constant L > 0 and hence (4.18). \Box In the sequel we need

Lemma 4.2 Let η_t be a scalar random process satisfying the linear stochastic differential equation

$$d\eta_t = \alpha_t \eta_t \, dt + \, d\omega_t, \quad \eta_0 = 0, \tag{4.22}$$

where ω_t is a standard Wiener process and the coefficient α_t satisfies the inequality

$$\alpha_t \le -\gamma \tag{4.23}$$

for some constant $\gamma > 0$. Then for any integer $m \ge 1$

$$E\left(\|\eta\|_{T}\right)^{2m} \le 1 + 8\gamma^{-1}(\gamma^{-1} + \gamma^{-2})^{m}m^{4}m!T, \qquad (4.24)$$

where $\|\eta\|_T = \sup_{0 < t < T} |\eta_t|$, and T > 0.

Proof. One can show (see, for example, [6]) that for any stopping time τ with values in the interval [0, T]

$$E|\eta_{\tau}|^{2m} \le m(2m-1)!!T/(2\gamma)^{m-1}.$$
(4.25)

We have also

$$E(\|\eta\|_T)^{2m} = 2m \int_0^\infty a^{2m-1} P\{\|\eta\|_T > a\} \, da \le 1 + 2m \int_1^\infty a^{2m-1} P\{|\eta_{ au_a}| \ge a\} \, da,$$

where

$$\tau_a = \inf\{t \ge 0 : |\eta_t| \ge a\} \land T.$$

By letting $\lambda = m^{2m}$ we obtain

$$E(\|\eta\|_{T})^{2m} \leq 1 + 2m \int_{1}^{\lambda} \frac{|\eta_{\tau_{a}}|^{2m}}{a} da + 2m \int_{\lambda}^{\infty} \frac{|\eta_{\tau_{a}}|^{4m}}{a^{2}} da \leq \\ \leq 1 + \frac{2m^{2}(2m-1)!!T\ln\lambda}{(2\gamma)^{m-1}} + \frac{4m^{2}(4m-1)!!T}{\lambda(2\gamma)^{2m-1}} \leq \\ \leq 1 + \frac{8m^{3}m!T\ln m}{\gamma^{m-1}} + \frac{8m^{2}(2m)!T}{\gamma^{2m-1}m^{2m}}$$

and hence (4.24). \Box We set

$$D_{\varepsilon} = \{ \|y_1^{\varepsilon}\|_T \le N_{\varepsilon}, \quad \|\delta_y\|_T \le L^* \beta N_{\varepsilon}^2 \},$$
(4.26)

where δ_y is defined by (3.1), L^* is a constant which fulfills inequality (3.19).

Proposition 4.3 Under the conditions $(A_1) - (A_3)$, $(B_1) - (B_3)$ and (D_1) the process $\delta_x^{\varepsilon}(\cdot)$ from (4.7) satisfies the inequality

$$E\mathbf{1}_{D_{\varepsilon}} \left(\delta_{x}^{\varepsilon}\right)^{2m} \leq (L\beta N_{\varepsilon}^{2})^{m} m^{4} m! T$$

$$(4.27)$$

for any integer $m \ge 1$ and some constants L > 0 and $T \ge 1$.

Proof. In view of (4.7)-(4.9) the process δ_x^{ε} obeys the equation

$$d\delta_x^{\varepsilon}(t) = \kappa_t^{\varepsilon} \delta_x^{\varepsilon}(t) \, dt + r_t^{\varepsilon} \, dt, \quad \delta_x^{\varepsilon}(0) = 0, \qquad (4.28)$$

where

$$\kappa_t^{\varepsilon} = \frac{\widehat{f}(\widehat{x}_t^{\varepsilon}, y_t^{\varepsilon}) - \widehat{f}(\widehat{u}_t^{\varepsilon} + \beta \widehat{x}_1^{\varepsilon}(t), y_t^{\varepsilon})}{\beta \delta_x^{\varepsilon}(t)},$$
$$r_t^{\varepsilon} = \frac{\widehat{f}(\widehat{u}_t^{\varepsilon} + \beta \widehat{x}_1^{\varepsilon}(t), y_t^{\varepsilon}) - \widehat{f}(\widehat{u}_t^{\varepsilon}, v_t^{\varepsilon}) - \beta \widehat{f}_x(t, \varepsilon) \widehat{x}_1^{\varepsilon}(t) - \beta \widehat{f}_y^{\star}(t, \varepsilon) \widehat{y}_1^{\varepsilon}(t)}{\beta}$$

