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Abstract

We attempt to recover a regression function from noisy data. It is assumed

that the underlying function is a piecewise entire analytic function. Types

and the number of singularities are assumed to be unknown. We show how to

chose smoothing parameters and a wavelet basis to achieve the asymptotically

minimax risk up to the constant.

1 Introduction

E�cient computational implementation has made wavelets very popular in non-

parametric estimation. It is well-known that in most cases wavelet based estimators

are almost rate optimal. See e.g. Donoho & Johnstone (1995), (1998), Donoho &

Johnstone & Kerkyacharian & Picard (1996). In this paper we give an example of a

regression problem showing that a sharp minimax asymptotic can be also achieved by

the standard wavelet method based on the thresholding idea proposed by D. Donoho,

Y. Johnstone, G. Kerkyacharian, and D. Picard in early nineties. Suppose that we

are given noisy data

dXn(t) = f(t) dt+
�
p
n
dw(t); t 2 [0; 1]; (1)

where w(t); t � 0 is the standard Wiener process. Our goal is to recover the unknown

function f(t); t 2 [0; 1] based on the observations Xn(t); t 2 [0; 1]. We will assume

from now on that n!1.

In order to develop a nontrivial theory of regression estimation, one usually speci-

�es some functional class F , to which f(�) is assumed to belong. H�older's, Sobolev's,

and Besov's functional classes are often used in non-parametric estimation. Along

with these functional classes, entire analytic functions of a �nite order constitute an

interesting functional class which is also very popular in engineering applications (see

Gallager (1968)). This functional class is deeply studied and commonly used in data

transmission theory. In statistical usage it was introduced by Ibragimov & Khasmin-

skii (1982) in the context of density estimation. Formally, this class is de�ned as the

set of all real-valued functions f such that

f(t) =

Z
�W

��W

ei t�g(�) d�; where

Z
�W

��W

jg(�)j2 d� � P:

Denote this functional class by F0(W;P ). A remarkable property of F0(W;P ) show-

ing why it is popular in applications is due to the so-called Sampling Theorem. This

theorem states that any function f(�) from F0(W;P ) admits the representation

f(t) =
1X

k=�1

f

 
k

W

!
sin[�(tW + k)]

�(tW + k)
: (2)

The above formula provides us with a heuristic idea of approximation of the function

f(t) from F0(W;P ) on the unit interval [0; 1]

f(t) �
WX
k=0

f

 
k

W

!
sin[�(tW + k)]

�(tW + k)
; t 2 (0; 1):
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So, we can say that f(t) has on the interval [0; 1] approximatelyW degrees of freedom.

Mathematical theory of the minimax �ltering of functions from F0(W;P ) is nowa-

days well-developed. The most precise results can be obtained by combining Pinsker

(1980) minimax theorem and asymptotic theory of prolate spheroidal wave functions

(see Slepjan & Pollak (1961), Landau & Pollak (1961), Landau & Pollak (1962),

Slepjan (1965)). De�ne the minimax L2{risk over a functional set F by

rn(F) = inf
~f
sup
f2F

Ef

Z 1

0
( ~f(t)� f(t))2 dx;

where inf is taken over all estimators. In order to compute the minimax risk over

entire analytic functions denote by 	k(x) and �k the eigen functions and the eigen

values of the compact operator on [0; 1] with the kernel

KW (x) =
sin(�Wx)

�x
: (3)

In other words 	k(x) and �k are de�ned as solutions of the equation

Z 1

0
KW (x� y)	k(y) dy = �k	k(x); x 2 [0; 1]:

The following theorem (cf. Pinsker (1980)) describes the asymptotic behavior of the

minimax risk and the asymptotically minimax estimator.

Theorem 1 Let Wn � W0 > 0.

