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Abstract

Instantaneous gelation in the addition model with superlinear rate coefficients
is investigated. The conjectured post-gelation solution is shown to arise naturally
as the limit of solutions to some finite approximations as the number of equations
grows to infinity. Non-existence of continuous solutions to the addition model is
also established in that case.

1 Introduction

One approach to describe irreversible aggregation in the dynamics of cluster growth
involves a coupled infinite system of ordinary differential equations first introduced by
Smoluchowski [1] which reads
i1

dCi

1 9]
dt = 5 a'j,i—j C]' Ci—j — C; E CL,‘,]' Cj, (3 Z 1.
7j=1

i=1

Here ¢; denotes the concentration of i-clusters (i.e. clusters made of i particles), i > 1
and the coagulation rates a;; are nonnegative real numbers satisfying a; ; = a;; and
characterising the reaction between i- and j-clusters, producing ¢ + j-clusters. In the
above equation, the first term of the right hand side accounts for the formation of i-
clusters by coagulation of smaller clusters while the second term represents the loss of
i-clusters due to coalescence with other clusters. Notice that since particles are neither
destroyed nor created in the coagulation process described above the total density of
clusters Y ;2. ic; is expected to remain constant through time evolution. However it is
well-known that this is not always the case and that the total density of clusters may
decrease after some time

D Cdci(t) < ici(0) for t > Ty, (1.1)
=1 =1

a phenomenon known as gelation [2, 3|. The gelation phenomenon is said to take place
instantaneously if Tye; = 0 in (1.1).

In this paper we discuss some mathematical properties of the so-called addition
model which may be obtained from the Smoluchowski coagulation equation under the
additional assumption that the only active reactions are those involving monoclusters.
From a mathematical point of view, this assumption simply reads

a;; =0 whenever min{i,j} > 2.

Introducing
a1 =a1;=a; if ©1>2 and a1 = 2ay,

’
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the addition model reads [4]

dc -
d—tl = —aid} - ) _aicic,
=1
(1.2)
dCi
dt

= @;—1C1Ci—1 — QiC1C;, L > 2,

ci(0)=¢), i>1. (1.3)

Let us mention that (1.2)-(1.3) may also be seen as a particular case of the Becker-
Déring cluster equations [5] when fragmentation is not taken into account. Also a
related system of ordinary differential equations arises in the modelling of hydrolysis
and polymerisation of silicon alkoxides in the presence of ammonia [6].

Our interest in this paper is the behaviour of some approximations of (1.2)-(1.3) by
finite systems of ordinary differential equations when the number of equations increases

to infinity. More precisely, given N > 3 and § > 0 we denote by ¢V = (¢V),_,_ the
solution to o
([ dcV 2 =
1 N N N N N
de;” =a; el | —aiclel, 2<i<N-1,
dt : : - (1.4)
dey N N 0 N N
—= =ay_1C; C + —anc; Cy,
i N-1€1 €Ny T 7 ANCL O
L N(0)=¢), 1<i<N.
Assuming that
;>0 for i>1 and Zicg < 00, (1.5)

=1
we infer from [5, Theorem 2.2] that, if
a;
sup — < 00,
i>1 1
there is a subsequence of (cN ) ~>3 Which converges as N — 400 towards a solution to
(1.2)-(1.3) in the sense of Definition 2.4 below (in fact, only the case § = 0 is considered

in [5] but their proof easily extends to the case § > 0). A similar result does not hold
if

lim & = oo, (1.6)

i—+oo 1

Indeed if (1.6) holds there are initial data fulfilling (1.5) for which (1.2)-(1.3) has no
solution in the sense of Definition 2.4 (even locally in time) [5, Theorem 2.7|. In fact we
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prove in this paper that for a large class of coagulation rates (a;);>1 satisfying (1.6) and
for any initial data with ¢ # 0 fulfilling (1.5) the system (1.2)-(1.3) has no solution (see
Proposition 2.5 below for a precise statement). However the main result of this paper
is that we are able to prove that the sequence (cN) N3 Still converges as N — +o00

under the assumption (1.6) and to identify its limit as well, namely

lim ¢ (t) =0 fora.e. te(0,+00),
N—+o00

lim ¢Y(t)=¢ for te0,+00) and i> 2.