Taking into account the asymptotical expansion (3.1) and inequality (4.20) we get on the set D_{ε}

$$\kappa_t^{\varepsilon} \le -\gamma_1 + L|v_t^{\varepsilon}| + L\beta N_{\varepsilon} + L^*\beta^2 N_{\varepsilon}^2 \le -\gamma_1/2 + L|v_t^{\varepsilon}|$$

for sufficiently small $\varepsilon > 0$ and therefore by (3.13) for any $t \ge s$

$$\int_s^t \kappa_u^{\varepsilon} du \leq -\gamma_1(t-s)/2 + L \int_s^t e^{-\alpha u/\varepsilon} du \leq -\gamma_(t-s)/2 + L\varepsilon,$$

that is, for some positive constant $\gamma>0$

$$\exp\{\int_s^t \kappa_u^\varepsilon \, du\} \le 2e^{-\gamma(t-s)}.$$

Note that by (4.19) and (4.21)

$$\|\widehat{x}_1^{\varepsilon}\|_T \le L \|\widehat{y}_1^{\varepsilon}\|_T \tag{4.29}$$

for some constant L > 0.

Further, it is easy to get from the definition of the function \hat{f} in (4.6) that for some constant L > 0

$$|\widehat{f}_{xx}(x,y)| \le (1+|x|+|y|) \tag{4.30}$$

for all x and y; the other second derivatives \hat{f}_{xy} and \hat{f}_{yy} are bounded. By applying the finite increments formula we obtain

$$|r_t^{\varepsilon}| \leq L|\delta_y(t,\varepsilon)| + |\widetilde{f}_x(t,\varepsilon) - \widehat{f}_x(t,\varepsilon)||\widehat{x}_1^{\varepsilon}| + |\widetilde{f}_y(t,\varepsilon) - \widehat{f}_y(t,\varepsilon)||\widehat{y}_1^{\varepsilon}|,$$

where

$$\begin{split} f_x(t,\varepsilon) &= f_x(\widehat{u}_t^\varepsilon + \theta \beta \widehat{x}_1^\varepsilon(t), v_t^\varepsilon + \theta \beta y_1^\varepsilon(t)),\\ \widetilde{f}_y(t,\varepsilon) &= \widetilde{f}_y(\widehat{u}_t^\varepsilon + \theta \beta \widehat{x}_1^\varepsilon(t), v_t^\varepsilon + \theta \beta y_1^\varepsilon(t)), \quad 0 \le \theta \le 1 \end{split}$$

Similarly, taking into account inequalities (4.12), (4.29) and (4.30) we obtain

$$\begin{aligned} |r_t^{\varepsilon}| &\leq L(|\delta_y(t,\varepsilon)| + \beta(1+|\widehat{u}_t|+\beta|\widehat{x}_1^{\varepsilon}(t)|+\beta|\widehat{y}_1^{\varepsilon}(t)|)(|\widehat{x}_1^{\varepsilon}(t)|^2+|\widehat{y}_1^{\varepsilon}(t)|^2)) \leq \\ &\leq L(|\delta_y(t,\varepsilon)| + \beta(1+\|\widehat{u}\|_T+\beta\|\widehat{y}_1^{\varepsilon}\|_T)\|\widehat{y}_1^{\varepsilon}\|_T^2). \end{aligned}$$

