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Abstract

Perturbations of convex chance constrained stochastic programs are considered the

underlying probability distributions of which are r-concave. Veri�able su�cient

conditions are established guaranteeing H�older continuity properties of solution sets

with respect to variations of the original distribution. Examples illustrate the po-

tential, sharpness and limitations of the results.

1 Introduction

Many applied optimization problems under uncertainty in constraints have the form

minfg(x) j x 2 X;h(x) � �g; (1)

where the objective function g is real-valued and convex on IR
m, X is a closed con-

vex subset of IRm expressing all deterministic constraints, the 'production function' h =

(h1; : : : ; hs) from IR
m to IR

s has concave components hi (i = 1; : : : ; s) and � is an s-

dimensional random vector playing e.g. the role of an uncertain demand, load or force

etc. In case that it appears to be di�cult or even impossible to introduce compensation

costs for violations of the stochastic constraint 0h(x) � �
0, one might be led to �x a certain

probability or reliability level p 2 (0; 1) subject to which the constraint has to be satis�ed.

Denoting by � the (Borel) probability distribution of � on IRs and by F� the corresponding

probability distribution function, this idea leads to the probabilistic or chance constraint

�(f� 2 IR
s j h(x) � �g) = F�(h(x)) � p: (2)

Inserting (2) rather than the stochastic constraint 0h(x) � �
0 into the model (1), leads to

the stochastic program

minfg(x) j x 2 X;F�(h(x)) � pg: (3)

Stochastic programming models of the form (3) represent nonlinear programs which are

often nonconvex and nonsmooth due to the properties of the multivariate distribution

function F�. Compared to the convexity features of the original model (1), the loss of

convexity in model (3) or its perturbations (i.e. when replacing � by an approximate

probability distribution �) appears to be disappointing. On the one hand, concavity

properties of measures are well-known (cf. Appendix A for a brief exposition) that lead

to convex constraint sets in (3) and cover many practical probability distributions. On

the other hand, our analysis has to include nonconvex perturbed models.

In most practical applications of the stochastic programming methodology only in-

complete information on the probability distribution is available. This fact motivates a

stability or perturbation analysis of (3) with respect to variations of � in the space P(IRs)

of all Borel probability measures on IR
s. Here we equip this space with the uniform or

Kolmogorov distance

dK(�; �) = kF� � F�k1 = sup
y2IRs

jF�(y)� F�(y)j:
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Stability issues for chance constrained programs are adressed in a number of papers (see

e.g. [1],[4],[5],[6],[13], [15] and references therein). A typical question in this respect is the

continuity behaviour of optimal values

'(�) = inffg(x) j x 2 X; F�(h(x)) � pg

and solution sets

	(�) = argminfg(x) j x 2 X; F�(h(x)) � pg
of problem (3) when the measure � is subjected to variations in (P(IRs); dK).

In the present paper, we look at conditions on model (3) implying quantitative conti-

nuity properties of solution sets with respect to the metric dK . Our main result (Theorem

2.5) extends our earlier work (Theorem 4.3 in [6]) for the linear-quadratic case (i.e. g

convex quadratic, h linear and X convex polyhedral) considerably. It provides conditions

implying upper H�older continuity of solution sets at the original measure � with some rate

that depends essentially on the data g; h and X. Our stability results are complemented

by several examples illustrating their validity and limitations.

Our results allow applications to exponential bounds or convergence rates for solutions

in case of nonparametric estimations of the (unknown) measure �. We do not pursue these

ideas here and refer instead to Section 5 in [6] and to [5].

2 Quantitative stability

We study the behaviour of the solution set 	(�) of the stochastic program (3) when

perturbing the original probability distribution � in the metric space (P(IRs); dK). In

addition to the general assumptions on g; h; p and X in Section 1, we assume throughout

that � 2 P(IRs) is r-concave for some r 2 (�1;1]. This implies that F� is quasi-concave

(cf. Appendix A) and, hence, that (3) has both a convex objective function and a convex

constraint set. Since perturbations of (3) may be nonconvex, we also need concepts of

localized solutions. Given V � IR
m, we put for each � 2 P(IRs)

'V (�) = inffg(x) j x 2 X \ clV; F�(h(x)) � pg
	V (�) = fx 2 X \ clV j g(x) = 'V (�)g

where clV denotes the closure of V . Later the set V plays the role of an open neigh-

bourhood to 	(�). Consistently with our previous notation, we have 	(�) = 	V (�) if

	(�) � V . Now we are ready to state our �rst stability result.

Proposition 2.1 In addition to the general assumptions, let 	(�) be nonempty and

bounded, and V � IR
m be an open, bounded neighbourhood of 	(�). Furthermore, as-

sume that there exists an �x 2 X such that F�(h(�x)) > p (Slater condition).