N—+oo '

Clearly when ¢! # 0 the limit (cN)N>3 is not a solution to (1.2)-(1.3) in the sense
of Definition 2.4 below but it is exactly the post-gel solution to (1.2)-(1.3) obtained
by Brilliantov and Krapivsky [7] for coagulation rates a; = i*, @ > 1, using formal
arguments along the lines of van Dongen [8]. Our result thus shows that though
(1.2)-(1.3) has no solution when the coagulation rates satisfies (1.6) the occurrence
of instantaneous gelation in this model may be seen in the limiting behaviour of a
sequence of approximating finite systems.

2 Main results

Before stating precisely our results we recall some notations we will use throughout the
paper and the definition of a solution to (1.2) as well. Define

X = {C:(ci)iZI; ZZ|CZ| <OO},
i=1

which is a Banach space when endowed with the norm

oo
lell =3 dleil, ceX.
i=1

We denote by X the positive cone of X
X" ={c=(ci)i>1 € X, ¢ >0 foreach i>1}.
Our main results then read as follows.

Theorem 2.1 Assume that the coagulation rates (a;);>1 fulfil

lim — = 400, (2.1)
1—+oo 1
and put
a;
= min — > 1. .
Ym =105, m > 1 (2.2)



Assume also that

0

" =(cf)o, € X" and lim 'ymZic? = +00. (2.3)

m—-+00

Finally let 6 be a nonnegative real number and for N > 3 we denote by ¢V = (CzN)1<i<N

the solution to (1.4). For each i > 1 the sequence (c))n>3 has a limit as N — +o00
and

lim cY¥(t) =0 fora.e tc(0,+00), (2.4)
N—+oo

lim ¢ (t) =c for te(0,+00) and i> 2. (2.5)
N —+o00

Note that the above result is only valid for initial data whose components increase
sufficiently fast as ¢ — 4o00. In order to be able to state a similar result valid for
general initial data in X we need to strengthen the assumptions on the coagulation
rates and to assume that § > 0. More precisely, we have the following result.

Theorem 2.2 Assume that the coagulation rates (a;);>1 satisfy
1 a;

im ———

i~+oo i In (1 + a;)

a; > K1 (In(1+12)%, i>1, (2.7)

=400 and a;1>a; >a; >0, i>1, (2.6)

for some o > 1 and K > 0. Assume further that
"= (cf);s, € X" and f #0. (2.8)

zN)1§i§N be the solution to (1.4) for

N > 3. For each i > 1 the sequence (c))n>3 has a limit as N — +oo and (2.4)-(2.5)
hold.

Finally let § be a positive real number and cN = (c

Remark 2.3 1. We actually prove a stronger result than (2.5), namely that the
convergence (2.5) holds uniformly on compact subsets of [0, +00).

2. It is straightforward to check that a; = i® (In (14 14))* satisfies (2.6)-(2.7) when
B=1and a>1 and when 3 > 1 and o > 0. Also, a; = €' satisfies (2.6)-(2.7).

3. It is clear that if ¢ = 0 then ¥ = (0,3, ...,cN) and the convergences (2.4)-(2.5)
are still valid.

In order to prove Theorem 2.2, we shall show that the addition model (1.2) has no
solution with a non-zero first component when the coagulation rates satisfy (2.6)-(2.7).
We first recall the definition of a solution to (1.2).



Definition 2.4 [5] Let T € (0,4o00]. A solution ¢ = (c¢;)i>1 to the addition model
(1.2) on [0,T) is a function ¢ :[0,T) — X such that

(i) ci(t) >0 for allt € [0,T) and i > 1,

(ii) ¢; € C([0,T)) for each i > 1 and sup ||c(t)|| < oo,
t€[0,T)

(111) Zaici € L'(0,t) for each t € (0,T),

=1

(iv) and for each t € [0,T)

ci(t) = ¢(0) —/0 (alcl(s) + Zaic,-(s)> c1(s) ds,

ci(t) = ¢i(0) —i—/o (@i—1ci—1(8) — aici(s)) c1(s) ds, @ > 2.

Our final result extends [5, Theorem 2.7| for coagulation rates satisfying (2.6)-(2.7)
and reads as follows.

