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Abstract. Constructive su�cient conditions for regular oscillations in systems

with stochastic resonance are given. For bistable systems, they rely on the fact

that the probability of transition of a point from one well to the other with subse-

quent stay there during the half-period of the periodic forcing is close to 1. Using

these conditions, domains of parameters corresponding to the regular oscillations

are indicated. The regular oscillations are considered in bistable and monostable

systems with additive and multiplicative noise. Special attention is paid to numer-

ical methods. Algorithms based on numerical integration of stochastic di�erential

equations turn out to be most natural both for simulation of sample trajectories

and for solution of related boundary value problems of parabolic type. Results of

numerical experiments are presented.
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1. Introduction

One of the remarkable properties of a noise-driven bistable system subject to small

deterministic periodic perturbations is the existence of regular oscillations under a
certain set of parameters of the system. The oscillations are connected with the
phenomenon of amplifying the response to a small periodic forcing which is com-
monly referred as stochastic resonance (SR). SR was �rst considered in the context

of a model concerning climate dynamics [2, 22]. In these initial works a fairly sim-
ple and robust mechanism of regular oscillations was explained. Then SR has been
observed in a large variety of systems including lasers, noise-driven electronic cir-
cuits, superconducting quantum interference devices, chemical reactions, etc. Some

theoretical investigations of SR have been done as well. SR is also simulated nu-
merically for various physical and neurobiological problems modelled by stochastic
di�erential equations (SDE). For a review and extended list of references on SR see,
e.g. [6, 14, 20, 24].
Some conditions for regular oscillations, based on Kramers' theory of di�usion

over a potential barrier, are introduced in [2]. The subject of our paper is to give
new constructive su�cient conditions for the presence of regular oscillations. Using
these conditions, we indicate domains of parameters under which regular oscillations
exist.

A typical system, for which the SR phenomenon is observed, has the form of the
Ito equation

dX = a(X)dt+ b(t)dt+ �(t; X)dw(t); (1.1)

where b and � are periodic in t; w(t) is a standard Wiener process.
For instance, the system

dX = (�X �X3)dt+ A cos �tdt + �dw(t) (1.2)

has the form (1.1).
The following system in the sense of Stratonovich [1]

dX = (��X � 2c
X

1 +X2
)dt+ A cos �tdt + �

X

1 +X2
� dw(t) (1.3)

can be presented in the form (1.1) as well.
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Figure 1.1. The function f(x) = x � x3 + A under (a) A = 0, (b)
A = 0:28, and (c) A = �0:28.

We prefer to investigate the conditions of arising regular oscillations for a speci�c

system which is similar to (1.2) [2]:

dX = (X �X3)dt+ A�(t; �)dt + �dw(t); (1.4)

where �(t; �) is the following �-periodic function:

�(t; �) =

8><
>:

1; 0 � t <
�

2
;

�1;
�

2
� t < � :

(1.5)

Thus, � is a period and A is an amplitude of the constraining oscillations.
The mechanism of arising regular oscillations is described in [2] (see [6, 14, 20, 24]

as well). For clarity of exposition, let us give an explanation of the mechanism. It
di�ers from [2] in form only. In absence of the noise (� = 0) and the periodic forcing
(A = 0) equation (1.4) has the stationary points x = �1; x = 0; x = 1: The points
x = �1 and x = 1 are stable and x = 0 is unstable (see Figure 1.1a, where f(x)
is the right side of the equation (1.4) under � = 0; A = 0). Under � = 0 and not

large A > 0 the stationary points are displaced as shown in Figure 1.1b during the
�rst half-period and as in Figure 1.1c during the second half-period. Clearly, under
� = 0 a point from a neighborhood of x = �1 (from the left well) cannot get into a
neighborhood of x = 1 (into the right well) and conversely. Such transitions become

possible under � 6= 0: If (for some parameters A; �; �) a point from the left well
attains the point x = 1 with probability close to 1 at a random time s < �=2 and
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after that it remains in the right well during the time �=2� s with the probability
close to 1, then regular transitions (regular oscillations) arise. Indeed, after the
half-period the system acts by virtue of Figure 1.1c and due to the symmetry the
situation repeats with changing the left well for the right one.

In Section 2 we investigate two probabilities in conjunction with Figure 1.1b: the
probability of attainability of the point x = 1 from x = �1 for a time less than
�=2 (which can be considered as the probability of getting into the right well from
the left one) and the probability of unattainability of the point x = 0 from x = 1

during the half-period �=2. It is clear that the closeness of the product p of the
probabilities to 1 is a su�cient condition for the presence of regular oscillations.
We observe that at the same time some uctuations of such a regular behavior
are unavoidable: it always remains a positive probability of unattainability from
the left well into the right one; sometimes more than two transitions may occur

during one period and so on. In other words, we assign a probability to the very
phenomenon of regular oscillations and the above-mentioned product p bounds this
probability from below. The magnitude of p is found in Section 2 by numerical
solution of two boundary value problems of parabolic type. As a result, given a level

