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Summary

We present an example of the solution of a boundary value problem for a two-component porous
material with large deformations of the skeleton. This example demonstrates the application of a
consistent Lagrangian description of porous materials which has been proposed in paper [1]. Simulta-
neously we demonstrate the important role of the balance equation of porosity which is an essential part
of the thermodynamical model of porous materials proposed in [2,3]. We show as well that a modified set
of boundary conditions for permeable boundaries yields a solution of field equations which agrees
qualitatively with expectations for the problem of axisymmetric stationary filtration. On the basis of a
numerical evaluation of solution we indicate the existence of an instability of the model for very large
porosities which could not be explained in this work.

1. Introduction

Diffusion processes in porous materials are connected with numerous additional
mathematical problems which do not appear in a usual theory of mixtures of fluids. The
two most important of them are connected with the formulation of boundary value
problems on permeable boundaries and with changes of microstructure.

The first problem was recognized by K. VON TERZAGHI and O. K. FRÖHLICH [4].
They indicated that the external load on a permeable boundary cannot be a priori
distributed among components. Such a distribution is time dependent and follows from
the solution of field equations. Consequently it was necessary to reconstruct classical
boundary conditions for multicomponent systems under the requirement that solely the
total external load can be prescribed to a certain combination of partial tractions and
partial momentum discontinuities. All other boundary conditions have to have a
kinematical character. Such conditions were proposed in [1] and they were investigated
numerically for the classical consolidation problem in the work of W. KEMPA [5]. The
form of conditions on permeable boundaries is connected with the presence of a
boundary layer between the porous material and the external world. An extensive
discussion of the microscopical background of such boundary layer problems can be
found in the book of M. KAVIANY [6]. This discussion is connected with the problem of
boundary conditions for viscous fluid components investigated earlier by Beavers and
Joseph (see: [6] for references).

Such layers appear as well in other problems of physics as, for instance, heat
conduction problems through thin walls. They indicate the way in which boundary
conditions should be constructed. Preliminary results for this problem within the theory
of porous materials can be found in the report of B. ALBERS [7].

The second problem is connected with changes of porosity. It was shown [2,3,8] that
the model of porous materials based on the balance equation of porosity contains the
porosity flux proportional to the diffusion velocity. This balance equation reflects the
influence of the microstructure on the behaviour of porous materials.

In this work we illustrate these two features of porous materials by means of a simple
stationary boundary value problem. In order to amplify the role of porosity as a field we
solve a cylindrical filtration problem for large deformations of the skeleton. Material
properties of the skeleton are described by constitutive relations of a Signorini type (see:
C. TRUESDELL, W. NOLL [9]). In the case of stationary processes the balance equation
for porosity reduces to an algebraic relation for changes of porosity. Such a relation
could not appear in any other earlier models of porous materials in which changes of
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porosity were driven either by volume changes of the skeleton or by an evolution
equation.

The dependence of material parameters on porosity which must be accounted for in
the case of large deformations was roughly estimated from the data for propagation of
acoustic waves in porous materials (see: T. BOURBIE, O. COUSSY, B. ZINSZNER [10]).

In section 2 we present the field equations of a two-component model for a general
three dimensional case. In section 3 modified boundary conditions are discussed. The
axial symmetric stationary case is formulated in section 4. In section 5 the method of
solution by a regular perturbation is presented. Section 6 is devoted to the numerical
evaluation and the discussion of results. In section 7 we indicate an unsolved problem of
instability of the model for very large porosities.

2. Governing set of equations for isothermal processes

Two-component porous materials undergoing isothermal processes are described by the
following fields

( ) ( ){ } ,t,,n,,t,,t, 18FSF ℜ⊂∈∈ℜ∈′ρ TBXxXX χ� (1)

where ρF is the mass density of the fluid per unit volume of the reference configuration
B, χS is the function of motion of skeleton, x’F denotes the velocity of the fluid
component and n is the porosity.

These quantities satisfy the partial balance equation of mass for the fluid, the partial
balance equations of momentum and the balance equation of porosity, whose
Lagrangian form [2] is as follows
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In these equations X’F is the Lagrangian relative velocity and FS is the deformation
gradient of skeleton. PF and PS denote the Piola-Kirchhoff partial stress tensors in the
fluid and in the skeleton, respectively. The vector �p  denotes the source of momentum

in the skeleton and �n  is the source of porosity. Φ0 is the transport coefficient for the
porosity flux. ρS is a constant mass density of the skeleton in the reference configuration
B.

