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Abstract 

We propose a new method of nonparametric estimation which is based on locally 
constant smoothing with an adaptive choice of weights for every pair of data-points. 
Some theoretical properties of the procedure are investigated. Then we demonstrate 
the performance of the method on some simulated univariate and bivariate examples 
and compare it with other nonparametric methods. Finally we discuss applications 
of this procedure to Magnetic Resonance Imaging. 

1 Introduction 

In regression problems arising from many scientific disciplines discontinuities of the re-
gression function play an important role. This is especially the case when analyzing data 
in form of two or three or even higher dimensional images. Such images meet in sev-
eral fields, e.g. from satellite imaging, radar, x-rays, ultrasound or magnetic resonance 
imaging. Usually these images will suffer from distortions, leading to the problem of 
recovering the underlying structure of the image. 

Often interesting structures correspond to discontinuities in the image, i.e. procedures 
used in this context should both reduce distortions as well as preserve discontinuities. 

Classical nonparametric regression procedures are based on smoothness assumptions 
about the underlying function which are not fulfilled in the neighborhood of discontinu-
ities. This leads to so called oversmoothing of the function in such regions. In univariate 
situations several proposals exist how to overcome this problem, see e.g. Muller (1992) 
or Speckman (1994) for procedures based on change point detection. The generalization 
of this idea to the multidimensional case leads to the edge estimation problem. This 
problem is studied in details in Korostelev and Tsybakov (1993) where the optimal rate 
of edge estimation is established for the case of an image with the structure of a boundary 
fragment. The reader can find further references there. Unfortunately the proposed pro-
cedures are based on some quite restrictive assumptions like the structure of a boundary 
fragment. Another inconvenience is that the methods and results apply only to the case 
of a random or jittered design which rarely meets in practice. 

Another approach to image estimation was proposed recently in Polzehl and Spokoiny 
(1998). _The method can be viewed as a multidimensional analog of the procedure from 
Spokoiny (1997) assigned to estimation of a univariate function allowing jumps or jumps 
of derivatives. The idea is to estimate the regression function separately at each design 
point using a locally constant (or locally polynomial) modeling with an adaptive choice 
of a neighborhood (a window) from a large class of neighborhoods in which the applied 
model fits well the data. An inconvenience of this approach is that the class of considered 
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windows has to be really large to get a reasonable quality of estimation. This makes the 
procedure difficult to realize and computationally intensive. 

In this paper we modify this idea. Namely we do not specify the class of considered 
windows but we determine in a data-driven way the form of the neighborhood around the 
point of interest x in which the function f can be well approximated by a constant. A 
similar idea was discussed in Tsybakov (1989) but the proposed method uses essentially 
some prior information about the structure of the image and about the image values 
within each region. Our method is fully adaptive, that is, no prior information is required. 

The proposed procedure is iterative. Let us observe Yi at a design point Xi , i = 
1, ... , n. We start from a simple pilot estimate fo(Xi) of the unknown function f which 
we use for a preliminary image segmentation. Namely, on the base of this estimate, for 
each design point Xi from a neighborhood of Xi, we calculate a corresponding weight 
w(Xi, Xi) which is about zero, if the difference fo(Xi)- fo(Xi) is essentially larger than 
its standard deviation, and which is about one otherwise. Then we calculate the next 
step estimate h(Xi) by averaging the observations Yj with the weights w(Xi, Xi). 
We iterate in this way increasing each time the size of the considered neighborhood 
around each point. In the sequel the proposed method is referred to as adaptive weights 
smoothing (A WS). 

The further discussion and the precise description of the procedure are placed in 
Section 2. Some possible generalizations are discussed in Section 6. In Section 3 we study 
some theoretic properties of our AWS method. Section 4 introduces several alternatives 
for univariate and bivariate situations. These procedures are compared with our estimator 
by simulation. Finally Section 5 describes an application of AWS to Magnetic Resonance 
Imaging (MRI). 

1.1 Model 

The model can be described as 

(1.1) 

Here X 1 , ... , Xn are design points which are usually assumed to be equispaced in the 
unit cube (0, l]d. At each point Xi we observe the regression function f(Xi) with some 
additive error £i . We suppose independent heterogeneous noise, i.e. £i are independent 
zero mean random variables with unknown distribution which possibly depends on loca-
tion. The regression function f is supposed piecewise constant. This means that the 
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unit cube [O, l]d can be split into disjoint regions Ai, ... , AM and 

M 

f(x) = L aml(x E Am) (1.2) 
m=i 

where ai, ... , aM are some numbers. Obviously the function f is constant within each 
region Am . The regions Am , the values am and even the total number of regions M 
are unknown. We only assume that these regions are large compared with the distance 
between two neighbor design points. 

2 Adaptive weights smoothing 

In this section we present our estimation procedure. We start with some heuristic expla-
nation. 

2.1 Preliminaries 

The problem of estimating the function f of the form (1.2) can be reformulated as 
follows: to recover the values ai, ... , aM and to decide for each point Xi in which region 
Am it is. To explain the idea of the method, we imagine for a moment that the regions 
Ai, ... , Am are known and only the values am are to be estimated. This leads to an 
obvious estimate 

lim = _1_ L Yi 
NAm XiEAm 

where NAm denotes the number of design points in Am. If xi is a point in Am' then we 
simply set f(Xi) =am. Therefore, given a partition Ai, ... ' AM' we can easily estimate 
the underlying function f. 

