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Abstract: We investigate one-dimensional discrete Schrodinger operators whose potentials are 
invariant under a substitution rule. The spectral properties of these operators can be obtained 
from the analysis of a dynamical system, called the trace map. We give a careful derivation of 
these maps in the general case and exhibit some specific properties. Under an additional, easily 
verifiable hypothesis concerning the structure of the trace map we present an analysis of their 
dynamical properties that allows us to prove that the spectrum of the underlying Schrodinger 
operator is singular and supported on a set of zero Lebesgue measure. A condition allowing to 
exclude point spectrum is also given. The application of our theorems is explained on a series of 
examples. 
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I. Introduction 

In this article we present general results on the spectral properties of a class of one-dimensional 
discrete Schrodinger operators of the form 

(1.1) 

where /:::,. is the discrete Laplacian and V is a diagonal operator whose diagonal elements Vn are 
obtained from a substitution sequence [1]. By a substitution sequence we mean the following. Let 
A be a finite set, called an alphabet. Let Ak be the set of words of length k in the alphabet, 
A* = UkElNAk the set of all words of finite length, and AJN the set of one-sided infinite sequences 
ofletters. A map~: A --t A* is called a substitution. A substitution~ naturally induces maps from 
A* --t A* and AlN --t AlN, which we will denote by the same name and which are obtained simply 

be applying ~ to each letter in the respective words or sequences (e.g. ~(abc) = ~(a)~(b)~(c)). 

A substitution may possess fix-points in AlN, and such fix-points, u, will be called substitution 
sequences. There are two natural conditions that guarantee the existence of at least one fix-point, 

namely f'0 0, and that we will assume to be satisfied for all substitutions we discuss [1]: 

(Cl) There exists a letter, called 0, in A, such that the word ~(O) begins with 0. 

(C2) The length of the words C(O) tends to infinity, as n i oo. 

A class of substitutions we will in general deal with are the so-called primitive substitutions [1]. 
They are characterized by the fact that there exists an integer, k, such that for any two letters ai, 
a3 in A the word eai contains the letter ai. 

Given a fix-point u = (a0 a 1 a 2 •. • ) of a substitution ~, the associated sequence of potentials 
is now obtained as follows. Consider a map v : A --t IR (which we will always assume to be non-
constant ), we set, for n 2'.: 0, Vn = v( an)· This sequence is then completed to the negative side by 

setting, say, V-n-1 = Vn· 

Schrodinger operators with potentials of this type have attracted considerable attention over 
the last years in connection with the discovery of quasi-crystals [2,3]. For, indeed, the prototypi-
cal one-dimensional quasi-crystal is associated to the Fibonacci-sequences, which are substitution 
sequences associated to the substitutions ~ on the alphabet A = {a, b }, where 

~(a)=abn 

~(b) =a 
(1.2) 

(The most studied example (also called the Kohmoto model) corresponds to the case n = 1 and the 
Fibonacci sequence associated to the golden number). There is a host of numerical and analytical 

work been done for these models [4], with amongst the most notable mathematical results those 
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by Casdagli [5], Siito [6) and Bellissard et al [7], in which it was shown that the spectrum of these 

operators is always singular continuous and supported on a Cantor set of zero Lebesgue measure. 
All these results relied heavily on the very fact that the Fibonacci sequences are substitution 
sequences (in more technical terms, they employed the so called trace map, whose existence is 
a direct consequence of the substitution, as we will discuss in detail below), and this observation 
stimulated the investigation of other examples of substitution sequences. The first and most heavily 

studied [8] example was the Thue-Morse sequence [9], defined by the substitution 

~(a)= ab 

~(b)=ba 
(1.3) 

which offers an additional interesting feature in that it is not quasi-periodic. Again it was proven 
that the spectrum of the corresponding Hamiltonian is purely singular continuous [10,11) and, 
moreover, a complete description of the gap-structure of the spectrum, including the dependence 
of the gap-width on the potential strength could be given [10]. A further example, where the same 
type of results could be proven [11), is provided by the period-doubling sequence, with substitution 

~(a)= ab 

~(b) = aa 
(1.4) 

These results required, in each example, a rather detailed analysis of some dynamical system 
associated to the so called trace map. Unfortunately, for more complicated substitutions (e.g. on 
more than two letters), these become prohibitively complicated. Nonetheless, one would expect 
that certain qualitative properties of the spectra of such Hamiltonians should not depend on the 
details, but only on some general features of the substitution. 

There are, indeed, two promising approaches attempting to obtain more general results. One 
is the perturbative method of Luck [12) that establishes, on a heuristic level, a connection between 
the Fourier spectrum of the sequences themselves and the gap structure of the spectrum of the 

Hamiltonians and that allows even to compute the behaviour of the gap-widths. A shortcoming 
of this approach is, besides the difficulties to give mathematically rigorous justifications of some of 
the steps involved, that it fails to make clear predictions in situations where the Fourier spectrum 
of the underlying sequence is not of the pure-point type. Unfortunately, singular continous and 

even absolutely continous Fourier spectra are not at all uncommon for substitution sequences. 

Nonetheless we emphasize that this perturbation method is so far the most powerful tool to get 
fast quantitative predictions. 

