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Abstract

We propose a new method of estimating the index coe�cients in a sin-

gle index model which is based on iterative improvement of the average

derivative estimator. The resulting estimate is
p
n{consistent under mild

assumptions on the model.

1 Introduction

Suppose that the observations (Yi; Xi); i = 1; : : : ; n; are generated by the regression

model

Yi = f(Xi) + "i (1.1)

where Yi a scalar response variables, Xi 2 [�1; 1]d are d-dimensional explanatory

variables, "i are random errors and f(�) is an unknown d-dimensional function

f : IRd ! IR. We assume that f(x) has the speci�c structure:

f(x) = g(xT��): (1.2)

Here g(�) is an unknown 1-dimensional link function, e.g. g(�) : IR ! IR and �

is an unknown index vector. In the statistical literature the relations as in (1.1)

and (1.2) are referred to as the single-index regression models. These models are

often used in econometrics as a reasonable compromise between fully parametric

and fully nonparametric modelling (see e.g. McCullagh and Nelder, 1989). For

instance, they are extensively used in projection pursuit regression (cf. Friedman

and Stuetzle, 1981 and Hall, 1989).

Two estimation problems for single-index models are intensively discussed in

the literature. The �rst is to estimate the unknown function f(x), the second is to

recover the index-vector ��. In this paper we focus on the second one. A variety

of methods to estimate �� has been developed in the theory of semiparametric es-

timation. For instance, in the M-estimation approach the unknown link function

g is considered as an in�nite-dimensional nuisance parameter. Then the estimator

of �� is constructed by minimization of an M-functional with respect to ��, when

replacing g by its nonparametric estimator. Typical examples are semiparametric

maximum likelihood estimator (SMLE) and semiparametric least squares estima-

tor (SLSE). Klein and Spady, 1993 have shown that the SMLE is asymptotically

e�cient in the so called binary response model. Ichimura, 1993 studied the prop-

erties of SLSE in a general single-index model. Then the problem of the choice of

bandwidth for the nonparametric estimation of the link function has been consid-

ered in H�ardle et al., 1993. In Delecroix and Hristache, 1998 a rather general

type of M-estimators has been studied, and the asymptotic e�ciency of the general

semiparametric maximum-likelihood estimator has been proved in Bonneu et al.,

1997 and Delecroix et al., 1997 for particular classes of single-index models.
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In spite of nice theoretical properties of M-estimators they are rarely imple-

mented in practice. The reason for this is twofold. First of all, the above mentioned

results are valid only under quite restrictive model assumptions. In particular dis-

crete regressors are not allowed. However, it is the second reason which is crucial:

the computation of these estimators leads to a general optimization problem in a

high-dimensional space.

As an alternative to M-estimators the so-called average derivative method (ADE)

has been introduced in Stoker, 1986 and Powell et al., 1989. The idea of this

method is to estimate the expected value of the (weighted) gradient of the re-

gression function which is obviously proportional to ��. This method leads to ap
n-consistent estimator of the index vector (cf. also H�ardle and Tsybakov, 1993).

An advantage of this approach is that it allows to estimate the vector �� \directly"

and does not require to solve a hard optimization problem. Unfortunately, the con-

ditions required for this method to work are rather restrictive. For instance, the

regressors X must possess a smooth density. A generalization of the ADE for the

case where the components of Xi are continuous and/or discrete has been provided

in H�ardle and Horowitz, 1997. Meanwhile, an estimator for the subvector of ��

which corresponds to the continuous part of X is prerequisite.

Another direct method of the index coe�cient estimation has been proposed in

Li and Duan, 1989, where the single-index model of the form

Yi = g(�+Xi�; "i)

is concerned (here "i is supposed to be independent of Xi). A major inconvenience

of this approach is that it can be applied only if the regressors Xi have an elliptic

distribution.

In the present paper we introduce a new type of direct estimate of the index

coe�cient ��. It can be regarded as an iterative improvement of the average deriva-

tive estimator. The underlying idea (as for the ADE method) is that the gradient

of the function f(x) = g(xT ��) is proportional to ��. We show that the proposed

estimator is
p
n-consistent. The results are valid under rather mild conditions

on the design (Xi); i = 1; :::; n. Another important feature of this procedure is

that it is fully adaptive with respect to unknown smoothness properties of the link

function. Though we do not address the problem of its asymptotic e�ciency, we

can note that a
p
n-estimator can be used as a departure point for the so called

\one-step e�cient estimator" as discussed, e.g. in Delecroix et al., 1997.

The paper is organized as follows. In the next section we describe the estimation

algorithm. Next the properties of the proposed algorithm are studied in Section 3.

In Section 4 we consider details of implementation of the proposed estimate and

present some simulation results. The proof are gathered in Section 5.1.

2 Algorithm description

We start with the informal description of the proposed estimate.

2



2.1 The idea

Let us suppose for a moment that d = 2 and the observations Xi are scattered

uniformly over the square [0; 1]2.

The idea of the construction is as follows. Assume that we are interested in

estimating rf at one of the points Xi and that we know in advance that rf is

Lipschitz continuous at Xi. Then the natural way to estimate �i = rf(Xi) is to

use a \local" least-squares estimate

b�i = argmin
�

nX
j=1

[Yj � Yi � �T (Xj �Xi)]
2K

� jXj �Xij2
h2

�
; (2.1)

where the kernel K(�) is positive and supported on [�1; 1] , so that the weights

of all points Xj outside a neighborhood Uh(Xi) of diameter h around Xi vanish.

Then the averaged gradient

�� =
1

n

nX
i=1

rf(Xi)

can be estimated with

b� =
1

n

nX
i=1

b�i:
Recall that

�� =
1

n

nX
i=1

rf(Xi) = ��

 
1

n

nX
i=1

g0(XT
i �

�)

!
:

This implies that if the quantity

1

n

nX
i=1

g0(XT
i �

�)

is separated away from zero, one can construct an estimate b� of �� as
b� = b�

jb�j : (2.2)

Note that one can obtain the following upper bound for the error of the estimateb�:
jb� � ��j � C1h+ C2

j�jp
nh

; (2.3)

where � is a normal Gaussian random variable with zero mean. The right hand

side of (2.3) is comprised of two terms. The �rst term is the deterministic error
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(the bias), which is due to the error in the local approximation of f by a linear

function. This error is proportional to h. The second term is the stochastic error

C2
�p
nh

which is independent of f , this term is typically of order (
p
nh)�1. The

balance of the two terms gives h � n�1=4 and the error

jb� � ��j = O(n�1=4);

and

jb� � ��j = O(n�1=4);

for the estimate b� in (2.2).