Proposition 2.5 Assume that the coagulation rates (a;)i>1 fulfil (2.6)-(2.7) and let c
be a solution to (1.2) on [0,T) (in the sense of Definition 2.4) for some T > 0. Then
there is a sequence (1;)i>1 in X such that r, =0 and

¢t =0 and c¢;=r; for i>2.

The proof of Proposition 2.5 follows the lines of van Dongen [8] and Carr and da
Costa [9]. Let us mention at this point that the (local) existence of a solution to (1.2)-
(1.3) for the monodisperse initial datum ¢! = 1 and ¢ = 0, 7 > 2 seems to be still open
for the coagulation rates a; =4 (In (1 +4))® with o € (0, 1].

3 Proofs of Theorems 2.1 & 2.2

A straightforward computation first yields the following result.

Lemma 3.1 Let N > 3 and (¢;)1<i<n be N nonnegative real numbers. Fort € [0, +00)
and T € [0,t] there holds

¢ N—1

(@@ - ) = [ Yo - - gacl () () ds

+ 0 (gﬁN — gl> /Tt ancy (s)cN(s) ds, (3.1)
ﬁ:icf\’(t) = i_v:ic?. (3.2)



We fix T' € (0, +00).

is a sequence of mon-increasing functions which

Lemma 3.2 The sequence (cf') -,

is bounded in L>(0,T) N WH(0,T). Fori > 2, the sequence (c) ., is bounded in
Wbt (0,T). -

Proof. Let ¢ > 1. Since (czN N3 18 @ sequence of non-negative functions, the bound-

edness of (c¥)
(2.3) or (2.8).
If 7 > 2, we infer from (1.4) and (3.2) that

ng 0 L®(0,T) follows at once from (3.2) and either the first part of

deN
| <
hence the boundedness of (ch)N>3 in W1*(0,T).

Finally by (1.4) ¢V is a non-increasing function on [0, 7] and

T ch
/0 d—;(s) ds < .
The proof of the lemma is thus complete. O
Lemma 3.3 There is a function ¢ = (¢;)i>1 : [0,7] — X and a subsequence of
(c") ysq (not relabeled) such that
cN(t) — ei(t) for each te0,T], (3.3)
e’ — ¢ in C([0,T]) for i>2. (3.4)

Moreover, ¢; is a non-increasing function on [0,T],

> aiere; € L'(0,T), (3.5)

=1

and for i > 2 and t € [0,T] there holds

ci(t) = ¢} —I—/O (@i 16i-1(8) — aici(s)) e1(s) ds. (3.6)

Finally we have
le@ll < lI"l for te[0,T]. (3.7)

Proof. Since (¢]') -, is bounded in L>=(0,T) NW'(0,T) the everywhere convergence

of a subsequence of (c{v ) v follows from the Helly selection principle [10, p. 372-374]
and ¢; is a non-increasing function as a limit of non-increasing functions. Owing to
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Lemma 3.2 we may apply the Arzela-Ascoli theorem to the sequence (cZN)N>3 fori > 2

and obtain (3.4) by a diagonal procedure. Letting then N — +o00 in (3.2) yields (3.7).
We next integrate the first equation of (1.4) over (0,7) ; this gives

/ Z aicY (s)cN (s) ds < cf.

Fix M > 2. For N > M + 1 the above inequality entails

We may then let N — 400 in the above inequality and use (3.3), (3.4) and the Fatou
lemma to conclude that

As M is arbitrary, we have proved (3.5). Finally (3.6) follows from (3.3), (3.4), (3.2)
and the Lebesgue dominated convergence theorem by letting N — +o0 in (1.4). O

Lemma 3.4 Letm > 1 andt € [0,T]. The sequence ¢ = (¢;)i>1 defined in Lemma 3.3
satisfies

Z ici(t Z ic; —I—/ ( a;ci(s )ci(s)—l—(m—l—l)amcl(s)cm(s)> ds. (3.8)

i=m-+1 i=m-+1

Proof. As ¢ = (¢;);>1 satisfies (3.6) which is nothing but the addition model without
the first equation, the proof of Lemma 3.4 is similar to that of [5, Theorem 2.5] to
which we refer. 0
Proof of Theorem 2.1 Let t € [0,T] and m > 1. By (3.8) s = > 2 . ic(s) is a
non-decreasing function on [0, 7] while ¢; is a non-increasing function by Lemma 3.3.
Therefore

(3.9)

Ymle (t Z zc <fym/ Z ic1(s)ci(s) ds <

i=m-+1 i=m-+1

E a;C1C;

By (3.5) the right hand side of (3.9) is finite. We then let m — +o00 in the left hand
side of (3.9) and infer from (2.3) that

L1(0,T)

tci(t) =0 for each t € [0,T].