of probability, a domain of the parameters can be found such that the probability
of regular oscillations is above this level. The approach proposed here and the
approach based on Kramers' theory of di�usion over a potential barrier are compared
in Section 3. In Section 4 we consider a system of the form (1.4) with � depending

on t; X (or on X only). Due to the multiplicative noise, one can essentially extend
the domain of parameters A; �; � guaranteeing regular oscillations. Particularly,
we succeed to get high-frequency regular oscillations. Section 5 deals with large-
amplitude regular oscillations in a monostable system. In Section 6 a system of
two coupled oscillators is considered. An increase of coupling leads to shift of the

domain of parameters corresponding to the regular oscillations. Special attention is
paid to numerical methods. Algorithms based on numerical integration of stochastic
di�erential equations turn out to be most natural both for simulation of sample
trajectories and for solution of arising boundary value problems of parabolic type.

Numerical algorithms used in the experiments are presented in the Appendix.

2. The su�cient conditions for regular oscillations

Let Xs;x(t) be the solution of (1.4) which starts from the point x at the moment s.
If s = 0; we write Xx(t) instead of X0;x(t). It is known [2] that for suitable A; �; �
a point from a neighborhood of the point x = �1 gets into a neighborhood of the
point x = 1 during the half-period �=2 with the probability close to 1 and remains
there up to the end of the half-period. The same takes place in the time interval
[�=2; �) in reverse order. Then all the events are repeated.
Let us underline: under the regular oscillations we understand a behavior of the

solution X(t) such that X
�1(t) reaches x = 1 at a time moment � less than �=2

and X�;1(t) remains greater than zero during the rest of the half-period. Namely
for this phenomenon, we assign a probability pro(A; �; �) (probability of regular
oscillations). For instance, due to our notion, the regular oscillations presented on

Figure 2.4c correspond to the probability � 0:8 (X�;1(t) reaches x = 0 two times per
10 periods on average).
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As it has been explained in Introduction, acceptable su�cient conditions of the
regular oscillations are the following ones:
the probability

p
�1;1 = p

�1;1(A; �; �) := P (X
�1(t) < 1; 0 � t �

�

2
) (2.1)

has to be small, and
the probability

p1;0 = p1;0(A; �; �) := P (X1(t) > 0; 0 � t �
�

2
) (2.2)

has to be close to 1:
It is clear as well that the regular oscillations will occur with the probability pro

which exceeds the product

p = p(A; �; �) := q
�1;1(A; �; �) � p1;0(A; �; �); (2.3)

where q
�1;1 = 1� p

�1;1:
So, we conclude that

(RO) The closeness of p = p(A; �; �) to 1 is a su�cient condition of regular

oscillations.

Clearly, the condition of closeness of the probability q
�1;1(�;A; �) to 1 is necessary,

but closeness of p1;0(A; �; �) to 1 is not necessary for the regular oscillations. Indeed,
X
�1(t) reaches x = 1 after some time � > 0 and in fact we need that X�;1(t) remains

in the neighborhood of x = 1 during a time less than �=2:
Let us �nd the probability pro(A; �; �): Denote the �rst-passage time of X

�1(t)
to x = 1 as �

�1(1) and the �rst-passage time of X1(t) to x = 0 as �1(0): Consider
the probabilities p1(t;A; �) := P (�

�1(1) � t) and p2(t;A; �) := P (�1(0) > t): Note
that p1(�=2;A; �) = q

�1;1(A; �; �) and p2(�=2;A; �) = p1;0(A; �; �). Introduce the
equidistant time discretization of the interval �=2 : tj = j � h; j = 0; : : : ; N; h =
�=(2N): It is evident that

N�1X
j=0

P (�
�1(1) 2 [tj; tj+1))P (�1(0) > �=2� tj+1) � pro

�
N�1X
j=0

P (�
�1(1) 2 [tj; tj+1))P (�1(0) > �=2� tj)

and

P (�
�1(1) 2 [tj; tj+1)) = p1(tj+1;A; �)� p1(tj;A; �):

Hence we get

pro(A; �; �) =

Z
�=2

0

p01(t;A; �)p2(�=2� t;A; �)dt; p01 =
dp1

dt
: (2.4)

One can see that p(A; �; �) � pro(A; �; �) � q
�1;1(A; �; �): Closeness of pro to

1 gives the necessary and su�cient condition of the regular oscillations. But this
condition is less constructive than the given above su�cient condition (RO). Besides,

the product p from (2.3) approximates pro quite good according to our numerical
experiments.
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Our urgent aim is to evaluate p(A; �; �). To this end introduce the functions

u(s; x) = u(s; x;A; �; �) := 1� P (Xs;x(t) < 1; s � t �
�

2
); 0 � s �

�

2
; x � 1;

(2.5)

and

v(s; x) = v(s; x;A; �; �) := P (Xs;x(t) > 0; s � t �
�

2
); 0 � s �

�

2
; x � 0:

(2.6)

We get

1� p
�1;1 = u(0;�1); p1;0 = v(0; 1); p = u(0;�1) � v(0; 1): (2.7)

Clearly,

u(s; x) = 1� P (Xs;x(t) < 1; s � t �
�

2
) = 1� E'(Xs;x(�s;x ^

�

2
));

(2.8)

where �s;x = �s;x(1) is the �rst (random) moment at which Xs;x(t) = 1 and

'(x) =

�
1; x < 1;
0; x = 1:

Therefore (see, e.g., [5]), the function u(s; x) satis�es the following parabolic equa-
tion in half-band:

@u

@s
+

1

2
�2
@2u

@x2
+ (x� x3 + A)

@u

@x
= 0; 0 � s <

�

2
; x < 1; (2.9)

with the initial and boundary conditions:

u(
�

2
; x) = 0; x < 1;

u(s; 1) = 1; 0 � s �
�

2
: (2.10)

Analogously,

v(s; x) = P (Xs;x(t) > 0; s � t �
�

2
) = E (Xs;x(�s;x ^

�

2
)); (2.11)

where �s;x = �s;x(0) is the �rst (random) moment at which Xs;x(t) = 0 and

 (x) =

�
1; x > 0;
0; x = 0:

The function v(s; x) satis�es the following parabolic boundary value problem in
half-band:

@v

@s
+

1

2
�2
@2v

@x2
+ (x� x3 + A)

@v

@x
= 0; 0 � s <

�

2
; x > 0; (2.12)

v(
�

2
; x) = 1; x > 0;

v(s; 0) = 0; 0 � s �
�

2
: (2.13)
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Figure 2.1. Dependence of the probabilities q
�1;1(A; �; �) and

p1;0(A; �; �) and the product p(A; �; �) in � under A = 0:28, � = 104=3
(left colomn) and in � under A = 0:28, � = 0:29 (right colomn, with
log scaling in �).

Remark 2.1. It is easy to formulate su�cient conditions and the corresponding
boundary value problems in the case of another system, for instance, for the system

(1.2).

It is not di�cult to prove that the function u(s; x;A; �; �) is increasing and the

function v(s; x;A; �; �) is decreasing with respect to �: Therefore, there is a range of
� 2 (�

�
(A; �); ��(A; �)); where under �xed A and � the product p(A; �; �) reaches its

maximum. Analogously, in a range of the noise intensity � 2 (�
�
(A; �); ��(A; �)); the

product p(A; �; �) reaches its maximum under �xed A and �:We take the amplitude

of the constraining oscillations less than A� = 2
p
3=9 so that the system (1.4) has
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Figure 2.3. Level curves of the product p(A; �; �) in the plane (�; �)
under A = 0:28; � in the logarithmic scale.

three stationary points under A < A� and � = 0: Evidently, the product p(A; �; �)
is an increasing function with respect to A under �xed � and �:
As is known and has already been mentioned, there is a domain of parameters

such that the regular oscillations are observed. Due to the su�cient condition of
7
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regular oscillations (RO), we are able to get estimates of this domain from below in
terms of the product p(A; �; �):
To �nd the probabilities q

�1;1 and p1;0; we have to solve the problems (2.9)-

(2.10) and (2.12)-(2.13) numerically. In a number of tests we have used both �nite-
di�erence schemes and probability methods from [16] and have seen ourselves that
they give coincident results. Due to the fact that the absolute value of the term
x � x3 becomes big at jxj >> 1; there are di�culties in implementation of �nite-

di�erence schemes for solving the boundary value problems (2.9)-(2.10) and (2.12)-
(2.13). The di�culties do not arise in simulating the problems by the probabilistic
methods. Moreover, we need in the individual values u(0;�1); v(0; 1) only and in
such a case the probabilistic approach with the Monte Carlo technique is most rele-

vant. That is why we mainly use the probabilistic methods in our experiments and
attract �nite-di�erence ones from time to time to control the obtained results. See
a description of one of the used probabilistic methods in Appendix.
Let us give some illustrations now. Figures 2.1 and 2.2 show typical behavior

of the probabilities q
�1;1(�;A; �) and p1;0(�;A; �) and of the product p(�;A; �): The

remarkable feature is that there is a range of parameters where the product p is close
to 1 that corresponds to the regular oscillations. Given the level of the product p;
the domains of parameters are indicated on Figure 2.3. Let us emphasize that the
range of parameters for the regular oscillations is fairly large.

Figure 2.4 presents sample trajectories of the solution to SDE (1.4). We take
values of parameters corresponding to Figure 2.1. For the parameters �;A; � such
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that the product p(�;A; �) is close to 1; i.e., the su�cient condition (RO) takes
place, we observe the regular oscillations (see Figure 2.4b). A sample trajectory
in the case when q

�1;1 � 0:8 and p1;0 � 1; i.e., when the necessary condition does
not ful�ll, is given on Figure 2.4a. One can see that transitions between two wells

during �=2 occur with the probability close to 0:8: Figure 2.4c demonstrates a typical
trajectory in the case of q

�1;1 � 1 and p1;0 � 0:8: After reaching x = 1 (x = �1);
the trajectory remains in the corresponding well during the rest of the half-period
with the probability close to 0:8: To simulate trajectories, we use the mean-square

Euler method (see Appendix for details).