Then, the set-valued mapping 	V from (P(IRs); dK) to IR
m is upper semicontinuous

at �, i.e., for any " > 0 there exists � = �(") > 0 such that sup
x2	

V
(�)

d(x;	(�)) � " holds
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whenever dK(�; �) < �. Furthermore, there exist constants L > 0; � > 0 such that 	V (�)

is a nonempty set of local minimizers to the perturbed problem, and it holds that

j'(�)� 'V (�)j � LdK(�; �) whenever dK(�; �) < �:

Proof: Apply Corollary 3.7 in [13] with d = 1;H1(x) = f� 2 IR
s j h(x) � �g (x 2

IR
m); p1 = p. 2

In the next step of our stabilty analysis we intend to quantify the semicontinuity behaviour

of 	, i.e., to derive an explicit representation of the function �(") (e.g. �(") = ("=C)k

with some constants k > 0 and C > 0). The following example illustrates the fact that

this quantifying requires further assumptions.

Example 2.2 In (3) put m = 2; s = 1;X = [0; 1=2] � IR; g(x1; x2) = x1; h(x1; x2) =

�x2q2 + x1 + 1=2; 8(x1; x2) 2 IR
2, and q 2 IN; p = 1=2, and � be the uniform distribution

on [0; 1], i.e.,

F�(�) =

8><
>:

0 ; � < 0

� ; � 2 [0; 1]

1 ; � > 1

Then the assumptions of Proposition 2.1 are satis�ed, and we have 	(�) = f(0; 0)g.
Consider the sequence (�n) of uniform distributions on [�n�1; 1 � n

�1]; n 2 IN . Then

the constraint F�n(x1; x2)) � p is equivalent to x1 + n
�1 � x

2q
2 and it holds that 	(�n) =

f0g � [�n�(2q)�1; n�(2q)�1]. Hence, we obtain

sup
x2	(�n)

d(x;	(�)) = sup
x2	(�n)

kxk = n
�(2q)�1 and dK(�; �n) = sup

�2IR
jF�(�)�F�n(�)j = n

�1
:

Since q 2 IN was arbitrary, there is no rate k > 0 such that �(") = ("=C)k for some

C > 0.

A similar example with X = f(x1; x2) 2 IR
2 j x2q2 � x1 � 1=2g; h(x1; x2) = x1 + 1=2 and

the sequence (~�n) of uniform distributions on [n�1; 1 + n
�1]; n 2 IN , leads to the same

e�ect.

The following reduction argument decomposes the original problem (3) into two aux-

iliary problems and provides some insight into the structure of the solution set to (3).

It also leads us closer to the essential properties of g; h and X needed for quantitative

stability and extends Lemma 4.1 in [6].

Lemma 2.3 In addition to the general assumptions, let � 2 P(IRs) and V � IR
m be

convex and bounded. Then we have

'V (�) = inff�V (y) j y 2 YV ; F�(y) � pg and 	V (�) = �V (YV (�));

where

YV = fy 2 IR
s j 9x 2 X \ clV with h(x) � yg;

YV (�) = argminf�V (y) j y 2 YV ; F�(y) � pg;
�V (y) = inffg(x) j x 2 X \ clV; h(x) � yg;
�V (y) = argminfg(x) j x 2 X \ clV; h(x) � yg (y 2 YV ):
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Moreover, �V is convex on the closed convex set YV = dom�V .

Proof:

Since the constraint set fx 2 X \ clV j F�(h(x)) � pg is compact, the set 	V (�) is

nonempty. Let x 2 	V (�). Then

'V (�) = g(x) � �V (h(x)) � inff�V (y) j y 2 YV ; F�(y) � pg:
Conversely, let y 2 YV with F�(y) � p. Since �V (y) is nonempty, there exists x 2 �V (y).

Hence x 2 X \ clV and F�(h(x)) � F�(y) � p, thus �V (y) = g(x) � 'V (�). This implies

'V (�) = inff�V (y) j y 2 YV ; F�(y) � pg and g(x) = �V (h(x)) 8x 2 	V (�);

and hence 	V (�) = �V (YV (�)). The convexity properties of YV and �V are immediate.

The closedness of YV follows from the compactness of X \ clV . 2

The lemma suggests to study the stability behaviour of 	V at � by looking at the stability

properties of two programs that are di�erent by nature. The �rst program contains the

somewhat simpler chance constraint F�(y) � p and its decisions belong to the support

of the measure �, while the second one is a convex parametric program having a �nite-

dimensional parameter in the right-hand side of a constraint. Later we impose conditions

implying that the solution set YV (�) is a singleton and a quadratic growth condition holds

near YV (�). We conclude H�older stability of YV at � and combine this with H�older or

(even) Lipschitz stability results of the solution set mapping �V of the convex parametric

program in order to obtain quantitative stability of 	V . After the view of our strategy,

we �rst recall some stability results for the convex parametric program

minfg(x) j x 2 X \ clV; h(x) � yg:
Proposition 2.4 In addition to the general assumptions, let V � IR

m be convex and

bounded, and YV ; �V and �V be de�ned as in Lemma 2.3.

a) Let the following conditions be satis�ed at some �y 2 YV :

(i) There exists an element �x 2 X \ clV such that h(�x) > �y holds componentwise

(Slater condition).