Thus, ¢;(t) = 0 for each ¢t € (0, 7] which together with (3.6) entails that ¢;(¢) = ¢} for
t€[0,T) and i > 2.



By Lemma 3.2 the sequence (c¥

sequence (¢Y) ., is relatively compact in C([0,T]) for each ¢ > 2. Since (c¢V) ., has
- 0

one and only one cluster point (0,c),...,c),...) as N — +oo we conclude that the

)N23 is relatively compact in L'(0,7T) while the

whole sequence (C{V)N>3 converges to zero in L*(0,T) and the whole sequence (c) N3
converges to ¢ in C([0,T]) for i > 2. As T was arbitrary, the proofs of Theorem 2.1
and Remark 2.3 are complete. O

Proof of Theorem 2.2 Without loss of generality we assume that § = 1.
Step 1. we first claim that for a.e. ¢t € (0,7) there holds

c1(t) (le@)ll = ll<"ll) = o. (3.10)

Indeed, on the one hand it follows from (3.2) and (3.3) that

N
lim ¢V (t) ZicN(t) = ||°lles(t) for each t € [0, T]. (3.11)
i=1

N—+oo ¢

On the other hand integration of the first equation of (1.4) over (0,T) entails

/Zalcl eN(s) ds < & (3.12)
0

since § > 0. We fix M > 2. For N > M + 1 we infer from (3.5) and (3.12) that

M
) () — er(9)lle(s) | ds < D |elel — el oy
=1

T o0
/ E ic (s)c] ds+/ E ic1(s)ci(s) ds
i=M+1 0 i=M+1
.| N
< ZZ ‘Cl i C1Cilri0,m)
i=1
1 N 9]
+— E a; c{ch + E a;c1¢;
Y™ ) )
i=M+1 L1(0,T) i=M+1 LI(O,T)
M 9]
.| N N 0
< E ) ‘01 c; — CiC L1(0.7) ci + E a;C1C;
i=1 i=1 L1(0,T)

Owing to (3.3), (3.4), (3.2) and the Lebesgue dominated convergence theorem we may
let N — +o0 in the above inequality and obtain

T| N oo
1
limsup/ E ic{v(s)cfv( ) —c1(s)|le(s)]]| ds < — c(l) + E a;C1C;
N—+oo Jo |77 T i1 L1(0.T)



As M is arbitrary it follows from (2.7) that
N
Y ieef — eillel| in L'(0,T). (3.13)
i=1

Combining (3.11) and (3.13) then yields the claim (3.10).
Step 2. In order to prove that ¢; vanishes identically on (0, T'] we argue by contradiction.
Assume thus that

c1(tp) > 0 for some ¢y € (0,7 (3.14)

As ¢; is a non-increasing function on [0,7] we have in fact
c1(t) > c1(tg) > 0 for each ¢ € [0, (3.15)

We next introduce a function ' = (T';);>1 : [0,%] — X defined by

ri(t) = & —/0 (alcl(s) + Za,q-(s)) ci(s) ds for te€]0,t], (3.16)
Li(t) = c(t) for te |0, Z_aund i>2. (3.17)
By (3.16), (3.4), (3.5) and (3.7) we have

T, € C([0,t0]) for i>1 and sup ||T(t)]| < (3.18)
t€[0,t0]

We then infer from (3.10), (3.15) and (3.8) that for almost every ¢ € (0,%,) there holds