Therefore on the set D_{ε} for sufficiently small $\varepsilon > 0$

$$||r^{\varepsilon}||_{T} \leq L(1+||\widehat{u}||_{T})\beta N_{\varepsilon}^{2}$$

for some constant L > 0. Note that the solution of equation (4.28) can be represented in the integral form

$$\delta^arepsilon_x(t) = \int_0^t r^arepsilon_s e^{\int_s^t \kappa^arepsilon_u \, du} \, ds.$$

Then it holds on the set D_{ε}

$$|\delta^arepsilon_x(t)| \leq 2\int_0^t |r^arepsilon_s| e^{-\gamma(t-s)}\,ds \leq L(1+\|\widehat{u}\|_T)eta N^2_arepsilon.$$

Next we study equation (4.10). We rewrite it in the following form

$$d\widehat{u}_t = (b(0) + \alpha_t \widehat{u}_t) dt + d\omega_t, \quad \widehat{u}_0 = \widehat{x}_0, \qquad (4.31)$$

where $\alpha_t = (b(\hat{u}_t) - b(0))/\hat{u}_t$. First, note that condition (B_4) implies the inequality

$$\alpha_t \le -\gamma \tag{4.32}$$

for some constant $\gamma > 0$.

By applying Cauchy formula for linear differential equations we can write the solution of (4.31) in the form

$$\widehat{u}_t = \widehat{x}_0 e^{\int_0^t \alpha_s \, ds} + b(0) \int_0^t e^{\int_s^t \alpha_u \, du} \, ds + \eta_t,$$

where

$$d\eta_t = \alpha_t \eta_t \, dt + d\omega_t, \quad \eta_0 = 0$$

Inequalities (4.24) and (4.32) imply (4.27). Hence Proposition 4.3. \Box In the sequel we need upper exponential bound for the probability of large deviations for \hat{x}^{ϵ} in the integral metric.

Let ζ_t be a positive F_T^{ω} - measurable random process. We set

$$\Gamma = \{ \int_{t_0}^T \zeta_t \, dt \le K \},\tag{4.33}$$

where $0 \le t_0 < T$, K > 0.

Proposition 4.4 Under conditions $(A_1) - (A_3)$, $(B_1) - (B_3)$, and $(D_1) - (D_2)$ the process \hat{x}^{ε} satisfies for some constants L > 0 and $\kappa > 0$ and any $\lambda > 0$ and K > 0 the inequality

$$P\left(\int_{t_0}^T |\widehat{x}_t^{\varepsilon} - \widehat{u}_t^{\varepsilon}|\zeta_t \, dt > \lambda, \ \Gamma, \ D_{\varepsilon}\right) \le LT \exp\{-\frac{\kappa\lambda^2}{K^2\beta^3 N_{\varepsilon}^2}\}$$
(4.34)

Proof. It follows from (4.7) that

$$P\left(\int_{t_0}^T |\widehat{x}_t^{\varepsilon} - \widehat{u}_t^{\varepsilon}|\zeta_t \, dt > \lambda, \ \Gamma, \ D_{\varepsilon}\right) \le P(\rho_1^{\varepsilon} > \lambda/2\beta) + P(\rho_2^{\varepsilon} > \lambda/2\beta), \quad (4.35)$$

where

$$ho_1^arepsilon = \mathbf{1}_\Gamma \int_{t_0}^T |\widehat{x}_1^arepsilon(t)| \zeta_t \, dt, \quad
ho_2^arepsilon = \mathbf{1}_{D_arepsilon} \|\delta_x^arepsilon\|_T.$$

Now we show that there exists some constant $\kappa > 0$ such that

$$E \exp\{\frac{\kappa(\rho_1^{\varepsilon})^2}{K^2 \varepsilon}\} \le 2.$$
(4.36)