(ii) There exist constants c > 0; k � 1 and an open, convex and bounded set V0 contain-

ing �V (�y) such that it holds g(x) � �V (�y)+ c d(x; �V (�y))
k for all x 2 X \ clV \ clV0

with h(x) � �y (growth condition of order k).

Then �V is upper H�older continuous at �y with rate k
�1, i.e., there exist constants L >

0; � > 0 such that

sup
x2�

V
(y)

d(x; �V (�y)) � L ky � �ykk�1 whenever y 2 YV and ky � �yk < �:

b) Let g be convex quadratic, h be linear, X be convex polyhedral and clV be a polytope.

Then �V is Hausdor� Lipschitz continuous on the convex polyhedral set dom�V = YV ,

i.e., there exist a constant L > 0 such that dH(�V (y); �V (~y)) � L ky� ~yk for all y; ~y 2 YV

(dH denoting the Hausdor� distance on subsets of IRm).
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Proof:

For b), apply Theorem 4.2 in [8]. For a), note that the set-valued mapping y 7!M(y) :=

fx 2 X \ clV j h(x) � yg with closed convex graph is pseudo-Lipschitzian at each pair

(y; x); x 2 M(y); y 2 YV [12]. Then Theorem 2.2 in [7] applies and provides that for

U := V0 \ V the solution set mapping �U is upper H�older continuous at �y with rate

k
�1. Since �V (�y) is contained in V0 and �V is upper semicontinuous at �y, we have that

�V (y) � V0 for all y close to �y. Hence, �V (y) = �U(y) for all y 2 YV close to �y. 2

Complementing part a), we note that in our applications the set V is an open neighbour-

hood of �V (�y) for some speci�c �y 2 YV . Hence, the set V0 in (ii) may be chosen as a subset

of V . In this case, �V (y) is contained in V for all y close to �y and the proposition provides

H�older or Lipschitz continuity results for y 7! �(y) := argmin fg(x) j x 2 X; h(x) � yg =
�V (y) at �y.

Growth conditions of the type used in (ii) are discussed in Section 4 of [9]. Corollary

16 of [9] states that growth conditions of some order k � 1 are available in case that the

constraint set can be described by �nitely many analytic functions and that the objective

function is analytic as well. For more speci�c models, it is possible to characterize the

growth order k more explicitly. For instance, in case of a quadratic objective function and

polyhedral constraints one has k = 2 (Corollary 12 in [9] and Lemma 4.1 in [6]). Another

instance with convex quadratic objective and (�nitely many) quadratic constraints can

be derived from Theorem 11 in [9] using the technique in the proof of Lemma 4.1 in [6].

Next we state our main result on quantitative stability of solution sets to (3).

Theorem 2.5 In addition to the general assumptions, assume that

(i) 	(�) is nonempty, and there exists an open, convex and bounded set V containing

	(�);

(ii) there exists an �x 2 X such that F�(h(�x)) > p (Slater condition);

(iii) 	(�) \ argminfg(x) j x 2 Xg = ; (strict complementarity);

(iv) F
r

�
is strongly convex on some open, convex neighbourhood U of YV (�) where r 2

(�1; 0) is chosen such that � is r-concave;

(v) �V is upper H�older continuous at some �y 2 YV (�) with rate k�1 for some k � 1.

Then there exist constants L > 0 and � > 0 such that

sup
x2	

V
(�)

d(x;	(�)) � LdK(�; �)
(2k)�1 whenever dK(�; �) < �;

i.e., 	V is upper H�older continuous at � with rate (2k)�1 (as a set-valued mapping from

(P(IRs); dK) to IR
m).
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Proof:

With the notations from Lemma 2.3 we consider the problem

minf�V (y) j y 2 YV ; F�(y) � pg

or, equivalently, with b(y) := F
r

�
(y)� p

r

minf�V (y) j y 2 YV ; b(y) � 0g: (4)

From Lemma 2.3 we know for the solution set YV (�) of this problem that 	(�) = 	V (�) =

�V (YV (�)). Let y� 2 YV (�) and x� 2 �V (y�). Then we have x� 2 V; h(x�) � y� and

b(h(��x+ (1� �)x�)) = F
r

�
(h(��x+ (1 � �)x�))� p

r � F
r

�
(�h(�x) + (1� �)h(x�))� p

r

� �(F r

�
(h(�x))� p

r) + (1 � �)(F r

�
(h(x�))� p

r)

� �(F r

�
(h(�x))� p

r) < 0

for all � 2 (0; 1]. Here we used the concavity of the components of h, the monotonicity of

