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ON BOND PRICE DYNAMICS 

ECKHARD PLATEN AND ROLANDO REBOLLEDO 

ABSTRACT. This article proposes a new approach to bond price dynamics. By 
means of exponential formulae and a notion of forward derivatives we construct a 
general theoretical framework, which allows to include most of known bond price 
properties. In particular, we perform a new analysis of no arbitrage conditions 
together with their consequences on the corresponding return premium. An ex-
pression for the general bond price is obtained which also turns out to be compu-
tationally convenient. Finally, we specify our result in a general multifactor bond 
pricing model. 

1. INTRODUCTION 

With the development of bond markets the problem of valuation of bonds has 

become a subject of increasing importance to both practitioners and academics. The 

lack of a general and satisfactory model has also serious consequences in valuing most 

of other financial instruments because bonds play the role of the non-risky asset in 

most portfolios. We are not able here to discuss the wide range of existing literature 

on bond pricing, but we will mention a few of the papers and approaches to explain 

our point of view. 

Let P(T) = (Pt(T); 0 ::; t ::; T) denote the price process for a default free zero 

coupon bond which matures at time T with final value 1. We start from the bond 

price dynamics itself which we describe via a stochastic differential equation: 

dPt(T) = µt(T)Pt(T)dt + Clt(T)Pt(T)dWt, (0 :St :ST), (1.1) 
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2 ECKHARD PLATEN AND ROLANDO REBOLLEDO 

where W = (Wt(T); 0:::; t:::; T) is a standard Wiener process. At the end of the paper 

in our application for a multifactor model we will consider also multidimensional 

Wiener processes. The process µ(T) = (µt(T); 0 :::; t :::; T) is called the expected 

rate of return or appreciation rate process of the bond, and a(T) = (at(T); 0 :::; t :::; 

T) denotes the process of instantaneous deviation of the rate of return also called 

the volatility process. No other conditions are required for µ(T) and a(T) for the 

moment. So that our deliberate choice of a general geometric Brownian motion does 

not represent a restriction. The Black and Scholes type dynamics ((3]) with constant 

µ(T) and a(T) is still sometimes used for bond pricing by practitioners. This is 

obviously a very rough approximation to reality. A statistical analysis of bond price 

data shows that: 

(i) The expected rate of return and the volatility are stochastic processes. 

(ii) The bond price is strictly positive and approaches its face value at maturity. 

(iii) The bond price variance becomes zero when time reaches maturity. 

For instance, Ball and Torus ((1]) have proposed a model based on the assumption 

that the expected rate of return follows a Brownian bridge process. Their bond price 

dynamics reaches the face value at maturity, thus (ii) is fulfilled, but the volatility 

process remains a constant, which violates (iii). 

There are several papers based on general equilibrium arguments, (see (5), (14] or 

(10]). The existence of a constant 'market price for risk' ,\is assumed together with 

a specific structure for the instantaneous interest rate r = (rt; t 2: 0) also called spot 

rate process. The structure we mention for our discussion at the moment corresponds 

to a stochastic differential equation 

drt = a(t,rt)dt + b(t,rt)dWt, (0:::; t <co), (1.2) 

where W = (Wt; 0 :::; t < co) is the above Wiener process. In this framework, the 
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equilibrium proposed by Cox, Inge~soll and Ross [5] refers to the choice of an expected 

rate of return 
at(T) 

µt(T)=rt(l+--\b( ))' t, rt 
in the price model. In that case, the dynamics described fullfils our above requests (i) 

to (iii). But the application of this price does not eliminate arbitrage opportunities. 

For instance the return 1 - Pt(T) obtained at the time interval [t, T] from a T-

maturity bond is in general different from the expected return obtained by investing 

in a savings account. Thus, a realistic bond price model should also satisfy the 

following property: 

(iv) The return on holding a bond to maturity is equal to the expected return on a 

savings account paying continuously the instantaneous interest rate. 

Other arbitrage approaches were developed in a series of papers e.g. by Brennan 

and Schwartz [4], Dothan [6], Richard [20], Vasicek [22], Ho and Lee [9], Jamshid-

ian [11], Morton [15], Heath, Jarrow and Morton [8], Black, Derman and Toy [2], 

Sandmann and Sondermann [21], El Karoui, Myneni and Vishwanathan [12], Platen 

[16]. Only the last two quoted papers offer the possibility to fulfill also property (iv) 

· above. Indeed this is ·expressed by a martingale property: in this context any asset 

discounted by a bond is a martingale if the description of the asset contains only a 

noise which is independent of W. As we will later see this is related to our condition 

(iv) and will be requested directly in property (vi) below. 