[ele] t OO t
c(t) = ||| — Zici(t) = —/ Zaicl(s)ci(s) ds — 2/ aici(s)? ds,
i=2 0 =2 0

hence
Cl(t) = Fl(t) fora.e. te€ (0, t[)) (319)
Owing to (3.19) and (3.17), (3.16) and (3.6) now read
t 0o
N = - / ali(s)+ 3 aili(s) | Ta(s) ds for ¢ € [0, 1),
0 i=1

t
r) = &+ / (s 1T 1(s) — a;Ts(s)) Tu(s) ds for t € [0,4] and i> 2,
0

while (3.5), (3.19) and (3.15) yield Y ;2 a;I'; € L'(0,¢). Recalling (3.18) we have
thus shown that I' is a solution to the addition model (1.2) on [0,%) in the sense of
Definition 2.4. As the coagulation rates satisfy (2.6)-(2.7) we infer from Proposition 2.5
that I'; = 0, hence a contradiction since I'; (0) = ¢? # 0 by (2.8).

Consequently, ¢;(t) = 0 for each t € (0,7]. We now proceed as in the proof of
Theorem 2.1 to conclude. O



4 Non-existence of solutions

This section is devoted to the proof of Proposition 2.5. As already mentioned, the
approach we shall use follows the lines of van Dongen [8] and Carr and da Costa [9].

From now on we assume that the coagulation rates (a;);>; fulfil (2.6)-(2.7) and
that ¢ = (¢;)i>1 is a solution to (1.2) on [0,7") in the sense of Definition 2.4 for some
T € (0,+00). If ¢;(0) = 0 then ¢; = 0 and there is nothing to prove. We therefore
assume that

c1(0) # 0. (4.1)
A similar proof to that of [5, Theorem 4.6] yields that

ci(t)y>0 for t€(0,7) and i>1, (4.2)
while [5, Corollary 2.6] entails
le@Il = lle(0)]| for ¢ € [0,T). (4.3)

Owing to (4.1), (4.2) and the continuity of ¢; on [0,7/2] there is a positive real number
1 such that
ci(t) >pu>0 for tel0,T/2]. (4.4)

Lemma 4.1 For each integer p > 1 we have

e o]

sup Fa;ci(t) < oo. (4.5)
te[0,7/4] 5=

Proof. By [5, Theorem 2.5] and (4.4) we have for m > 2 and 0 < t; <ty < T/2

Zici(tg) = ch, t1) / Zaicl(s)ci(s) ds

1 j—m

+ m/ Um—1¢1(8)Cm_1(8) ds

> ch, t1) +7mu/ Zici(s) ds

1 j—m

where

Ym = MIN 7
The Gronwall lemma and (4.3) then yield
chz ) < [le(0)]| exp (vmu(t — T/2)), t€[0,T/2).
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Consequently, for ¢ € [0,7/4] and m > 2 we have

e o]

men(t) < ici(t) < [le(0) | exp (—maT/4). (46)

i=m

Now let p > 1 be an integer and ¢ € [0,7'/4]. We infer from (4.6) that
Zz aici(t) < [le(0)]| Y exp((p— 1)Ini+In(1+a;) — wpT/4),  (4.7)
=2

and the right hand side of (4.7) is finite by (2.6). Indeed, it follows from (2.6) that for

i large enough
Yi Yi . Qy
> > _
Ini — In(1+a;) — = kln(1+ a)

— 400,
and the series on the right hand side of (4.7) is convergent. O
Remark 4.2 The proof of Lemma /4.1 does not make use of (2.7).

Lemma 4.3 For each integer p > 2 and t € [0,T/4] we have

SOt = 3 (0 /Z (G+17 = — Dager(s)es(s) ds. (4.8)

i=1 =1

Proof. Let p > 2. Owing to Lemma 4.1 we have

/Z (1 + 1)P —4P) a;ci(s) ds < oo

and - -
Zipci(t) : Zi”c,-(O) < 00.
i=1 i=1

We then infer from [5, Theorem 2.5] that

Zi”ci(t)—Zz’p /Z (1 +1)P —iP) a;er(s)ei(s )ds+2p/0 aici(s)? ds.

i=2 i=2
Since
¢ ¢ o°
c1(t) = ¢1(0) — 2/ arci(s)® ds —/ Zaicl(s)ci(s) ds
0 0 =2
by Definition 2.4 we obtain (4.8) after summing the above two identities. O
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Proof of Proposition 2.5 Let p > 2 be an integer and put (recall (4.3))

M,(t) = ||c(1t)|| > et = Z 0, 7/4].