Another attempt to obtain general information on these systems is based on the K-theory 
of C*-algebras. It was realized [13,14] that general gap-labelling theorems [15,16) can be applied 
particularly well in these cases as substitution sequences allow for an easy computation of the 
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corresponding Ko-groups. This allows then to predict all possible spectral gaps from a simple 

computation of a Perron-Frobenius eigenvector of a (not too large) matrix. The shortfall of this 
approach is, so far, that it cannot predict whether the allowed gaps will actually be open for 
given values of the potentials, and in the known examples, closed gaps do occasionally occur. In 
particular, the K-theory makes no predictions on the type of spectrum one may expect. 

In this article we attempt to obtain general results on the nature of the spectrum from a 
careful analysis of the trace maps. Indeed, it is natural to conjecture that the existence of an exact 
renormalization group structure, as is presented by the trace map, is responsible for the particular 

spectral properties observed in the examples. In particular, one may be led to believe that due 
to the existence of the trace map the singular spectral type should be the rule rather than the 
exception. We will prove here that this is true in some sense: namely, that under some conditions 
that can be verified fairly easily (there is a simple algorithmic procedure to verify them) and that 
appear to hold in most examples (the Rudin-Shapiro sequence [17] being a notable exception), the 

spectrum of our operators is always singular and supported on a set of zero Lebesgue measure. 
This result is based on the analysis of some general properties of the trace maps and of the ensuing 
characteristics of large time behaviour of the associated dynamical systems. These will allow to 
identify the spectrum with the set of energies for which the Lyapunov exponent vanishes. A general 

theorem proven already in [11] which is based on a profound lemma of Kotani [18] will then yield 
the result. 

A more subtle question relates to the existence of point spectrum: there is a simple supple-

mentary condition under which the existence of eigenvalues can be excluded, but this condition is 
not satisfied in all examples where the singular continuous nature of the spectrum was proven. 

The remainder of this article is organized as follows. In chapter II we review the derivation of 
the trace maps and exhibit some of their properties. We will define a new substitution rule on an 
extended alphabet that encodes the principal part of the trace map and formulate the assumptions 
entering in our theorem in terms of this substitution. In chapter III we formulate our main theorem 
and present its proof. We also discuss the problem of eigenvalues. In chapter IV we elucidate our 
results with some examples. 

Acknowledgements: We are grateful to Jean Bellissard for previous collaborations on this subject 

and for inspiring discussions. We also thank Monique Combescure for having brought ref. [20] to 
our attention. A.B. thanks the Centre de Physique Theorique, Marseille, for its warm hospitality 

and the Universite de Toulon et du Var for financial support. 
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II. The trace map 

In this section we give a careful review of the derivation of the so-called trace map and establish 

some crucial properties of these maps. The trace map was originally introduced by Axel and 

Peyriere [19], but we also refer to the paper [20] by Kolar and Nori in which a more general and 
systematic construction is given. 

As usual for one-dimensional discrete Schrodinger operators like (1.1 ), the analysis of their 

spectra is based on the discussion of the associated Schrodinger equation, written in vector form as 

( E- V. WE(n+l)= . l n (2.1) 

where '11E(n) = ('if;:(~(:) l)) with 7/JE the solution of the ususal Schrodinger equation Hv7/JE = 

E'if;E. Iterating equation (2.1) we get, of course, the solution of the initial value problem in the 
form of a product of matrices as 

(2.2) 

In the case of substitution sequences we are naturally led to define the maps TE : A -t S L(2, Ill) 
via 

(2.3) 

Again, by some abuse of notation we denote by the same symbol the maps TE : A* -t S L(2, Ill) 
where for w = (ao ... an-1) E An, 

(2.4) 

The map TE allows us to introduce the induced action of~ on Im(TE) via 

(2.5) 

and we will also use the notation 

(2.6) 

It is obvious from (2.4) that the action of~ defines a dynamical system on SL(2, Jll)IAI, since 
Tkn)(a), o: E A, can be expressed as a product of matrices Tkn-l)(a), a E A. The analysis of 

this dynamical system could in principle yield all desired information on the spectrum of (1.1). In 

practice, however, it turns out to be difficult to work with this system directly and it is advantageous 
to pass to a new dynamical system based on the traces of the matrices Tkn) ( w). 
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Let us define, for w EA*, xE(w) = trTE(w). Of course we may write also x~)(w) = trT1n)(w) 
and obviously we may extend the action oft to write tx~-i)(w) = x~)(w), however this time there 
is no immediate expression of tx~-l) (a) as a function of the x~-l) (a), i.e. a realization of this 

action as a dynamical system on _mlAI and in general such a realization will not exist. However, it 
is always possible to find a finite subset, 13 C A* such that for all w E 13, x~) ( w) can be expressed 
as a function of the x~-l)(w), with w E 13, that is a realization of the action oft as a dynamical 
system on _mlBI. Such a dynamical system is called a trace map. Note that in the sequel we will 
use the names {3 or f3i for the elements of 13 to distinguish them from generic words w. Following 
[20], such a trace map can be constructed for any substitution in the following way. 