This rate of convergence (n�1=4) is, of course, much worse than n�1=2 that can be

attained for this problem. However, the simple estimate (2.2) can be signi�cantly

improved. First we note that the bias of the estimate (the �rst term in the right

hand side of (2.3)) is in fact proportional to the width of the projection of the

spheric window Uh(Xi), de�ned by the kernel K(�=h) on the direction ��. On the

other hand, the function f is constant in the direction orthogonal to ��, so we can

stretch the window Uh(Xi) along this direction without increasing the bias term.

Though the true index �� is not known, we have already a rather good estimate of

it due to (2.2). Now we proceed as follows: at any Xi we de�ne an elliptic window

Uh;� centered at Xi with the small axis of size O(h�), oriented along b�, and the

large axis of size O(h) orthogonal to b�. We can expect that if � is small enough

and b� is close to �� then the error of approximation of f(x) = g(xT��) by a linear

function in the neighborhood Uh;� of Xi would be rather small. In order to de�ne

such an elliptic window we substitute the weights K(h�2jXj �Xij2) in (2.1) with

K(h�2j��;�(Xj �Xi)j2), where the positive symmetric matrix

��;b� = I + ��1b�b�T
de�nes the \elliptic" geometry of the window. (Here I denotes the unit d�d -

matrix.) Then we continue as above: we compute the estimates

b�(1)
i = argmin

�

nX
j=1

[Yj � Yi � �T (Xj �Xi)]
2K

 
j��;b�(Xj �Xi)j2

h2

!
; (2.4)

and their average

b�(1) =
1

n

nX
i=1

b�(1)

i :

Finally, we come up with the estimate

b�(1) = b�(1)

jb�(1)j
:
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After some tedious computations we obtain that if for some  > 0, jb� � ��j � 

and � � , the estimate b�(1) satis�es
jb�(1) � ��j � C3h�

2 + C4

j�jp
nh

:

Since  = O(n�1=4), the choice h = O(1) and � = n�1=4 gives

jb�(1) � ��j = O(n�1=2);

so that the estimate b�(1) is pn-consistent.
This simple method of improvement of the simple estimate (2.2) constitutes

the basis of the algorithm described below. However, there two problems which

should be addressed:

1. when the model dimension d > 4 one cannot take the \optimal" initial win-

dow h = O(n�1=4) in (2.1) which balances the terms in the right-hand side of

(2.3). The reason for it is that there will not be enough (i.e. d+ 1) observa-

tions points in the neighborhood Uh(Xi) needed to compute a d-dimensional

vector b�i. One has to take h = O(n1=d) in this case. Therefore, for d > 4 , ap
n-consistent estimate of �� cannot be obtained as a result of a single itera-

tion, the iteration is to be repeated several times in order to attain the rate

of convergence n�1=2.

2. There is also another reason to make several iterations even in the case when

d � 4: the bias term of the estimation error rapidly becomes negligible with

respect to the main stochastic term. On the other hand, the stochastic term

does not degrade noticeably during the iterations. Therefore, one can atten

the window slowly, e.g. by the factor of 2, in the direction of the concurrent

estimate b� (and stretch it slowly in the orthogonal subspace). This way we

obtain the algorithm which possesses good asymptotic properties and is quite

robust at the same time.

2.2 Estimation procedure

Let K : IR! IR be a function which is positive on [0; 1) and vanishes elsewhere.

We consider the following

Algorithm 1.

1 Initialization: set k = 0,

hk = C0

�
lnn

n

�� 1

4
^ 1

d

; �k = I; �k = 1: (2.5)

% Iteration description:

5



While �k > (lnn=n)1=3

2 Compute the local to Xi solution b�k(Xi) of the least-squares

problem (2.4)

b�k(Xi) = V �1
hk;�k

(Xi)

nX
j=1

(Yj � Yi)(Xj �Xi)K

� j�k(Xj �Xi)j2
h2k

�
with

Vhk;�k
(x) =

nX
j=1

(Xj � x)(Xj � x)TK

� j�k(Xj �Xi)j2
h2k

�
;

3 Compute the mean b�k of b�k(Xi)

b�k = 1

n

nX
i=1

b�k(Xi): (2.6)

Set b�k = b�k=jb�kj.
4 Set k = k + 1, hk = 2hk�1 ^ 1, �k = �k�1=2, �k = I + ��1b�kb�Tk .

Continue with Step 2;

End While

5 Set b� = b�k. Terminate;

3 Main result

We consider the following assumptions:

Assumption 1. The kernel function K(�) satis�es the following conditions:

1. K is nonnegative and bounded by 1, i.e. 0 � K(x) � 1;

2. K is positive on [0; 1) and vanishes outside, i.e. K(x) > 0 for 0 � x <

1 and K(x) = 0 for all jxj � 1;

3. K is continuously di�erentiable on [0; 1].

Assumption 2. The random variables "i in (1.1) are independent and identically

distributed with zero mean and variance �2.

Assumption 3. The function g is two times di�erentiable with a bounded second

derivative,

jg00(u)j � Cg for all u 2 IR;
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We put

�� =
1

n

nX
i=1

rf(Xi);

where rf(x) = g0(xT ��)�� is the gradient of the regression function f(x) =

g(xT��) . Obviously, �� is proportional to ��. We have the following identi�ability

Assumption 4. The value

j��j = 1

n

nX
i=1

g0(XT
i �

�):

is separated away from zero, i.e. j��j � G0 > 0 for all n large enough.