� As n!1

rn(F0(Wn; P )) = (1 + o(1))
�2

n

1X
k=1

h
1� ��

�1=2
k

i
+
;

where [x]+ = max(0; x) and � is a root of the equation

�2

n

1X
k=1

��1
k

h
��1�

�1=2
k

� 1
i
+
= P:

� The asymptotically minimax estimator is

fn(t) =
1X
k=1

h
1� ��

�1=2
k

i
+
	k(t)

Z 1

0
	k(u) dXn(u):

In order to apply the above theorem one has to know the asymptotic behavior

of the eigen values �k. Fortunately the prolate spheroidal wave functions and the

corresponding eigen values are well-studied. In particular, from Slepjan (1965) it

follows that if

k = Wn + 1 +
�

�2
log(2�Wn)
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then as n!1
�k = (1 + o(1))

1

1 + e�
:

Using this result we can simplify Theorem 1 provided that

lim
n!1

Wn

logn logWn

=1: (4)

Theorem 2 Let (4) is satis�ed. Then as n!1

rn(F0(Wn; P )) = (1 + o(1))
�2Wn

n
:

The condition (4) is very valuable in non-parametric estimation. It shows when

errors due to boundary e�ects are negligible with respect to the minimax risk. For

instance, if the bandwidthW = Wn is �xed and does not depend on n then asymptotic

behavior of the risk is completely de�ned by the boundary e�ects. In this case

�n = O (exp(�Cn)) and L2-risk has the order of logn=n (see Theorem 1). Comparing

this result with one from Ibragimov & Khasminskii (1982) we see the di�erence

between density and regression estimation. For the density estimation problem on

the hole real line the minimax L2-risk converge to zero with the rate W=n.

Unfortunately Theorem 2 does not say how to construct a simple asymptotically

e�cient estimator. Formally one can use the minimax estimator from Theorem 1.

But since it involves the prolate spheroidal wave function its practical usage is very

restrictive. The main di�culty in the construction of the minimax regression estima-

tors is connected with the boundary problem. In modern statistic there are a lot of

methods to overcome this di�culty. Boundary correction kernels, local polynomials

and splines are one of them. But the most attractive from theoretical point of view

results were obtained for wavelet method. In Donoho & Johnstone (1995) was shown

that boundaries does not a�ect on the asymptotic performance of the wavelet method.

In Hall & McKay & Turlach (1996) a detail behavior of L2-risk was decsribed for a

�xed regression function with discontinuities. Here we demonstrate that a wavelet

estimator not only overcome the boundary problem but simultaneously provide an

asymptotically e�cient estimators over the functional class F0(W;P ). In order to

get such an estimator one has to use a special type of compactly supported wavelets

(e.g. Daubechie's wavelet). The exibility of wavelet methods gives us a possibility

to consider also a broader functional class. Roughly speaking, this functional class

consists of smooth functions with a �nite number of discontinuities. Later on we deal

with the functional class FM(W;P ), which can be de�ned in the following way. Let

AM = fAkgM1 be a partition of the interval [0; 1]

[0; 1] =
M[
k=1

AM

k
; Ak \ Aj = ;; k 6= j; AM

k
= [tk; tk+1):

We say that function f belongs to FM(W;P ) if there exists a partition AM possibly

depending on f such that

f(t) =
MX
k=1

fk(t)1ft 2 Akg;
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where fk 2 F0(W;P ). For simplicity it is assumed in the sequel that M is �xed but

not known.

2 Main result

Let ĝ(�) be the Fourier transform of the function g(x) 2 L2(�1;1)

ĝ(�) = lim
�!0

Z
1

�1

e�ix���2x2g(x) dx:

Orthogonal wavelet transform is ordinary based on two L2-orthogonal functions '(x)

and  (x). These functions are called the father and the mother functions and chosen

in such a way that the functions

'(x� k); 2j=2 (2jx� l); k; l 2 (�1;1); j � 0

form an orthonormal basis in L2(�1;1). This requirement leads to the well-known

formulas (cf. Daubechies (1995))

'̂(�) = m0

 
�

2

!
'̂

 
�

2

!
; (5)

 ̂(�) = �m0

 
�

2
+ �

!
'̂

 
�

2

!
e�i �=2; (6)

where m0(�) is a 2�-periodic function such that

jm0(�)j2 + jm0(� + �)j2 = 1 (7)

and �m0(�) denotes complex conjugate of m0(�). Further we will assume that m0(�) =

mN

0 (�), N � N0 is a sequence of functions satisfying (7) and the following conditions:

i) mN

0 (�) is a trigonometric polynomial of the degree N;

ii) jmN

0 (�)j
2 � 1�

 
�

2

!2N

uniformly in j�j � 1;

iii) max
�2[�(1+h)=2;�]

jmN

0 (�)j
2 � exp(�A0Nh

2);

where A0 does not depend on N .