Notice first that for unimodular 2 X 2-matrices A, B, the Cayley-Hamilton theorem yields 

tr(AB) = trAtrB -tr(BA-1 ) (2. 7) 

It is easy to deduce from this relation (see [20]) that for three such matrices A, B, C, one has 

tr (ABAC) =tr (AB)tr (AC)+ tr (BC) - tr Btr C (2.8) 

Let us label the letters in A by a 1, ... , aK, with K = JAi. Starting with a1 we write 

x~+l)(ai) =tr IT T1n)(a) (2.9) 
aE€a1 

Now there are two possibilities: if ta1 contains no letter of A twice, then we set f3K+1 = ~a1. The 
word f3K+i will then be considered as a 'letter' in the new alphabet 13 (which also contains all the 
letters ai from A) that we will construct. More precisely, due to the invariance of the trace under 
cyclic permutations it is natural to identify words ta1 that differ unly by a cyclic permutation of 
their letters, so that the elements of 13 will really be equivalence classes of words in A*. 

If ta1 contains a letter, say a, in A twice, then an element in its equivalence class may be 

written in the form aw1 aw2 , and thus by (2.8), 

(2.10) 

We now proceed with each of the traces appearing in (2.10) just as before, that is if a corresponding 
word (say aw1 ) contains no letter twice it is included into 13, whereas for words that still contain 
a letter twice, (2.8) is again applied. The important point is that with each application of (2.8) 
the words that may appear become strictly shorter so that this process necessarily terminates 
after a finite number of steps, leaving us with x~+l)(a1 ) expressed as a polynomial in the variables 
xC:)(f3i), with f3i elements of some finite set 13. The same procedure is now applied on the remaining 
letters ai in A, and finally on the new letters f3i E 13 that have been introduced in the process. 

5 



But since the elements of B are equivalence classes of words in A. that contain no letter twice, the 
length of these words is a priori bounded by K, and the cardinality of B by [20] 

K K' 
IBI ~ ~ (l + ~)! (2.11) 

so that the algorithm described above will terminate after a finite number of steps. In the end we 
have, for each /Ji E B, an expression 

(2.12) 

where each f{3 is a polynomial in the IBI variables xC:)(/31), ... , xC:)(/31s1)· 

An important further characterization of these maps can be given through the following notion 
of a 'degree', d, defined as follows: Put 

d(xC:)(w)) = lwl (2.13) 

and let 
(2.14) 

and 
(2.15) 

We collect the properties of the trace map in the following 

PROPOSITION 2.1: Let~ be a substitution on an alphabet A. of cardinality K. Then there exists 
an alphabet B whose elements are words modulo cyclic permutations in U~1 A.1, such that A. C B 
and IBI ~ '2:~1 ci!i)!, such that xC:)(/3), /3 EB is a dynamical system on 1Rl8 1, i.e. there exists a 
polynomial map, f: .mlBI --t .1Rl8 1, s.t. (2.12) holds for each /Ji EB. Moreover f satisfies 

(2.16) 

Finally, there exists a unique monomial of highest 'degree' (whose coefficient is one) in f{3; which 
we shall denote by f 13, 

Proof: Most of the proposition is evident from the construction given above and has already been 
noticed earlier [20]. The statement (2.16) on the degree is also evident from the fact that only (2.8) 
is used in the construction of the trace map and that there is exactly one term on the right hand 
side of (2.8) that has the same degree as the term on the left. O 

Remark: The reader may notice that the construction of the trace map (and not even the alphabet 
B) is not unique, and that in general several trace maps can be obtained for the same substitution. 
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They will all, however, enjoy the properties stated in proposition 2.1. For practical purposes, one 
may try to minimize the size of B and consider the trace map on invariant submanifolds. For our 
general considerations here this will be of no importance. 

The map J, introduced in proposition 2.1, will be called the reduced trace map and is of central 

importance for our analysis. We find it useful - and natural - to associate with J a substitution, 
</> : B -t B*, in the following way: Let us first define the map xkn) : B* -t IR such that for any 

w = (f31 ... f3k) EB*, 
X (n)( ) _ (n)({3 ) (n)({3 ) E W =XE 1 .. . XE, k (2.17) 

Then </>is a substitution such that for any {3 E B, 

(2.18) 

Properties of the substitution </> will be crucial for our analysis. The substitutions ¢ associated to 
trace maps will typically not be primitive, but have a structure that we will call semi-primitive: 

DEFINITION 2 .1: A substitution ¢ on an alphabet B is called semi-primitive, if 

{i) There exists a subset C C B such that </> maps C into C* and the restriction of¢ to C is a 
primitive substitution on the alphabet C. 

{ii) There exists a positive integer k such that for each letter {3 E B, ¢k({3) contains at least one 
letter from C. 

Note that although (2.18) does not uniquely define the substitution¢, (since xkn)(w) does not 
depend on the order in which the letters appear in w but only on their multiplicity) either all or 

none of the substitutions satisfying (2.18) for a given j are semi-primitive. In most examples of 
trace maps associated to primitive substitutions~ we have analyzed (see section IV), the associated 
substitutions ¢turned out to be semi-primitive, the Rudin-Shapiro sequence being the only counter-
example. 
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III. Trace map and spectrum 

In this section we review the determination of the spectrum of H through the dynamical 
spectrum of the trace map and some of its consequences. In particular, we will prove the main 
result of this article, that is 

THEOREM 1: Let ~ be a primitive substitution d~fined on a finite alphabet A. Let v a be non-
constant map from A to IR and Hu the Schrodinger operator defined in ( 1.1). Suppose there exists 
a trace map whose associated substitution ¢, defined on an alphabet B, as described in section II, 
is semi-primitive. Assume further that there exists k < oo such that eko contains the word /3/3 for 
some /3 EB. Then the spectrum of Hu is singular and supported on a set of zero Lebesgue measure. 