Remark 2.2. The proposed here approach can also be carried over to the problem
of noise-induced transport in Brownian ratchets [12] (for a review on this topic see,
e.g. [8, 10, 13]). The noisy periodically-driven overdamped ratchets dynamics is

usually described by the Ito equation

dX = a(X)dt+ b(t)dt+ �dw(t);

where F (x) =
R
a(x)dx is an L-periodic ratchet potential F (x) = F (x+L); x 2 R1;

possessing no reection symmetry F (x) 6= F (�x); x 2 (0; L=2); b(t) is a �-periodic
function, and w(t) is a standard Wiener process.
A noise-induced directed current is observed in such a system with small periodic

forcing under some set of parameters. By our approach we are able to assign a
probability and to give constructive su�cient conditions for this phenomenon. A
separate paper will be devoted to this subject.

3. Comparison with the approach based on Kramers' theory of di�usion

over a potential barrier

Without loss of generality (due to the symmetry) let us consider the system (1.4),
when it acts by virtue of Figure 1.1b, i.e.,

dX = a(X)dt+ �dw(t); a(x) = x� x3 + A; (3.1)

under A < 2
p
3=9:

Let us evaluate some mean characteristics of the random times �
�1(1) and �1(0)

introduced in the previous section (recall that �
�1(1) is the �rst-passage time of

X
�1(t) to x = 1 and �1(0) is the �rst-passage time of X1(t) to x = 0).
The mean value E�

�1(1) can be found in the following way. Consider the boundary
value problem

1

2
�2 00 + a(x) 0 + 1 = 0;  (C;C) = 0;  (1;C) = 0; C < �1;

for the function  (x;C); where C is a parameter.

It is known [5, 7] that  (�1;C) is equal to the mean value of the �rst-exit time of
the process X

�1(t) from the interval (C; 1): Clearly, E�
�1(1) = limC!�1  (�1;C);

and also E�
�1(1) = 	(�1); where 	(x) is the solution to the problem

1

2
�2	00 + a(x)	0 + 1 = 0; 	0(�1) = 0; 	(1) = 0: (3.2)

The mean E�1(0) can be found analogously.
9



The second moment E� 2
�1(1) is equal to 	1(�1); where 	1(x) is the solution to

the problem

1

2
�2	001 + a(x)	01 + 2	(x) = 0; 	01(�1) = 0; 	1(1) = 0;

and 	(x) is the solution of the problem (3.2) (see [5, 7]).
The approach based on Kramers' theory employs the following conditions as suf-

�cient ones for existence of regular oscillations (see, e.g., [2]; from principal point of

view our exposition in this section only slightly di�ers from [2]):
(i) E�

�1(1) << �=2;
(ii) E�1(0) >> �=2;

(iii) (D�
�1(1))

1=2 = [E� 2
�1(1)� (E�

�1(1))
2]1=2 << �=2:

These conditions are fairly constructive because all the magnitudes E�
�1(1);

E�1(0); and E�
2
�1(1) can be found by quadratures. Moreover, under small � they

can be expressed by exponential Kramers formulas.
In the previous section we propose an alternative approach, which is su�ciently

constructive as well. Besides, one can get the more exhaustive answers using the

su�cient condition (RO) from Section 2 in comparison with the conditions (i)-(iii)
which are only qualitative in nature. Let us emphasize once more that in Section 2
the probability is assigned to the very phenomenon of regular oscillations.

4. High-frequency regular oscillations in systems with multiplicative

noise

In the case of system (1.4) it is impossible to get high-frequency regular oscilla-
tions. Indeed, if we decrease the period length �; we should increase the noise level

� to preserve the level of q
�1;1: But the probability p1;0 decreases with an increase of

�: Therefore, the product p becomes low and regular oscillations disappear. In this
section we consider systems with multiplicative noise such that the probability p1;0
is always equal to 1 and due to this fact we shall be able to obtain high-frequency
regular oscillations.