It is not very di�cult to check that such a sequence exists. Consider for instance

Daubechies wavelets. In this case

jmN

0 (�)j
2 = CN

Z
�

�

sin2N�1(x) dx;

where the constant CN is chosen such that jmN

0 (0)j2 = 1. The Laplace method easily

reveals that as N !1

CN =

s
2N � 1

2�
(1 + o(1)):
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Therefore for j�j � �=2 and for a su�ciently large N one obtains

jmN

0 (�)j
2 = 1� CN

Z
�

0
sin2N�1(x) dx � 1� CN

Z
�

0

�
2x

�

�2N�1

dx

� 1�
 
�

2

!2N

:

On the other hand for � 2 [�(1 + h)=2; �] one has

jmN

0 (�)j
2 � CN

�

2
sin2N�1

 
�

2
+
�h

2

!
� CN

�

2
cos2N�1

 
�h

2

!

� CN

�

2

0
@1�

 
�h

4

!2
1
A

2N�1

�
p
2N � 1 exp(�N�2h2=8)

� exp(�Nh2):

To stress that the father and the mother functions associated with mN

0 (�) depend

on N we supply them by the superscript N .

Denote for brevity 'N
k
(x) = 'N(x + k) and  N

jk
(x) = 2j=2 N (2jx + k). Then any

function f 2 L2(�1;1) admits the following wavelet decomposition

f(t) =
p
W

1X
k=�1

�k'
N

k
(tW ) +

p
W

1X
j=0

1X
k=�1

�jk 
N

jk
(tW ); (8)

where

�k =
p
W

Z
1

�1

f(x)'N
k
(xW ) dx; �jk =

p
W

Z
1

�1

f(x) N
jk
(xW ) dx:

Formula (8) provides us with a naive idea for recovering the regression function from

noisy data. This idea is very simple. Let us replace �k and �jk by their empirical

counterparts

~�k =
p
W

Z 1

0
'N
k
(xW ) dXn(x); ~�jk =

p
W

Z 1

0
 N
jk
(xW ) dXn(x):

Evidently that some additional �ltering procedure is required in order to suppress the

noise at high frequencies and to get an estimator with good statistical properties. One

can do this by the using of the very popular hard thresholding procedure proposed

by Donoho, Johnstone, Kerkyacharian, and Picard in the years 1990{1994. They

proposed the estimator

fn(t) =
p
W

1X
k=�1

~�k'
N

k
(tW ) +

p
W

j1X
j=0

1X
k=�1

~��
jk
 N
jk
(tW ); (9)

where ��
jk
are the hard thresholded empirical mother coe�cients

��
jk
= 1

n
j~�jkj � tn

o
~�jk; with tn =

s
2�2 logn

n
:
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For motivation of this procedure we refer the reader to the nice book by H�ardle&

Kerkyacharian & Picard & Tsybakov (1998). We show that under appropriate choice

of the smoothing parameters N; j1;W the estimator (9) will be asymptotically e�-

cient.

Theorem 3 Let

lim
n!1

Wn

log3 n
=1

and the parameters of the estimator (9) be

W =
Wn

1� h
; N =

(1 + h) logn

A0h2
; j1 = log2

n

Wn

; (10)

where h > 0. Then there exists su�ciently large integer n(h) such that uniformly in

n � n(h)

sup
f2FM (Wn;P )

Efkfn � fk2 � (1 + 2h)
�2Wn

n
:

3 Proof of Theorem 3

Let �Q be the projector

�Qg(x) =

Z
1

�1

KQ(x� y)g(y) dy; (11)

with kernel KQ(�) de�ned by (3). Denote for brevity �Qg(x) = gQ(x). By the

convolution theorem

ĝQ(�) = ĝ(�)1fj�j � �Qg: (12)

In the following lemma we estimate from above the L2{distance between f and fQ.

Lemma 1 Let Q � 2Wn. Then uniformly in f 2 FM(Wn; P )

kf � fQk2 � CP=Q: (13)

Proof. By the de�nition, the function f(t) 2 FM(Wn; P ) admits the following

representation

f(t) =
MX
l=1

fl(t)1ft 2 Alg; (14)

where suppf̂l(�) 2 [��Wn; �Wn]. Let �Al(x) = 1fx 2 Alg. By the Parseval formula

and (12) one obtains

k�Al � �Q=2�Alk
2 �

1

2�

Z
1

�1

(1� 1fj�j � �Q=2g)2
sin2(mesAl�)