F� and the r-concavity of �. Now, we select �̂ 2 (0; 1] such that �̂�x+ (1� �̂)x� 2 V and,

hence ŷ := h(�̂�x + (1 � �̂)x�) belongs to YV and has the property b(ŷ) < 0. This Slater

condition implies the existence of a Kuhn-Tucker multiplier �� � 0 for y� in (4) such that

�V (y�) = minf�V (y) + ��b(y) j y 2 YV g and ��b(y�) = 0:

In case �� = 0, this would imply y� 2 argminf�V (y) j y 2 YV g and, hence, we obtain for

x� 2 �V (y�) � 	(�) � V that

g(x�) = inffg(x) j x 2 X \ clV; h(x) � y�g = �V (y�)

= inff�V (y) j y 2 YV g = inffg(x) j x 2 X \ clV g = inffg(x) j x 2 Xg;

which contradicts (iii). Here we have used that any minimizer x̂ 2 X \ clV of g has the

property g(x̂) � �V (h(x̂)) � �V (y�) = g(x�) and that x� belongs to the open set V .

Thus �� > 0 and �V + ��b is strongly convex on YV \ U by (iv). This implies that y�
is the unique minimizer of �V + ��b and that there exists a constant � > 0 such that

�ky � y�k2 � �V (y) + ��b(y)� �V (y�) (5)

for all y 2 YV \ U .

Let �0 2 (0; p) and � 2 P(IRs) such that dK(�; �) < �0. Then the constraint set

fy 2 YV j F�(y) � pg is contained in fy 2 YV j F�(y) � p � �0g and the latter set

is bounded. Indeed, supposing unboundedness, there would exist a sequence (yn) such

that yn 2 YV ; F�(yn) � p � �0 and kynk ! 1. Hence, there is a sequence (xn) in

X \ clV such that h(xn) � yn and, since each component of h is bounded on bounded

sets, each component of yn is bounded from above. On the other hand, the condition

F�(yn) � p � �0 > 0, for each n 2 IN , implies all components of yn to be bounded from

below due to F� being a distribution function. This contradicts kynk ! 1.
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Now, we appeal to Corollary 3.7 of [13] applied to problem (4) with an open bounded

neighbourhood that contains the set fy 2 YV j F�(y) � p � �0g and conclude that the

solution set mapping YV (�) is upper semicontinuous at � (as a mapping from (P(IRs); dK)

to IR
s). Hence, there exists a constant � 2 (0; �0) such that the perturbed solution set

YV (�) is contained in the neighbourhood U of YV (�) = fy�g whenever � 2 P(IRs) with

dK(�; �) < �.

With the notations from Lemma 2.3 and using that 	(�) = �V (y�) we obtain for any

� 2 P(IRs) with dK(�; �) < �,

sup
x2	

V
(�)

d(x;	(�)) = sup
x2�

V
(Y
V
(�))

d(x; �V (y�)) � L̂ sup
y2Y

V
(�)

ky � y�kk�1; (6)

where L̂ is the H�older constant of �V from (v). Since YV (�) � YV \ U , we may continue

the estimate using (5) and obtain

sup
x2	

V
(�)

d(x;	(�)) � L̂ sup
y2Y

V
(�)

[��1(�V (y) + ��b(y)� �V (y�))]
(2k)�1

= L̂�
�(2k)�1 sup

y2Y
V
(�)

['V (�)� '(�) + ��(F
r

�
(y)� p

r)](2k)
�1

� L̂�
�(2k)�1 sup

y2Y
V
(�)

['V (�)� '(�) + ��(F
r

�
(y)� F

r

�
(y))](2k)

�1

� L̂�
�(2k)�1 sup

y2Y
V
(�)

[j'V (�) � '(�)j

+��jrj(p� �0)
r�1jF�(y)� F�(y)j](2k)�1

� L̂�
�(2k)�1[(L+ ��jrj(p � �0)

r�1)dK(�; �)]
(2k)�1

;

where L > 0 is the constant from Proposition 2.1 and we used that F r

�
(y) � p

r for any

y 2 YV (�) and that the inequality

jur � v
rj � jrjmaxfur�1; vr�1gju� vj

holds for any u; v 2 (0; 1]. This completes the proof. 2

Corollary 2.6 Adopt the setting of the previous theorem, but replace condition (v) by the

stronger assumption

(v') �V is Hausdor� H�older continuous at some �y 2 YV (�) with rate k�1 (k � 1).

Then 	V is Hausdor� H�older continuous at � with rate (2k)�1.

Proof:

The only change in the proof of the theorem concerns the estimate

dH(	V (�);	(�)) = dH(�V (YV (�)); �V (y�)) � L̂ sup
y2Y

V
(�)

ky � y�kk�1:

The rest of the proof remains unchanged. 2
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Corollary 2.7 Let g be convex quadratic, h be linear, X be convex polyhedral and as-

sume that 	(�) is nonempty and bounded. Moreover, let the conditions (ii), (iii), (iv) of

Theorem 2.5 be satis�ed. Then, for any open convex bounded neighbourhood V of 	(�)

the closure clV of which is polyhedral, the set-valued mapping 	V is Hausdor� H�older

continuous at � with rate 1/2.

