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bond prices. A natural structure of the volatility and expected return premium 
of bond price processes is directly obtained. 

Keywords 

bond pricing 

stochastic differential equations 

nonlinear partial differential equations 

term structure of interest rates 

1991 Mathemati<;al Subject Classification 

Primary 60 H 10 

l) Australian National University, SRS, SMS, GPO-Box 4, Canberra, A.C.T., 
2601, Australia 

2> Institute of Applied Analysis and Stochastics, Berlin 



2 E. PLATEN 

1. Introduction. 

During the last years one observed an explosion in markets for interest rate 
options, futures, forwards and related securities. Therefore interest rate 
derivative security pricing has come to be an important area of investigation. 
Until now it seems that there is no consistent and reliable basis for valuing 
interest rate dependent derivative securities as it is provided by the Black 
and Scholes (1973) approach for stock options. As the market practice and 
literature indicates there is a deep need for a realistic and computationally 
tractable model. 

Any meaningful valuation model has first of all to give a consistent term 
structure representation. In particular in such a model a discount bond 
has to reach its deterministic face value at maturity and should have a 
nonstationary volatility decreasing to zero at maturity. Furthermore, the 
bond prices should not violate an arbitrage free valuation principle reflecting 
the internal market dynamics. 

As an extension of the Black and Scholes (1973) model several authors 
developed models which obtain option prices as functions of bond prices by 
the condition of no arbitrage opportunities for the options with respect to a 
continuously instantaneous interest paying savings account. This includes 
e.g. Merton (1973), Vasicek (1977), Richard (1978), Brennan and Schwartz 
(1979), Langetieg (1980), Courtadon (1982) and Ball and Torus (1983). 

Another important approach starts from equilibrium models for the con-
sidered economy and is developed in Dothan (1978), Cox, Ingersoll and Ross 
(1985), Longstaff (1989) and others. The Cox, Ingersoll and Ross equilib-
rium model requires rather strong assumptions on production opportunities 
and risk preferences etc. It seems to be difficult to verify such assumptions 
which are needed to obtain reliable results. 

During the last decades it turned out that martingale methods provide 
a systematic way to exclude arbitrage opportunities in stock market mod-
els. Along this line one finds more recent papers on interest rate derivatives 
by Ho and Lee (1986), Jamishidian (1988), Morton (1988), Heath, Jarrow 
and Morton (1989), Black, Derman and Toy (1990), Hull and White (1990), 
Sandmann and Sondermann (1991), El Karoui, Myneni and Vishwanathan 
(1992). The authors of the last paper model the term structure and choose 
a reference price process together with certain change of propability mea-
sure to prevent arbitrage opportunities between the bonds and the reference 
price process. In their approach each bond price process discounted by a 
reference price process represents a martingale in the sense of Harrison and 
Kreps (1979) and Harrison and Pliska (1981) under certain measure trans-
formations. This methodology leads to a relatively complicated analysis 
involving forward rate processes which are indexed on a two dimensional 
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time domain. Consequently one is facing considerable practical difficulties 
in computing actual bond prices and other derivatives. 

The access to bond pricing which we are going to propose keeps the model 
simple and uses purely stochastic analytic tools to deduce the bond price 
dynamics. ' 

We are basing our model on the assumption of a given spot rate process 
r = {rt, 0 ::; t < oo }, the instantaneous interest rate process. Furthermore, 
we assume that there is no arbitrage opportunity in bonds in the following 
sense. If we invest at time t the amount P( t, T), the bond price, into 
a continuously instantaneous interest r paying savings account, then the 
expectation of the value of this account at maturity T is exactly the face 
value of the bond that is one monetary unit. This property shall hold under 
the given fixed probability measure for each bond and any time before its 
maturity. 

In other words the expectation of a zero coupon discount bond invested 
in a savings acccount which is paying continuously the spot interest rate 
equals at maturity the face value of the bond. In this approach there is no 
direct assumption about the existence of an equilibrium in the considered 
economy. Also the risk preferences of the agents expressed as "market price 
of risk" are not involved in the modelling. Further, the bond price does not 
represent the expectation of the inverse of the savings account; instead we 
will see that it is the inverse of the expectation of the savings account. 

We will observe in our bond price dynamics a naturally occuring return 
premium being equal to the square of the volatility of the bond price process 
itself. The aim of this paper is to present a straightforward and general but 
also simple framework which also allows one in practice to conveniently 
evaluate bonds and interest rate dependent derivatives. 