We consider processes near the thermodynamical equilibrium which means that the
sources are given by the following relations
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where π is the permeability coefficient, whose dependence on the porosity, in agreement
with simple geometrical considerations, has been assumed to be linear, τ denotes the
relaxation time of porosity and nE is the equilibrium value of porosity.

Constitutive relations which we use in this paper describe an isotropic nonlinear
elastic skeleton and an ideal fluid component. For the skeleton we choose the simplest
relation proposed by Signorini for one-component compressible materials (see: C.
TRUESDELL, W. NOLL [9]). It has the form
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where TS is the partial Cauchy stress tensor in the skeleton and eS is the Almansi-Hamel
deformation tensor for the skeleton. TS

0 denotes an initial stress which appears in the
reference configuration eS=0. The principal invariants appearing in (4) are defined as
follows
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The effective material parameters λS, µS, cS and β are independent from the deformation.
They may depend solely on the porosity n. Most of available experimental data concern
material parameters for small deformations and relatively small porosities (n≅0.2÷0.3).
For values of the parameter cS there are no data at all for porous materials. Numerous
papers for one-component nonlinear elastic materials appeared in the 40’ies and early
50’ies under the assumption that this third constant vanishes. This assumption was
discussed by C. TRUESDELL [11] who showed that this is consistent with general
principles of nonlinear elasticity but it may yield some quantitative discrepancies with
expected results. For the purpose of this work we accept the simplifying assumption
cS≡0.

The dependence of elastic parameters λS, µS for small deformations on the porosity
can be obtained from data on speeds of propagation of acoustic waves (e.g. see Figure
2.21 in T. BOURBIE, O.COUSSY, B. ZINSZNER [10]). These speeds decay almost linearly
with growing porosity. Bearing the approximately linear dependence of the mass
density on the porosity in mind we obtain cubic dependence for the material constants.
This shall be assumed to hold as well in the case considered in this work. We have then
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According to our numerical analysis this assumption seems to be reasonable for not
too large values of porosity (smaller than app. 0.7). We return later to this point.

Simultaneously, in the previous works on the model (e.g. K. WILMANSKI [2]) it has
been argued that the coupling parameter β is a combination of material parameters
independent of porosity.
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Now we turn the attention to the partial stress tensor in the fluid. As shown in [2,3,8]
for processes near thermodynamic equilibrium the Cauchy stress TF in the fluid reduces
to the pressure. We have
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The relation for the intrinsic pressure pF specifies the material of the fluid
component. For the purpose of this work we assume that it is a mixture of waterlike
fluid with some amount of bubbles of vapour. In such a case the macroscopic
compressibility is not very large and we can choose the linear constitutive relation
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The constants pF
0 and ρF

0 denote the pressure and the mass density of the fluid in the
reference configuration eS=0. The constant UF is the speed of propagation of the P2-
wave. In the above quoted Figure from [10] it can be seen that this speed is almost
independent of porosity if the porosity is larger than app. 0.4. We make this assumption
for processes considered in this paper.

In order to complete the constitutive relations for the balance equations (2) we have
to specify the transport coefficient for porosity Φ0. It was shown in paper [2] that
thermodynamic restrictions yield the following form of this relation

.nJ E
S

0 =Φ (9)

This completes the specification of field equations for the fields (1).

3. Boundary conditions

Porous materials with permeable boundaries yield free boundary value problems
which require additional conditions on boundaries. This problem was recognized
already by K. VON TERZAGHI and O. K. FRÖHLICH [4] who constructed a Gedanken-
experiment showing that an a priori division of boundary loading on such a boundary is
not possible.

Consequently it was necessary to construct a nondynamical boundary condition
connected with a flow through the boundary. Such a proposition was made in paper [1]
in which the amount of mass flowing through the boundary, defined by the boundary of
the skeleton, was assumed to be determined by the pressure jump in the fluid
component. On the one hand side, this condition seems to follow from the existence of
boundary layers in a way similar to boundary conditions of the third kind for the heat
conduction equation (see: B. ALBERS [7]). On the other hand, numerical simulations for
porous materials seem to confirm as well such conditions in purely macroscopic
considerations, as the work of W. KEMPA [5] clearly shows.