In order Algorithm 1 to work, we have to suppose that the design points (Xi)

are \well di�used" and, as a consequence, all the matrices Vhk;�k
(Xi) are well

de�ned. Given a d�d -matrix � , we de�ne the normalization V h;�(x) of Vh;�(x);

as follows: let

Nh;�(x) =

nX
j=1

K

� j�(Xj � x)j2
h2

�
;

then

V h;�(x) =
1

Nh;�(x)h2
�Vh;�(x) �

=
1

Nh;�(x)

nX
j=1

�
�(Xj � x)

h

��
�(Xj � x)

h

�T

K

� j�(Xj � x)j2
h2

�
:

Obviously V h;�(x)
�1 = Nh;� h

2�V �1
h;� � with � = ��1 .

Assumption 5. There exist constants CV , CN and Cw such that for all values

hk and �k involved and for every Xi,

1. the inverse matrices V hk;�k
(Xi)

�1 are well de�ned and uniformly bounded

i.e.

��V hk;�k
(Xi)

�1�� = h2k
���kV

�1
hk;�k

(Xi)�k

�� nX
j=1

K

� j�k(Xj � x)j2
h2

�
� CV

(here �k = ��1
k and jAj stands for the Euclidean norm of A);

2.

nX
j=1

K
�
j�k(Xj�Xi)j2

h2
k

�
nP̀
=1

K
�
j�k(X`�Xj)j2

h2
k

� � CN ;
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3.

nP
j=1

���K 0
�
j�k(Xj�Xi)j2

h2
k

����
nP

j=1

K
�
j�k(Xj�Xi)j2

h2
k

� � Cw:

Here K 0 means the derivative of the kernel K .

We can now state the main result of the paper.

Theorem 1 Let assumptions 2{5 hold. Then there is a constant � such that for

every z � 1 and n large enough

P

 
jb� � ��j � C1p

n
z + �

�
2 logn

n

�2=3
!
� exp(�z2=2) + 3 logn

n
:

where

C1 =
CV (1 + CN)�

j��j ; (3.1)

3.1 Comments

In Algorithm 1 and assumptions above we have not considered the e�ects which may

occur at the boundary of the cube [�1; 1]. Indeed, for certain values of � and the

points Xi which are close to a vertex of the cube the size of the \e�ective window",

i.e. the diameter of the intersection of the set Uh;�;�(Xi) = fx : j��;�(x�Xi)j � hg
with the cube can be much less than h. Clearly, for such points Xi Assumption

5 does not hold. One of the solutions to this problem could be to include in the

expression (2.6) for b� only the estimates b�(Xi) which were computed over \e�ective

windows" of diameter larger than, say, h
4
. Of course, in order such an estimate to

work the identi�ability Assumption 4 should hold for the restricted set of design

points. We do not consider this situation rigorously here.

In Assumption 5 we assess certain properties of the design (Xi), i = 1; :::; n.

For instance, 5 does not hold, at least for d > 4, in the case when Xi form a regular

grid, � coincides with one of the axes of the grid and � < n�1=d. In such a case, the

set fXj : jXj�Xij��;�
� 1g is a grid hyperplane of dimension d�1 and the matrix

V h;�;�(x) is degenerate. On the other hand, one can verify that Assumptions 4 { 5

hold true in a rather general situation of random design.

The values of the constants CV ; CN which de�ne the rate of convergence in

Theorem 1 depend heavily on the design (Xi) and on the particular kernel K. Note

that if the kernelK satis�es Assumption 1, then a simple bound for CN can be easily

obtained (cf. Lemma 1 in Section 5). However, this bound is rather pessimistic

and maybe signi�cantly improved for a particular design (for instance, when (Xi)

are uniformly distributed, CN is close to 1 with overwhelming probability).
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By inspecting the proof of the theorem one may conclude that all the results hold

in the case of heteroskedastic Gaussian errors "i , however �2 is to be understood

as sup1�i�nE"
2
i .

Similarly, the results apply for non-Gaussian errors under the condition

sup
1�i�n

E exp(�"i) � ��

fore some positive constants � and ��. Of course, in this situation the constant

C1 in (3.1) is to be modi�ed.

One natural question that arises when Theorem 1 is concerned is what hap-

pens if this model assumption is inadequate, i.e. if the regression function f(x)

does not possess a single-index structure. It is known that the average derivative

method gives a
p
n-consistent estimate of the vector

R
rf(x)w(x) dx with some

weight function w which depends on the design density (cf. Stoker, 1986 and

Powell et al., 1989) A similar result holds for the �rst step estimate b�0, however,
now the rate of convergence is n�1=4 for d � 4 and n�1=d for d > 4. Unfortunately,

if the model structure does not correspond to (1.1) further iterations do not lead

to the improvement of this initial estimate but may even deteriorate the accuracy

of estimation. The reason is that the choice of the speci�c form of nonparametric

neighborhood allows to reduce the bias of the estimate b� only for the special struc-
ture (1.1) of the regression function. Therefore any application of the proposed

procedure should be combined with a careful justi�cation of the model assumption.

4 Implementation and simulation results

In order to implement Algorithm 1 one has to choose the constant C0 in the def-

inition (2.5) of the initial bandwidth h0. This should be done to guarantee the

matrices V h0;I(Xi) to be non-degenerate for i = 1; :::; n (cf. Assumption 5). More-

over, one can include in the sum in the expression (2.6) only those i's for which

the estimate b�k(Xi) is well de�ned (i.e. the matrix V
�1
h0;I

(Xi) is well conditioned).

Clearly, the bandwidth h0 is to be selected in such a way that the total number of

such terms is O(n).

4.1 Modi�ed algorithm

Another method to ensure that the matrices Vhk;�k
(Xi) are well conditioned is to

select at each iteration the bandwidth hk(Xi) which is proper to each point Xi.

Let Nh;�(x) stand for the cardinality of the set

B = fXi : j�(Xi � x)j � hg:

One can choose, for instance, hk(Xi) such that �min(V hk(Xi);�k
(Xi)) � �0 > 0 or

such that Nhk(Xi);�k
� n0 (typically, n0 > d+1 would give a non-degenerate matrix

V hk(Xi);�k
(Xi)). We realize this idea in the following
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Algorithm 2.