The strategy of the proof follows the one used in [11] to prove that the spectrum of Hu is 
singular continuous in the particular case of the period doubling sequence. 

Let us begin by defining the so-called unstable set U. 

DEFINITION 3.1: 
_ { (0) IBll:::i w I (n)( )I } U = XE E IR .::Jn0 <ooVn:;:>:n0 XE 0 > 2 (3.1) 

Since in the sequel we will want to speak, for fixed v, of the set of energies such that x~) 
belongs to U or in fact other sets we will define later, it will be convenient to define, for any set 
Y c IRllBI, E(Y) c IR, by 

E(Y) = { Elx~) CY} (3.2) 

Notice that E(Yc) = E(Y)c, where the superscript c indicates the complement of a set. The 

definition of U (notice that it differs from the one given e.g. in Siito [6]) implies immediately 

LEMMA 3.1: (Bellissard [10]) For givenv, E(intU) C a(Hut· 

Proof: Let H~n) be the periodic approximants of H11 with period l~nOI. Obviously, H~n) converges 
strongly to Hu as n j oo. Now Tkn)(O) is the transfer matrix over one period for H~n), and if its 

trace has modulus greater than two, Floquet's theory tells us that E is not in the spectrum of 
Hin). By definition ofU, EE E(U) implies that there exists no s.t. for all n ~ n0 , thi0s is the case, 
and thus E E E(int U) implies that E lies in the interior of a spectral gap for all H~ n) with n ~ n0 . 

Since strong convergence implies convergence of the resolvent in gaps, Eis also in the resolvent set 
of Hu, which proves the lemma.O 

In principle we would like to prove also the converse oflemma 3.1 which would allow to compute 
the spectrum of Hv from the trace map. In [11] we have seen that if U is such that the Lyapunov 
exponent vanishes for E E £(Uc), then not only the converse of lemma 3.1 holds, but also, applying 
some general results of Kotani [18], the spectrum has zero Lebesgue measure. However, while the 
definition of U is convenient to prove lemma 3.1, it is inconvenient to describe U in more detail 

8 



since in order to decide whether x~) is in U we need to control xC:) for all n. In [10] and [11] a 
simpler characterization was found in the cases of the Thue-Morse and period-doubling sequences 

which required information on xC:) only for some n. We will give such a characterization in the 
general case. In fact, we will define a set U that a priori is contained in U but that is big enough 
such that for energies E E e(Uc, the Lyapunov exponent vanishes. 

To define this set, let us introduce the maps p(n) : B ~ IR by 

(3.3) 

and let 

p(n) = maxp(n)((3) 
max f3EB 

(3.4) 

From now on we will always consider a trace map whose associated substitution ¢ is semi-
primitive. Recall that this means that ¢is primitive on an alphabet C C B. 

DEFINITION 3.2: Let U€,c,n be the subset of JRl8 1 such that x~) E U€,c,n implies 

(i) 

(3.5) 

(ii) 

(3.6) 

We have the following 

LEMMA 3.2: For any€> 0 and £1 > £1 there exists c < oo such that if x~) E U€,c,n 1 then for all 
/ (0) - · [ (0) n > n 1 ~ E E U€1 ,c,n'. In particu ar1 x E E U. 

Proof: Nate first that a priori U€,c,n C {.{€, ,c' ,n if £1 ;:::: E and c' ~ c. We will now show that 
u€,c,n c u€' ,c' ,n+i, for all t:' ;:::: t: + 2c-011 and c' ~ c11<1-€'), where o > o is some constant that 
depends only on the substitutions e and ¢, and () > 1 depends only on the substitution e (in fact, 
() is the largest eigenvalue of the 'substitution matrix', i.e. the matrix whose entries Mij are the 

number of times the letter a, appears in the word eaj [1]). Iterating this result one sees that 
U€,c,n c u€,.,q,n+ki where Ck grows like ckl1(l-€) and Ek ~ € + 2::7=:1 c;8 ~ €,with, e.g., E ~ ~€if c 
is chosen sufficiently large. This obviously will imply the lemma. 

The crucial idea of the proof is the observation that for n sufficiently large x~) E U€,c,n implies 
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that f w "' f w· Indeed, for any /3 E 13 

(3. 7) 

Using the fact that by assumption for any r E C, ¢( r) contains only letters in C, in a similar way 

we obtain for any r E C 

On the other hand 

IBI 
lf13(x~)) - f13(x~))I ~ const. sup IT lx~)(/3i)r' 

{n;}: .L~:11 n;1€" f3d< 1€"+ 1 131 i=:l 

[ (n) ] l€"+ 1f3l-infti;EB 1Cf3;J 
~ const. Pmax 

[ (n) ] 1€"+ 1 131(1-~) 
~ Pmax 

where K is some strictly positive constant. Here we have used that 

and 

inf lln/3il 2:: inf llnal f3;EB a EA 

Moreover, for primitive substitutions (see e.g. [1]), 

lln+lal 
----- -t (}, uniformly in a EA 
infaEA llnal 
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which implies the last inequality in (3.9). For c sufficiently large, the constant in (3.9) can be 
w+1 .B1 

bounded by an arbitrarily small power of [P~~x J and thus it can be absorbed in ;;,, 

Putting together (3.7) and (3.9), we get for all {3 E l3 the upper bound 

(3.13) 

Thus 

(3.14) 