2. Bond Pricing Model. 

We start from a probability space (n, F, P) with filtration F = (Ft)t2:0 
fulfilling the usual conditions. We assume that the instantaneous interest 
rate process r = { Tt, o·::; t < 00} is given by the Ito stochastic differential 
equation 
(1) 

t ~ 0, with Fa-measurable initial value, r0 E ~1 where W = {Wt, 0 ::; t < 
oo} denotes an F-adapted Wiener process under the probability measure P. 
We assume that the drift and diffusion coefficients are such that a unique 
solution of (1) exists, e.g. Lipschitz continuity and linear growth rate for a 
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and b. Finally, we assume for all 0 ~ t ~ u ~ T < oo that 

(2) 0 < E(exp {lu T 8 ds} I Ft)< oo. 

Let us denote by P(t) = P(rt, t, T) the price of a zero coupon discount 
bond at time t with face value P(T) = 1 at maturity T. We deliberately 
sometimes write the bond price P(rt, t, T) as a function depending on the 
spot rate Tt. Our main objective is now to describe the dynamics of the bond 
price process P = {P(t),O ~ t ~ T} with respect to the underlying term 
structure of the instantaneous interest rate process r ={rt, 0 ~ t < oo }. 

In the extensive literature on derivative securities pricing often one finds 
the assumption of a bond dynamics corresponding to a linear growth equa-
tion without any noise term. But as one realizes from practical observations, 
this assumption is violated in reality. First one notes that a bond price pro-
cess has unbounded variation and is not differentiable, so there should be 
some stochastic differential in the growth equation. Very close to matu-
rity the volatility of bond prices tends towards zero which should be also 
reflected 'in any good model. Finally, from the view point of interest rate 
dependent security derivative pricing it would be desireable to have the 
savings account process discounted by any bond as a martingale. As we 
mentioned in the introduction there is a large amount of work done in the 
literature to improve this situation. 

The main difficulty consists in the problem of defining a simple practi-
cally relevant and mathematically tractable criterion for excluding arbitrage 
opportunities in bond pricing. If we look at the traditional deterministic 
linear growth model with r known, then one could rewrite it for all time 
instants t E (0, T] in the form 

P(t) exp { lT r8 ds} = 1, 

which means that the bond invested in a continuously interest rate r paying 
savings account returns the face value of the bond at maturity. Obviously 
this cannot hold in our stochastic context. 

More general and also mathematically convenient is the following similar 
assumption on the bond price dynamics: 

We say that a bond pricing system has no arbitrage if for all 0 ~ t ~ T < oo, 

(3) 
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Immediately we obtain the fundamental relation 

(4) 

expressing the bond price. We will see in section 4 that a savings account 
discounted by any bond is a martingale. Thus a bond can be also inter-
preted as the price of a forward contract on the savings account paying one 
monetary unit at maturity. 

Let us introduce notations for partial derivatives of the bond price P = 
P(t) = P(rt,t,T) in the form 

f) 
Pt= atp' 

{) f)2 
Pr = or P and Prr = ar2 P 

to formulate the following result. 

THEOREM 1. If we additionally assume that a and b are continuously 
differentiable with respect to t and twice continuously differentiable with 
respect to r, then the price P of a bond with maturity T E [O, oo) is the 
solution of the nonlinear partial differential equation. 

(5) 

for all t E [O, T) and r E ~1 with terminal condition 

(6) P(rT,T,T) = 1, 

where a and b are the drift and diffusion coefficients of the instantaneous 
interest rate process given in ( 1). 

The proof of this theorem is provided at the end of this section. 
We could rewrite equation (5) in a form similar to that for the bond 

price proposed in Cox, Ingersoll and Ross (1985) and obtain 

(7) . ( b2 Pr) 1 2 Pt + a - p Pr + 2 b Prr - r P = 0. 

We note that in their framework a non-constant market risk parameter 

(8) 

would reflect our bond price dynamics. 
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Let us again rewrite the partial differential equation (5), but now in the 
form 

(9) 

This indicates that the expected instantaneous return premium of our bond 
price is (b~) 2 , which we will observe also in the corresponding stochastic 
differential equation for the bond price process in the next section. We re-
mark that in many contributions to bond pricing theory the existence of a 
return or risk premium is neglected. Here we obtain it in a very natural way. 