Next we consider the inverse situation when the partition Ai, ... , AM is unknown 
but we are given a pilot estimate fa of the regression function f. It is natural to use this 
estimate to recover the partition Ai, ... , AM. Namely, for each pair of points Xi and 
Xj, we may decide on the basis of values fo(Xi) and fo(Xj) whether they are in the 
same region. If the value lh(Xi)- ];(Xi)I is large compared with its standard deviation 
then these two points are almost definitely in different regions. We therefore introduce 
for every design point xi a set A(Xi) with 

where 0:0 (Xi) is the standard deviation of fo(Xi) and A is some number. This set 
estimates the region Am containing Xi . Using these estimated regions, we may define 

3 



the new estimate h by 

with 

2:: w1(Xi, Xi)Yj 
j =------2:: w1(Xi, Xi) 

j 

Then we can repeat this calculation using h in place of fa and so on. 

(2.1) 

Our adaptive procedure mostly realizes this idea with two essential modifications. 
First of all, at each iteration k, we restrict the estimated region A( Xi) to some local 
neighborhood Uk( Xi) of the point Xi such that the size of Uk(Xi) grows with k. This 
means that we calculate the initial pilot estimat.e fo(Xi) by averaging of observations 
over a small neighborhood U0 (Xi) of the point Xi (in many situations it can be the 
observation Yi itself). Then we recalculate this estimate by averaging over a larger 
neighborhood U1(Xi) but now we use only data points where there are no essential 
differences between values of the initial estimates. We continue in this way, increasing 
each time the considered neighborhood Uk( Xi), that is, for each k 2: 1, 

(2.2) 

where the weights wk( Xi, Xj) are computed by comparison of the preceding estimates 
h-1(Xi) and h-i(Xj). Secondly we use continuous weights wk( Xi, Xj) instead of 
zero-one weights in ( 2 .1). 

Finally, to stabilize the procedure, we add also a control step. The initial estimate 
fo(Xi) is very rough in the sense that it is the average over a small neighborhood of Xi. 
But, if the noise level is not too large, it still allows to make some image classification near 
each edg~. By each iteration we increase the size of the considered neighborhood around 
each point which allows to reduce the stochastic error drastically. At the same time, we 
have to prevent a situation when the original correct classification will be lost as a result 
of iteration. For this we apply the control step which means roughly a comparison of 
the new estimate with the estimates from preceding iterations. It is worth to mention 
that this control step alone can be used to construct an adaptive estimate, see Lepski, 
Mammen and Spokoiny (1997) or Lepski and Spokoiny (1997). 

Now we present a formal description of the method starting with a description of the 
input parameters of the algorithm. 
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2.2 Parameters of the procedure 

The most important element of the procedure is an increasing sequence of neighborhoods 
around each design point. 

A sequence of neighborhoods: For each design point x, we assume to be given a 
sequence of neighborhoods Uk(x), k = 0,1, ... ,k* with Uk(x) C Uk+i(x) containing x. 
One possible choice of these neighborhoods Uk( x) would be Uk( x) = {Xi : I Xi - x I < dk} 
with dk being a sequence of increasing radii. Another possibility is to define Uk( x) as 
the set of the Nk nearest neighbors of x, where Nk is an increasing sequence of integers. 

Further we denote by Nk( x) the number of design points Xi in Uk( x) , 

Estimates of noise variances: We consider the case of a heteroscedastic noise, that 
is, each error ei is a random variable with zero mean and a variance a[. The variances 
at are unknown but we suppose to be given consistent estimates at of af. 

Parameters: The procedure involves numerical parameters A and T/ which are us.ed as 
critical values for tests entering in the adaptation and the control steps. The integer 
value k* stands for the maximal number of iterations. 

A kernel: We fix a univariate kernel K satisfying usual conditions: it is a symmetric, 
compactly supported smooth function with the maximum at zero and it is nonincreasing 
on the positive semiaxis. 

2.3 The procedure 

We begin by an initialization. 

Initialization: For each point Xi, we calculate initial estimates of f(Xi) and D f(Xi) 
as 

1 
Ni (X) L }j 

O i X;EUo(Xi) 

1 ~ -2 

'

Ni (X·)l2 D ai 
O i X; EUo(Xi) 

and set k = 1. 
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Adaptation: Compute weights wk( Xi, Xj) as 

(2.3) 

for all points Xj in Uk( Xi) and compute new estimates of fk(Xi) and D h(Xi) as 

2:: wk(Xi, Xi)Yj 
X;EUk(Xi) 

2:: wk( Xi, Xi) ' 
(2.4) 

X;EUk(Xi) 

2:: w~(Xi,Xi)a] 
X;EUk(Xi) (2.5) ( 2:: wk(Xi,Xi)) 2 

X;EUk(Xi) 

for all xi. 

Control: Denote by JC the geometric set of indices JC = {O, 1, 2, 4, ... , 2t, ... } . After 
the estimate h(Xi) is computed, we compare it with the previous estimates h1(X.i) at 
the same point Xi where k' E JC and k' < k. If there is at least one index k' < k from 
JC such that 

IA(Xi) - h1(Xi)I > 'f/Sk1(Xi) 

then we do not accept h(Xi) and keep the estimates h-i(Xi) from the preceding it-
eration. This means that in such a situation we replace h(Xi) and 8k(Xi) by h-i(Xi) 
and Bk-i(Xi), respectively. 