( [ c .. i Jle"+i111[ c .. i ]"1e"+ 1 111)-i < [ (n) ] 1+ In Pma.c Pm.a.• 
Pmax 

< [ (n) ] l+c-h 
Pmax 

where we have used the lower bound on p~lx implied by (3.7). Since the bound in (3.14) is uniform 
in {3, the last line in (3.14) is an upper bound for p~dx1 ). In much the same way we obtain a lower 
bound on p( n+i) ('y) for / E C, namely 

(3.15) 

Here we assumed that €is smaller that ;;, (Since ;;, is some absolute constant that depends only on 
the trace map, we may always choose €, for instance, smaller than ;;,/2). Putting (3.14) and (3.15) 
together, we get that 

(3.16) 

and 

[ ] 
min,.e.A l~"+ 1 al 

' (n+l)( ) > 11(1-€-C-B(><-<) mmp 'Y _c 
-yEC 

(3.17) 

as claimed above and the proof of lemma 3.2 is completed. 0 
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Let us now chose € > 0 and c < oo such that the conclusion of lemma 3.2 holds. Of course the 
actual values will depend on the particular substitution studied. With this choice define 

- _ { (o) I . (o) - } U = XE 3n0 :;::o . XE E Ue,c,no C U (3.18) 

The inclusion of U in U is of course a consequence of lemma 3.2. Observe that by its definition, U 
is an open set (which in principle need not be true for U). The complement of U is given as 

(3.19) 

We will show that under some assumption on J, the set f1c is such that all xC:) (/3) E f1c grow more 

slowly than exponential with l~n/31. 

PROPOSITION 3.1: Suppose</> is semi-primitive. Then x~)(/3) E f1c implies that for all {3 EB, 

(3.20) 

Proof: Proving the proposition is equivalent to proving that /;;lx ~ 1. We proceed in two steps: 
First, we use the fact that </> is primitive on C to show that there exists a k and a 6 > 0 such that 

for all n, 

I'fiff-/n+k\y)::; [P~lx] 1-6 (3.21) 

Then we use this inequality together with the second condition from the definition of semi-primiti-
vity to show that there exist k' and 61 > 0 such that 

1 o' 
P(n+k+k') < [P(n) ] -

max - max (3.22) 

Iterating (3.22) then immediately implies (3.20) and proves the proposition. 

Now for each {3 EB, 

(3.23) 

where f~k)(xC:)) is a polynomial s.t. 

(3.24) 

and 

(3.25) 
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so that as in the proof of lemma 3.2, 

lf(k)( (n)) - Jt(k)( (n))I < t [ (n) ] l€"Hi3l-minaEA- IE"a[ 
f3 XE i3 XE _cons k Pmax 

[ (n) ] [€"Ha[(l-K.) 
~ Pmax 

(3.26) 

w·+•.B1 
where 1 > K. > 0 depends only on k, provided [P~lx] is sufficiently large (but otherwise 
(3.20) is trivially true). 

Now, to prove (3.21), notice that , since x~) E uc, there exists i EC, such that either 

(3.27) 

or 
Jx~)(i)l 1ei11 ~ [P~lx] 1-e (3.28) 

Now choose k such that ¢k"Y contains all letters in C (and in particular i) so that 

!Cl 
lj~k)(x~))I ~ sup IJ lx~)("Yi)ln' X lx~)(i)I 

{n;}: 2:::;~1 n;l€""Y• l=IE"H"Y[-1€"'\'I i=l 

[ (n) ] IC'H"Yl-1€"'\'[ [ (n) ] (1-e)[f"'YI 
~ Pmax Pmax 

(3.29) 

= [ (n) ] IC'H"Y[-el€"'\'I 
Pmax 

Since !~nil 2: K.j~n+k"YI, uniformly in "Yi i EC, this yields 

I ( ) I [ (n) ] 
IE"+i."Y[(l-K.e) 

j~k)(x; ) ~ Pmax (3.30) 

which together with (3.26) gives (3.21). 

Finally, we choose k' such that for all f3 E B, ¢k' f3 contains a letter, say i, from C. Then 

(3.31) 

from which (3.22) follows as before. This proves the proposition. 0 

Remark: Proposition 3.1 provides us with a nice dichotomy: for substitutions with semi-primitive 
reduced trace maps, for any initial condition x~), either all components of x~) diverge in absolute 
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value exponentially fast with the same rate, or no component grows exponentially fast. To prove 

this it was crucial that for primitive substitutions the lengths of the words l~nal grow with n 
exponentially fast with the same rate, i.e. llnal "" on, where B is the largest eigenvalue of the 

substitution matrix (see e.g. [1,14]). 

Our next task will be to show that - under some extra conditions - the Lyapunov exponent, 
too, will be zero if x~) E z1c. This is the contents of 

PROPOSITION 3. 2: Suppose j satisfies the assumptions of proposition 3.1. Assume further that 
there exists k < oo such that ~kO contains the word {3{3 1 for some f3 E 8. Then x~) E z1c implies 
that 

(3.32) 

(Here u(n) denotes the word consisting of the first n letters of the substitution sequence u = ~00 0) 
Proof: We show first that 

Now let us denote 

Using the Schwarz inequality, one finds that 

Now choose k such that ~kO contains {3{3, for some f3 E B, and use that 

where by proposition 3.1 JJ:z:~)(/3)1!1/l€"/3I l 1. Thus 

IAI 
JJT1n+k)(a)ll $ l:z:~)(/3)1 sup IT JJT1n)(ai)lln' 

{n;}: 2: nd€"ad= l€"Hal-1€"/31 i=l 
IAI 

+ sup IT JJT1n)(ai)lln' 
{n;}: 2: nd€"ad=l€"+i.al-21€"/31 i=l 

[ (n) J 1c+i.al(l-ri.) 
$ Rmax 

from which (3.33) follows as the analogous statement in proposition 3.1. 