Consider the model with multiplicative time-dependent noise

dX = (X �X3)dt+ A�(t; �)dt+ �(t; X; �)dw(t); (4.1)

where �(t; �) is the �-periodic function de�ned in (1.5) and (t; x; �) is the following
�-periodic function

(t; x; �) =

8>><
>>:

1; 0 � t < �=2; x < 1;
0; 0 � t < �=2; x � 1;
1; �=2 � t < �; x > �1;
0; �=2 � t < �; x � �1:

(4.2)

As it was marked in [3] (where SR for periodically modulated noise intensity
was considered), periodically modulated noise is not uncommon and it arises, for
example, at the output of any ampli�er whose gain varies periodically in time.
It is evident that in the case of (4.1)-(4.2) p1;0 = 1 and, consequently, the neces-

sary and su�cient condition for regular oscillations consists in the closeness of the
probability q

�1;1(�;A; �) to 1. This probability can be close to 1 even for a fairly
10



θ

σ

0.1 1

5

15

25
0.7 0.990.9

Figure 4.1. Level curves of the probability q
�1;1(A; �; �) in the plane

(�; �) under A = 0:28; � in the logarithmic scale.
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Figure 4.2. Sample trajectory of the solution to (4.1)-(4.2) under
� = 35, A = 0:28, � = 2�=� � 0:524 (� = 12).

small � (i.e., for higher frequency � = 2�=�) and for very small A under an appropri-
ate value of �: Thus, it is possible to organize the high-frequency regular oscillations
in the system (4.1)-(4.2) with small periodic forcing.

Figure 4.1 demonstrates level lines of q
�1;1(�;A; �) in the plane (�; �) under A =

0:28. A typical trajectory with the high-frequency oscillations is given on Figure
11
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4.2. In the case of the model (4.1)-(4.2) regular oscillations can be obtained under
zero A (see Figure 4.3). Another system with high-frequency stochastic resonance
was considered in [4].

Now consider the model with multiplicative time-independent noise

dX = (X �X3)dt+ A�(t; �)dt+ �(X)dw(t); (4.3)

where

(x) =

�
1; �1 < x < 1;
0; otherwise.

(4.4)

Let the solution X(t) to (4.3)-(4.4) start from x = �1: During the time [0; �=2)
the drift in the system (4.3) corresponds to Figure 1.1b. Clearly, the probability
of attainability of the point x = 1 for the time less than �=2 is not less than q

�1;1

in the model (1.4)-(1.5). After reaching the point x = 1; the trajectory moves
deterministically in positive direction to a point X(�=2) > 1: Then the drift in the
system (4.3) becomes corresponding to Figure 1.1c and the trajectory changes its

movement direction. The trajectory comes back to the point x = 1 at a moment
�=2 + �; where � is random. It remains the time �=2� � for the trajectory to reach
the point x = �1:
The random moment � is less than s� which can be evaluated in the following

way.
Let the solution X(t) of the equation

X 0 = X �X3 + A�(t; �)
12
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Figure 4.4. Sample trajectory of the solution to (4.3)-(4.4) under

� = 3, A = 0:02, � = 2�=� � 62:83 (� = 0:1).

start from x = 1: Then the trajectory X(t) moves in positive direction up to t = �=2;
when the trajectory changes its movement direction, and comes back to the point

x = 1 at the instance t� 2 (�=2; �): The value of the desired s� is equal to t� � �=2:
Introduce the probability

p�
�1;1 = p�1;�1(�;A; �) := P (X

�1(t) < 1; 0 � t � �=2� s�):

The su�cient condition for regular oscillations of the solution to (4.3)-(4.4) con-
sists in the closeness of the probability q�

�1;1 = 1� p�1;�1 to 1: To �nd q�
�1;1 consider

the following parabolic boundary value problem

@u

@s
+
�2

2
(x)

@2u

@2x
+ (x� x3 + A)

@u

@x
= 0; 0 � s < �=2� s�; x < 1;

(4.5)

u(�=2� s�; x) = 0; x < 1;

u(s; 1) = 1; 0 � s � �=2� s�: (4.6)

By the same arguments as in Section 2, it is not di�cult to see that q�
�1;1 =

u(0;�1):
In the case of (4.3)-(4.4) the regular oscillations are observed under a more wide

set of parameters than for (1.4)-(1.5) but under a more restricted set of parameters
than for (4.1)-(4.2). Figure 4.4 shows a typical trajectory of the solution to (4.3)-
(4.4) under values of parameters such that they do not ensure the regular oscillations

in the case of the model (1.4)-(1.5). In Appendix see a numerical algorithm used
here.

Remark 4.1. Using the approach proposed in Section 2, one can obtain a su�-
cient condition for regular oscillations in the system (1.3) which has an asymmetrical

13
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Figure 5.1. The function b(x) of (5.2) and the potential F (x) under
� = 1, � = 10,  = 1.

bistable potential under some values of parameters (see [1]). Let the system (1.3)
have two stable points x

�
and x+; x� < x+; and one unstable xu; x� < xu < x+;

in the absence of periodic forcing and noise. To give a su�cient condition for the
regular oscillations in the asymmetrical case, four probabilities have to be consid-
ered: the probability qx

�

;x+
with which the trajectory starting from x = x

�
reaches

the point x = x+ during the �rst half-period of the periodic forcing (i.e., when the

periodic forcing is positive); the probability px+;xu of unattainability of the point
x = xu during the �rst half-period by the trajectory starting from x = x+; the
probability qx+;x� with which the trajectory starting from x = x+ reaches the point
x = x

�
during the second half-period of the periodic forcing; the probability px

�

;xu

of unattainability of the point x = xu during the second half-period by the trajectory
starting from x = x

�
: Due to the asymmetry, qx

�

;x+
6= qx+;x� and px+;xu 6= px

�

;xu: In
this situation, the su�cient condition of regular oscillations consists in the closeness
of qx

�

;x+
� px+;xu and qx+x� � px�;xu to 1: One can easily write down boundary value

problems for these probabilities.