1 Initialization: Define the set H of admissible bandwidths as fol-

lows: set h0 = n�1=4_1=d,

H = fhi = h02
i=d; i = 0; :::;�[d log2 h0] + 1g

% (here [�] stands for the integer part).

Put

k = 0; �k = 1; �k = I; Nk = 2d:

% Iteration description:

While �k > (lnn=n)1=3

2 For each Xi select hk(Xi) as follows

h(Xi) = minfh 2 H : Nh;�k
(Xi) � Nkg:

3 Compute the local to Xi solution b�k(Xi) of the least-squares

problem (2.4)

b�k(Xi) = V �1
h(Xi);�k

(Xi)

nX
j=1

(Yj � Yi)(Xj �Xi)K

� j�k(Xj �Xi)j2
h2(Xi)

�
with

Vh(Xi);�k
(x) =

nX
j=1

(Xj � x)(Xj � x)TK

� j�k(Xj �Xi)j2
h2(Xi)

�
;

4 Compute

�(Xi) = �min

�
Vh(Xi);�k

(Xi)
�

and the weighted sum b�k of b�k(Xi):

b�k = nX
i=1

�(Xi)b�k(Xi): (4.1)

Set b�k = b�k=jb�kj.
5 Set k = k + 1, �k = �k�1=2, �k = I + ��1k

b�kb�Tk and Nk = 2dNk�1.

Continue with Step 2;

End While

6 Set b� = b�k. Terminate;

Note that in (4.1), Step 4 we compute a weighted sum of b�k(Xi). The reason for

this modi�cation of the algorithm is rather transparent: the weight of the i-th term

in the sum is large if the correspondent matrix Vh(Xi);�k
(Xi) is well conditioned,

and, on the contrary, the terms which correspond to ill-conditioned matrices have

relatively small weights.
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4.2 Simulation results

We provide here an example of the use of Algorithm 2 in the following simulation

example. We consider a heteroscedastic single-index regression model

Yi = g
�
XT

i �
��+ "i;

where

g (u) = u2;

"ijXi � N
�
0; g(XT

i �
�)
�
;

and Xi = (X
(1)
i ; : : : ; X

(d)
i )T 2 IRd for d = 4 and d = 8. In the case d = 4 we

take �� = (�1; 1; 1; 1)T =2. When d = 8 �� = (�1; 1; 1; 1; 1; 1; 1; 1)T =
p
8. In both

situations X
(1)

i � N (0:5; 1), X
(k)
i � N (0; 1) for k = 2; : : : ; 4 and k = 2; : : : ; 8

respectively. The components of Xi are independent.

On Figure 1 we present the dependence of the mean-square error jb�n � ��j of
the estimate on the sample size n for the 4-dimensional case. The curve is plotted

in the log = log axes. The result is averaged over 40 replicates of the observation

sequence. The ticks of the Y -axis correspond to 2
10+5k

, the X-axis ticks correspond

to (10 + 5k)2, k = 1; : : : ; 5 . Note that the \diagonal" points of the grid lie on the

line Y = 2p
X
.

100 225 400 625 900 1225

0.0571

0.0667

0.08

0.1

0.1333

0.2

Figure 1. Mean-square error as a function of the sample size n

The result of the analogous experiment for d = 8 is presented on Figure 2. The

ticks of the Y -axis correspond to 5
10+5i

, the X-axis ticks correspond to (10 + 5i)2,

i = 1; : : : ; 7 . Now the \diagonal" corresponds to Y = 5p
X
. The results are clearly

in accordance with the root-n consistency of the estimate claimed in Theorem 1.
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The simulations were performed in MATLAB on a P2-266 PC. It takes around

20 sec to compute a four-step estimate for the sample size n = 1000.

100 225 400 625 900 1225 1600 2025

0.1111

0.125

0.1429

0.1667

0.2

0.25

Figure 2. Mean-square error as a function of the sample size n

5 Proofs

Lemma 1 Let K(x) � � > 0 for jxj � 1=2 . Then CN � 8d=� .

Proof: Let � be a covering of the ball B = fx : j�k(x�Xi)j � hg with the balls

Bk; k = 1; :::;M such that the diameter of each Bk is less than h=2; i.e. for any

two points x; y 2 Bk, j�k(x� y)j � h=2. One can easily show that there is such a

covering � with the cardinality M = (2� 4)d. Then if Xj belongs to Bk and

B(Xj) = fx : j�k(x�Xj)j � h=2g;

then Bk � B(Xj), and due to Assumption 1

X
Xj2Bk

K
�
j�k(Xj�Xi)j2

h2
k

�
nP

k=1

K
�
j�k(Xk�Xj)j2

h2
k

� � X
Xj2Bk

K
�
j�k(Xj�Xi)j2

h2
k

�
P

Xj2Bk

�
� ��1:

Then

nX
j=1

K
�
j�k(Xj�Xi)j2

h2
k

�
nP
l=1

K
�
j�k(Xl�Xj)j2

h2
k

� �
MX
k=1

X
Xj2Bk

K
�
j�k(Xj�Xi)j2

h2
k

�
nP
l=1

K
�
j�k(Xl�Xj)j2

h2
k

�
� M

�
� 8d

�
:
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Note that by Assumption 1, due to the continuity of K(x), K(x) > 0 for jxj < 1

implies that K(x) � � > 0 for jxj � 1=2.

5.1 Proof of Theorem 1

In what follows Ci stands for a generic positive constant which value depends only

on CK; CV ; CN and d. The result of Theorem 1 is heavily based on properties of

a single iteration of Algorithm 1. We now turn to the study of the estimate b�k
obtained after the k-th iteration.

Let a vector � on the unit sphere be the initial estimate of ��. We introduce

the following notations:

��;� = I + ��1��T ; ��;� = ��1
�;� = I � ��T

�+ 1

and de�ne

Vh;��;�
(Xi) =

nX
j=1

(Xj �Xi)(Xj �Xi)
TK

�
h�2j��;�(Xj �Xi)j2

�
;

b�(Xi) = V �1
h;��;�

(Xi)

nX
j=1

(Xj �Xi)(Yj � Yi)K
�
h�2j��;�(Xj �Xi)j2

�
;

b� =
1

n

nX
i=1

b�(Xi);

b� =
b�
jb�j : (5.1)

The crux of the proof of Theorem 1 is the following proposition, which is of

interest by its own:

Proposition 1 Suppose that Assumptions 1{5 of Theorem 1 hold true.