Proof:

Let V be open, convex, bounded and such that it contains 	(�) and its closure is polyhe-

dral. Then �V is Hausdor� Lipschitz continuous on dom�V = YV (Proposition 2.4) and,

hence, the result is a consequence of Corollary 2.6 (for k = 1). 2

Corollary 2.7 essentially recovers Theorem 4.3 in [6] in a slightly improved formulation.

In particular, it provides Hausdor� H�older stability of (global) solution sets in case that

X is bounded.

The conditions (i)-(iv) imposed in Theorem 2.5 concern the original problem (3). Con-

ditions (ii) and (iii) re
ect the signi�cance of an appropriate choice of the probability level

p. They represent natural conditions from a modelling point of view. The strong convex-

ity condition (iv) of F r

�
forms a local property around the singleton YV (�) = fy�g. Since

condition (iii) implies that F�(y�) = p, a su�cient condition for (iv) is the strong con-

vexity of F r

�
on any convex bounded subset of the interior of the support of �. Although

no general result in this direction is available so far, it is worth noting that the uniform

distribution on rectangles and the one-dimensional normal distribution satisfy this su�-

cient condition for (iv). Condition (v) contains in a condensed form the assumptions on

the (deterministic) data g; h and X of (3).

The following example shows that the result of Corollary 2.7 is lost if (iv) is violated.

Example 2.8 In (3) put m = s = 2; g(x1; x2) = x1 + x2; h(x1; x2) = (x1; x2); X =

[0; 1]2; p = 1=4 and � 2 P(IR2) be the uniform distribution on the triangle conv f(1; 0),
(0; 1); (1; 1)g. The distribution function F� of � has the following form

F�(x1; x2) =

8>>>>>><
>>>>>>:

1 ; x1; x2 � 1

(x1 + x2 � 1)2 ; x1 + x2 � 1 and x1; x2 2 [0; 1];

x
2
1 ; x2 � 1 and x1 2 [0; 1];

x
2
2 ; x1 � 1 and x2 2 [0; 1]

0 ; else

Hence, F� is constant on the line segments f(x1; x2) 2 [0; 1]2 j x1 + x2 = ag with a 2
[0; 1] (see Fig. 1). Therefore, F r

�
is not strongly convex on any convex subset of the

interior of D for any r < 0, although � is r-concave for any such r (cf. Appendix A).

Furthermore, one easily checks that all the remaining assumptions of Theorem 2.5 are

satis�ed. We have 	(�) = f(x1; x2) 2 [0; 1]2 j x1 + x2 = 3=2g and '(�) = 3=2. Let ~�

be the uniform distribution on [1=2; 1]2 and consider the perturbed probability measures

�� = (1 � �)� + �~�; � 2 [0; 1]. Then we obtain 	(��) = f(3=4; 3=4)g (emphasized

points in Fig. 1) and dK(�; ��) = � d(�; ~�) � � for each � 2 (0; 1]. Evidently, we have
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Figure 1: Distribution function F� for the uniform distribution on the right upper triangle

conv f(1; 0); (0; 1); (1; 1)g (left) and distribution function F�
�
(� = 0:5) for the perturbed

measure. The level lines F�(x1; x2) = p and F�
�
(x1; x2) = p are indicated on both graphs.

	(��) � 	(�) for each � 2 (0; 1], but

dH(	(�);	(��)) = sup
x2	(�)

kx� (3=4; 3=4)k =
p
2=4 for any � 2 (0; 1];

and indeed the result of Corollary 2.7 gets lost.

The next result seems to support the conjecture that the upper H�older continuity rate in

Theorem 2.5 might be improved. However, in Example 2.10, we provide a counterexample

showing that the rates in Theorem 2.5 and its corollaries are the best possible.

Proposition 2.9 Adopt the setting of Theorem 2.5 and let s = 1 (the case of a one-

dimensional random variable). Then, 	V is upper H�older continuous at � with rate k�1.

Proof:

Referring back to the proof of Theorem 2.5, we see that (y� being a minimizer of (4))

�V (y) � �V (y�) 8y 2 YV ; b(y) � 0: (7)

From the strict complementarity (�� > 0) it follows that b(y�) = 0. For the 'Slater point'

ŷ 2 YV with b(ŷ) < 0, one may suppose without loss of generality that ŷ > y� due to the

one-dimensionality of the y-variables assumed above. Then the convexity of b implies

b(y) � 0 ) y � y� (8)

and, furthermore, �V (ŷ) � �V (y�) due to (7). Consequently, �V (y) � �V (y�) for all

y � y�; y 2 YV by convexity of �V . Now, there must exist some y
0 2 YV such that