For the two-component porous materials considered in this work the two vector
boundary conditions on the boundary of the skeleton in the current configuration have
the form
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provided the flow ρF
t(vF-vS)⋅n through the boundary is small enough. Otherwise there is

a kinematical contribution to the condition (10)1. In these conditions text denotes the total
loading of the boundary and the pressure pext must be prescribed additionally. This is the
extension of boundary conditions caused by the fact that the boundary is not material
with respect to the fluid component.

Fig.1: Two ways of loading a permeable boundary:

left:  the external load is transmitted on both components with the external pressure
different from the negative normal component of the loading

right:  the external loading is transmitted on both components through a layer
of the out-flowing fluid

In some cases the external pressure can be identified with the negative normal
component of text. This is the case in the example discussed in the present work because
the external load is transmitted on the porous material by the fluid appearing outside of
the domain Bt (see: Figure 1). Then the conditions (10) can be written in the form
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In this form it is obvious that the boundary values of the normal component of
tractions in the skeleton n⋅TSn and the partial pressure pF on the permeable boundary are
not specified by the normal external loading text⋅n.

The coefficient α characterizes the surface porosity. Not much is known about its
values and one of the aims of this work is to check its order of magnitude on simple
examples. If it goes to infinity the above conditions reduce to the form characterisitic,
for instance, for composites where the external load is divided between components
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proportionally to the volume contributions of components. On the other hand, if it is
zero then the external load is taken over by both components according to condition
(10)1 and, in addition, the second condition is purely kinematical (equal velocities of
both components). This is characteristic for impermeable boundaries.

Let us mention that the kinematical condition for the tangential component of the
velocity vF would have to be modified if the fluid component was viscous.

The Lagrangian form of the conditions (10)1,2 which we use in this work is as follows
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Finally let us mention that we do not have to specify a boundary condition for the
porosity in the case of stationary processes considered in this work. Namely in such a
case the changes of porosity ∆ are determined by the algebraic relation following from
the porosity equation (2)4

( ).Div F
0X′Φτ−=∆ (13)

Substitution of this relation in the field equations does not increase the order of the
operator and, consequently, the two vector boundary conditions (10) yield the solution
of the boundary value problem. We illustrate this property further in this paper.

4. Fields and field equations for axisymmetric stationary flow

We consider a cylinder of the radii A and B, A<B loaded by an equal pressure p0 on
the internal and external lateral surfaces. This is the reference configuration. In this
configuration the partial mass density of the fluid is ρF

0, the porosity is equal to nE. The
partial stress tensor in the skeleton and the partial pressure in the fluid are given by the
relations
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It is assumed that the cylinder is long enough for processes to be independent of the
variable z in the axial direction. Then we have plane strains in the skeleton, the flow of
the fluid must be radial and, except of a trivial dependence of the position vector of the
skeleton on z, all fields depend only on the radius R. We consider a stationary process
caused by the following change of the external loading of the cylinder

( ) ( ) ,pp,pbr,par 0abextaext ≡−==−== ntnt (15)

where a is the internal radius and b is the external radius of the cylinder, both after
deformation i.e. in the current configuration.

Under the above conditions we seek a time-independent solution for the function of
motion of the skeleton χS, the velocity of fluid x’F, the mass density of fluid ρF and the
porosity n. We choose a natural reference system in which the velocity of the skeleton
x’S vanishes identically. In the Lagrangian description we have then
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where ΛS is the stretch in the radial direction and g1, g3 denote the (unit) base vectors of
Eulerian cylindrical coordinates in the radial and axial directions, respectively.
Consequently, the problem reduces to the four unknown fields: ρF, ΛS, v and ∆ as
functions of the radius R.

The deformation gradient FS in the Lagrangian cylindrical coordinates is as follows
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where the metric tensors of Lagrangian and Eulerian cylindrical coordinates are as usual
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The Almansi-Hamel deformation tensor of the skeleton eS and its eigenvalues can be
easily calculated and we obtain
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Consequently
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By means of these quantities the constitutive relations and, consequently, the field
equations can be written in explicit form. The balance equations (2) reduce to the
following set
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The pressure pF and the stress components TS11 and TS22 are given by the constitutive
relations (8) and (4), respectively. The last equation (21) substituted in these
constitutive relations yields a dependence of partial stresses on the gradient of velocity.
This effect is similar to an effect caused by the bulk viscosity. Consequently, in spite of
a leading elastic part of the stress tensor in the skeleton and a pressure similar to this in
ideal fluids in the partial stress of the fluid component, the interaction of components
through changes of porosity yields a dissipation.