Stopping: Stop if k = k* or if h(Xi) = h-i (Xi) for all i, otherwise increase k by 1 
and continue with the adaptation step. 

3 Properties 

Because of the iterative and complex nature of the algorithm theoretical properties are 
extremely difficult to obtain in a general situation. We consider two specific cases which 
are of the most interest. The first situation corresponds to estimation inside a large 
homogeneous region and the second one to estimation near an edge. 

For simplicity we assume a homogeneous Gaussian noise with the known variance a 2 • 

We also consider the uniform kernel K(x) = l(lxl ~ 1). 
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3.1 Estimation inside a homogeneous region 

We consider an idealized situation where the underlying image function is constant, 
f( x) = a. For simplicity we also assume that each neighborhood Uk(Xi) contains 
exactly Nk design points where Nk is a prescribed increasing sequence. We aim to show 
that in this situation our estimate is with a very large probability also a constant and 
the deviations f(Xi) - a are of order n-1/ 2 . 

In the next statement we need an estimate for the sum N1 + ... + Nk* . Since the 
sequence Nk typically grows exponentially, this sum is of order Nk* . Also we assume 
that Nk* = n, that is, we stop when the largest possible neighborhood is taken. This 
leads to the bound 

(3.1) 

with some C > 0. 

Proposition 3.1 Let f( x) = a and .-\2 2:: (2 + 5) log( n) with some 5 > 0 . Then for all 
k ~ k* and all pairs Xi and Xi E U 

where C is from (3.1). 

Proof. We argue by induction in k. First we consider the weights w 1(Xi, Xi). Since 
every initial neighborhood U0(Xi) contains exactly No design points, each estimate 
fo(Xi) is normal with the mean a and the variance s6(Xi) = a 2 /No. First we evaluate 
the probability of the event 

By (1.1), 
- - 1 """"' 1 """"' fo(Xi) - fo(Xi) = No 6 ct - No 6 C:t 

Uo(Xi) Uo(X;) 

and this is a linear combination of Gaussian errors. Therefore this difference itself is a 
Gaussian zero mean random variable with 

where N0 ( Xi, Xi) is the number of design points lying either in Uo( Xi) or m Uo( Xi) 
but not in their intersection, 

7 



Obviously No( Xi, Xj) ~ 2N0 • Therefore, 

( - - 1/2) P lfo(Xi) - fo(Xi)I > AaN~ 

{ 
).

2
N 0 } < exp ------

2No(Xi,Xi) 

~ exp{-A2 /4}. 

In the adaptation step we compute the weights w 1(Xi,Xj) for all Xi and for every 
Xj from U1(Xi). This involves about nNi/2 comparisons for different pairs (Xi, Xj). 
Therefore 

n 

~ L L P (lh(Xi) - h(Xi)I > AaN~112 ) 
i=l U1(Xi) 

We see that all the weights w 1(Xi, Xj) = 1 with a probability greater than 1-0.5 nN1 e->..2
/

4 . 

Therefore, assuming that an event of type {w1(Xi,Xj) = O} does not occur, all estimates 
h(Xi) are simply mean values of the observations Yj over U1(Xi). 

All these arguments apply to the next iteration with Ji in place of h and so on. 
Now suppose that we have got the equal weights Wk1(Xi, Xj) = 1 for all k' ~ k 

with a probability of at least 1 - rk with some number rk . We intend to estimate the 
similar probability to the next iteration. First we note that by the previous arguments 
Wk+i(Xi,Xj) = 1 for all i =/. j with a probability of at least 1-rk -0.5nNk+ie->.2

/
4 . It 

remains only to check that the control step does not reject the estimate h+i(Xi). Let 
k' = 0 or k' = 2l and k' ~ k . Then obviously 

h+i(xi) - h 1(xi) = N;;l L Yi - Nw 1 L Yi 
U1c+1(Xi) U1c1(Xi) 

N;;l L Cj - Nw1 L Cj· 

U1c+1(Xi) U1c1(Xi) 

Since all errors cj are independent N(O,a 2 ) r.v.'s, this difference is also a normal zero 
mean r. v. with the variance 
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Therefore, using s~,(Xi) == (7
2 N;;,1 

where e denotes a standard normal r.v. The total number of such control tests is not 
greater than n log2(2k) and the probability that at least one such event occurs at the 
(k + 1)-th iteration can be bounded by e-11212nlog2 (2k). Therefore, if 

1'k+l == 1'k + 0.5 nNk+l e->-.2
14 + e-772 l 2n log2 (2k ), 

then, with a probability greater or equal to 1 -1'k+i , we get all Wk+i (Xi, Xj) == 1. 
Summing over all iterations we get the following upper bound for 1'h 

k* k* 

1'P < 0.5ne->-.
2
14 L Nk + e-772 l 2n L log2(2k) 

k=i k=i 

as required. D 

The quantity 1'k• is small provided that ,\ 2 ~ (8 + E) log n and 'T/ 2 ~ (2 + E) log n 
with some constant E '> 0. Then with a probability of at least 1 - 1'P all estimates 
h·(Xi) coincide with the mean values of all observations Yj. 