From (3.33) one obtains (3.32) just as in [11]. <) 
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(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 



Remark: Note that the condition in proposition 3.2 that {3 E B is not very restrictive. For, if 
some other word, say w, appears as ww in u, one may always extend the alphabet B to include w 

and study the corresponding trace map. 

Proposition 3.2 provides in fact two pieces of information: First it shows that the Lyapunov 
exponent vanishes on uc. However, this also implies that if E E a(Hv)c, then x~) E U. This 
is implied by the general fact that for Schrodinger operators the Lyapunov exponent is strictly 

positive if E is outside the spectrum (see, e.g. [21 ]). This allows us to prove 

PROPOSITION 3.3: Suppose Hv permits a trace map satisfying the assumptions of proposition 
3.2. Then EE a(Hv) if and only if 1(E,v) = 0. 

Proof: To prove the proposition, set 

0 = {El1(E,v) = o} (3.38) 

We have just seen that £CfJY C 0 while in general 0 C a(H11 ). On the other hand, lemma 3.1 
shows that a(Hv) C (int £(U))c, while by lemma 3.2 and the definition of U, £(U)c C £(U). But U 
and thus £( U) are open sets, so that the last inclusion also holds for the complement of the interior 
of £(U), so that finally we have the chain of inclusions 

(3.39) 

which clearly implies the equality of all these sets and proves the proposition. O 

Theorem 1 is now a direct consequence of the following general theorem that was proven in 
[ll]: 

THEOREM 2: [11] Let Hv be an operator of the form {1.1} where Vis a potential that takes only 
finitely many values. Let ( n, T) denote the topological dynamical system where n is the closure of the 
set of translates of the sequence Vn and T the shift operator. Assume that Vn is aperiodic and (!1, T) 
permits a unique ergodic T-invariant probability measureµ. Then, if a(Hv) = {El1(E,v) = O}, 
a(H11 ) is supported on a set of zero Lebesgue measure. In particular, a(Hv) has no absolutely 
continuous component. 

This theorem is in fact a consequence of a lemma of Kotani [18] which states that for aperiodic 
potentials that take only a finite number of values, the set of energies for which the mean Lyapunov 

exponent (where the mean is taken over the hull n with respect to the T-invariant measure µ) 
vanishes is of Lebesgue measure zero. Using a result of Herman [22] one can then show, along the 
lines of a proof of A vron and Simon [23] in the case of almost periodic potentials, that under the 
assumption of unique ergodicity the sets on which the Lyapunov exponents for different elements 
in the hull vanish may differ only by sets of zero Lebesgue measure. The detailed proof of this 
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theorem can be found in [11] and will not be reproduced here. The assumption of unique ergodicity 
is satisfied for substitution sequences based on primitive substitutions. The proof of this result is 
rather elaborate and may be found in the book by Queffelec [1]. Therefore, theorem 1 is proven. 
<)<) 

Theorem 1 shows that for substitution sequences satisfying our hypothesis, the spectrum is 
manifestly different from both periodic (absolutely continuous spectrum) and random (dense pure 
point spectrum) potentials. However, in the examples more precise results were proven in that 
also the existence of eigenvalues could be excluded. In our general setup we can only exclude this 
possibility under a simple supplementary hypothesis: 

THEOREM 3: Suppose the hypothesis of theorem 1 are satisfied. If in addition there exists no < oo 
s.t. en°0 = /3/3w, where /3 E J3 and w EA*, then the spectrum of Hv is purely singular continuous. 

Proof: The basic idea of the proof was used already in Siito [6] to obtain the same result for the 
Fibonacci sequence. Namely, note that under our assumption for all n 2': n 0 , 

(3.40) 

and therefore Tkn-no)(/3) and Tkn-no)(/3) 2 are transfer matrices over le(n-no)/31 and 21e<n-no)/3l 
sites, respectively. Now, (2.7) implies (see e.g. [6]) that for any vector W E IR2 , 

(3.41) 

To use (3.41), we only need the following 

LEMMA 3.4: Let f3 E !3 be any word such that u begins with {3. Then, for all E E a(Hv) there 
exists a sequence of integers ni tending to infinity such that for all i, lx~")(/3)1::; 2. 
Proof: Define the set 

_ { (0) /B/J=i w I (n)( )I } U13 = XE E IR ::.Jno«'° Vn~no XE /3 > 2 (3.42) 

Obviously, the conclusion of lemma 3.4 holds for all E E e(U13 )c; on the other hand, the proof of 
proposition 3.3 carries over unchanged if U is replaced by u13 which implies that e(U13 )c = e(U)c = 

a(Hv)· This proves the lemma.<) 

Let now E E a(Hv) and let WE be a solution of (2.1), i.e. a solution of the Schrodinger 
equation. Let ni be the sequence given by lemma 3.4. Assume that WE( 1) f: 0 (otherwise, of 
necessity, W E(O) will be nonzero, and the discussion below can be repeated with ni replaced by 
-ni)· Then 

111/iEll~ 2': f max {llW E(len• /31)11 2 , llw E(l2en; /31)11 2 } 2': f ~ llw E(l)ll 2 = oo 
i=l i=l 

(3.43) 



which proves that 1/JE is not in l2(.m) and thus that Eis not an eigenvalue. But since this holds 
for all energies in the spectrum, the theorem is proven. 00 

Remark: The proof of theorem 3 implies the stronger result that for all energies in the spectrum, 
no solution of the Schrodinger equation tends to zero at both plus and minus infinity. 