�2
d�

�
1

2�

Z
j�j>�Q=2

��2 d� �
1

�2Q
: (15)
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Since Q � 2Wn we have �
Qfl�

Q=2�Al(x) = fl(x)�
Q=2�Al(x). Hence from (15) we see

that

kfl�Al � �Qfl�Alk = kfl�Al � �Qfl�
Q=2�Al � �Q(fl�Al � fl�

Q=2�Al)k

� 2kflkk�Al � �Q=2�Alk � C
q
Q=P :

The above inequality and (14) prove (13). 2

The main idea in the proving of Theorem 3 is to show that the wavelet decomposi-

tion provides a good approximation to the ideal low pass �lter. In order to prove this

we begin with the following auxiliary lemma, which describes a behavior of j'̂N(�)j2.

Lemma 2 Assume that the function mN

0 (�) satis�es conditions ii){iii). Then for

su�ciently small h

max
�2Kh

(1� j'̂N(�)j2) � C exp(�A0Nh
2);

where Kh = [�(1� h)�; (1� h)�].

Proof. By (5) we have

j'̂N(�)j2 =
1Y
j=1

�����mN

0

 
�

2j

!�����
2

:

Therefore on easily obtains

1� j'̂N(�)j2 = 1�
�����mN

0

 
�

2

!�����
2 1Y
j=2

�����mN

0

 
�

2j

!�����
2

= 1�
�����mN

0

 
�

2

!�����
2

�
�����mN

0

 
�

2

!�����
2
0
@ 1Y
j=2

�����mN

0

 
�

2j

!�����
2

� 1

1
A

� 1�
�����mN

0

 
�

2

!�����
2

+ 1�
1Y
j=2

�����mN

0

 
�

2j

!�����
2

�
1X
j=1

0
@1�

�����mN

0

 
�

2j

!�����
2
1
A :

Hence it follows from ii) { iii) and (7) that

max
�2Kh

(1� j'̂N(�)j2) �
1X
j=1

max
�22�jKh

(1� jmN

0 (�)j
2)

� max
�2Kh=2

(1� jmN

0 (�)j
2) +

1X
j=2

max
�22�jKh

(1� jmN

0 (�)j
2)

� exp(�A0Nh
2) +

�
�

4

�2N

;

thus proving the lemma. 2
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Let us consider a function f 2 F0(Wn; P ). Our next step is to show that this

function can be well approximated in L2(�1;1) by its projection on the space

spanned by functions 'k(Wx). De�ne the approximation error

rn(t; f) =
p
W

1X
j=0

1X
k=�1

�jk 
N

jk
(Wt) = f(t)�

p
W

1X
k=�1

�k'
N

k
(Wt): (16)

Lemma 3 Let W = Wn=(1� h). Then uniformly in f 2 F0(Wn; P )Z
1

�1

r2
n
(t; f) dt � CP exp(�A0Nh

2):

Proof. The Poisson and the Parseval formulas reveal that (see also (16))

r̂n(�; f) = f̂(�)� '̂N(�=W )
1X

k=�1

f̂(� � 2�kW )'̂N (�=W � 2�k)

= f̂(�)

�
1�

���'̂N (�=W )
���2�

� '̂N(�=W )
X
k 6=0

f̂(� � 2�kW )'̂N (�=W � 2�k) : (17)

The �rst term in the right-hand side of the above equation is evaluated by Lemma

2. Thus we haveZ
1

�1

jf̂(�)j2
�
1�

���'̂N (�=W )
���2�2

d�

=

Z
�Wn

��Wn

jf̂(�)j2
�
1�

���'̂N (�=W )
���2�2

d�

� 2�P max
�2[��(1�h);�(1�h)]

(1� j'̂N(�)j2)2 � CP exp(�2A0Nh
2):

Next using the well-known formula (cf. (5), (7))

1X
k=�1

j'̂N(�=W + 2�k)j2 = 1

and noting that the supports of the functions f̂(� � 2�kW ); f̂(� � 2�lW ); k 6= l do

not intersect, one obtains

Z
1

�1

������'̂N (�=W )
X
k 6=0

f̂(� � 2�kW )'̂N (�=W � 2�k)

������ d�
=

X
k 6=0

Z
1

�1

jf̂(� � 2�kW )j2
���'̂N (�=W � 2�k)

���2 ���'̂N (�=W )
���2 d�

=
X
k 6=0

Z
1

�1

jf̂(�)j2
���'̂N (�=W + 2�k)

���2 ���'̂N (�=W )
���2 d�

=

Z
1

�1

jf̂(�)j2
�
1�

���'̂N(�=W )
���2� ���'̂N (�=W )

���2 d�
�

Z
�Wn

��Wn

jf̂(�)j2
�
1�

���'̂N(�=W )
���2� d�

� 2�P max
�2[��(1�h);�(1�h)]

(1� j'̂N(�)j2) � CP exp(�A0Nh
2):
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This inequality together with the Parseval formula and (17), (18) completes the proof.