1. Let h = h0 in (2.5), � = 1 and ��;� = I. Then the estimate b�, de�ned in

(5.1), satis�es

P

�
jb� � ��j � 2C1

p
2 logn

h0
p
n

+ C2h0

�
� 1=n (5.2)

where

C1 =
CV (1 + CN)�

j��j ;

C2 =
CVCg

j��j ;

13



2. Let � � 1=2 and � = =� satisfy �(1 + � + 2�) � 1=6 and � < ��=4. Then

it holds for the estimate b�
P

 
sup

j����j�
jb� � ��j � q

�
1 + 5

q

�

�!
� exp(�z2=2) + 2

n
(5.3)

where

q =
C1

h
p
n
z + 4C2h�

2 +
C3�

p
2 logn

h
p
n

with the same C2 and C1 and

C3 =
8CwCV CN(2CV + 1)

�
1 +

p
2 + d

�
�

j��j

The proof of this proposition is placed in the next section. We return now to

the proof of Theorem 1.

Let k� denote the total number of iterations. Recall that this number satis�es

�k� = 2�k
� �

�
log n

n

�1=3
and hence k� � logn. We set

1 = C2h0 + 2
C1

p
2 logn

h0
p
n

;

�k = k=�k;

k+1 = �k+1(1 + 5
�k+1

�k+1
):

where

�k+1 = 2C2hk�
2
k +

(C1 + C3�k)
p
2 logn

hk
p
n

for 1 � k < k� . We put for some C4 > 0 large enough

��n = C4

�
logn

n

�1=6

:

Evidently, for n large enough ��n satis�es ��n(1 + �+ 2��) � 1=6 and ��n � j��j=4.
We �rst show that �k � ��n for all k < k� . We proceed by induction. Obvi-

ously,

�1 = 21 = 2C2h0 +
4C1

p
2 logn

h0
p
n

� C5

log1=2 n

n1=4
= o(��n):

14



Let now �k � ��n . Since �k+1 = �k=2 , hk+1 = minf1; 2hkg , hk�k � h0 and

�k+1 � �k� , we conclude that

�k+1

�k+1
� 2C2hk�

2
k

�k+1
+
(C1 + C3�k)

p
2 logn

�k+1hk
p
n

� 4C2hk�k +
(C1 + C3�

�)
p
2 logn

�k�
p
n

� C6

�
logn

n

�1=6

:

Thus

�k+1 =
k+1

�k+1
� 2

�k+1

�k+1
� C4

�
logn

n

�1=6

as required.

Next we show that the k th estimate b�k satis�es

P (jb�k � ��j � k) �
3k

n
; (5.4)

We again proceed by induction. Due to the bound (5.2) in Proposition 1, the

initial estimate b� satis�es
P (jb�0 � ��j � 0) �

1

n
: (5.5)

Let now (5.4) be satis�ed for some k < k� � 1 . Since �k+1 � ��n , we may apply

the bound (5.3) with z =
p
2 logn to obtain

P

�
jb�k+1 � ��j � k+1

�
� 3k

n
+

3

n
=

3(k + 1)

n
;

as required.

Now we use the bound (5.3) one more time with  = k�, h = hk� = 1 , � = �k�

and ( log n
n
)1=3 < � = �k� � 2( log n

n
)1=3:

P

�
jb�k� � ��j � qk�

�
1 + 5

qk�

�k�

��
� exp

�
�z2=2

�
+
3k�

n
;

where

qk� =
C1p
n
z + 2C2�

2
k� + C3�k�

r
2 logn

n
:

Since hk��1 = 1 , we get for su�ciently large n

�k� = k�=�k� � 8C2 �k��1 +
2(C1 + C3�

�)
p
2 logn

�k��1
p
n

� 4C1

�
2 logn

n

� 1

6

:
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Hence,

qk� =
C1p
n
z + 4C2

�
logn

n

�2=3

+ C3�k�

r
2 logn

n

� C1p
n
z + 4(C2 + C3C1)

�
logn

n

�2=3

;

and qk�

�k�
� 2C1

�
log n

n

�1=6
. When summing up we obtain from (5.3)

P

 
jb�k� � ��j � C1p

n
z + 2(4C2 + 4C3C1 + 10C2

1)

�
2 logn

n

�2=3
!

� exp(�z2=2) + 3 logn

n
:

5.2 Proof of Proposition 1

Given a vector � , we denote by u the vector ��1��;��� , and by Au the matrix

��;���
2
�;���;�� ,

u = ��1��;���;

Au = ��;���
2
�;���;��:

If u� corresponds to �� , that is, u� = ��1��;���
� , then obviously Au� = I . We

also set Zij = h�1��;��(Xj �Xi) , so that

K

�
(Xj �Xi)�

2
�;�(Xj �Xi)

h2

�
= K

�
ZT
ijAuZij

�
:

It is convenient to denote

Vu(Xi) =

nX
z=1

ZijZ
T
ijK

�
ZT
ijAuZij

�
and

bbu(Xi) = h�1V �1
u (Xi)

nX
j=1

Zij(Yj � Yi)K
�
ZT
ijAuZij

�
:

16



With this notation, it holds ��;��
b�(Xi) = bbu(Xi) . Indeed, for � = ��;� ,

Vh;�(Xi) =

nX
j=1

(Xj �Xi)(Xj �Xi)
TK

�
h�2 j�(Xj �Xi)j2

�
=

nX
j=1

(Xj �Xi)(Xj �Xi)
TK

�
ZT
ijAuZij

�
= h2��;��

nX
j=1

ZijZ
T
ijK

�
ZT
ijAuZij

�
��;��

= h2��;��Vu(Xi)��;��

and hence

��;��
b�(Xi) = ��;�� V

�1
h;�(Xi)

nX
j=1

(Xj �Xi)(Yj � Yi)K
�
ZT
ijAuZij

�
= h�1V �1

u (Xi)

nX
j=1

Zij(Yj � Yi)K
�
ZT
ijAuZij

�
= bbu(Xi): (5.6)