Indeed, by the Hölder inequality and (4.18)

$$E(\rho_1^{\varepsilon})^{2m} \leq E \mathbf{1}_{\Gamma} \int_{t_0}^T |\widehat{x}_1^{\varepsilon}(t)|^{2m} \zeta_t \, dt \left(\int_{t_0}^T \zeta_t \, dt\right)^{2m-1} \leq \\ \leq K^{2m-1} E \mathbf{1}_{\Gamma} \int_{t_0}^T E\left\{ |\widehat{x}_1^{\varepsilon}(t)|^{2m} |F_T^w\right\} \zeta_t \, dt \leq (2m-1)!! (K^2 L\varepsilon)^m$$

and therefore

$$E \exp\{\frac{\kappa(\rho_1^{\varepsilon})^2}{K^2 \varepsilon}\} \le 1 + \sum_{m=1}^{\infty} \frac{(2m-1)!!}{m!} (\kappa L)^m \le \sum_{m=0}^{\infty} (2\kappa L)^m.$$

This implies (4.36) for $0 < \kappa < 1/4L$. By making use of the Chebyshev inequality and (4.36) it is easy to get that

$$P(\rho_1^{\varepsilon} > \lambda/2\beta) \le 2\exp\{-\frac{\kappa\lambda^2}{K^2\beta^2\varepsilon}\}$$
(4.37)

for some constant $\kappa > 0$.

Further, taking into account inequality (4.27) one can show that there exists positive constants κ and L, such that

$$E \exp\{\frac{\kappa(\rho_2^{\varepsilon})^2}{\beta N_{\varepsilon}^2}\} \le LT.$$

By applying the Chebyshev inequality we obtain

$$P(\rho_2^{\varepsilon} > \lambda/2\beta) \le LT \exp\{-\frac{\kappa\lambda^2}{K^2\beta^3 N_{\varepsilon}^2}\}.$$

Combining this inequality with (4.35), (4.37) and condition (D_2) , we obtain (4.34). Hence Proposition 4.4. \Box

Proposition 4.5 Under the conditions of Proposition 4.4 the process \hat{x}^{ε} satisfies the inequality

$$P\left(\int_{t_0}^T |\widehat{x}_t^{\varepsilon} - \widehat{u}_t^{\varepsilon}|^2 dt > \lambda, \ D_{\varepsilon}\right) \le LT \exp\{-\frac{\kappa\lambda}{\beta^3 N_{\varepsilon}^2 T}\}$$
(4.38)

for any $\lambda > 0$ and some constants L > 0 and $\kappa > 0$.

Proof of Proposition 4.5 is similar to the proof of Proposition 4.4.

5 Upper exponential bound for the probability of large deviations in the ergodic theorem for diffusion processes

Let us consider a scalar diffusion process ξ satisfying the stochastic differential equation

$$d\xi_t = b(\xi_t) dt + d\omega_t, \quad \xi_0 = const.$$
(5.1)

Suppose that the function $b(\cdot)$ is continuously differentiable and

$$\dot{b}(x) \le -\gamma \tag{5.2}$$

for some constant $\gamma > 0$ and all $-\infty < x < \infty$.

It is well known (see, for example, [8]) that in this case the equation (5.1) has an unique strong solution, possessing the stationary distribution with the density:

$$q_1(y) = \frac{\exp\{2\int_0^y b(z) \, dz\}}{\int_{-\infty}^{+\infty} \exp\{2\int_0^u b(z) \, dz\} \, du}.$$
(5.3)

Further, for an arbitrary continuous integrable function $\phi(\cdot)$ we define

$$\Delta_T(\phi) = \frac{\int_0^T (\phi(\xi_t) - m(\phi)) \, dt}{|||\phi|||\sqrt{T}},\tag{5.4}$$

where

$$m(\phi) = \int_{-\infty}^{+\infty} \phi(y) q_1(y) \, dy.$$
 (5.5)

Proposition 5.1 Let the condition (5.2) for the equation (5.1) be fulfilled. Then there exists an universal constant $\kappa > 0$ such that for any continuous integrable function ϕ and arbitrary $T \ge 1$

$$E \exp\{\kappa(\Delta_T(\phi))^2\} \le 2.$$
(5.6)