3.2 The case of many regions 

Now we discuss the situation when there are more than one regions. To simplify the pre-
sentation, we suppose that there are only two large regions Ai and A 2 in the image and 
hence the function f has only two values ai and a2 • All results allow straightforward 
generalization to the case of many regions. 

By a == lai - a2 1 we denote the image contrast. We also denote by A~ the set of 
points Xi in each region Am which belong to this region together with the corresponding 
neighborhood Uo(Xi), 

m==l,2. 

We intend to show that if the image contrast is sufficiently large compared to the noise 
level then we typically get Wk(Xiu xi2) == 0 for all pairs (Xiu xi2) with Xi1 E A~ and 
Xi2 E A~ and for all k ~ 1 . 

Proposition 3.2 Let f(x) == ail(x E Ai)+ a2 1(x E A 2 ). Then it holds 
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with a probability greater or equal to 

1 - 0.5Cn2 exp {- (a-1 N~12 [a1 - a2[ - 27J r /4} 
where C is from {3.1). 

Proof. Let us fix one such pair. First we note that fo(Xim) ~ N( am, a2 N01
) and we 

may represent these estimates in the form fo(Xim) =am+ aN~112eim where m = 1, 2 
and ei1 and ei2 are independent standard Gaussian r.v.'s. 

Next, in view of the control step, we have for every k ~ 1 

m = 1,2. 

Therefore 

lh(XiJ - h(Xi2)I > ilo(xi1) - lo(xi2)l 

- lh(Xi1) - fo(xi1 )I - lh(Xi2) - fo(Xi2 )I 

The difference ei1 - ei2 is a zero mean Gaussian r.v. with the variance 2 and hence 

< exp{-(a-1N~12 [a1 -a2l-27J)
2 
/4}. 

The number of such pairs can be very roughly bounded by nNk/2 and therefore the 
probability to meet by k-th iteration at least one such event is smaller than 

0.5nNk exp {- ( u-1 N~12 ja1 - a 21- 2'T}) 2 /4}. 

Summing up over all k:::; k* and using (3.1), we obtain the required assertion. D 

We know that a proper choice of 7J 2 is about (2 + 5) log( n). Therefore, if 

-1N.1121 I 4 a 0 ai - a2 > TJ 

then this above probability can be bounded by n 2e-TJ
2 and this value is again very small 

for n sufficiently large. 
The results of Propositions 3.1 and 3.2 lead to the following conclusion: inside each 

large region the probability of a misclassification is small and misclassification errors 

10 



occur typically only near the edge of each region. If we have only a few such regions 
with regular edges and if image contrasts are sufficiently large then we would expect 
a good quality of image recovering. On the other hand, if the image is very complex, 
then the number of points near edges might be comparable with the total number of 
design points. In such situations an application of the proposed procedure usually leads 
to oversmoothing and a combination of different regions. 

3.3 Selection of parameters 

There are several parameters involved in the algorithm. Our practical recommendations 
to their choice can be summarized as follows: 

Size of U0 : The size No(Xi) is important in context of image recognition and edge 
estimation, see Proposition 3.2. For the cases with a./ a > 2, the choice N0 = 1 can be 
advised. Here a. is the image contrast, 

For 1 :::; a./ a :::; 2, we take N0 = 5 and for a./ a < 1 , a choice with N0 2:: 9 can be 
desirable. 

Sequence of neighborhoods Uk: The sequence should satisfy the conditions Xi E 

U1(Xi) and Uk-i(Xi) C Uk(Xi)· It can be recommended to select sequences Uk(Xi) in a 
way that the numbers Nk (Xi) of points in every such neighborhood grows exponentially, 
for instance Nk(Xi) ~ 2k . 

.X: This parameter is very important and its choice mostly determines the properties of 
the procedure. Increasing the parameter reduces the probability of detection of artificial 
jumps in a homogeneous situation (error of first kind) and increases the probability not 
to detect an existing discontinuity (error of second kind), see Propositions 3.1 and 3.2. 
Note that the bounds for a wrong classification given by Propositions 3.1 and 3.2 are very 
rough and conservative. Suitable parameters range is between .:\ = 2.5 for a low signal to 
noise ratio and >. = 3 for a high signal to noise ratio. 

'T/= The control step prevents the algorithm from loosing sight of previously detected 
discontinuities, see Proposition 3.2. Suitable values for 'T/ are between 3 and 4. 
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4 Simulations 

4.1 A segmentation experiment 

We first illustrate the behavior of the algorithm near the edge by a simple experiment. 
We simulate data using the regression model (1.1) with equidistant design Xi = 

i/99,i = 0,99 and regression function f(x) = l(x > .5). Figure 1 shows plots of the 

mean wij sigma=.5 mean wij sigma=1 mean wij sigma=1.5 

0 20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 

Figure 1: Mean weights Wij from 500 simulations in experiment 1. 

mean limiting weights Wk* (Xi, Xi) obtained in 500 simulations for different values of O' 

corresponding to signal to noise ratios of 2, 1 and 2/3. The left image ( O' = .5) shows 
a very stable segmentation of the design and detection of the jump in the regression 
function. For O' = 1 the jump is detected in about 97% of the simulations. We observe 
an increase in the variability qf its estimated location. Decreasing the signal to noise 
ratio to 2/3 leads to a situation where both the probability of not detecting the jump in 
the regression function and the variability of the location of an estimated jump increases. 
The discontinuity is still detected in about 68% of the simulations. 