It remains to formulate the boundary conditions for the example considered in this
section.

We have
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The set (21) of four ordinary differential equations is highly nonlinear and cannot be
solved analytically. In the next section we present a perturbation method of solution
which applies in the case of a small difference between boundary pressures pa and pb.

5. Regular perturbation solution

Now we make the assumption that the pressure difference between the lateral
surfaces of the cylinder is small. Under this assumption we construct the solution in the
form of a power series with respect to the small parameter defined by the pressure
difference. Namely
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The form of these expansions follows from the fact that the state pa=pb, i.e. ε=0 is the
reference state in which ρF=ρF

0, W=0, ΛS=1 and ∆=0.
We perform calculations up to the second order terms, i.e. N=2. In such a case the

boundary value problem formulated in section 4 can be solved analytically. Since the
relations which follow for the coefficients in the above series are rather lengthy we
present solely some representative examples. Full results will be used in the
construction of a numerical example which we present in the next section.

First let us make an important observation. According to equation (21)1 we have in
the first order approximation
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Substitution of this result in the first order approximation of equation (21)4 yields
immediately

∆1 0= . (25)

Consequently, changes of porosity in stationary processes must be much smaller than
normalized changes of all other fields. They are made even smaller by the presence of
the relaxation time τ in the formula (21)4. This is the case even for large deformations
considered in this paper for which this relaxation time is rather large. Solely in
nonstationary processes and, in particular, under the presence of mass sources (e.g. due
to adsorption or chemical reactions such as combustion of granular materials) we can
expect the changes of porosity to be considerable after a long time of duration of the
process. This important observation justifies soil engineering calculations based on the
assumption of constant porosity.

After simple manipulations the remaining two equations in the first order
approximation can be written in the form
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Constants of integration A1, B1, C1 and D1 must be found from the boundary conditions.
We proceed to formulate them.

Substitution of the constitutive relations for partial stresses (4) and (7) in the relations
(22)1,3 yields in the first order approximation
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Simultaneously, the kinematical conditions (22)2,4 in this order are as follows



10

ρ α ρ ρ

ρ α ρ ρ

0 1
2

1 0
1

1

0 1
2

1 0
1

1

2

2

F F F

F F F
E a

W U R
d

d R
for R A

W U R
d

d R
n p for R B

= − − +
















 =

= − +
















 −












=

Λ
Λ

Λ
Λ

,

.

(29)

Consequently we obtain four relations for the constants of integrations and the
solution in the first order approximation can be fully constructed. We shall not quote
this mathematically simple result in this work and proceed to analyse the second order
approximation.

It is very easy to construct the mass balance equation in the second order. We obtain
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Certainly, the right hand side is a function of R known form the first order appro-
ximation up to the constant A2.

The porosity equation yields in the second order
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Hence, once we know W2 the changes of porosity in the second approximation can be
calculated from this algebraic relation.

We will not quote the momentum balance equations and boundary conditions in the
second order approximation. They follow in the same manner as for the first order and
they can be solved analytically. However their form is rather involved and it is easier to
appreciate their properties on a numerical example which we present in the next section.

6. Numerical example

We illustrate the above presented perturbation solution of a cylindrical filtration
problem by a numerical example of a porous rubberlike material with flow of a
waterlike fluid. We choose the following material parameters

λ µ0 020 1 0 750S S S FMPa MPa c U
m

s
= = = =, , , . (32)

These are the parameters for the solid component as if nE=0, i.e the material is slightly
compressible (Poisson’s number ~0.48). The speed of sound UF in the fluid component
corresponds to a mixture of water with a certain amount of vapour bubbles. This
mixture has been chosen to expose better effects of large deformations of the skeleton
without an influence of support which would appear in the case of an incompressible
real fluid component.

The other material parameters are chosen as follows
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The initial porosity has been chosen to be higher than usual values for rocks or
granular materials. However it is still lower than porosities of sponges. Even higher
values of porosity seem to be connected with some instabilities of the model which we
indicate in the sequel.

The new material parameters β, τ have been chosen on the basis of estimates of the
attenuation of acoustic waves. We do not present these estimates in the work as it is
solely the order of magnitude of those parameters which bears the hand in the present
analysis.