Most of the other mentioned authors use a different approach. They choose a 

probability measure under which a bond discounted by a savings account becomes a 

martingale. It is then easy to show that the expected rate of return has to be the 

same for all bonds and is equal to the spot rate. This does not coincide with reality. 

Moreover one observes an excess expected rate of return also called return premium 

or risk premium. This is larger for long term bonds than for short term ones. Thus, 
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we add the following condition on a good bond pricing model. 

(v) A realistic bond pricing approach should also explain the return premium, pos-

sibly appreciating its significance for practitioners as a measure of the change 

of risk involved. 

To finish the list of required properties for a good bond model, we underline that in 

most portfolios one needs to discount the risky assets by a bond for hedging purposes. 

Thus, as we already mentioned, it is desirable to have that 

(vi) Any asset, with expected rate of return equal to the spot rate, should form a 

martingale when discounted by any bond driven by a Wiener process which is 

independent of that driving the asset. 

In the following we describe a general approach which provides sufficient conditions 

under which a bond price dynamics corresponds to all above mentioned properties 

(i) to (vi). 

We will try to keep the model quite general such that restrictions result mainly by 

fulfilling conditions (i) to (vi). To achieve this we have to introduce extremely helpful 

mathematical tools such as price generators, exponentials and forward derivatives 

which we also explain intuitively. We hope the reader will realise the convenience 

and value of these tools even if it requires some efforts to become familiar with them. 

The paper is organised as follows: the second section introduces and solves the main 

bond price equation; the third, proposes new tools to study the underlying dynamics; 

the last section discusses consequences of our results. To simplify the presentation of 

our results we have postponed all proofs to the appendix and consider at first only 

the case of a one-dimensional driving Wiener process. The results can be extended 

in an obvious way to the multidimensional case. 
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2. THE BOND PRICE EQUATION 

We would like to emphasize that our introduction considered a very specific dy-

namics for bond prices. In the rest of the paper we will use similar notations for 

convenience but start now to define them properly to have the results in their full 

generality. 

2.1. Preliminary notations on bonds. Our model is based on a probability space 

(n, F, IP'). The flow of information is represented by a family of O"-fields lF = (Ft)t:::::o 

fulfilling usual conditions. If lF provides all the information up to time t about the 

actual values of a process V =(Vi; t 2: 0), then we say that Vis JF-adapted. That is, 

more precisely, for each t 2: 0 the random variable Vt is Ft-measurable. 

We fix a maturity time T and consider the price process P(T) = (H(T); t 2: 0) of a 

default free zero coupon bond with maturity at time T having the face value 1. Since 

we will compare later processes with different maturities, for the sake of definition 

we have extended the time parameter interval for P(T) to the whole positive real 

line. So that we assume Pt(T) = 1 for all t 2: T. As one can easily understand, the 

value of Pt(T) will depend on future information and the knowledge of events up to 

time twill not be enough to describe its behaviour. That is, P(T) is in general not 

an adapted process. This represents a technical difficulty which can be overcome by 

considering the normalised price Zt(T) = Pt(T)j P0 (T) which we will assume to be 

adapted. (This is not a limitation on the model: indeed, our results in (17] show 

that the process Z(T) = (Zt(T); t 2: 0) is adapted when the expected rate of return 

and the volatility have that property). Thus, according to our condition (ii), the 

normalised price has to satisfy: 

1 
Zt(T) = Pa(T), for all t 2: T. (2.1) 

Now, to fulfill condition (i), we take two continuous and adapted processes µ(T) = 
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(µt(T); t 2:: 0) and (a(T) = (at(T); t 2:: 0). The first process is the expected rate of 

return of the bond price; the second, is the volatility. We will see in section 3 that 

they can be interpreted as 

(T) = r ~IE ( Pt+h (T) - Pt(T) /:F.) (t > 0) 
µt hfo1 h Pt(T) t ' - ' (2.2) 

and as the second moment of the rate of return 

a2(T) = lim ~IE [ ( Pt+h(T) - Pt(T)) 2 /:F.l (t > 0) 
t h!O h Pt(T) t ' - ' (2.3) 

where both limits have to be understood in probability and we assume that O"(T) 2 

and µ(T) are IP-almost surely integrable. These limits will be defined rigorously in 

the next section. 