In the following subsections we demonstrate the capabilities of our approach using 
some uni- and bivariate simulations. We illustrate the behavior of our algorithm for dif-
ferent signal to noise ratios ranging from easy to handle situations (a/ O' = 4) to situations 
where the signal is hardly visible by eye (a/ O' = 1 and larger) and different size of the 
homogeneous regions. We compare our AWS procedure with some established alternative 
approaches. The following list is far from being complete. We especially omitted Markov 
Random Field methods, see Geman (1990), and Wavelets, see e.g. Donoho et. al. (1995) 
or Wang (1995), which would both be suitable alternatives. The main reason is that we 
feel not to have enough experience with both classes of procedures to select appropriate 
parameters and to provide a fair comparison. 
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4.2 Alternative procedures 

Gauss filtering: Here we use an N adaraya-Watson kernel estimate with Gaussian kernel 
and smoothing parameter h 

f(xi) = _~_i_ex_p_(-_(X_1_· -_x_i_)2_/(_2h_2 )_)Y:_i 
~i exp (-(Xi - Xi) 2 /(2h2)) 

Nonlinear Gauss filtering: The Nonlinear Gauss Filter was proposed as an alternative 
to the Sigma Filter of Lee (1983) by Godtliebsen, Spjotvoll and Marron (1997). It replaces 
the discontinuous (uniform) weight function of the sigma filter by an Gaussian weight 
scheme. The filter is defined as 

where the radius of U( x) and g are smoothing parameters. 

Modal regression: Modal regression is introduced in Scott (92) as an robust alterna-
tive to nonparametric regression procedures estimating a conditional mean. The modal 
regression curve is defined as 

f( x) = args maxfi(y, x) 
y 

with fi(y, x) being an estimate of the joint density of y and x. Although Scott proposes to 
use multiple modes simultaneously we concentrate on the mode closest to the observed 
Y. The estimate depends on two bandwidths in x and y domain. 

Change point methods: An alternative in case of well separated jumps can be based 
on methods of change point estimation. We use the procedures of change point estimation 
proposed by Muller (1992). The change point estimate is only used in the univariate case. 

CART: A suitable procedure for the univariate case can be based on the classification-
and regression trees (CART) introduced by Breiman et. al. (1984). We use CART as 
implemented in Splus with number of splits determined by CV-pruning. CART is only 
used in the univariate simulations since it is not flexible enough to allow for a reasonable 
reconstruction of our test image 1. 
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Most of these procedures depend on one or two smoothing parameters. These pa-
rameters are chosen minimizing estimates of the mean squared error (MSE), values being 
determined by separate simulations. 

4.3 A univariate simulation example 

In our first univariate example we use a piecewise constant regression function with 
varying size of the homogeneous region, see Figure 2. 

<X> 
0 

:g""" - . 0 

function 

0.0 0.2 0.4 0.6 0.8 
x 

data sigma=.5 
• • 

1.0 

• •• •• • • 
J, \4\ •I ·~ #.,,,,. .. • .c.- ._,,,, .a... ...... .,... - ,... ... ... , • • -;r • • : 
.... ·,... • ,.., .......... '9 .. ,.. 

.,... 
I 

... • • •• J , •• '· • .. .,. " . •\ .. ,.. . . •.. .,,,. . . 
- '· ...• ,, .... .. . . .. , ·"""" . ·:.:. .. ... . . ,. 

• • • • 
0.0 0.2 0.4 0.6 0.8 

x 1.0 

data sigma=.25 

• • .. • r ·' ,,~ ... ,,. 
~ - •• •• •• •'A•· .,... ., . . . ... ,.... . ...... 

>,Lq • ·-- • •• 
0 • ' .s • .. • 

~· :-111"P r ~; 
·~,.. tr: •• " • ~ .. .,.: • .. . . ..._ : 

• 
LO 
0 

I 

0.0 0.2 0.4 0.6 0.8 x 
data sigma=1 

""" - • • .. 

• 

1.0 

Ct) - • . . . .. ) ,, • • • •1a. • C\J - • tll. • • • •• • • ... · ... ··: . . . ... "\ .. ,, ... 
>..,... - '• • • ...... , '· .. • •••• 

#•\~o -~'"- • • '-. 11" 11 .°• I fl ... 
0 - ... -·~,,.. .. ... ~· '- •• ··"' . ..... ~.·· .. --···" .. .,... - •• • • • • • • • 9 .. 

I G;t e •• .. 0 

C\J - •• ··" • I ..__....-....-....-....---.-....-....--.---....--..,,...-....-__,..... 

0.0 0.2 0.4 0.6 0.8 x 1.0 

Figure 2: Function used in the univariate simulation experiment and generated observa-
tions for standard deviations O' = .25, .5 and 1. 

Figure 3 presents the estimates obtained by AWS for the data displayed in Figure 2. 
The right plot shows an oversmoothing effect that occurs for some of the simulated 
datasets in case of O' = 1. 

We run about 1000 simulations with sample size 256 and error standard deviation 
of O' = .25, .5 and 1, respectively. Parameters in the AWS estimate are fixed as A = 3, 
Uo(X0 ) containing the point itself and Uk* containing the whole sample. 