5. Large-amplitude regular oscillations in monostable system

Consider the stochastic di�erential equation

dX = b(X)dt + A�(t; �)dt+ �dw; (5.1)

where �(t; �) is the �-periodic function from (1.5),

b(x) =

8>><
>>:
�2�(x+ �); x < ��;
�� sin�x; jxj < 1;

0; 1 � jxj � �;
�2�(x� �); x > �;

(5.2)

and �; �;  > 0 are some constants. See graphics of b(x) and its potential F (x) =
�
R
b(x)dx on Figure 5.1.

Under A = 0; � = 0 the solution to (5.1) has the unique globally stable point
x = 0: If � = 0 and A is not large, the equation (5.1) has a �-periodic solution with
the amplitude less than 1 (see Figure 5.2a). After adding the noise of a certain level,
the system does not exhibit regular oscillations (see Figure 5.2b). But an increase of

the noise intensity leads to regular oscillations with large amplitude approximately
equal to � (see Figure 5.2c).
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Figure 5.2. Sample trajectories of the solution to (5.1) under � = 1,

� = 10,  = 1, A = 0:7, � � 628:32 (� = 0:01), and various �: (a)
� = 0, (b) � = 0:55, and (c) � = 1.

To �nd a set of parameters under which the regular oscillations with large am-

plitude are observed, one can use the approach of Section 2 again. Introduce the
probabilities

q
��;� := 1� P (X

��(t) < �; 0 � t � �=2);

p�;1 := P (X�(t) > 1; 0 � t � �=2):

Then the su�cient condition for the regular oscillations with amplitude � consists
in the closeness of the product q

��;� � p�;1 to 1: It is not di�cult to write down the

boundary value problems for calculating these probabilities just as in Section 2.
In [25] SR is observed in another monostable system.

6. Regular oscillations in system of two coupled oscillators

In this section we apply the proposed above approach to the system of two mu-
tually coupled bistable overdamped oscillators

dX1 = (�1X
1 � (X1)3)dt+ c � (X2 �X1)dt+ A�(t; �)dt+ �dw1(t)

dX2 = (�2X
2 � (X2)3)dt+ c � (X1 �X2)dt+ A�(t; �)dt+ �dw2(t);

(6.1)
15
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Figure 6.1. Two coupled oscillators. Dependence of the product

p(A; �; �; c) in c under A = 0:28, � = 104=3, �1 = �2 = 1, and various
�.

where w1(t) and w2(t) are independent standard Wiener processes, the function
�(t; �) is de�ned in (1.5), the coe�cients �1 and �2; the strength of coupling c; and
the noise intensity � are some non-negative constants.
SR in a system similar to (6.1) was considered in [21]. The authors of [21] came

to the conclusion that the maximum of the signal-to-noise ratio taken over noise
intensity is a nonmonotonous function of coupling.

Here we are interested in the regular oscillations. Introduce the notation: x
�
=

(�1;�1); x+ = (1; 1); xu = (0; 0) are the points belonging to R2; Xx(t) is the
solution of the system (6.1) which starts at the zero instant from the point x 2 R2;

px
�

;x+
= px

�

;x+
(A; �; �; c) := P (Xx

�

(t) 2 R2�fx1 > 1; x2 > 1g; 0 � t � �=2);

px+;xu = px+;xu(A; �; �; c) := P (Xx+
(t) 2 fx1 > 0; x2 > 0g; 0 � t � �=2);

and

qx
�

;x+
:= 1� px

�

;x+
:

The su�cient condition of regular oscillations consists in the closeness of the
product p(A; �; �; c) := qx

�

;x+
� px+;xu to 1.

It is not di�cult to write down the boundary value problems for calculating the

probabilities qx
�

;x+
and px+;xu analogously to (2.9)-(2.10) and (2.12)-(2.13). Solving

these problems numerically, we �nd the product p which bounds the probability
of regular oscillations from below. Figures 6.1, 6.2, and 6.3 present results of our
calculations of p: One can see that an increase of coupling leads to shift of the

domain of parameters corresponding to regular oscillations. The domain is shifted
to the range of larger noise intensities (see Figures 6.2 and 6.3). An increase of
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Figure 6.2. Two coupled oscillators. Dependence of the product
p(A; �; �; c) in � under A = 0:28, � = 104=3, �1 = �2 = 1, and c = 0

(dashed line), c = 2 (solid line).
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Figure 6.3. Two coupled oscillators. Curves of the level 0:9 of the
product p(A; �; �; c) in the plane (�; �) under A = 0:28 and various c:
c = 0 (dashed line) and c = 2 (solid line); � in the logarithmic scale.