In the sequel we need the following simple lemma:

Lemma 2

(i) u� satis�es: u� = (1 + �)�1�� and ju�j = 1=(1 + �) ;

(ii) If ju� u�j � � then juj � (1 + �)�1 + � ;

Let � � 1=2 and � = =� ful�lls 2�(1 + � + 2�) � 1=3 . Then it holds for

every u with ju� u�j � �

(iii) for every unit vector v in IRd���� @@uvTAuv

���� � 2(1 + � + 2�);��vTAuv
�� � 1 + 2�(1 + �+ 2�) � 4=3;��vTA�1

u v
�� � 1

1� 2�(1 + �+ 2�)
� 3=2;

(iv) if zTAuz � 1 for some vector z in IRd , then

jzj2 � 3=2;���� @@uzTAuz

���� �
p
12;

17



Proof: (i). By de�nition

��;���
� = �� � (1 + �)�1����T �� = �(1 + �)�1��

so that u� = (1+ �)�1�� and (i) follows. (ii) is the straightforward consequence of

(i) and the inequality ju� u�j � � .

(iii). One has

Au = ��;��
�
��1��T + I

�2
��;�� = (1 + 2�)uuT +�2

�;��

and, since jvj = 1 , using also (ii) we obtain���� @@uvTAuv

���� = 2(1 + 2�)
��vTuv�� � 2(1 + 2�)juj � 2(1 + 2�)

�
(1 + �)�1 + �

�
:

Now the �st statement in (iii) follows from the trivial inequality

(1 + 2�)
�
(1 + �)�1 + �

�
� 1 + �+ 2�

and the lemma conditions. The other two inequalities follow from the �rst one in

view of vTAu�v = 1 .

(iv). Note �rst that by (iii) the inequality zTAuz � 1 implies jzj2 � jA�1
u j �

3=2 . Now, let v = z=jzj . Since 1 � zTAuz � (1 + 2�)jzTuj2 , we get���� @@uzTAuz

����2 =
��2(1 + 2�)zTuz

��2 = 4(1 + 2�)2jzTuj2jzj2

� 4(1 + 2�)jzj2 � 12

and (iv) follows in view of � � 1=2 and jzj2 � 3=2 .

In the next technical lemma we collect some useful properties of the matrices

Vu(Xi) . We use the notation

Nu(Xi) =

nX
j=1

K
�
ZT
ijAuZij

�
:

Lemma 3 Let � � 1=2 , ju� u�j � � and �(1 + �+ �) � 1=6 . Then for all i

(i)
��V �1

u� (Xi)
�� � CVNu�(Xi) ;

(ii) jV �1
u (Xi)j � 4

3
CV N

�1
u (Xi) ;

(iii)
�� @
@u
Vu(Xi)

�� � 3
p
3CwNu(Xi) ;

(iv)
�� @
@u
V �1
u (Xi)

�� � 16p
3
Cw C

2
VN

�1
u (Xi) ;

18



Proof: (i) and (ii). For any unit vector v 2 IRd , we get from the de�nitions of

Vu(Xi) and Assumption 5 that

Nu(Xi) v
TV �1

u (Xi)v = vT��;����;�V
�1
h;��;�

��;���;��v � CV j��;���;��vj2 ;

and, in particular, vTV �1
u� (Xi)v � CVNu�(Xi) . Next, by Lemma 2, (iii)

j��;���;��vj2 = vT��;����;���;���;��v = vTAuv � 4=3

as required.

(iii). Clearly,

@

@u
Vu(Xi)v =

nX
j=1

ZijZ
T
ijK

0 �ZT
ijAuZij

� @

@u
(ZT

ijAuZij)v:

Since the kernel K vanishes outside [0; 1] , we may consider only those j that

ZT
ijAuZij � 1 which by Lemma 2, (iv) implies

��ZijZ
T
ij

�� � 3=2 . Now in view of

Assumption 5

nX
j=1

��K 0 �ZT
ijAuZij

��� � CwNu(Xi):

Hence, using Lemma 2, (iv), we derive���� @@uVu(Xi)v

���� � 3
p
3

nX
j=1

��K 0 �ZT
ijAuZij

��� � 3
p
3CwNu(Xi):

(iv). The second and third statements yield���� @@uV �1
u (Xi)v

���� =

����V �1
u (Xi)

@

@u
Vu(Xi)v V

�1
u (Xi)

����
�

��V �1
u (Xi)

��2 ���� @@uVu(Xi)v

����
� 1

Nu(Xi)
(4=3)2C2

V 3
p
3Cw

=
16p
3
C2
VCw:

Now we turn directly to the proof of Proposition 1. By (5.6) we have the

following decomposition for bbu(Xi) = ��;��
b�(Xi):

bbu(Xi) = h�1V �1
u (Xi)

nX
j=1

[f(Xj)� f(Xi)]ZijK
�
ZT
ijAuZij

�
+ h�1V �1

u (Xi)

nX
jj=1

("j � "i)ZijK
�
ZT
ijAuZij

�
= bu(Xi) + �u(Xi):
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Let �� stand for the averaged derivative of f , i.e.