Table 1 displays results of the simulations in terms of estimated MSE and number 
of points with estimates differing from the true value by more than a/ 4 = .25 (wrong 
classifications). 
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Figure 3: Estimates obtained by AWS (solid lines) and true function (dashed lines) for 
standard deviations CT = .25, .5 and 1. 

Mean squared error Wrong classifications 
(]' = .25 u= .5 (]' = 1 (]' = .25 (]' = .5 (]' = 1 

Adaptive weights 0.0025 0.0231 0.1225 0.59 6.8 62.2 
Gauss filtering 0.0191 0.0392 0.081 17.6 46.6 94.3 

Nonlinear gauss 0.0133 0.0397 0.0886 9.82 48.4 100.8 
Mode regression 0.0081 0.0403 0.08419 3.71 45.8 96.8 

Change point 0.0138 0.043 0.09516 12.0 50.2 99.3 
CART 0.0063 0.0314 0.1489 2.06 16.9 .106. 

Table 1: Estimated mean squared error (MSE) and mean number of wrong classifications 
in the univariate simulation experiment 

Figure 4 and 5 display pointwise estimates of bias and the proportion of wrong classi-
fications for the six procedures under consideration for standard deviation CT = .5. AWS 
performs uniformly better with respect to both MSE and mean number of wrong classi-
fications in case of CT ::; .5. For CT= 1 our adaptive procedure does not always detect the 
discontinuities for small x, i.e. where the homogeneous regions are small. This leads to 
increased squared error and most of the wrong classifications for small x. 

Note also the much better behavior of our procedure near the edges with respect to 
both bias and number of wrong classifications. 

4.4 Two bivariate examples 

We use two artificial images to demonstrate the power of our procedures in more com-
plicated situations, see Figure 6. The left image possesses two different image contrasts, 
a= .5 and a= 1, and homogeneous regions of various size and form. The image contains 
n = 256 x 256 pixel. Note that in the image the size of homogeneous regions increases 
from the lower left to the upper right. There are very detailed structures in the upper 
right and lower left of the image. 

15 



adaptive weights 

i ci ~ ~ ,-...1 ·---v---..1 .... -'1,---
:c 

"= 0 

~ 
0 

QO 02 OA ~ O~ 1~ 

change point 

O~ Q2 OA Q6 Q8 1~ 

.... 
0 

N 
0 

.... 
9 

gauss filter nonlinear gauss filter 
.... 
0 

N 
0 

M 02 Q4 o~ o~ 1~ QO 02 OA o~ o~ 1~ 

mode estimate CART 

o~ 02 Q4 o~ ~ 1~ o.o 0.2 0.4 0.6 0.8 1.0 

Figure 4: Pointwise bias estimated from 1000 simulations for a - .5 in the univariate 
simulation experiment. 
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Figure 5: Proportion of wrong classifications estimated from 1000 simulations for a = .5 
in the univariate simulation experiment. 
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Image 1 Image 2 
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Figure 6: Two artificial test images 

-1.5 .Q.5 0.5 1.5 ·3 -2 -1 0 1 2 -6 .4 ·2 0 -10 -5 0 

sigma=.25 sigma=.5 sigma=1 sigma=2 

·0.5 0.0 0.5 ·1.0 ·0.5 o.o 0.5 -1.5 ·0.5 0.0 0.5 ·1.0 -0.5 0.0 0.5 1.0 

Figure 7: Image 1 plus noise (upper row) and AWS-reconstructions (lower row) for dif-
ferent values of O' 

In the upper row of Figure 7 we display this image (image 1) distorted by additive 
Gaussian noise of standard deviation O' = .25, .5, 1 and 2, respectively. The lower row 
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O' = .25 O' = .5 O'= 1 O' = 2 
MSE (AWS estimate) .0022 .0105 .0327 .0709 

wrong classifications (original image) 40311 52556 59073 62265 
wrong classifications ( AWS estimate) 490 1968 9495 27622 

Table 2: Image 1. MSE and number of points where the observed value (second row) 
and the estimate (third row) differs by more than a/ 4 from the true value 

O' = .5 O'= 1 O' = 2 O' = 4 O' = 6 O'= 8 
MSE (AWS estimate) .0031 .0078 .0193 .0544 .0688 .0775 

wrong classifications (image) 10000 13122 14761 15594 15850 15964 
wrong classifications ( AWS estimate) 49 130 307 1832 2665 ·~ 5175 

Table 3: Image 2. MSE and number of points where the observed value (second row) 
and the estimate (third row) differs by more than a/4 from the true value 

contains the reconstruction of the noisy images by AWS using parameters A = 3 and 
initial neighborhoods U0 of size N0 = 1, 5, 5 and 13 for the four images, respectively. 

Table 2 summarizes some statistics characterizing the quality of both the original 
image and its AWS estimate. We report the mean squared error (MSE) of the estimate 
and the number of points where the estimate differs from the true value by more than 
.125, i.e. minimal contrast divided by 4. The first characterizes the mean quality of the 
estimate while the second indicates quality of segmentation. Note the excellent behavior 
for a= .25. With standard deviation increasing we first loose the most detailed structure 
(a = .5), observe some loss in edge accuracy for the lower contrast level (a = 1) and 
significant blurring of the edges for the highest noise level (a = 2). Note that we still 
recover the main structure that is hardly visible in the noisy original. 