2.2. The fundamental equation. Realising that in principle bond prices express 

the market expectations over the future interest rate developments, we characterise 

the normalised bond price as a solution of a stochastic equation 

Zt(T) = Po~T) - lT µs(T)Zs(T)ds - lT O"s(T)Zs(T)dWs, (0 ::; t ::; T). (2.4) 

Notice this equation is coherent with our first two conditions (i), (ii). To solve it one 

needs a new tool, the price generator, to extend usual methods for solving ordinary 

linear differential equations. As we will see this mathematical object has also an 

important interpretation in pricing. It describes in a compact form the dynamics of 

the bond price process. 

2.3. Price Generator. We introduce the concept of the price generator as a pro-

cess which will allow us to generate the whole dynamics of prices by means of an 

exponential-type operation. Such a kind of generator satisfies a well defined mathe-

matical property: it is a continuous semimartingale. A continuous semimartingale is 

the sum of a continuous (local) martingale and a continuous drift which is a process 

with bounded variation on finite intervals. 
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The mechanism by which a specific semimartingale S generates prices is expressed 

by a kind of exponential. Given a continuous semimartingale S, which represents the 

price generator, we denote by £(S) the Doleans exponential of S (see e.g. [18]), given 

by 

1 
£(S)t = exp(St - 2[s, S]t), (t E [O, T]), (2.5) 

where [S, SJ is the quadratic variation of S. The quadratic variation [S, S]t of the price 

generator can be calculated as a limit in probability of sums of the type :L(StHi -St;)2 

where the t/s are taken in refining partitions of the interval [O, t]. This computation is 

simpler for a semimartingale which is of the form St= JJ <p 5 dWs (a stochastic integral 

of the Wiener process): in this case [S, S]t = JJ <p;ds. Moreover all the continuous 

semirrtartingales we will consider (besides in the multi-:-factor model at the end) are 

of the form St= JJ <p5 dWs + JJ 'l/Jsds and have quadratic variations like 

[S, S]t = lat <p;ds, (t 2: 0). 

Therefore, 

rt i rt rt 
£(S)t = exp(lo <p 5 dWs - 2 lo cp;ds +lo 'l/Jsds), (t 2: 0), 

for the above kind of semimartingale or price generator. 

If we take two such continuous semimartingales, St = JJ <p5 dWs + JJ 'l/Jsds and 

Si = JJ <p~dw: + JJ 'l/J~ds, where W' is another Wiener process, then they have a 

quadratic covariation: 

(2.6) 

where [W, W'] is the covariation process between the two Wiener processes: it will be 

zero if they are independent; if they coincide, then [W, W']t = [W, W]t = t, (t 2: 0). 

The exponential of a continuous semimartingale is a very important and powerful 

tool because it is connected with linear stochastic differential equations: £(S) is the 
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unique solution to the equation 

£(S)t = 1 +fat £(S)udS.u., (t 2:: 0), (2.7) 

which is the analog to the deterministic ordinary linear differential equation satisfied 

by customary exponentials. Thus if S is a price generator, then £(S) is, up to a 

constant factor, already the corresponding price process. 

It is also useful to recall here Yor's formula for the product of semimartingale 

exponentials: 

£(S)£(S') = £(S + S' + [S, S']), (2.8) 

which gives an easy tool to consider discounted price processes and measure trans-

formations. From the above formula it follows, in particular, that 

(£(S))- 1 = £(-S + [S, SJ). 

Let us stop here this introduction of the price generator to present a crucial result 

which is based on it. 

2.4. Solving the fundamental equation. Obviously, the solution of our funda-

mental equation will provide an expression for both, the normalised price and the 

price itself. 

Theorem 2.1. Givenµ and a which satisfy the above conditions there exists a unique 

solution to (2.4) given by 

Zt(T) =exp ( rt a8 (T)dWs - ~ rt a8 (T) 2ds + rt µs(T)ds) = £(S)t, (t 2:: 0), 
lo 2 lo lo (2.9) 

where we denote by S the continuous semimartingale St= JJ as(T)dWs+ JJ µs(T)ds, (t 2:: 
0), which is the price generator. 
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Moreover, the price at time t is given by the formula 

Pt(T) =exp [- (1T o-8 (T)dWs - ~ 1T o-8 (T) 2ds + 1· T µ8 (T)ds)] , (t ~ 0). 
t . 2 t t . (2.10) 

The prove of this theorem is given in the appendix.· 

3. EXPECTED GROWTHS 

To measure the expected growth rate of a process V, we introduce the following def-

inition which generalises ordinary deterministic derivatives to the stochastic frame-

work. 