2

Two methods of noise reduction have been used in the estimator (9). They are

the truncation of the in�nite series in (8) starting from the resolution level j1 + 1,

and the thresholding. The truncation is equivalent to the projection on the space

spanned by the functions 'N
j1k
(Wx) = 'N (2j1Wx� k); k 2 (�1;1). Therefore our

next goal is to control the approximation error which is due to the truncation. In

other words we have to estimate from above the L2-norm of the function

�n(t; f) =
p
W

1X
j�j1

1X
k=�1

�jk 
N

jk
(Wt) = f(t)�

p
W

1X
k=�1

�j1k'
N

j1k
(Wt); (18)

where

�j1k =
p
W

Z
1

�1

'N
j1k
(Wx)f(t) dt:

Lemma 4 Uniformly in f 2 F0(Wn; P )Z
1

�1

�2
n
(t; f) dt � CP2�j1W�1 + CP exp(�A0Nh

2):

Proof. Denote for brevityW1 = 2j1W; Q = (1�h)W1. Let f
Q(t) = �Qf(t) (see (11))

and �Q
n
(t) = �n(t; f

Q). Since
p
W jk(tW ) is the orthonormal system in L2(�1;1)

we have from (18)

k�n(�; f)k � kf � fQk+ k�Q
n
k: (19)

Since Q � 2Wn, the �rst term in right-hand side of this inequality is evaluated by

Lemma 1 as

kf � fQk2 � CP=Q: (20)

In order to estimate k�Q
n
k2 we apply the same arguments as in the proving of Lemma

3. Thus we have (cf. (17))

�̂Q
n
(�; f) = f̂Q(�)

�
1�

���'̂N (�=W1)
���2� (21)

� '̂N(�=W1)
X
k 6=0

f̂Q(� � 2�kW1)�̂'
N
(�=W1 � 2�k) :

By Lemma 2 we have

Z
1

�1

���f̂Q(�)���2 �1� ���'̂N (�=W1)
���2�2

d�

� max
�2[��Q;�Q]

�
1�

���'̂N (�=W1)
���2�2 Z �Q

��Q

���f̂Q(�)���2 d� � CP exp(�2A0Nh
2):

The L2-norm of the remainder term in (21) is estimated from above as

Z
1

�1

������'̂N(�=W1)
X
k 6=0

f̂(� � 2�kW1)�̂'
N
(�=W1 � 2�k)

������
2

d�

9



=
X
k 6=0

Z
1

�1

jf̂(�)j2
���'̂N (�=W1)

���2 ���'̂N (�=W1 + 2�k)
���2 d�

�
Z
�Q

��Q

jf̂(�)j2
�
1�

���'̂N(�=W1)
���2� d�

� CP max
�2[��(1�h);�(1�h)]

(1� j'̂N(�)j2) � CP exp(�A0Nh
2):

Thus combining these inequalities with (19){(21) one arrives at the assertion of the

lemma. 2

The thresholding idea is based on the simple and intuitively clear property of the

wavelet transform. If the underlying function is su�ciently smooth then the mother

coe�cients are small. In the following lemma we give a strong motivation for this

heuristic idea.

Lemma 5 Let W = Wn=(1 � h). Assume that for some j; k the support of the

function  N
jk
(Wx) belongs to some Al. Then

j�jkj � C
p
P2�j=2 exp(�A0h

2N=2):

Proof. From the Parseval formula, the Caushy-Schwartz inequality, and (14) it

follows that

j�jkj �
1

2�

�
2jW

�
�1=2

Z
1

�1

jf̂l(�)j
����� N

 
�

2jW

!����� d�
�

1

2�

�
2jW

�
�1=2p

P

 Z
�Wn

��Wn

����� N
 

�

2jW

!����� d�
!1=2

� C
p
P2�j=2 max

�2[��(1�h);�(1�h)]
j N(�)j: (22)