�� =
1

n

nX
i=1

rf(Xi):

Then

bbu(Xi)� ��;���
� =

1

n

nX
i=1

�
bu(Xi)� ��;��rf(Xi)

�
+

1

n

nX
i=1

�u(Xi): (5.7)

We denote

�u =
1

n

nX
i=1

�
bu(Xi)� ��;��rf(Xi)

�
;

�u =
1

n

nX
i=1

�u(Xi):

Lemma 4 Suppose that � � 1=2 and � = =� ful�lls �(1 + � + �) � 1=6 , then

j�u�j � 0:5h�2CVCg;

sup
u:ju�u�j��

j�uj � 2h�2CVCg:

Proof: By de�nition of Vu(Xi)

I = (Vu(Xi)��;��)
�1

Vu(Xi)��;��

= h�1��;��V
�1
u (Xi)

X
j=1

Zij(Xj �Xi)
TK(ZT

ijAuZij)

and we get

��;��rf(Xi) = ��;��g
0(XT

i �
�)��

= h�1V �1
u (Xi)

nX
j=1

g0(XT
i �

�)Zij(Xj �Xi)
T ��K(ZT

ijAuZij)

and hence

bu(Xi)� ��;��rf(Xi) = h�1V �1
u (Xi)

�
nX
j=1

Zij

�
f(Xj)� f(Xi)� g0(XT

i �
�) (Xj �Xi)

T ��
�
K(ZT

ijAuZij): (5.8)
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Since the kernel K vanishes outside [�1; 1] , we may consider in this sum only

those Xj 's that jZT
ijAuZijj � 1 . For every such Xj , it follows from Lemma 2, (iv)

that

j(Xi �Xj)
T ��j2 = j(��;��(Xi �Xj))

T��;���
�j2

= h2�2jZT
iju

�j2

� h2�2jZijj2ju�j2

� 3

2
h2�2(1 + �)�2:

Then, due to Assumption 3,

ri;j
�
= jg(XT

j �
�)� g(XT

i �
�)� g0(XT

i �
�)(Xj �Xi)

T ��j

� Cg

2
j(Xj �Xi)

T ��j2

� 3

4
Cgh

2�2;

and by Assumption 5 we get from (5.8) and Lemma 3:��bu(Xi)� ��;��rf(Xi)
��

� h�1

�����V �1
u (Xi)

nX
j=1

ZijK(ZT
ijAuZij)ri;j

�����
� h�1

��V �1
u (Xi)

�� �����
nX

j=1

jZijjK(ZT
ijAuZij)ri;j

�����
� h�1

4

3
CV

3

4
Cgh

2�2
p
3=2

� 2h�2CVCg

as required.

Similar and even simpler calculations with u = u� and Au� = I lead to the

bound j�u�j � 0:5h�2CVCg .

We now turn to the study of the stochastic part of the error. We have the

following decomposition for �u:

�u =
1

nh

nX
i=1

nX
j=1

V �1
u (Xi)("j � "i)ZijK(ZT

ijAuZij)

=
1

nh

nX
i=1

"i

 
nX
j=1

V �1
u (Xi)Zij K(ZT

ijAuZij) +

nX
j=1

V �1
u (Xj)Zij K(ZT

ijAuZij)

!

=
1

n

nX
i=1

"i
�
c(1)u (Xi) + c(2)u (Xi)

�
21



with

c(1)u (Xi) = h�1V �1
u (Xi)

nX
j=1

Zij K(ZT
ijAuZij);

c(2)u (Xi) = h�1
nX

j=1

V �1
u (Xj)Zij K(ZT

ijAuZij):

Let us show that c
(`)
u (Xi) are uniformly bounded and Lipschitz-continuous in u,

` = 1; 2 .

Lemma 5 Let � � 1=2 and � = =� satisfy �(1 + � + �) � 1=6 . Then for all

i � n

jc(1)u� (Xi)j �
CV

h
; jc(2)u� (Xi)j �

CVCN

h

and

sup
u:ju�u�j��

���� @@uc(`)u (Xi)

���� � 4
p
2Cw CV CN(2CV + 1)h�1; ` = 1; 2

Proof: We have by Lemma 3, (i)

hjc(1)u� (Xi)j =

�����V �1
u� (Xi)

nX
j=1

Zij K(ZT
ijZij)

�����
�

��V �1
u� (Xi)

�� nX
j=1

jZijjK(ZT
ijZij)

� CV

Nu�(Xi)

nX
j=1

K(ZT
ijZij)

� CV :

In the same way we have for c
(2)
u� (Xi) by Assumption 5

hjc(2)u� (Xi)j �
�����

nX
j=1

V �1
u� (Xj)Zij K(ZT

ijZij)

�����
� CV

nX
j=1

1

Nu�(Xj)
jZijjK(ZT

ijZij)

� CVCN :
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Now we compute the derivative of c
(2)
u (Xi). (The proof for c

(1)
u (Xi) can be

carried out in an analogous way.) First we observe that

h

���� @@uc(2)u (Xi)

����
=

����� @@u
nX

j=1

V �1
u (Xj)ZijK(ZT

ijAuZij)

�����
�

nX
j=1

���� @@uV �1
u (Xj)Zij

���� K(ZT
ijAuZij) +

nX
j=1

jV �1
u (Xj)Zijj

���� @@uK(ZT
ijAuZij)

����
= �1 + �2:

When using Lemma 2, (iv), Lemma 3, (iv) and Assumption 5 we bound

�1 � 16p
3
Cw C

2
V

p
3=2

nX
j=1

N�1
u (Xj)K(ZT

ijAuZij)

� 8
p
2Cw C

2
V CN

and similarly

�2 � 4

3
CV

p
3=2

nX
j=1

N�1
u (Xj)4jK 0(ZT

ijAuZij)j

� 4
p
2CV CN N�1

u (Xi)

nX
j=1

jK 0(ZT
ijAuZij)j

� 4
p
2CV CN Cw

and the assertion follows.

Let cu(Xi) = c
(1)
u (Xi) + c

(2)
u (Xi) . Then �u =

nP
i=1

cu(Xi)"i and it follows from

Lemma 5 that

jcu�(Xi)j � CV (1 + CN )h
�1;

���� @@ucu(Xi)

���� � 8
p
2Cw CV CN(2CV + 1)h�1:

To bound the stochastic term �u we use the following general result.