Let t € [0,7/4] and s € [0,t). Since (i + 1)? — ¢ — 1 > pi*~* for 1 > 1 it follows from
(4.8), (4.4) and (2.7) that

M,(t) > My(s —I—Kpu/ Zz” L (In (1 + )" “ (()ﬂ do. (4.9)

As 1/(p—1) € (0,1] we have for i > 1

P (14+4)° > - +2ip_1 (1n (14170 0))"

1 @
> — — (14 # Y (In(14++
2(]7 _ 1)a( ) ( ( ))

Recalling (4.3) it follows from (4.9) and the above inequality that

t oo .

M, (t) > My(s) + / Y e (71 ITE(EIU))II do, (4.10)

$ i=1

where K
op(z) = =2 (1 +2)(In(1+2))°, =€ [0,+o0).

2(p — 1)~

As @, is a convex function the Jensen inequality and (4.10) entail
t
M,(t) > My(s) +/ op (My(0)) doy, 0<s<t<T/4. (4.11)

Combining (4.11) and the following lemma ensure that 7' cannot exceed some upper
bound depending on p.

Lemma 4.4 Let ¥ : (0,+00) — (0,+00) be a positive and non-decreasing continuous

function such that
/ h _dx < o0
1 ¥(z) .

We next consider a positive and non-decreasing continuous function f defined on the
interval [0, 7| for some T > 0 and satisfying

10> 50+ [ "9(7(s) ds for te(0,7]

T < /oo _dx
= J0) V(=) '

12
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By Definition 2.4 (ii) and Lemma 4.1 M,(. +T/8) € C([0,7/8]) and Lemma 4.4

and (4.11) entail
T/8 < / dz ,
My(r/8) Pp(T)

hence
16

1-a
(R YT (1n ((1 + M,,(T/S))””)) . (4.12)
We then infer from (4.2) and [9, Lemma 2.2| that

Jim (14 M,(T/8))"/? = +oo.
Since (4.12) is valid for each integer p > 2 we may let p — +oo in (4.12) and conclude
that T = 0, hence a contradiction. Consequently we have necessarily ¢;(0) = 0 and
thus ¢; = 0 on [0, 7]. The proof of Proposition 2.5 is then complete. 0

Acknowledgments

This work was done while visiting the Weierstraf—Institut fiir Angewandte Analysis und Stochastik
in Berlin. I thank this institution for its hospitality and support.

References

[1] M. Smoluchowski, Drei Vortrage iiber Diffusion, Brownsche Molekularbewegung und Koagulation
von Kolloidteilchen, Physik. Zeitschr. 17 (1916), 557-599.

[2] F. Leyvraz and H.R. Tschudi, Singularities in the kinetics of coagulation processes, J. Phys. A
14 (1981), 3389—-3405.

[3] E.M. Hendriks, M.H. Ernst and R.M. Ziff, Coagulation equations with gelation, J. Statist. Phys.
31 (1983), 519-563.

[4] E.M. Hendriks and M.H. Ernst, Exactly soluble addition and condensation models in coagulation
kinetics, J. Colloid Interface Sci. 97 (1984), 176-194.

[5] J.M. Ball, J. Carr and O. Penrose, The Becker-Doring cluster equations : basic properties and
asymptotic behaviour of solutions, Comm. Math. Phys. 104 (1986), 657-692.

[6] T. Matsoukas and E. Gulari, Monomer-addition growth with a slow initiation step : a growth
model for silica particles from alkoxides, J. Colloid Interface Sci. 132 (1989), 13-21.

[7] N.V. Brilliantov and P.L. Krapivsky, Non-scaling and source-induced scaling behaviour in aggre-
gation models of movable monomers and immovable clusters, J. Phys. A 24 (1991), 4787-4803.

[8] P.G.J. van Dongen, On the possible occurrence of instantaneous gelation in Smoluchowski’s
coagulation equation, J. Phys. A 20 (1987), 1889-1904.

[9] J. Carr and F.P. da Costa, Instantaneous gelation in coagulation dynamics, Z. Angew. Math.
Phys. 43 (1992), 974-983.

[10] A.N. Kolmogorov and S.V. Fomin, Introductory Real Analysis, Prentice-Hall, Inc., Englewood
Cliffs, 1970.

13