The right image in Figure 6 contains n = 128 x 128 pixel. It's structure is much 
simpler being composed of only two regions with value 0 and 1. We use this image to 
illustrate the properties of our estimate in case of large homogeneous regions and low 
signal to noise level. Figure 8 shows the estimates obtained from images with added 
noise of standard deviation a = .5, 1, 2, 4, 6 and 8. Table 3 reports mean squared error 
and the number of points with estimate differing by more than a/ 4 = .25 from the true 
value. 

For signal to noise ratio a/ a ~ 1 the segmentation is almost perfect. For a/ a ~ .25 
we still get a clear segmentation but loose the accuracy of the boundary estimate. In case 
of extremely small a/ a we still detect the presence of a structure, although the procedure 
performs unstable resulting in a severe blurring. 

18 



sigma=.5 sigma=1 sigma=2 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 ·0.5 0.0 0.5 1.0 -0.2 o.o 0.2 0.4 0.6 0.8 1.0 

sigma=4 sigma=6 sigma=8 

-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0 ·0.5 0.0 0.5 

Figure 8: AWS reconstruction of image 2 for different values of a 

4.5 A bivariate simulation 

Our second comparative study is based on the test image 1, see Figure 6. 
We perform 100 simulations with error standard deviation of a = .25, .5 and 1, 

respectively. Parameters of our procedure are again .,\ = 3, U0(X0 ) being the point X 0 

itself and Uk* now containing the 709 closest design points. Smoothing parameters for the 
alternative procedures are again chosen approximately MSE-optimal. Table 4 provides 
the simulation results using the same criteria as in the univariate case. 

The images in Figure 9 show the proportion of wrong classified points for each pixel 
in our test image. The columns contain results for our adaptive procedure, the gaussian 
filter, the nonlinear gauss filter and mode regression (from left to right), the rows corre-
spond to the different noise levels a= .25, .5 and 1 (from top to bottom). White regions 
correspond to a proportion of zero and black to a proportion of one. For the lowest noise 
level we observe that even the detailed structures in the upper right and lower left of 
the image are recovered by our method. The nonlinear gauss filter and mode estimation 
both work reasonable in this situation, providing an improvement to the gauss filter with 
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Mean squared error Wrong classifications 
(]'= .25 (]' = .5 (]' = 1 (]' = .25 (J'=.5 (]' = 1 

Adaptive weights 0.0021 0.0111 0.0334 475 2215 9277 
Gauss filtering 0.0138 0.0243 0.0396 13889 20497 29642 

Nonlinear gauss 0.0096 0.0262 0.0454 9871 21906 32173 
Mode regression 0.0068 0.0254 0.0426 5119 18994 31400 

Table 4: Estimated mean squared error and mean number of wrong classifications in the 
bivariate simulation experiment (image 1) 

adaptive weights sigma=.25 gauss sigma=.25 mode sigma=.25 

/ 

.......... 
,i / 

. .. _, ...... 
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gauss sigma=1 mode sigma=1 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Figure 9: Proportion of wrong classifications estimated from 100 simulations for a = .25, 
.5 and 1 in the bivariate simulation experiment. 

respect to both criteria. Increasing a we see a clear advantage of our procedure, the other 
three possessing almost identical behavior. 
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5 An Application to Magnetic Resonance Imaging 

Our attention has been drawn to the analysis of Magnetic Resonance images (MRI) by 
colleagues from the Max-Plank-Institute of Cognitive Neuroscience at Leipzig. Magnetic 
Resonance imaging is a quite new technique of noninvasive analysis providing a delin-
eation of a physical object. The signal, or true image, contained in the image can be 
interpreted as a weighted spin density of the system of atomic nuclei the physical object 
consists of. For an excellent introduction into the mathematics and physics of Magnetic 
Resonance imaging see for instance Sebastiani and Barone (1991) and Lange (1996). 

We here concentrate on the task of possessing two and three dimensional high res-
olution MRI although we have also successfully applied modifications of our ideas to 
problems in functional and dynamic MRI. 

In Fourier imaging, which is the most common MR imaging technique, a finite number 
of coefficients from the 2-D Fourier series expansion of the true image are measured. The 
MR image is then obtained applying the discrete Fourier transform to the raw data, i.e. 
the MR image can be viewed as a truncated Fourier series of the weighted spin density 
distorted by noise, see e.g. Barone and Sebastiani (1992). It is reasonable to charac-
terize the underlying image by a piecewise constant function, with homogeneous regions 
corresponding to the same type of tissue and therefore having a similar spin density and 
discontinuities at the interface between adjacent tissues. Random errors can be modeled 
as additive white Gaussian noise, see e.g. Sebastiani and Barone (1995). There is also a 
systematic error caused by truncating the Fourier series (Gibbs phenomenon), see again 
e.g. Sebastiani and Barone (1995). 

We demonstrate the capabilities of AWS using a two dimensional high resolution MRI 
recorded at the Max-Plank-Institute of Cognitive Neuroscience at Leipzig. The image 
contains n = 512 x 512 pixel. The original image is shown in the upper left plot of 
Figure 10. The upper right plot shows the estimated image obtained with parameters 
,\ = 3, variance evaluated from the background, U0 ( x 0 ) = { x0} and Uk* ( x 0 ) containing 
up to 1005 pixel. The lower row of Figure 10 shows a residual image (left) and an image 
assigning the number of observations used in the estimate at a certain location to the 
corresponding pixel. The residual image shows almost no structure indicating that A WS 
preserves the signal. The right plot gives an illustration of the adaptivity of the estimate, 
large neighborhoods are used in homogeneous regions while only few points are involved 
in the averaging where the image is highly structured. 