the coupling can both decrease and increase the product p depending on the taken
A; �; � (see Figure 6.1).
Figures 6.4 and 6.5 show typical trajectories of the �rst oscillator under various

collections of the parameters. Figure 6.4 demonstrates that for some �xed A; �; �
17
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various c: c = 0 (left) and c = 2 (right).
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Figure 6.5. Two coupled oscillators. Sample trajectories of the �rst
oscillator under � = 0:45 and various c: c = 0 (left) and c = 3 (right).
Other parameter values are the same as in Figure 6.4.

disappearance of regular oscillations for (6.1) can result from an increase of coupling
c: And vice versa, Figure 6.5 presents the situation when an increase of coupling

leads to existence of the regular oscillations.

7. Appendix. The used numerical algorithms

7.1. Probabilistic methods for solving boundary value problems. Proba-
bilistic methods for boundary value problems are based on probabilistic represen-
tations of their solutions. The representations are connected with systems of SDE.
To realize them, Markov chains which weakly approximate the solutions of these

systems are constructed. Unlike usual approximations of SDE, when a time dis-
cretization is exploited, space (for elliptic problems) and space-time (for parabolic
problems) discretizations are recommended in the case of boundary value problems
(see [16, 17]). This kind of discretization allows one to ensure that the constructed

Markov chains belong to the bounded domain associated with a considered boundary
value problem.
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As an example, let us give a probabilistic method in application to the problem
(2.9)-(2.10). The solution u(t; x) has the probabilistic representation

u(t; x) = E'(#t;x; Xt;x(#t;x)); (7.1)

where

'(t; x) =

�
0; t = �=2; x < 1;
1; 0 � t � �=2; x = 1;

Xt;x(s); s � t; satis�es the SDE

dX = (X �X3 + A)ds+ �dw(s); X(t) = x < 1; (7.2)

and (#t;x; Xt;x(#t;x)) is the �rst exit point of the space-time di�usion (s;Xt;x(s));
s > t; to the boundary � of the domain Q = [0; �=2) � (�1; 1): Note that the
boundary � consists of f�=2g � (�1; 1) [ [0; �=2]� f1g:
To avoid any misunderstanding, we observe that the representation (7.1) is dis-

tinguished from (2.8) only in form and #t;x = �t;x ^ �=2:
Introduce the neighborhood �� 2 Q of the boundary � : �� = [�=2 � �; �=2) �

(�1; 1) [ [0; �=2)� [1� �; 1): Consider the Markov chain (tk; Xk); t0 = t; X0 = x;
which weakly approximates the points (tk; Xt;x(tk)) of the trajectory (s;Xt;x(s)):
Due to one of the probabilistic methods from [16], the recurrence sequence (tk; Xk)

can be constructed in the following way:

t0 = t; X0 = x;

tk+1 = tk + r2
k
;

Xk+1 = Xk + �rk�k + r2
k
� (Xk �Xk

3 + A) + �r3
k
� (1� 3Xk

2)�k=2

+r4
k
[(Xk �Xk

3 + A)(1� 3Xk
2)� 3�2Xk]=2;

k = 0; 1; 2; : : : ;

where �k are i.i.d. random variables with the law P (� = 0) = 2=3; P (� = �
p
3) =

1=6 and the sequence rk is constructed so that (tk; Xk) belongs to Q at every step
k:
Let r > 0 and c =

p
3� +max(

p
3�; r � (2

p
3 + A)): If (tk; Xk) 2 Q��cr, we put

rk = r: One can check that if (tk; Xk) 2 Q��cr and r is su�ciently small, then

(tk+1; Xk+1) 2 Q: If (tk; Xk) 2 �cr and �k := 1 � Xk � cr; then jXk+1 � Xkj �p
3�rk +Cr

2
k
; C = A+2cr; and 1�Xk+1 � �k�

p
3�rk�Cr2k: So, if (tk; Xk) 2 �cr;

to ensure (tk+1; Xk+1) 2 Q we put rk = min(�k=(
p
3� + C�k=(

p
3�));

p
�=2� tk):

We stop the Markov chain (tk; Xk) at a step { when the chain exits from the
domain Q��r4: Then we �nd the point (�t

{
; �X

{
) on the boundary � which is close

to (t
{
; X

{
) : if �=2 � tk � r4; we put �t

{
= �=2; �X

{
= X

{
and otherwise �t

{
= t

{
;

�X
{
= 1: As it is proved in [16], the point (�t

{
; �X

{
) approximates weakly the point

(#t;x; Xt;x(#t;x)) with the error estimated by O(r4): The mean value E{ of number
of steps is estimated by O(r2):
Now we are able to approximate the expectation in (7.1):

u(t; x) = E'(#t;x; Xt;x(#t;x))
:
= E'(�t

{
; �X

{
) := �u(t; x): (7.3)
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Due to results of [16]

ju(t; x)� �u(t; x)j � Kr4:

To evaluate the mean value in the right-hand side of (7.3), the Monte Carlo
procedure is used

E'(�t
{
; �X

{
)
:
=

1

N

NX
n=1

'(�t(n)
{
; �X(n)

{
) := u(t; x);

where (�t
(n)
{ ; �X

(n)
{ ); n = 1; : : : ; N; are independent realizations of (�t

{
; �X

{
); and the

Monte Carlo error is estimated by

errMC =
2
p
N

 
1

N

NX
n=1

'2(�t(n)
{
; �X(n)

{
)�

�
u(t; x)

�2!1=2

:

Taking into account that '(t; x) takes the values 0 and 1 only, we get

errMC =
2
p
N

�
u(t; x)(1� u(t; x))

�1=2
:

Hence, if u(t; x) is close to 0 or to 1; the Monte Carlo error is small and we can

take not too large N to reach a fairly high exactness. Note that to get a domain
of parameters corresponding to the regular oscillations, we are mainly interested in
accurate simulation of u(t; x); when its value is fortunately close to 1:
Throughout our numerical experiments we use a generator of uniform random

numbers from [23]. We usually take r =
p
2 � 10�1 and N = 10000:

In the one-dimensional case probabilistic algorithms require computational e�ort
similar to �nite-di�erence schemes. But the Monte Carlo approach is more e�ective
under space dimension greater than 1.
When the value of � is su�ciently small, it is preferable to attract weak numerical

methods of [19]. These methods are specially intended to approximate (in the weak
sense) solutions of SDE with small noise and are highly e�cient. In [26] the special
methods of [19] were e�ectively applied to evaluation of the signal-to-noise ratio in
systems with SR.

7.2. Mean-square methods for simulating sample trajectories of SDE. To
simulate sample trajectories of SDE, one has to use mean-square methods [15]. In
our experiments we mainly use the mean-square Euler scheme. In the case of the

SDE (1.4) it takes the form

Xx(tk+1) � Xk+1 = Xk + h � (Xk �X3
k
) + hA�(tk; �) + �h1=2�k; X0 = x;

where h is a step of time discretization, �k are independent normally distributed
random variables with zero mean and unit variance.
The global mean-square error of this scheme is estimated by O(h): Because of

discontinuity of �(t; �); a time step h should be such that �=2h is an integer.
Note that in the case of SDE with additive noise (1.4) the mean-square method

with error O(h3=2) [15], i.e., more accurate than the Euler scheme, can be applied. If
the noise intensity � is small, SR is observed under large � and one should simulate

the system on long time intervals. In this case the most preferable methods are ones
of [18], where e�cient high-exactness mean-square methods for SDE with small noise
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are proposed. To use these special methods is essentially important if a system of
high-dimension (e.g., an array of coupled oscillators [11]) is under consideration.
Now let us give a remark on simulation of SDE (4.1)-(4.2) and (4.3)-(4.4). If a

model has discontinuous in time and continuous in space coe�cients, there are no

serious problems in its simulation. Despite the di�usion coe�cient in (4.1)-(4.2) is
discontinuous in t and x; principal di�culties do not arise as well. It is so because
any trajectory of (4.1)-(4.2) feels the discontinuity of the di�usion coe�cient in x
not more than once during the half-period �=2: As to (4.3)-(4.4), discontinuity in x
of the di�usion coe�cient leads to some problems in numerical simulations. Indeed,
if X(t) � �1 at a moment t 2 [n�; (n + 1=2)�); n = 0; 1; 2; : : : ; then X(s) > �1
for all s 2 (t; (n + 1=2)�) with probability 1: But due to the discretization error
the mean-square Euler approximation �Xk of X(tk) violates this property and can
become less than �1: As a result, it gives a too distorted image of the real behavior.

To overcome this di�culty, we propose a modi�ed approximation ~Xk (agreeing with

the above-mentioned property of trajectories):

~X0 = x; t0 = 0; (7.4)

X̂k+1 = ~Xk + h � ( ~Xk � ~X3
k
) + hA�(tk; �) + h1=2��k;

if ~Xk < �1 or ~Xk > 1 ; then ~Xk+1 = X̂k+1;

if � 1 � ~Xk � 1 and �(tk; �) > 0; then ~Xk+1 = max(�1; X̂k+1);

if � 1 � ~Xk � 1 and �(tk; �) < 0; then ~Xk+1 = min(X̂k+1; 1);

k = 0; 1; 2; : : : :

Here h is a step of the time discretization, �k are independent normally distributed

random variables with zero mean and unit variance.
We also take the continuous (x) = arctan(�(x� 1))+arctan(��(x+1)) instead

of (4.4) and integrate (4.3) with this (x) under a big � by the mean-square Euler
method with a su�ciently small time step. Simulations with the continuous (x)
and simulations due to (7.4) demonstrate similar results.

The same di�culties arise for numerical solution of the boundary value problem
(4.5)-(4.6). They can be overcome in a similar manner.
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