PROOF OF THEOREM 1. From ( 4) we get for 0 :::; t :::; T < oo 

(10) 1 
P(rt, t, T) = ( T) 

U Tt, t, 

with 

(11) 

Applying the Feynman-Kac formula (see e.g. p. 153 in Kloeden and Platen 
(1992)) one obtains u = u(r, t, T) as solution of the linear partial differential 
equation 

(12) 1 2 
Ut + aur + 2 b Urr + ru = 0 

with terminal condition 
(13) u(r,T,T) = 1 

for t E [O, T) and r E ~1 . Let us remark that we obtain from (10) the 
following relations between partial derivatives of P and u: 

(14) 

Substituting the expressions (14) into (12) we obtain 
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Now, using (10) and (2) we end up with the equation 

2 ( 1 2 2 f) ( -2 ) ) (16) - u Pt + aPr + 2 b P fJr P Pr - r P = 0, 

which proves (5). The terminal condition (6) follows directly from (11) and 
(10). D 

We remark that even in cases when the partial differential equation (5) may 
make no sense, then still the bond price is well defined by ( 4). In this 
paper we have chosen this simple and straightforward way to derive the 
corresponding bond price, e.g. similar to Cox, Ingersoll and Ross (1985). A 
much more general result will be proved in a forthcoming paper. 

3. Stochastic Differential Equation for the Bond Price 
Process. 

The bond price process P = {P(t) = P(rt,t,T),O ::=; t ::=; T} which we usu-
ally observe at the market was until now interpreted only as a function 
of time t, maturity T and fluctuating instantaneous interest rate rt in our 
model. Even if P(r, t, T) is differentiable with respect tor and t we obtain 
P(t) = P(t, r 8 , T) as a functional of rt which forms a process and fluctuates 
similarly to the spot rate rt itself. This dynamics can be obtained by the 
Ito formula and is described in the following stochastic differential eguation. 

COROLLARY 1. Under the assumptions of Theorem 1 we obtain for the 
bond price process P = { P(t) = P(rt, t, T), 0 :::; t :::; T} the Ito stochastic 
differential e,quation 

(17) dP(t) 2 
P(t) = [8(rt, t, T) +rt] dt - e{rt, t, T) dWt 

with volatility 

(18) ( ) ( ) Pr( rt, t, T) e rt,t,T = -b t,rt P( ·). rt, t,T 

We will give the proof of this corollary at the end of this section. 
The expected return premium 8 2 reflects the price for the risk covered 

by the bank to meet the face value of the bond. It is easy to realize from 
(17) that the expected return premium e2 for a bond is represented just by 
the square of the volatility of the bond price itself as we have seen already 
from (9). 
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We note that under our no arbitrage criterion the normalized expected 
return excess rate is one, thus it is independent on time, maturity, spot rate 
etc. To be more specific we obtain from (17) for the return excess 

( T) P(rt+l!.., t + .6., T) - P(rt, t, T) .6. 
fll!.. t, = P(rt, t, T) - Tt ' 

.6. > 0, t ::; T, the normalized expected return excess rate 

r E(el!..(t,T)l:Ft) 
l!..1~o Var( el!.. (t, T)) ' 

which is scaled by the variance 

measuring the increase of the risk. In other words the local gain of any 
bond minus that of a savings account is in the average proportional to the 
squared volatility of the bond. 

PROOF OF COROLLARY 1. Applying the Ito formula to P(rt, t, T) as a 
function of the spot rate rt and time t we get 

(19) 

Now, using the partial differential equation (7) and the notation (18) it 
follows that 

(20) dP ( b2 p2) p 
r P + ~ dt + b ;; P dW, 

(r + 0 2) Pdt- GPdW, 

which proves (17). D 

4. Discounting by Bonds. 

Let us introduce a continuously instantaneous interest paying savings ac-
count B = { Bt, 0 ::; t < oo} characterized by the linear growth equation 

(21) dBt = Tt Bt dt, 

0 ::; t < oo, Bo = 1. 
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Then we obtain for the savings account discounted by a bond with ma-
turity T from (21) and (17), by the Ito formula, the dynamics 

(22) d (~:)) = [P~t) rtBt - p~;) 2 P(t) [G(rt,t,T) 2 +rt] 

+ p~:) 3 G{rt,t,T) 2 P(t) 2] dt 

Bt + P(t) 2 G{rt, t, T)P(t)dWt 

G(rt,t,T) (~:)) dWt 

for t E [O, T], which shows that Z = { Zt = P(r~~.T), 0 :::; t :::; T} represents 
a (P, F)-martingale. This indicates that our measure P is similar to that 
proposed in El Karoui, Myneni and Vishwanathan (1992) who used forward 
rates and maturity dependent measure transformations. Here we dealt until 
now with one probability measure P under which the martingale property 
for Z holds for any maturity T ~ t. Moreover, it is an easy exercise to show 
that any asset X with dynamics of the form 

(23) dXt = Tt Xt dt + dMt, 

where M is a (P, F)-continuous martingale orthogonal to W, provides a 
(P,F)-martingale after discounting by a bond. This is a very appealing 
property which allows straightforward derivative security pricing. More 
precisely, if we form a portfolio 