3.1. Forward derivative. The forward derivative of a locally integrable continuous 

process V is defined to be the limit in probability 

DiV = lim .pr _hl lE(Vt+h - Vt/Ft), 
h>O,hJO 

(3.1) 

when this limit exists, where JE(-/ Ft) is supposed to be a right-continuous version of 

the conditional expectation. 

A continuous semimartingale with an absolutely continuous drift has such a forward 

derivative (see e.g. [19]) and it coincides with the derivative of the drift. That is, if 

St= f~tpsdWs +J~'l/Jsds, (t ~ 0), then 

Therefore such a semimartingale reduces to a martingale if and only if its forward 

derivative is zero. We then obtain 

Lemma 3.1. For a continuous semimartingale S which has a forward derivative its 

exponential also admits a forward derivative and 

(3.2) 
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It is important to remark that the above lemma shows in particular that the 

exponential of a continuous semimartingale S is a martingale (forward derivative 

zero) if and only if Dt S = 0, (t 2: 0) since the exponential is never zero. That 

means S has to be a martingale itself. 

3.2. Rate of return and volatility. Now we return to the interpretation of our 

coefficients µ(T) and CJ(T), since they can be interpreted by means of the same kind 

of limit used to define forward derivatives. 

Proposition 3.1. Under the hypotheses of Theorem 2.1, 

µt(T) = lim .pr 
h>O,htO 

<Jt(T)2 = lim .pr 
h>O,htO 

~IE (Pt+h(T) - Pt(T) /:F.) 
h Pt(T) t 

~IE [(Pt+h(T) - Pt(T)) 2 /Fl (t > O). 
h Pt(T) t ' -

4. N 0 ARBITRAGE CONDITION 

We now go into the analysis of no arbitrage according to our condition (vi). 

(3.3) 

(3.4) 

4.1. No arbitrage. This term will mean for us that given any adapted asset A, 

with expected rate of return equal to the spot rate, will have zero expected growth 

rate when discounted by the normalised bond price Z, that is 

Di(;)= 0, (0::; t::; T). (4.1) 

This represents a martingale property for the quotient A/Z. Using the normalised 

price Z instead of P(T) allows us to concentrate first on the dynamics of the price 

process separated from any measurability requirements on Pa(T). 

Let us establish here a lemma which turns out to be very useful in the analysis of 

no arbitrage 
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Lemma 4.1. Assume Z = £(S) and Z' = £(S') to be continuous semimartingale 

exponentials for 

S' t 

lat O"sWs +lat µ3 ds, (t 2: 0), and 

lat O"~dW~ +lat µ~ds, (t 2: 0), 

(4.2) 

(4.3) 

respectively where W' is another Wiener process on the same probability space and 

µ, µ', 0"2 , 0"12 are continuous, adapted, 'P-almost surely integrable processes. Then 

the process Z' / Z is a martingale if and only if 

lat(µ~ - µ3 + 0"8 2 )ds +lat O"~O"sd[W, W']s = 0, (t 2: 0). (4.4) 

4.2. Assets discounted by bonds. We consider a continuous adapted asset A 

which is the solution of a linear stochastic differential equation 

(4.5) 

where W' is another Wiener process (possibly independent of W) and µ', 0"12 are 

adapted, continuous, P-almost surely integrable processes; the initial value A0 is 

supposed to be F0-measurable. 

We may interpret A in many different ways, e.g. as a savings account, as a stock, 

or as another bond. The asset satisfies a linear equation and can be expressed as a 

semimartingale exponential: 

At = Z' = £(S') (t > 0) Ao t ' - ' 
(4.6) 

where the price generator has the forms~= JJ O"~dw; + JJ µ~ds, (t 2: o). 

We then have 

Theorem 4.1. Under the above conditions on assets and bonds there is no arbitrage 

if and only if · 

fa\µ~ - µs(T) + O"s(T) 2 )ds +lat O"~O"s(T)d[W, W']s = 0, (0:; t:; T). (4.7) 
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Furthermore, in that case the normalised price satisfies: 

E(S')t 
- Yl(Po(T)E(S')r/:Ft)' (O:::; t:::; T). 