In order to expose the influence of pearmability on the flow through the cylinder we
vary the material coefficients π0 and α. The first one describes, of course, the resistance
of the skeleton to the flow of fluid in the interior of the body. On the other hand, the
coefficient α describes the surface resistance to the outflow of the fluid from the
skeleton. Its physical character is different from π0 because its appearance is connected
with a boundary layer in the transition region between the porous body and the external
world.

Let us notice that the value of the parameter ε=-0.25 is not small enough to obtain a
quantitative agreement of the approximate solution with an exact solution of the
problem. The error is of the order of magnitude of 2-6%. We accept it because
qualitative properties of the approximation seem to correspond exactly with those of the
exact solution.

Below in the sequence of Figures we present various fields as functions of radius R
for two values of  pearmability π0: 104 and 106 kg/m3s and two values of  coefficient α:
10-2 and 10-4 s/m. They have an order of magnitude one would expect in the case of
sponges or some biological tissues. Let us notice that smaller values of  π0 correspond to
smaller resistance of the skeleton (see: momentum balance for the fluid) and  larger
values of α have the similar influence to smaller values of π0 (see: remarks after the
formula (11)).

Figure 2 shows the behaviour of the radial velocity v≡x’F1 of the fluid as a function
of the radius R. Clearly, the maximum value of this velocity  (app. 0.28 m/s for the
internal radius) corresponds to π0=104 and α=10-2. It is a rather large value due to large
deformations of the skeleton. The minimum value of this velocity (app. 0.0018 m/s for
the outer radius) corresponds to π0=106 and α=10-4.

In Figure 3 we show changes of  the current mass density of the fluid ρF
t=ρFJS-1. In

spite of large deformations of the skeleton these changes are very little indeed.
Figure 4 demonstrates the behaviour of the pressure in the fluid. Clearly the changes

of pressure depend on the choice of both permeability parameters. However in all cases
we see that the values of pressure on the boundaries are smaller from the contribution
proportional to the porosity as it would be the case for composites (lack of diffusion!)
and as it is sometimes wrongly assumed in papers on porous materials. This observation
confirms the results of the Gedankenexperiment of Terzaghi and follows from our
choice of boundary conditions.
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Fig.2: Radial velocity of the fluid v≡x’F1

Fig.3: Current mass density of the fluid ρF
t

Fig.4: Pressure pF in the fluid
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Fig.5: Radial deformation component eS11 of the skeleton

Fig.6: Volume changes JS of the skeleton

Fig.7: Changes of the porosity ∆=n-nE
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In Figure 5 we present the component eS11 of the Almansi-Hamel deformation tensor.
Even though the dependence on R is qualitatively similar to the deformation obtained in
the classical Lamé problem of the linear elasticity theory the values of deformation are
much larger than these of the classical elasticity theory and reach the value 40%. The
radii of the cylinder grow with the deformation: a>A, b>B and the material is in tension,
i.e. JS>1. The last property is demonstrated in Fig.6.

Finally in Figure 7 we present the changes of porosity. It is obvious that, in spite of
large deformations of the skeleton, the changes of porosity are very small indeed. They
are bigger if the compressibility of the fluid is bigger. This effect could be expected on
the account of the physical interpretation of interactions between skeleton and fluid.

7. Final remarks

Analytical results of this paper show that the extension of the model by adding the
field of porosity with its own balance equation as well as the new formulation of
boundary conditions for two-component porous materials yield qualitatively reasonable
results in a rather extreme situation of large deformations. Changes of porosity are small
but their influence on the coupling between components is magnified by the static
coupling constant β. It means that the porosity itself as a measure of changes of
microstructural geometry may be considered to be almost constant but it yields changes
in behaviour of other fields.

In some calculations which are not presented in the paper we have found out that
higher values of initial porosity may lead to some instabilities of the model which we
could not explain. Such a peculiar behaviour seems to appear in the vicinity of the point
of inversion of sound velocities. Namely, for sufficiently large values of nE the speed of
the P2-wave, carried primarily by the fluid component becomes larger than the speed of
the P1-wave, carried primarily by the skeleton. This is connected with very large
deformations of the skeleton. For instance, for nE=0.6 the maximum value of the
component eS11 exceeds 100%. One can also observe considerable changes in the
behaviour of other fields. Neither the constitutive relations for partial stresses nor the
method of regular perturbations applied in this work are suitable for a reliable analysis
of this problem. Therefore we are not able to present an explanation of these findings in
this work.
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