9



y
0
< y� and �V (y

0) < �V (y�), since otherwise one would arrive at y� 2 argminf�V (y) j
y 2 YV g contradicting assumption (iii) of Theorem 2.5 (see proof). Finally, we consider

an arbitrary y 2 YV with y > y�. From the convexity of �V and from y
0
< y� < y, one

derives that

�V (y�) = �V

 
y � y�
y � y0

y
0 +

y� � y
0

y � y0
y

!
� y � y�

y � y0
�V (y

0) +
y� � y

0

y � y0
�V (y);

which gives

�V (y) � �V (y�) +
�V (y�)� �V (y

0)

y� � y0
(y � y�) 8y 2 YV ; y > y�:

Now, (8) allows to write this as

�V (y) � �V (y�) + �ky � y�k 8y 2 YV ; b(y) � 0

with some � > 0. Using this global linear growth of �V in contrast to its local quadratic

growth in (5), one may directly apply Theorem 2.2 in [7] to the parametrization of problem

(4)

minf�V (y) j y 2 YV ; b�(y) � 0g; b�(y) := F
r

�
(y)� p

r (9)

accompanied by the same upper-semicontinuity argument as in the proof of Theorem 2.5

(following (5)), Hence, YV (�) is upper Lipschitz continuous at �. Appealing to (v), the

result follows from (6). 2

In the last proposition, the one-dimensionality of the random variable was substantially

exploited. Below, we construct a two-dimensional counterexample showing that, in gen-

eral, one cannot expect a Lipschitz-like behavior of the solution set under the assumptions

of Corollary 2.7, hence the result stated there is sharp. This example even lives in the

class of probability measures having a density and a (globally) Lipschitzian distribution

function (both the original and the perturbed measures). It has to be noted that such a

counterexample is easily constructed in a non-probabilistic setting. To �nd a counterex-

ample, where in particular assumptions (iii) and (iv) have to be ful�lled, requires a more

sophisticated construction. The details of veri�cation in this example are therefore left

to the Appendix B.

Example 2.10 In (3) put m = s = 2; h(x1; x2) = (x1; x2); g(x1; x2) = x1 + x2; X =

[0; 1]2; � is the uniform distribution on X and p = 1=4. Then, F�(x1; x2) = x1x2 (for

(x1; x2) 2 X), 	(�) = f(0:5; 0:5)g 6= argmin fg(x) j x 2 Xg = f(0; 0)g; � is an r-concave

measure for r < 0 and F�1
�

is strongly convex on an open convex neighbourhood of 	(�).

Finally, there exists a Slater point (e.g. �x = (1; 1)), hence, all assumptions of Corollary

2.7 are satis�ed. We de�ne a perturbed measure �" 2 P(IR2) depending on " > 0 via the

10



following density:

f"(x1; x2) =

8>>>>>>>>>>><
>>>>>>>>>>>:

1 � " (x1; x2) 2 A := [0; a"]� [0; a"]

�"(x1) (x1; x2) 2 B := [a"; b"]� [0; a"]

�"(x2) (x1; x2) 2 C := [0; a"]� [a"; b"]

1 (x1; x2) 2 D := (b"; 1]� [0; a"]

1 (x1; x2) 2 E := [0; a"]� (b"; 1]
5(1�")�4

p
1�"

(2
p
1�"�1)2 (x1; x2) 2 F := (a"; 1]� (a"; 1]

0 (x1; x2) =2 X

A B D

C

E
F

0.5a b

c

ε ε

ε

Figure 2: Partition of the unit square in the counterexample. The curve represents the

level line of the unperturbed probabilistic constraint, and the dot corresponds to the

optimal solution. After perturbation, the level line is deformed such as to contain a linear

piece which becomes the optimal solution set then.

Here,

a" =
1

2
p
1 � "

; b" = a"(1 +
p
"); c" = a"(1�

p
"); �"(t) =

1

4(2a" � t)2
(t 2 [a"; b"]):

First, the correctness of the de�nition has to be checked: it is easily seen, that for " < 9=25,

it holds that 0:5 � a" � b" � 1, that �" is well-de�ned and non-negative on [a"; b"] and

that f" is non-negative on the domains A and F. It is shown in Appendix B, that the

integral of f" over X equals one for all these "-values, hence the f" may be indeed

considered as densities for perturbed probability measures, and evidently, for " # 0, the f"

converge pointwise towards the density f (being the characteristic function of X) of the

original measure �.