By (6) we have j N(�)j � jmN

0 (�=2+�)j. Therefore from the condition iii) one obtains

max
�2[��(1�h);�(1�h)]

j N(�)j � max
�2[���(1�h)=2;�+�(1�h)=2]

jmN

0 (�)j

� exp(�A0h
2N=2):

This inequality together with (22) completes the proof. 2

Proof of Theorem 3. We decompose the risk of the estimator fn(t) from (9) as

follows

Ekfn � fk2 �
�2

n

1X
k=�1

1fsupp 'N
k
(xW ) \ [0; 1] 6= ;g

+
j1X
j=0

�2
jk
P

n
j~�jkj � tn

o

+
j1X
j=0

E( ~�jk � �jk)
2
1

n
j~�jkj > tn

o
+W

1X
j=j1+1

�2
jk

= R1 +R2 +R3 +R4: (23)

10



According to i) the support of the father function '(xW ) belongs to an interval with

the length of the order of N=W . Therefore

R1 �
�2W

n
+O

�
N

n

�
: (24)

The second term in (23) can be evaluated from above by the following way. Denote

�jk =
p
W

Z 1

0
 jk(tW ) dw(t):

Then we have

R2 =
j1X
j=0

1X
k=�1

�2
jk
E1

(������jk + �
p
n
�jk

����� � tn

)

=
j1X
j=0

1X
k=�1

�2
jk
E1

(������jk + �
p
n
�jk

����� � tn

)
1

�
j�jkj �

q
2 logn

�

+
j1X
j=0

1X
k=�1

�2
jk
E1

(������jk + �
p
n
�jk

����� � tn

)
1

�
j�jkj <

q
2 logn

�

�
j1X
j=0

1X
k=�1

�2
jk
1 fj�jkj � 2tng+

j1X
j=0

1X
k=�1

�2
jk
P

�
j�jkj �

q
2 logn

�
: (25)

Since

P

�
j�jkj �

q
2 logn

�
= O

�
n�1

�
we get the following upper bound for the last term in (25)

j1X
j=0

1X
k=�1

�2
jk
P

�
j�jkj �

q
2 logn

�
� O

�
n�1

�
P: (26)

In order to evaluate the �rst term in the right-hand side (25) denote by Kj the set of

all integers such that if k 2 Kj then the support of  jk(xW ) belongs to Al for some

l 2 [1;M ]. Then one easily arrives at

j1X
j=0

1X
k=�1

�2
jk
1 fj�jkj � 2tng �

j1X
j=0

X
k2Kj

�2
jk
+
4�2 logn

n

j1X
j=0

X
k=2Kj

1f�jk 6= 0g: (27)

By Lemma 3 and (10) one obtains

j1X
j=0

X
k2Kj

�2
jk
� CP exp(�A0Nh

2) = O
�
n�1

�
P:

Since the support of  jk(xW ) belongs to an interval with the length of the order of

N=(2jW ) we obviously have X
k=2Kj

1f�jk 6= 0g � O (N) :

11



Thus we obtain by (25){(27)

R2 � O
�
log3 n=n

�
: (28)

Our next step is to evaluate from above the term R3 in (23). By a simple algebra

we have

R3 =
�2

n

j1X
j=0

1X
k=�1

E�2
jk
1

(������jk + �
p
n
�jk

����� > tn

)

�
�2

n

j1X
j=0

X
k=2Kj

E�2
jk
+
�2

n

j1X
j=0

X
k2Kj

E�2
jk
1

(������jk + �
p
n
�jk

����� > tn

)
: (29)

Once again noting that  jk(xW ) has a support of length of the order of N=(2jW ),

we see that X
k=2Kj

E�2
jk
� O(N): (30)

The last term in (29) is estimated from above by Lemma 5

X
k2Kj

E�2
jk
1

(������jk + �
p
n
�jk

����� > tn

)

�
X
k2Kj

E�2
jk
1

�
j�jkj �

q
2 logn+O(n�h=2)

�
� C2jWn�1

q
2 logn:

This inequality together with (29), (30) and (10) implies

R3 � O

 
�2 logn

h2n

!
: (31)

Finally we apply Lemma 3 to evaluate the remainder term R4 in (23). So, by (10)

one obtains that R4 � O (n�1). Now the assertion of the theorem easy follows from

(23), (24), (28) and (31). 2
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