Our second example is based on a MR image recorded at the MR center at Trondheim, 
kindly provided to us by F. Godtliebsen. The same data were analyzed e.g in Barone 
and Sebastiani (1992), Chu et. al. (1998) and Godtliebsen et. al. (1997). Note that 
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Original image Reconstructed image 
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Figure 10: Original and AWS estimate of a Magnetic Resonance Image (upper row); 
residual image and number of points with positive weights for each pixel in the AWS 
estimate (lower row) 

the original image shown in the upper left plot of Figure 11 is quite noisy. One well 
established method to reduce the noise level is to average several MR-Images recorded 
from the same slice of the brain. The result of averaging eight images is shown in the 
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Figure 11: Original and AWS estimate of a Magnetic Resonance Image (upper row); 
average of eight images of the same slice and estimated densities of gray levels (lower. 
row) 

lower left plot. The upper right plot gives the estimate obtained by AWS with parameters 
.A = 3, U0( xi) = {Xi} and Uk* (Xi) containing up to 797 points. Keeping in mind that a MR 
image exhibits the weighted spin density of nuclei from a rather small number of tissues 

23 



we would expect this to be reflected in a density estimate of gray levels obtained from the 
reconstructions. The lower right plot of Figure 11 shows estimates of the density of gray 
levels obtained from both the average of eight images and the AWS estimate, omitting 
the gray levels corresponding to the background. Note that the density estimate based 
on the AWS reconstruction shows significant multimodality while the estimate based on 
the average of eight is rather smooth. 

6 Further developments 

Here we briefly discuss some possibilities to extend the method and the domain of appli-
cations. 

First we mention that in the univariate case, the locally constant approximation does 
a good job only for functions of a special type like a telegraph signal, see Figure 2. It 
is well known that, for a general smooth curve, a locally linear approximation leads to 
an essentially better quality. The presented procedure can be generalized to the case of 
locally linear approximation but it becomes more complicated. Indeed, for each couple 
of points (Xi, Xi) we have to construct two locally linear estimates and then to compare 
them. One way of comparison is to extrapolate one linear fit at Xi to Xi and to compare 
with the linear fit at Xi. We do not present the results of simulations here but it is worth 
to mention that the procedure based on the locally linear approximation is more flexible 
but less stable than one based on the locally constant approximation, and the quality 
of the initial estimate lo is even more crucial in such a situation. A locally linear 
approximation applies for the multivariate case with d ~ 2 as well. However, for most 
applications to the problem of image segmentation, the locally constant approximation 
seems to be quite reasonable. 

Another possible modification of the method is connected to the problem of the quality 
of the initial estimate fa. We know from Proposition 3.2 that this quality determines the 
quality of image recognition and that it depends strongly on the size N0 of the original 
neighborhoods U0 (Xi). The choice of a large N0 leads to oversmoothing near edges 
because this neighborhood is symmetric around Xi. On the other hand, for a small No 
and small signal-to-noise ration, we have a high probability of a wrong classification. A 
natural idea would be to use a more sophisticated initial estimator which allows for a 
good quality of edge recognition. One possibility is to take a median estimator instead 
of mean over U0(Xi), like in Tsybakov (1989). Another choice mig~ be to take for the 
initialization the procedure proposed in Polzehl and Spokoiny (1998). This procedure 
selects adaptively the geometry of the window U0 (Xi) providing a near-optimal quality 
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of edge recognition. 

In this paper we discuss only the problem of function or image denoising and segmen-
tation. In practical applications this is typically the first step of the analysis. At this point 
we briefly mention two other important classes of problems arising in magnetic resonance 
imaging: analysis of dynamic and functional MR images. For both cases, a time-series of 
images is observed, usually of a low resolution and with a lot of distortions. This means 
that at each design point Xi we are given a time series (curve) Yi(t), where t is a time 
parameter. Analysis of functional MRI is focusing on the detection of activations induced 
by a stimulus signal. Interest is in both an accurate delineation of the activated regions 
as well as an characterization of the induced signal. Such type of problems meets for 
instance human brain mapping. Dynamic MRI is actively used in medical applications, 
for instance, for detection of damaged regions in the brain. The dynamic characteristics 
are different for damaged and non-damaged regions and the problem can be viewed as 
curve classification. We can suggest two possible approaches to these problems based on 
the previously described procedure. One way is to treat the time parameter as the third 
coordinate and then estimate adaptively the image as a function of space and time. An 
even more convenient approach is to estimate separately each image in the series but to 
use adaptive weights which are evaluated on the base of the distance between two esti-
mated curves. Our experience with simulated examples and real data gives an advance 
to the second approach which demonstrates a quite good performance in all situations. 

For our results in Section 3 we assumed homogeneous Gaussian noise but similar 
results can be stated for heterogeneous and non-Gaussian noise as well. A generalization 
to a dependent noise is also possible under some mixing conditions. 

An interesting question is a possibility to apply the method and the results for other 
statistical models like distribution density model or nonparametric autoregression etc. 
We do not discuss this question rigorously here. 
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