In Appendix B, the following relations are veri�ed:

kF� � F�"k1 < �" for some � > 0 and all " < "0 (10)

	�" = [(c"; b"); (b"; c")] (line segment in Fig. 2) (11)

11
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Figure 3: Perturbed density f" viewed at from the right upper angle of the unit square

From (11) it follows that

dH(	(�);	(�")) = k(0:5; 0:5) � (b"; c")k =
s
1�p1 � "

1 � "

In particular, one has lim
"#0

dH(	(�);	(�")) = 0, hence, for each open neighbourhood V of

	(�) it holds that 	V (�") = 	(�") with su�ciently small ". Supposed the stability result

of Corollary 2.7 would hold with rate 1. Then, for " < minf�=�; "0g, (10) would yield the

contradictions
1 �p1 � "

1� "
= dH(	(�);	(�")) = dH(	(�);	V (�")) � LkF� � F�"k1 � L�":

Appendix A: r-concave probability measures

Here we introduce the notion of an r-concave probability measure for some r 2 [�1;1]

and discuss some essential properties. We start with the de�nition of the generalized

mean function mr on IR+ � IR+ � [0; 1]:

mr(a; b;�) =

8>>>>>><
>>>>>>:

(�ar + (1 � �)br)1=r if r 2 (0;1) or r 2 (�1; 0); ab > 0

0 if ab = 0; r 2 (�1; 0)

a
�
b
1�� if r = 0

maxfa; bg if r =1
minfa; bg if r = �1

(12)

The measure � 2 P(IRs) is called r-concave ([2]) for some r 2 [�1;1], if the inequality

�(�B1 + (1� �)B2) � mr(�(B1); �(B2);�) (13)

holds for all � 2 [0; 1] and all convex subsets B1; B2 of IRs. For r = 0 and r = �1, �

is also called logarithmic concave and quasi-concave, respectively ([10]). Since mr(a; b;�)

12



is increasing in r if all the other variables are �xed, the sets Mr(IR
s) of all r-concave

probability measures are increasing if r is decreasing, i.e., we have for all �1 < r1 �
r2 <1 that

M�1(IR
s) �Mr1

(IRs) �Mr2
(IRs) �M1(IR

s): (14)

For the particular case of cells B = y + IR
s

�; y 2 IR
s, and for r 2 (�1; 0) the inequality

implies that the distribution function F� has the property that the extended real-valued

function F
r

�
is convex on IR

s. Moreover, (13) and (14) imply that F� is quasi-concave on

IR
s.

A useful criterion for r-concavity is known from [2], [3], [10] (for r = 0) and [11]. It

says that a measure � 2 P(IRs) is r-concave for some r 2 [�1; s
�1] if � has a density f�

such that

f�(�y + (1 � �)~y) � mr(s)(f�(y); f�(~y);�);

holds for all � 2 [0; 1] and y; ~y 2 IR
s where r(s) = r(1�rs)�1. For example, the uniform

distribution (on any bounded convex subset of IRs), the (nondegenerate) multivariate

normal distribution, the Dirichlet distribution, the multivariate Student and Pareto dis-

tributions belong to Mr(IR
s) for some r 2 (�1;1] (cf. [2], [11]). For more information

on all this, proofs and details we refer to Chapter 4 of [11].

Appendix B: Veri�cation of Example 2.10

Estimation of the maximal di�erence between F� and F�" (see (10))

We assume that " < 9=25 according to the remarks in Example 2.10.

ad A: Over A, both F� and F�" have constant densities, hence the maximal deviation

occurs at the right upper corner (a"; a"):

kF��F�"kA1 = F�(a"; a")�F�"(a"; a") = a
2
"
�a

2
"
(1�") =

"

4(1 � ")
� " for " � 3=4 (15)

ad B: For (x1; x2) 2 B one has

F�"(x1; x2) = x2a"(1� ") +

x2Z
0

x1Z
a"

�"(�)d�1d�2 = x2

 p
1 � "=2 +

"
1

4(2a" � �1)

#
x1

a"

!

=
x2

4
�

1p
1�" � x1

� (16)

For x1 2 [a"; b"] it follows

x1 � 1

4
�

1p
1�" � x1

� � 0;
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where equality occurs exactly at x1 = b". Consequently, due to x2 � 0, it holds that

F�(x1; x2)� F�"(x1; x2) =

x2

0
@x1 � 1

4

�
1p
1�"

�x1
�
1
A
( � 0 (x1; x2) 2 B

= 0 (x1; x2) 2 B; (x1 = b" or x2 = 0)
(17)

In particular, the maximal deviation over B computes as the maximum of the above

(nonnegative) di�erence. This maximum is assumed over B at the point (1=
p
1� " �

1=2; a"), and it realizes the value (1 �p1 � ")=(2(1 � ")), which for " = 0 equals zero

and the derivative w.r.t. " of which equals 1=4 at " = 0. Thus, there exists an "1 with

kF� � F�"kB1 � " for " < "1: (18)

ad C: symmetric with B

ad D: For (x1; x2) 2 D the de�nition of the density and (17) imply:

F�(x1; x2)�F�"(x1; x2) = x1x2� (F�"(b"; x2)+(x1�b")x2) = x1x2�b"x2� (x1�b")x2 = 0:

ad E: symmetric with D. In particular, F� and F�" coincide on D and E (see Fig. 4).