Proof. We set $\phi_1(u) = \phi(u) - m(\phi)$. It is obvious that

$$\int_{-\infty}^{+\infty} \phi_1(y) \exp\{2\int_0^y b(z) \, dz\} \, dy = 0.$$
 (5.7)

Let us define the function

$$V(x) = \int_0^x v(u) \, du, \quad v(u) = -2 \int_u^{+\infty} \phi_1(y) \exp\{2 \int_u^y b(z) \, dz\} \, dy. \tag{5.8}$$

Now we show that

$$\sup_{-\infty < u < +\infty} |v(u)| \le L|||\phi||| \tag{5.9}$$

for some constant L > 0.

Indeed, by applying the finite increments formula and taking into account condition (5.2) for u > 0 we get

$$egin{aligned} |v(u)| &\leq \int_{u}^{+\infty} (|\phi(y)| + |m(\phi)|) \exp\{-\gamma(y-u)^2 + 2|b(0)|(y-u)\} \,\mathrm{d}y \leq \ &\leq L |||\phi||| + L|m(\phi)| \int_{0}^{+\infty} \exp\{-\gamma z^2 + 2|b(0)|z\} \,\mathrm{d}z \leq L |||\phi|||. \end{aligned}$$

By (5.7) we obtain that for $u \leq 0$

$$egin{aligned} &|v(u)| = 2 |\int_{-\infty}^u \phi_1(y) \exp\{-2\int_y^u b(z)\,dz\}\,dy| \leq \ &\leq 2\int_{-\infty}^u |\phi_1(y)| \exp\{-\gamma(y-u)^2 + 2|b(0)||y-u|\}\,dy \leq L|||\phi|||. \end{aligned}$$

These inequalities imply (5.9).

Next note that the function V(x) (5.8) satisfies the differential equation

$$2\dot{V}(x)b(x)+\ddot{V}=2\phi_1(x).$$

Therefore, by making use of the Itô formula we get

$$\int_0^T \phi_1(\xi_t) \, dt = V(\xi_T) - V(\xi_0) - \int_0^T v(\xi_t) \, d\omega_t.$$

It follows from inequality (5.9) that

$$\left(\int_{0}^{T} \phi_{1}(\xi_{t}) dt\right)^{2m} \leq 3^{2m-1} (|V(\xi_{T})|^{2m} + \left|V(\xi_{0})|^{2m} + \left|\int_{0}^{T} v(\xi_{t}) d\omega_{t}\right|^{2m}) \leq 3^{2m-1} (L^{2m} |||\phi|||^{2m} |\xi_{T}|^{2m} + L^{2m} |||\phi|||^{2m} |\xi_{0}|^{2m} + \left|\int_{0}^{T} v(\xi_{t}) d\omega_{t}\right|^{2m}).$$
(5.10)

Now we show that

$$\sup_{t \ge 0} E|\xi_t|^{2m} \le (2m-1)!!(L)^m \tag{5.11}$$

for some constant L > 0 and for any integer $m \ge 1$. The function $b(\xi_t)$ can be represented in the form

$$b(\xi_t) = b(0) + \alpha_t \xi_t$$

with $\alpha_t = (b(\xi_t) - b(0))/\xi_t$. Moreover, we get in view of condition (5.2)

$$\alpha_t \leq -\gamma, \quad t \geq 0.$$

By applying the Cauchy formula for linear differential equations we write the solution of equation (5.1) as

$$\xi_t = \zeta_t + \eta_t$$

where ξ_t satisfies the ordinary differential equation

$$\frac{d\zeta_t}{dt} = b(0) + \alpha_t \zeta_t, \quad \zeta_0 = \xi_0, \tag{5.12}$$

and η_t satisfies the linear stochastic differential equation

$$d\eta_t = \alpha_t \eta_t \, dt + \, d\omega_t, \quad \eta_0 = 0. \tag{5.13}$$

It is easy to get from (5.12) that

$$\sup_{t\geq 0}|\zeta_t|\leq L$$

for some constant L > 0. Next, the process η_t satisfies for any integer $m \ge 1$ the inequality