Vt= 't Xt +7Jt P(t) = P(t) E(f(XT) I Ft) 

holding at time t E [O, T] the amount 't in the asset Xt and the amount 7/t 
in the T-maturity bond P(t) to replicate a contingent claim H = f (XT ), 
then it is appropriate to consider the discounted value process 

- Vt -
Vt= P(t) = 't Xt + 7/t = E(f(XT) I Ft) 

involving the discounted asset 

- ~ . - rt 1 r -
Xt= P(t) =Xo+ lo P(s)dM.+ lo G(r.,s,T)X.dW., 

which represents a (P, F)-continuous martingale. Applying the Ito formula 
and the Kolmogorov backward equation we obtain under the assumption 
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that our market is complete (e.g. W and M are the only martingales influ-
encing X) that 

J (XT) =VT = Vt+ 1t fJ~ Vs dXs. 

Thus the contingent claim is replicated choosing the hedge ratio as ~t a -ax vt. 

As we will now see a transformation of the probability measure will be nec-
essary to obtain the pricing measure of an asset which involves a component 
of W in its noise. To make this more precise let us consider a bond P with 
maturity T which we will discount by ano~her bond P* having maturity 
T* ST. Then we introduce by the Radon-Nikodym derivative 

dP { lT 1 2 lT } (24) dP = ~t,T =exp - t 2 8(rs, s, T) ds + t 8(r8 , s, T)dWs 

a new probability measure P under which the process 

(25) Ws = Ws -1 8 G(ru,u,T)du 

is a Wiener process, that is a, (P, F)-martingale. Applying the Ito formula, 
(17) and (25) we obtain 

(26) d ( P(s)) 
P*(s) 

P(s) * P*(s) [G(rs,s,T) (8(r 8 ,s,T)- 8(r 8 ,s,T ))]ds 

P(s) · · * + P*(s) (G(rs,s,T )-8(r8 ,s,T))dW8 

P(s) * -P*(s) (G(rs,s,T )-0(r8 ,s,T))dW8 ,. 

t S s S T*, which shows that J. is a (P, F)-martingale. We can now price 
a contingent claim H = fiP(T*)) in a similar way as above but using as 
discounted value process Vt = E (f (P(T*)) I Ft), which is the conditional 
expectation under P. 

As a final comment, we remark that the bond P discounted by the savings 
account B that is ~ also forms a (P, F)-martingale. This indicates that 

(27) 
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where E denotes the expectation with respect to P. The price (27) is similar 
to that proposed in a wide range of papers but using instead our measure 
P. For comparison let us denote this price by 

(28) 

It is easy to show from ( 4) by Jensen's inequality that 

(29) · P(t):::; P(t). 

A price P would overprice a bond P in o.ur sense by neglecting any return 
premium in the dynamics, In some degree this is better achieved in the 
Cox, Ingersoll and Ross approach. 

5. Bond Price for the Vasicek Interest Rate. 

It is possible to expfrcitely compute some bond prices if a specific term 
structure for the spot rate process is given. As an example we illustrate this 
for the Vasicek (1977) instantaneous interest rate process given by the Ito 
stochastic differential equation. 

(30) drt =A (R - rt)dt +AC dWt, 

where A denotes the back driving force, R is the average interest rate and 
C represents a noise parameter. It is straightforward to check that the 
nonlinear partial differential equation (5) with a= A(R- r) and b =AC is 
solved by the bond price · 

(31) 

with yield 

(32) 

duration 
(33) 

and 
(34) 

P(r, t, T) = exp{-y(T - t)} 

y = R + -- (r - R) + C - - -- + - f d 2 (1 d 1 ) 
T-t 2 T-t 2 

1 
d = - (1 - exp{-A(T - t)}) A 

1 
f = 2A(T _ t) (1 - exp{-2A(T - t)}). 

We note from (18) that the volatility of the bond price process here has the 
form 
(35) 8 = CAd 
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and therefore we have the expected return premium 8 2 = C 2 A 2d2 . It is 
easily seen from (35) and (33) that the volatility e becomes zero at maturity 
and asymptotically approaches the parameter C far from maturity. 

The duration d is approximately linear with d ~ T - t for t close to 
maturity and asymptotically constant with d ~ 1 far from maturity. The 
yield y in (32) represents nearly the spot rate r for t close to maturity and 
is asymptotically y ~ R + ~2 far from maturity. 

It is possible for important other term structures of interest rates to 
obtain corresponding explicit expressions for bond prices. In other cases 
efficient stochastic numerical methods of the type described in Kloeden and 
Platen (1992) and Hofmann, Platen and Schweizer (1992) can be applied 
which allow one to accurately and efficiently compute bond prices and other 
security derivatives. 
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