And the price is 

Po(T)E(S')t 
Yl(Po(T)E(S')T/:Ft)' (O::::; t::::; T). 

Moreover the variance of the price tends to zero as t approaches maturity: 

lim Yl [IPt(T) - E(Pt(T))l2] = 0. 
t->T 

(4.8) 

(4.9) 

(4.10) 

If a different maturity time T' is given, then different prices satisfy the balance equa-

ti on 

Zt(T1)Yl(P0 (T1)E(S')r1/:Ft) = E(S')t = Zt(T)Yl(P0 (T)£(S')r/:Ft), (t ~ 0). 
(4.11) 

Corollary 4.1. If in addition to the above no arbitrage condition ( 4. 7) 1 the initial 

price Po (T) is assumed to be :F0 -measurable, then 

E(S')t 
Yl(E(S')r/ :Ft)' (t ~ O). ( 4.12) 

If another maturity time T' is considered, then the balance equation is: 

Yl(Pt(T1)E(S')r1/:Ft) = E(S')t = Yl(Pt(T)E(S')r/:Ft), (t ~ 0).. (4.13) 
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Balance equations give a stronger property than demanded in condition (iv) in the 

introduction. Indeed, in the corollary above if we choose the asset A as continuously 

interest r paying savings account, then S~ = f~rsds and we get after dividing (4.13) 

by £(S')t that 

1 
E(S')T 

JE(Pt(T) E(S')t /:Ft) 

JE(Pt(T) exp(lT rsds)/:Ft), (4.14) 

for all t 2: 0, where Pt(T) exp(Jt rsds) represents the amount which one obtains at 

maturity by investing the amount Pt(T) at time t in such a savings account. The 

expectation of this random variable corresponds according to ( 4.14) to the face value 

1 of the bond. Thus, our condition (iv) from the introduction is satisfied and we have 

no arbitrage opportunity between bonds and savings account. 

4.3. Examples. Theorem 4.1 and Corollary 4.1 show that our bond price satisfies 

conditions (iii), (iv) and (vi) discussed in the introduction. 

Here we consider some particular cases to illustrate the above results. We derive 

sufficient conditions to obtain the martingale property for the discounted asset A/Z: 

(1) The case of independent Wiener processes W, W'. Then [W, W'] = 0 and 

( 4. 7) reduces to 

( 4.15) 

A sufficient condition to obtain the no arbitrage property is then 

(4.16) 

(2) As a particular case of the above, consider the asset A to be a savings account 

which we denote by 

Bt =exp (lat rsds) , (t 2: 0). ( 4.17) 
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In this case there is no noise associated to the asset and µi = rt, (t ~ 0). 

Therefore ( 4.16) gives 

(4.18) 

The term a-t(T)2 represents then the return premium. 

One realises that the return premium equals the square of the volatility, that 

is 

µt(T) - rt 
a-t(T) 2 = 1, (t E [O, T]). ( 4.19) 

We can consider the square of the volatility as a measure of the instanta-

neous actual uncertainty of the bond price. Furthermore the return premium 

et(T) = µt(T) - rt can be understood as a measure for the change of the 

remaining risk. Equation ( 4.19) then says that the relative change of the re-

maining risk et(T)/a-t(T) 2 is independent of the maturity time as well as any 

other parameter since it is constant. That means the relative change of the 

remaining risk is equally distributed over the whole life time of a bond. This 

gives an intuitive explanation for the relation between return premium and 

volatility of a bond requested in property (v) in the introduction. 

From (4.9) we obtain 

P,(T) = { E(exp(t r,ds)/:F,) }-t, (t 2 0). (4.20) 

in the particular case when P0 (T) is .:F0-measurable. This generalises the bond 

price proposed in [16]. 

(3) Assume W and W' to be dependent, then [W, W'] # 0 and (4.7) has to be 

solved with additional assumptions. In particular, when discounting bonds by 

bonds one may assume W = W' so that [W, W']t = t, (t ~ 0). Therefore, a 
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sufficient condition to obtain the martingale property in this case is 

µt(T) - µ~ - (J"t(T) 2 - (J"~(J"t(T) = 0, (t E [O, T]), (4.21) 

which requires an appropriate measure transformation to be fulfilled. 

5. CONCLUSIONS 

Within this paper we proposed a general approach to no arbitrage bond pric-

ing based on stochastic analytic tools as price generators, exponentials and forward 

derivatives. We were able to show that our requests (i) to (vi) in the introduction on 

a realistic bond price model are fulfilled. Starting from an exponential type evolution 

our no arbitrage condition fixed the bond price dynamics providing the key properties 

requested. 