0
0.2

0.4
0.6

0.8
10

0.2

0.4

0.6

0.8

1

-0.05
-0.025

0
0.025

0
0.2

0.4
0.6

0.8
-0.5 0.5 1 1.5

1

Figure 4: Graph of F�"�F� (left) and marginal density (right) for the perturbed measure

�"

ad F: For (x1; x2) 2 F , one gets

F�(x1; x2)� F�"(x1; x2) =

F�(x1; a") + F�(a"; x2)� F�(a"; a") + (x1 � a")(x2 � a")

�F�"(x1; a")� F�"(a"; x2) + F�"(a"; a") � p"(x1 � a")(x2 � a");

14



where p" brie
y denotes the constant density of �" on F. By comparison of terms located

on top of each other, the previous estimations on A,B,C,D and E provide:

kF� � F�"kF1 � 3" + j1� p"j for " < minf3=4; "1g

Since p" � 1 and by 1�p0 = 0 along with (dp"=d")(0) = �1, one arrives at (1�p") � 2"

for " < "2. Consequently,

kF� � F�"kF1 � 5" for " < "3 := minf3=4; "1; "2g (19)

ad (x1; x2) =2 X: We distinguish the four cases x1 < 0 or x2 < 0, x1 > 1 and x2 2 [0; 1],

x2 > 1 and x1 2 [0; 1], x1 > 1 and x2 > 1. Exploiting the fact that both the original

and the perturbed densities are zero here, one concludes that F� = F�" in the �rst case

and that F�(x1; x2)� F�"(x1; x2) = F�(1; x2) � F�"(1; x2) in the second case, where now

the results concerning the regions D and F may be applied. The third case is symmetric

to the second one. Finally, we have F� = F�" in the fourth case again, once we know that

F�"(1; 1) = 1. This last property would simultaneously con�rm that �" is a probability

measure for all admissible " < 9=25. Indeed, from the previous representations it follows

that

F�"(1; 1) = F�"(1; a") + F�"(a"; 1) � F�"(a"; a") + p"(1� a")
2

= 2a" � (1 � ")a2
"
+

5(1� ")� 4
p
1� "

(2
p
1� "� 1)2

(1� a")
2 = �1=4 + 5=4 = 1;

Summarizing, the combination of the estimations (15), (18) and (19) leads to 1. with

� = 5 and "0 := minf"3; 9=25g.

Characterization of the perturbed chance constraint (see (11))

In order to verify (11), we de�ne the continuous function

�(t) :=

(
1
4t

t 2 (0; c"] [ [b";1)

2a" � t t 2 [c"; b"]
;

the graph of which is the thick line joined with the curve over E and D in Fig. 2. We

claim that F�"(x1; x2) = p = 0:25 8(x1; x2) 2 X \ Gph �. By b"c" = 0:25, one gets

x2 = �(x1) = (4x1)
�1 � b" for x1 � c" and analogously x2 = �(x1) � c" for x1 � b".

Consequently, for such x1, the (x1; x2) 2 X \Gph � belong to the regions D or E, where,

according to the previous section F� and F�" coincide. Therefore, these points ful�ll:

F�"(x1; x2) = x1x2 = x1�(x1) = 0:25.

In the case x1 2 [c"; b"] the (x1; x2) 2 X \ Gph � belong to the regions C or B. For

(x1; x2) 2 B one has according to (16):

F�"(x1; x2) = F�"(x1; �(x1)) = F�"(x1; 2a" � x1) =
2a" � x1

4( 1p
1�" � x1)

=
2a" � x1

4(2a" � x1)
= 0:25:

15



The case (x1; x2) 2 C follows analogously for symmetry reasons.

For (x1; x2) 2 X nGph � the strict positivity of the density (or alternatively the previ-

ous statements on F�") imply that F�"(x1; x2) > 0:25 for (x1; x2) 2 X \ int epi � (interior

of the epigraph), whereas F�"(x1; x2) < 0:25 for (x1; x2) 2 X n epi �. Summarizing, one

obtains that the perturbed chance constraint X \ f(x1; x2) j F�"(x1; x2) � 0:25g coin-

cides with X \ epi �. This immediately entails the correctness of the representation of

the perturbed solution set in (11), since the line segment mentioned there has the same

direction as the level sets of the linear goal function g.

Properties of the approximating densities and distribution functions

According to the de�nition of the perturbed density, the maximumdeviation between per-

turbed and original density occurs (among others) at the point (b"; 0) where it calculates

as

�"(b")� 1 =
2
p
"

(1 �p")2
This shows that, for " # 0, the densities converge uniformly with rate 1=2.

Concerning the perturbed distribution functions, it is important to note that they

are globally Lipschitzian as is the original distribution function. This follows from the

perturbed marginal densities being bounded (cf. Proposition 3.8 in [14]). Indeed, for an

admissible value of " > 0, an upper bound of the marginal density (which is the same

for x1 and x2 due to symmetry) is given by (1=4)a"(2a" � b")
2 + (1� a")p". This is the

peak-value of the curvilinear part of the perturbed marginal density illustrated in Fig. 4

which for " # 0 converges towards one.
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