Lemma 6 Let 0 < � � 1=2 and let functions ai(u) obey the conditions

jai(u�)j � �1 (5.9)

sup
ju�u�j��

���� @@uai(u)
���� � �2; i = 1; : : : ; n: (5.10)
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If "i are independent N (0; �2) -distributed random variables, then it holds for each

z � 1

P

 
sup

ju�u�j��

1p
n

�����
nX
i=1

ai(u)"i

����� > z��1 + ��2�
�
2 +

p
(2 + d) logn

�!
� exp

�
�z2=2

�
+

2

n
:

Proof: Let B� be the ball fu : ju� u�j � �g and �� be the �-net on B� such that

for any u 2 B� there is an element u` of �� such that ju � u`j � �p
n
. It is easy

to see that such a net with cardinality N(��) � (4n)d=2 can be constructed. For a

u` 2 �� we denote

�(u`) =
1p
n

nX
i=1

�
ai(u`)� ai(u

�)
�
"i:

Then by (5.10)

Ej�(u`)j2 =
�2

n

nX
i=1

jaj(u`)� aj(u
�)j2 � �2�22�

2;

and for any t � 1

P (j�(u`)j > t) � exp

�
� t2

2Ej�(u`)j2
�
� exp

�
� t2

2�2�22�
2

�
:

Hence, if t = ��2�
p
2 lognN(��),

P

�
sup
u`2��

j�(u`)j > t

�
�

N(��)X
`=1

P (j�(u`)j > t)

� N(��) exp (� lognN(��)) =
1

n
: (5.11)

Meanwhile, by construction of the net ��, for any u 2 B there is u`(u) 2 �� such

that ju�u`(u)j � �p
n
. Then we have by the Cauchy-Schwarz inequality and (5.10):

j�(u)� �(u`(u))j2 �
1

n

nX
i=1

jai(u`(u))� ai(u)j2
nX
i=1

"2i �
�22�

2

n

nX
i=1

"2i :

However, the probability

P

 
1

n

nX
i=1

"2i > 4�2

!
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is certainly less than n�1. Thus

P

�
sup
u2B�

j�(u)� �(u`(u))j > 2�2��

�
� 1

n
: (5.12)

Then in an obvious way we have from (5.11) and (5.12) using

nN(��) � n1+d=2

P

�
sup
u2B�

j�(u)j > �2��(2 +
p
(2 + d) logn)

�
� P

�
sup
u`2��

j�(u`)j > �2��
p
log(2 + d) logn

�
+P

�
sup
u2B�

j�(u)� �(u`(u))j > 2�2��

�
� 2

n
:

Since the sum n�1=2
Pn

i=1 ai(u
�)"i is a Gaussian random variable and by (5.9)

E

 
n�1=2

nX
i=1

ai(u
�)"i

!2

= n�1�2
nX
i=1

a2i (u
�) � �21�

2

we also get

P

 �����n�1=2
nX
i=1

ai(u
�)"i

����� > z � �1

!
� exp

�
�z2=2

�
and the lemma follows.

The results of Lemmas 5 and 6 lead to the following bound for the stochastic

term �u :

P

�
j�u�j > z

�CV (1 + CN)

h
p
n

+

�
� exp

�
�z2=2

�
P

 
sup

ju�u�j��
j�uj > z

�CV (1 + CN)

h
p
n

+ ��2�
�
2 +

p
(2 + d) logn

�!
� exp

�
�z2=2

�
+

2

n

with

�2 =
8
p
2Cw CV CN(2CV + 1)

h
p
n

:

When summing up this result and that of Lemma 4, we get from (5.7) the

bounds for b� for two di�erent cases: the �rst one corresponds to the initial estimate
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b� = b�0 with u = u� , � = 1 and Au� = I , and the second one is for the general

situation,

P

�
jb� � ��)j � 0:5hCV Cg +

�CV (CN + 1)

h
p
n

z

�
� exp(�z2=2)

P

 
sup

j����j�
j��;��(b� � ��)j � 2h�2CV Cg +

�CV (CN + 1)

h
p
n

z

+
8��Cw CV CN(2CV + 1)

�
1 +

p
(2 + d)

�p
2 logn

h
p
n

1A
� exp(�z2=2) + 2

n
:

Now the both statements of the proposition follows from the following simple

Lemma 7 Let � = �=j�j and �� = ��=j��j, where � and �� 2 IRd. 1) If j����j �
� � 1=4. Then

j� � ��j � 2
�

j��j :

2) If j��;��(� � ��)j � �, � � 1=2 and �(1 + ��1) � j��j=2 , then

j� � ��j � �

j��j

�
1 +

5�

�j��j

�
:

Proof: To show 1) we write

j� � ��j = 2 sin
(�; ��)

2
�
p
2 sin(�; ��) (5.13)

(we have used here that sin �
2
� sin�p

2
for 0 � � � �=2). Furthermore,

sin(�; ��) � j� � ��j
min(j�j; j��j) �

�

j�� � �j �
4�

3j��j :

Now we conclude 1) from (5.13).

To prove 2) we remark �rst that j��;��(� � ��)j � � implies that

j�� � �j � �(1 + ��1) � j��j=2: (5.14)

Note now that ��(��)Tx is the projection of x on ��, thus

j(I � ��(��)T )(� � ��)j �
�����I � ��(��)T

�+ 1

�
(� � ��)

���� � �:
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On the other hand, j(I� ��(��)T )(����)j = j(I� ��(��)T )�j = j�j sin(�; ��) . This
implies that

sin(�; ��) � �

j�j :

Then the orthogonal decomposition

�� � � = (I � ��(��)T )� + ��((��)T � � 1);

along with j(I � ��(��)T )��j2 = sin2(�; ��) and j�T ��j = cos(�; ��) yields

j�� � �j2 = sin2(�; ��) + (1� cos(�; ��))2

� sin2(�; ��) + 4 sin4
(�; ��)

2

� �2

j�j2
�
1 +

�2

j�j2
�
:

We have now

j�� � �j � �

j�j

�
1 +

�2

2j�j2
�
� �

j�j

�
1 + 2

�2

j��j2
�
: (5.15)

However, by (5.14) we obtain���� �j�j � �

j��j

���� � �j� � ��j
j�j j��j � 2�2(1 + ��1)

j��j2 :

When substituting this into (5.15), we conclude

j�� � �j � �

j��j

�
1 + 2

�2

j��j2 +
2�(1 + ��1)

j��j

�
� �

j��j

�
1 +

5�

�j��j

�
;

as required.
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