Remark: The remark after proposition 3.2 again applies to the condition /3 E B . 

Remark: The hypothesis in theorem 3 is clearly not necessary. The period doubling sequence pro-
vides an example where the hypothesis does not hold but the spectrum is still singular continuous. 

This is also true for the Thue-Morse sequence [10,11], where, however, an additional symmetry 
allows to use essentially the same argument. We feel that in all cases where the hypothesis of 
theorem 1 hold, the spectrum should be singular continuous. 
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IV. Examples 

In this final section we consider some specific examples, in fact the same ones as in [14]: the 

Fibonacci sequence, the Thue-Morse sequence, the period-doubling sequence, the circle sequence, 
the 'binary' and 'ternary' 'non-Pisot' sequences and finally, rather as a 'counter-example', the 
Rudin-Shapiro sequence. 

In all examples (except Rudin-Shapiro) the alphabets A will consist of at most three letters 
that we denote by a, b, c. For the corresponding traces (that we identify with the elements of B) 
we will use the simplified notations 

1. The Fibonacci sequence 

x = trTE(a) 

y =: trTE(b) 

z = trTE(c) 

u =: trTE(a)TE(b) 

v = trTE(b)TE(c) 

w = trTE(a)TE(c) 

r =: trTE(c)TE(b)TE(a) 

( 4.1) 

The Fibonacci sequence is the fixpoint of the substitution ~on two letters, a and b, defined by 

a-+~(a)=ab 

b-+ ~(b) =a 
( 4.2) 

The substitution ~ is primitive, since e (a) = aba and e ( b) = ab both contain all the letters 
of the alphabet. Using (2. 7) the reader verifies easily that a trace map f is found as 

X-+U 

y-+x ( 4.3) 

U-+ XU -y 

Thus the reduced trace map J is then 

X-+U 

y-+x ( 4.4) 

U-+ XU 

Obviously, ( 4.4) may be viewed directly as the substitution ¢, defined in section 2, acting on the 
letters x,y,u. This substitution is semi-primitive, since, with C = {x,u} 
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(i) ¢maps C into C* and ¢ 2 (x) = xu and ¢ 2 (u) = uxu both contain all the letters of C. 

(ii) ¢ 2(x) contains x and u, ¢ 2 (y) contains u and ¢ 2(u) contains x and u. 

Moreover, since O is given by a, eo = abaab and thus contains the square of the word a. 

Therefore all the hypothesis of theorem 1 are satified and then the spectrum of H v is singular 
and supported on a set of zero Lebesgue measure. 

Moreover, eo = abaababa begins with the square of the word aba. Now, aba is not a word 
in B, however, following the remark after proposition 3.2 we may enlarge B by including the letter 
t = aba. A simple calculation shows then that ¢(t) = xyu and this extended trace map is still 

semi-primitive. Thus, theorem 3 implies that the spectrum of Hv is purely singular continuous. 

This of course recovers here a result already proven in [6] and [7]. 

2. The Thue-Morse sequence 

The substitution this time is defined by [9] 

a - e(a) =ab 

b-e(b)=ba 
( 4.5) 

Obviously, the substitution is primitive. Notice that both the letters a and b can be taken as 

"O" and that there are therefore two fixpoints e00 (a) and f"'(b). 

Using again (2.7) with A= B, we can find the following trace map/: 

X-tU 

y-tu 

u -t xyu - x2 - y 2 + 2 

and the corresponding reduced trace map f and the substitution ¢ are 

X-tU 

y-tu 

u-t xyu 

This time, the substitution ¢ is even primitive since ¢ 2( x) 
contain all the letters of B. 

¢2(y) xyu and ¢ 2 (u) 

( 4.6) 

( 4.7) 

Finally, chasing a as 0, e0 = abba, which contains the square of the word b. Therefore theorem 

1 holds and thus the spectrum of Hv is singular and supported on a set of zero Lebesgue measure. 

As we noticed in the last remark of chapter 3, although we cannot apply theorem 3, the 

spectrum of Hv is purely singular continuous, as was proven in [10] and [11]. 
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3. The period-doubling sequence 

It is defined as the fixpoint of the primitive substitution 

The trace map here is 

</> is given by 

a --+ l( a) = ab 

b--+ l(b) = aa 

x --tu 

y--+ x2 - 2 

x --tu 

With C = (x, u) one checks that it is semi-primitive, since 

(ii) ¢2(x) contains x and u, ¢2 (y) contains u and ¢2 (u) contains x and u. 

( 4.8) 

( 4.9) 

( 4.10) 

Finally, l20 = abaa contains the square of the word a and thus theorem 1 applies. However, 
the hypothesis of theorem 3 are not verified, although it was proven (through a rather cumbersome 
calculation) in [11] that the spectrum is singular continuous. Note however that the 'inverted' 
sequence (obtained by setting l(a) = ba) satisfies the hypothesis of theorem 3. 