$$\sup_{t \ge 0} E |\eta_t|^{2m} \le (2m - 1)!!/(2\gamma)^m.$$

(see, [6]) which implies (5.11). Further, the bounds for even moments of stochastic integrals (see, [9]) and inequality (5.9) imply that

$$E(\int_0^T v(\xi_t) \, d\omega_t)^{2m} \le (2m-1)!!(LT|||\phi|||^2)^m$$

for some constant L>0. This and (5.10) provide for some $L>0,\,T\geq 1$ and any integer $m\geq 1$

$$E(\Delta_T(\phi))^{2m} \le (2m-1)!!L^m$$

and hence inequality (5.6). \Box

Proposition 5.2 Under the conditions of Proposition 5.1 for any continuous integrable function ϕ and arbitrary $\lambda \geq 0$

$$P\left(\left|\frac{1}{T}\int_{0}^{T}\phi(\xi_{t})\,dt - m(\phi)\right| \geq \lambda\right) \leq 2\exp\{-\frac{\kappa\lambda^{2}T}{|||\phi|||^{2}}\} \quad (T \geq 1).$$

This statement follows directly from Proposition 5.1.

6 Proof of Theorem 2.1

To prove Theorem 2.1 we need the following lemmas.

Lemma 6.1 Let for the process (1.3) the conditions $(B_2) - (B_4)$ be fulfilled, the function Ψ_{ε} satisfy the condition $(C_1) - (C_2)$ and T_{ε} satisfy the conditions $(D_3) - (D_4)$. Then for any $\lambda > 0$ there exists $\kappa > 0$ such that

$$\limsup_{\varepsilon \to 0} \frac{1}{N_{\varepsilon}^{2}} \ln P\left(\left| \frac{1}{T_{\varepsilon}} \int_{t_{0}}^{T_{\varepsilon}} \Psi_{\varepsilon}(u_{t}) dt - m_{\varepsilon} \right| > \lambda \right) \le -\kappa,$$
(6.1)

where $t_0 = o(T_{\varepsilon})$.

Proof. By change of variables $\hat{u}_t = S(u_t)$, where $S(\cdot)$ is defined by (4.1), we transform equation (1.3) to equation (4.10) with function b(u) satisfying inequality (5.2). Then

$$P\left(\left|\frac{1}{T_{\varepsilon}}\int_{t_{0}}^{T_{\varepsilon}}\Psi_{\varepsilon}(u_{t})dt - m_{\varepsilon}\right| > \lambda\right) \leq P\left(\left|\frac{1}{T_{\varepsilon}}\int_{0}^{t_{0}}\varphi_{\varepsilon}(\widehat{u}_{t})dt\right| > \lambda/2\right) + P\left(\left|\frac{1}{T_{\varepsilon}}\int_{0}^{T_{\varepsilon}}\varphi_{\varepsilon}(\widehat{u}_{t})dt - m_{\varepsilon}\right| > \lambda/2\right),$$

$$(6.2)$$

where

$$arphi_arepsilon(u)=\Psi_arepsilon(s(u))$$
 .

Next note that

$$|||\varphi||| = \int_{-\infty}^{+\infty} |\Psi_{\varepsilon}(s(u))| \, \mathrm{d}u = \int_{-\infty}^{+\infty} |\Psi_{\varepsilon}(u)| \frac{1}{g(u)} \, \mathrm{d}u \le L |||\Psi_{\varepsilon}||$$