Important is the consequence that the return premium represents just the squared 

volatility which interprets it as a measure for the change of the remaining risk. 

It is clear that this approach is extendable to the general pricing of other financial 

instruments on stocks and also price processes like bonds, options, etc. which we will 

consider in a forthcoming paper. 

Finally we remark that the explicit expressions for the obtained general bond 

price allow an easy computation e.g. as described in [16] for specific examples or by 

stochastic numerical methods as considered in [13]. The latter becomes inavoidable 

as soon as one studies multifactor models for the spot rate as we will discuss in the 

last appendix. 

6. APPENDIX: PROOFS OF MAIN RESULTS 

Theorem 2.1. Proof. We write equation (2.4) fort= 0. That gives 

1 (T (T 
1 = Zo(T) = Po(T) - lo µs(T)Zs(T)(s)ds - lo (}"8 (T)Zs(T)dW8 • (6.1) 
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Solve the above equation for Po~T) and replace in (2.4) to obtain: 

That is 

(6.3) 

Now, (2.4) will have a solution if and only if (6.3) has one. Since (6.3) has a unique 

solution given by the Doleans exponential £(8), the theorem is proved. To obtain the 

expression of Pt(T) it suffices to compute Pt(T) = P0 (T)Zt(T) = (Zr(T))- 1Zt(T) = 
(£(8)r )-1£(8)t, for all t 2: 0. D 

Lemma 3.1. Proof. It suffices to apply the remark which precedes the lemma, since 

£(8) = 1 + £(8) . 8, (6.4) 

and S decomposes as the sum of a martingale and a drift given by f~ D'!; 8du, (t 2: 
0). D 

Proposition 3.1. Proof. We notice that 

Pt+h(T) - Pt(T) = Zt+h(T) - Zt(T) (h > O t > O). (6.5) 
Pt(T) Zt(T) ' ' -

But Z(T) is a semimartingale, hence it is in particular adapted and 

for all t 2: 0, h > 0. Therefore, the limit in probability of the first member of the 

above equation exists when h l 0 and it is 

(6.6) 
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since Z(T) is a semimartingale. Moreover from Lemma 3.1 it follows 

Di Z(T) = Zt(T)Di S = Zt(T)µt(T), (t 2: 0), (6.7) 

so that 

. 1 Pt+h(T) - Pt(T) ' 
hm .pr -hlE( R (T) /:Ft) = µt(T), (t 2: 0). (6.8) 
h>O,h!O t 

To prove the formula for the volatility we use (6.5) and observe from (6.3) that 

(6.9) 

for all t ;::: 0. 

Since 
l lt+h Zs(T) 
h t µs(T) Zt(T) ds 

tends to µt(T) almost surely and in L1 then 

1 lt+h Zs(T) 2 
h( t µs(T) Zt(T) ds) 

goes to zero in L1 , hence in probability, as h l 0. And by the continuity of stochastic 

integrals with respect to the Wiener process we obtain also that 

goes to zero in L 1 and in probability as h l 0. 

Moreover, 
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and the last expression tends in probability to at(T) 2 as h l 0. Therefore, taking the 

conditional expectation with respect to :Ft in (6.9) and dividing by h > 0, we obtain 

lim.pr ~E [(Pt+h(T) - Pt(T)) 2 /:Ft] 
h>O,h!O h Pt(T) 

lim.pr ~E [(zt+h(T) - Zt(T))2 /:Ft] 
h>O,h!O h Zt(T) 

- at(T)2, (t 2: 0). 

D 

Lemma 4.1. Proof. We write Z' /Z as the quotient of Doleans exponentials applying 

formula (2.8): 

Z £(S') 
Z' £(S) 

- £(S' - S + [S, SJ+ [S, S']). 

Therefore, 

D[(;) = £(S' - S + [S, SJ+ [S, S'])D[(S' - S + [S, SJ+ [S, S']), (t 2: 0). 
(6.10) 

To complete the proof, we recall the remark after Lemma 3.1 : the quotient Z' / Z 

will be a martingale if and only if 

D[(S' - S + [S, SJ+ [S, S']) =lat(µ~ - µs + a/)ds +lat a~asd[W, W'Js = 0, (t 2: 0). 