4. The circle sequence 

The circle sequence is associated to the substitution l on three letters 

a--+ l(a) = cac 

b --t l(b) = accac 

c--+ l(c) = abcac 

( 4.11) 

This substitution has IJ.O fixpoint, since it does not posses a letter "O", but it has a cycle of length 
two and the twice iterated substitution has two fixpoints. 

Using then the identities (2.7) and (2.8), we find an alphabet B =(a, b, c, ab, be, ca, abc), iden-
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tifi.ed with B = (x,y,z,u,v,w,T), and the following trace map f 

x -t zw - x 

2 y -t zw - xw - z 

Z -t WT - y 

u -t (zw - x)(zw 2 - xw - z) - w 

v -t (zw 2 - xw - z)(wT - y)- yz + v 

W -t (WT - y )( ZW - X) - U 

r -t (wT - y)(zw - x)((zw 2 - xw - z) - w) + w 2T - T - yw - u(zw 2 - xw - z) 

The reduced trace map J is 
x -t zw 

y -t zw 2 

Z -t WT 

u -t z 2 w 3 

v--+ zw3T 

The associated substitution </J is again semi-primitive with C = (z, w, T ), since 

(i) <P maps c into c· and ¢2 (z) = zw 2Tz2w 4T, ¢2 (w) = WT(zw 2T) 2z 2 w 4T 

and ¢2(T) = (wT) 2(zw 2T)4z2w 4T 

(ii) For any f3 EB, ¢2 (/3) contains z, w and T. 

(4.12) 

(4.13) 

Moreover e2 c begin with the square of the word ca E B so that both theorem 1 and 3 apply 

and show that the spectrum is singular continuous in this case, too. 

5. Binary non-Pisot sequence 

This sequence corresponds to the substitution 

and the trace map 

a -t e(a) =ab 

b --+ e ( b) = aaa 

x -tu 

y -t x 3 - 3x 

u--+ x3u - 2xu + y 
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with reduced trace map 

( 4.16) 

Here C = (x,u) and since ¢2 (:z:) = x 3 u and ¢2 (u) = x4 u3 , we see that the substitution <Pis 
semi-primitive. Moreover, eo = abaaa contains the square of the word a, so theorem 1 applies. 

Theorem 3, however, does not apply in this case (although again, as in the case of the period 

doubling sequence, the inverted sequence satisfies the hypothesis of this theorem) and we do not 
know for sure whether the eigenvalues are present in this example. 

6. Ternary non-Pisot sequence 

This sequence corresponds to the substitution 

a-~(a)=c 

b-~(b)=a 

c - ~(c) = bab 

( 4.17) 

As in the case of the circle sequence, this substitution does not posses a fixpoint, but a cycle of 

length three, whose three elements can be considered as substitution sequences. With the alphabet 

B = (x,y,z,u,v,w), we can find the trace map f 

y-x 

z - yu+ x 
( 4.18) 

u-w 

v - u2 - 2 

W - UV+ W- XZ 

and the reduced trace map 
x-z 

y-x 

z-yu 
( 4.19) 

v-u2 

w-uv 

The substitution <Pis semi-primitive with C = (u,v,w) since ¢5 (u) = wu2uvuv, ¢5 (v) 
uvw2uvw2 and ¢5 (w) = wvw3u2wu2 and for any f3 EB, ¢3 ({3) contains u, v and w. 
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Moreover, e5a = e6 b = e4 c = babacabab begins with the square of the word ba. Therefore, by 
theorems 1 and 3, the spectrum of Hu is purely singular continuous. 

7. The Rudin-Shapiro sequence 

The Rudin-Shapiro sequence [17) is defined on an alphabet of four letters. The substitution 
rule is 

a -t ~(a)= ac 

b-te(b)=dc 

c-te(c)=ab 

d -t e(d) =db 

( 4.20) 

This :final example serves to illustrate that even the hypothesis of theorem 1 are not always satisfied. 
It has been remarked in different contexts (see [12]) that the Rudin-Shapiro sequence has quite 
exceptional properties and that the analysis of the spectrum of the associated operators eludes 
perturbative and even numerical methods. 

One may note from the start that no square of any word may ever appear in an iterate of any 
of the letters a, b, c or d. This already shows that we will not be able to apply theorem 1. 

Moreover, using the trace map computed by [20], we obtain a reduced trace map J on an 
alphabet B = (x,y,z,w,s,t,q,r) (this trace map was obtained in [20] in a clever way in order to 
stay with as few traces as possible. A straightforward derivation would give a map on twelve letters 
which would share the same properties) 

x -ts 

y -t t 

z -t t 

( 4.21) 

t -t q 

q -t xwr 

r -t yzq 
It is easy to notice that the two alphabets C1 = (x,w,t,r) and C2 = (y,z,s,q) are mutually 
exchanged by the substitution <P associated to J. This implies that <Pis not semi-primitive. Now, 
C1 and C2 are left invariant under <P2 and one might hope to simply study the dynamics of the trace 

maps on the two sub-alphabets separately. However, the subdominant terms in the trace map 
(which we have not written, but see [20]) do not respect this invariance which makes it impossible 
to even adapt the proof of propositions 3.1 and 3.2 to this situation. So once again, the Rudin-
Shapiro sequence retains its mistery. 
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