Now we estimate the first term in the right side of inequality (6.2). If $t_0 \leq 1$ then

$$\left|\int_0^{t_0}\varphi_\varepsilon(\widehat{u}_t)\,\mathrm{d} t\right|\leq \mu_\varepsilon$$

and by condition (D_4)

$$P\left(rac{1}{T_{arepsilon}}\left|\int_{0}^{t_{0}}arphi_{arepsilon}(\widehat{u}_{t})\,dt
ight|>\lambda/2
ight)=0$$

for sufficiently small $\varepsilon > 0$. Now let $t_0 > 1$. Then taking into account condition (C_2) we obtain for sufficiently small $\varepsilon > 0$

$$P\left(\frac{1}{T_{\varepsilon}}\left|\int_{0}^{t_{0}}\varphi_{\varepsilon}(\widehat{u}_{t})\,\mathrm{d}t\right| > \lambda/2\right) \leq P\left(\left|\frac{1}{t_{0}}\int_{0}^{t_{0}}\varphi_{\varepsilon}(\widehat{u}_{t})\,\mathrm{d}t - m_{\varepsilon}\right| > T_{\varepsilon}\lambda/4t_{0}\right).$$
 (6.3)

Therefore, by applying Proposition 5.2 and inequalities (6.2)-(6.3) and taking into account condition (D_3) we come to (6.1). Hence Lemma 6.1. \Box

Lemma 6.2 Suppose that conditions $(A_1) - (A_3), (B_1) - (B_4)$ are fulfilled, the parameters β , ε , T_{ε} satisfy the limiting relationships $(D_1) - (D_5)$. Then for any $\lambda > 0$ there exists $\kappa > 0$ such that

$$P\left(\int_{t_0}^{T_{\varepsilon}} |\Psi_{\varepsilon}(x_t^{\varepsilon}) - \Psi_{\varepsilon}(u_t)| \, \mathrm{d}t > \lambda T_{\varepsilon}\right) \le e^{-\kappa N_{\varepsilon}^2}$$
(6.4)

for sufficiently small $\varepsilon > 0$.

Proof. First, note that Proposition 3.2 and Proposition 3.3 imply the following inequality

$$P(D_{\varepsilon}^{c}) \le e^{-\kappa N_{\varepsilon}^{2}} \tag{6.5}$$

for some constant $\kappa > 0$. We set

$$\Gamma_{\varepsilon} = \{ \int_{t_0}^{T_{\varepsilon}} |\dot{\Psi}_{\varepsilon}(u_t)| \, \mathrm{d}t < T_{\varepsilon} m_{\varepsilon}^{(1)} \}.$$
(6.6)

It follows from inequality (6.1) that

$$P(\Gamma_{\varepsilon}^{c}) \le e^{-\kappa N_{\varepsilon}^{2}} \tag{6.7}$$

for some constant $\kappa > 0$.

By applying the finite increments formula we obtain

$$|\Psi_arepsilon(x_t^arepsilon) - \Psi_arepsilon(u_t)| \le |x_t^arepsilon - u_t| |\dot{\Psi}_arepsilon(u_t)| + \mu_arepsilon^{(2)} |x_t^arepsilon - u_t|^2$$

and taking into account inequality (4.13) we get the inequality

$$|\Psi_{\varepsilon}(x_t^{\varepsilon}) - \Psi_{\varepsilon}(u_t)| \le |x_t^{\varepsilon} - u_t^{\varepsilon}| |\dot{\Psi}_{\varepsilon}(u_t)| + \mu_{\varepsilon}^{(2)} |x_t^{\varepsilon} - u_t^{\varepsilon}|^2 + \varepsilon \mu_{\varepsilon}^{(1)} + \varepsilon^2 \mu_{\varepsilon}^{(2)}$$

It follows from condition (B_2) that the function $s(\cdot)$, defined by (4.2), satisfies the Lipschitz condition. Therefore for some constant L > 0

$$|\Psi_{\varepsilon}(x_t^{\varepsilon}) - \Psi_{\varepsilon}(u_t)| \leq L\left(|\widehat{x}_t^{\varepsilon} - \widehat{u}_t^{\varepsilon}||\dot{\Psi}(u_t)| + |\widehat{x}_t^{\varepsilon} - \widehat{u}_t^{\varepsilon}|^2 + \varepsilon\mu_{\varepsilon}^{(1)} + \varepsilon^2\mu_{\varepsilon}^{(2)}\right).$$