D 

Theorem 4.1. Proof The first part of the theorem follows by a straightforward ap-

plication of Lemma 4.1 and is omitted. The second part is based on the martingale 

property of the quotient A/Z: 

At ( Ar ) Zt(T) = E Zr(T/:Ft ' (t 2: O). (6.11) 

We multiply both sides of the above equality by At1 which is an :Ft-measurable 

factor, going inside the conditional expectation. Using the explicit expression of A 
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that is A= A0£(S'), one can easily derive that 

Ar lr 1 lr 2 lr -A =exp( a~dWs - - a~ ds + µ:ds), (t ~ 0). 
t t 2 t t 

(6.12) 

Replacing the above quotient in (6.11) one obtains (4.8). Equation (4.9) follows by 

multiplication of (4.8) by P0 (T). 

To prove the property on the variance, we first notice that P0 (T)£(S')r has a 

second moment so that by the Martingale Limit Theorem: 

E(P0 (T)£(S')r/:Ft)---+ P0 (T)E(S')r, almost surely and in L2 , as t---+ T. 
(6.13) 

Since E(S') is continuous it follows that 

Po(T)E(S')r 
Pt(T) = E(Po(T)E(S')r/Ft)' 

converges to 1 JP-almost surely and also in L2 . But we also have 

JE(Pt(T))---+ 1. 

Therefore the variance of Pt(T) tends to zero as t---+ T. 

Finally, the balance equation follows by solving equation (4.8) in terms of E(S')t: 

this quantity is maturity independent. D 

Corollary 4.1. Proof. The first part is a trivial consequence of (4.9) for P0 (T) Fo-

measurable. The same holds for the balance equation which follows from ( 4.11) if we 

take P0 (T) and P0 (T') out of the conditional expectations. D 

7. APPENDIX: A MULTIFACTOR BOND PRICE MODEL 

Let us assume that the spot rate process can be obtained by a d-dimensional 

diffusion type stochastic diferential equation 
m 

dXt = ai(t,Xt)dt + Lbii(t,Xt)dW/, 
j=l 

(7.1) 
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for all 0 ::; t < oo, i = 1, ... , d, with Xt = ( Xl, ... , Xf), where the first compo-

nent Xl = rt represents the spot rate at time t. The other components of X can 

play the role of the volatility of the spot rate etc. Here the dynamics is driven by 

an m-dimensional Wiener process W = (WJ).f= 1 = (W/; t ;::: O).f=1 which is more 

general as we formulated in our derivations above. But those results are easily gen-

eralised to this case and we give here an example. The drift and diffusion coefficients 

ai(t,x), bi,j(t,x), i = 1, ... ,d, j = 1, ... ,m, represent real valued functions on 

[O, oo[xJR.d and are assumed to be continuously differentiable with respect to t and 

twice continuously differentiable with respect to x, having bounded first derivatives. 

Further, we suppose JEIXol 2 < oo. This model is quite flexible and covers most 

existing spot rate models. 

Given this specific structure for the spot rate dynamics we are now going to com-

pute the bond price process P(T) for fixed T E [O, oo[ and the volatility process 

a-(T)2. 

From ( 4.20) the bond price is easily obtained as 

1 
Pt(T) = P(t, Xt, T) = ( X) u t, t 

via the Feynman-Kac functional 

where u(t,x) solves the linear partial differential equation 

a ~ . a i ~ ~ .. 1. a2 
-8 u+ L.,aia iu+- L., L.,biJbJ 8 i8 lu+ru=O 

t i=l x 2i,l=lj=l x x 

(7.2) 

(7.3) 

(7.4) 

for all (t, x) E [O, T] x JR.d with terminal condition u(T, x) = 1. Applying now the Ito 

formula to P(t, Xt, T) = l/u(t, Xt) one obtains as stochastic differential equation for 
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the bond price dynamics 
m 

dPt(T) = (rt+ at(T) 2 )Pt(T)dt +Lal (T)Pt(T)dW/, 
j=l 

with volatility process 
m 

at(T) 2 =Lal (T) 2 , 
j=l 

where 

. d bii(t x) a 
af(T) = - E P(t, ~t, ~) 8xi P(t, Xt, T). 

In the cased= m = 1 this result corresponds to that in [16]. 
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(7.5) 

(7.6) 

(7.7) 

We note that in this multifactor model the noise terms can be quite different for 

bonds with different maturities, which explains part of the practical observation that 

the fluctuations of bonds are not always perfectly correlated. 
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