Then

$$P\left(\int_{t_0}^{T_{\varepsilon}} |\Psi_{\varepsilon}(x_t^{\varepsilon}) - \Psi_{\varepsilon}(u_t)| \, \mathrm{d}t > \lambda T_{\varepsilon}\right) \leq \\ \leq P\left(\int_{t_0}^{T_{\varepsilon}} |\widehat{x}_t^{\varepsilon} - \widehat{u}_t^{\varepsilon}| |\dot{\Psi}_{\varepsilon}(u_t)| \, \mathrm{d}t > T_{\varepsilon}\lambda/4L, \ \Gamma_{\varepsilon}, \ D_{\varepsilon}\right) + \\ + P\left(\int_{t_0}^{T_{\varepsilon}} |\widehat{x}_t^{\varepsilon} - \widehat{u}_t^{\varepsilon}|^2 \, \mathrm{d}t > T_{\varepsilon}\lambda/4L\mu_{\varepsilon}^{(2)}, \ D_{\varepsilon}\right) + P(\Gamma_{\varepsilon}^c) + P(D_{\varepsilon}^c)$$

Combining Propositions 4.4 - 4.5, inequalities (6.5), (6.7) and limiting relationships (D_5) we obtain inequality (6.4). Hence Lemma 6.2. \Box

Lemma 6.1 and Lemma 6.2 imply the assertion of Theorem 2.1.

ACKNOWLEDGMENTS

The authors is grateful to professor V.G.Spokoiny for his valuable comments.

References

- 1. Butuzov, V.F., Vasil'eva, A.B. Asymptotic Expansions for Singularly Perturbed Equations. Nauka, Moscow, 1973
- 2. Butuzov, V.F., Vasil'eva, A.B., Kalachev, L.V. The boundary function method for singular perturbation problems. SIAM Philadelphia, PA, 1995
- Freidlin, M.I. (1978) Averaging principle and theorem on large deviations. Uspekni Mat. 33 pp. 107-160
- Freidlin, M.I., Wentcell, A.D. Random Perturbations of Dynamic Systems. N.Y. Springer, 1984
- Gikhman, I.I., Skorochod, A.V. Stochastic Differential Equations. "Naukova Dumka", Kiev, 1968
- Kabanov, Yu.M., Pergamenshchikov, S.M. Two Scale Stochastic Systems: Asymptotic Analysis and Control. Springer-Verlag, Berlin, New York (submitted)
- Kabanov, Yu.M., Pergamenshchikov, S.M., Stoyanov, J.M. (1991) Asymptotic Expansions for Singularly Perturbed Stochastic Differential Equations. New Trends in Prob. and Stat., VSP/Mokslas, pp. 413-435.
- 8. Khasminskii, R.Z. Stochastic Stability of Differential Equations . Sijthoff and Noordhoff, 1980
- Liptser, R.Sh., Shiryaev, A.N. Statistics of Random Processes. I, II, Springer-Verlag, 1978
- 10. Liptser, R.Sh., Spokoiny, V.G. (1997) On Estimating a Dynamic Function of Stochastic system with averaging. Preprint No. 381, Berlin
- 11. Liptser, R.Sh., Spokoiny, V.G. (1997) Moderate deviations for integral functionals of diffusion process. Preprint No. 377, Berlin
- Pergamenshchikov, S.M.(1994) Asymptotic expansions for models with both quick and slowly variables specified by singularly perturbed stochastic systems of stochastic differential equations. *Russian Mathematical Surveys*, 49, 4, pp. 1-44.
- Skorokhod, A.V. Asymptotic Methods in the Theory of Stochastic Differential Equations. AMS. Providence Rhole Island. Translation of Mathematical Monographs, 78, 1989
- Veretennikov, A. Yu. (1992) On large deviations for ergodic empirical measures. Topics in Nonparametric Estimation. Advances in Soviet Mathematics. AMS 12 pp. 125-133