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Abstract

The in
uence of small perturbations in the kernel and the right-

hand side of Symm's boundary integral equation, considered in an

ill-posed setting, is analyzed. We propose a modi�cation of a fully

discrete projection method which is more economical in the sense of

complexity and allows to obtain the optimal order of accuracy in the

power scale with respect to the level of the noise in the kernel or in

the parametric representation of the boundary.

1 Introduction

In [2] the in
uence of small perturbations in the C1-smooth parametric rep-
resentation of the boundary and the right-hand side of Symm's boundary
integral equation, discretized by collocation or quadrature methods, was an-
alyzed recently. Our aim here is to extend the analysis of [2] by taking into
account the in�nite smoothness of the boundary curve, and also to improve
the order of accuracy of the approximate solution with respect to the level
of the noise in the boundary parametrization. To do this we propose a slight
modi�cation of a fully discrete projection method. Our method uses the val-
ues of the kernel and free term of Symm's equation at equally-spaced points,
and a trial space consisting of trigonometric polynomials, just as in [1],[7],[2].

Consider the numerical solution of Symm's integral equationZ
�

logjx� yjv(y)dsy = g(x); x 2 �; (1:1)

with � being the boundary of a simply-connected planar domain 
. This
equation arises from solving the Dirichlet problem for Laplace's equation
on 
. As in [1],[2],[4],[7] we assume that � has a C1-smooth 1-periodic
parametrization 
 : [0; 1] ! � with j


0

(t)j 6= 0 for t 2 [0; 1]. Following the
development in [4] or [10], rewrite (1.1) as

Au := A0u+Bu = f (1:2)

with u(t) = v(
(t))j

0

(t)j; f(t) = g(
(t)),

(A0)(t) =

1Z
0

logjsin�(t� s)ju(s)ds; (1:3)
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(Bu)(t) =

1Z
0

b(t; s)u(s)ds; b(t; s) =

(
log j
(t)�
(s)j

j sin�(t�s)j
; t 6= s

log(j

0

(t)j=�); t = s

The operator A0 arises from studing equation (1.1) on a circle. The eigen-
functions of A0 are the trigonometric functions. Namely,

A0e
2�ikt =

(
�(2jkj)�1e2�ikt; k = �1;�2; : : :
�log2; k = 0

(1:5)

The kernel b(t; s) of the operator B is C1-smooth and 1-biperiodic. Now
we would like to describe the smoothness properties of b(t; s) more precisely.
To do this we will use the scale of Gevrey classes of in�nitely di�erentiable
1-periodic functions [3, p.112]. Assume that the boundary parametrization

(t) is such that the kernel (1.4) belongs to the Gevrey class G� of order
�(� � 1) of Roumieu type in both variables or, more precisely, (see Theorem
6.5 [3, p.112,113]) there exists a constant � > 0 such that

kbk2
�;�

:=
1X

k;l=�1

jb̂(k; l)j2exp[2�(jkj1=� + jlj1=�)] <1; (1:6)

where

b̂(k; l) =

1Z
0

1Z
0

e�2�i(kt+ls)b(t; s)dtds

are the Fourier coe�cients of b(t; s). Note that for � = 1 from (1.6) it follows
that the function b(t; s) has in both variables analytic continuations into the
strip fz : z = t+ is; jsj < �

2�
g of the complex plane.

In what follows we consider (1.2) in the Sobolev spaces H�; � 2 (�1;1),
of 1-periodic functions (distributions) u(t) with the �nite norm

kuk� = (
1X

k=�1

[max(1; jkj)]2�jû(k)j2)1=2;

where û(k) are the Fourier coe�cients of u(t); H0 = L2(0; 1). Due to
(1.5), A0 : H� ! H�+1 is an isomorphism for all � 2 (�1;1). Since
B : H� ! H�+1 is compact, the operator A = A0 + B : H� ! H�+1 is also
an isomorphism for all � (we assume that cap� 6= 1).
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Introduce the n-dimensional space of trigonometric polynomials

Tn = fun : un =
X
k2Zn

cke
2�iktg;

Zn =
�
k : �

n

2
< k �

n

2
; k = 0;�1;�2; : : :

�
:

It is well known (see [6]) that for any n and vn 2 Tn

kvnk� � c�kAvnk�+1: (1:7)

Here and throughout the paper c� etc. denote generic constants. Moreover,
in the sequel we shall often use the same symbol c for possibly di�erent
constants.

Let Pn and Qn denote the corresponding orthogonal and interpolation
projections, respectively:

Pnu =
X
k2Zn

û(k)e2�ikt 2 Tn;

Qnu 2 Tn; (Qnu)(jn
�1) = u(jn�1); j = 1; 2; : : : ; n

It is known that (see [6],[8])

ku� Pnuk� � (
n

2
)���kuk�; � � �; u 2 H�; (1:8)

ku�Qnuk� � c�;�n
���kuk�; 0 � � � �; u 2 H�; � >

1

2
: (1:9)

Moreover, in our analysis we will refer to the following simple estimate

ku�Qnuk0 � cn�1ku
0

k0; u 2 H1: (1:10)

We also need the Bernstein inverse estimates of the trigonometric polynomials

kvnk� � 2���n���kvnk�; � � �; vn 2 Tn: (1:11)

The most widespead method for approximate solution of Symm's equation
(1.2) is the discrete collocation-Galerkin method consisting of an approxima-
tion of the equation (1.2) by the equation

~Anun := A0un +Qn
~Bnun = Qnf; un 2 Tn; (1:12)
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where

( ~Bnu)(t) = n�1
nX

j=1

b(t; jn�1)u(jn�1)

This method was analyzed in [1],[7],[2]. It is clear that to obtain the approx-
imate solution un from (1.12) it is necessary to have the following collection
of values of b(t; s) and f(t) as an information regarding equation (1.2):

b(in�1; jn�1); f(in�1); i; j = 1; 2; : : : ; n: (1:13)

Information of such type is called the collocation information.
It is well known that Symm's integral equation (1.2), considered as equa-

tion in H0 = L2(0; 1), is ill-posed. Small perturbations of the data may
cause dramatic changes in the solution of (1.2). These perturbations may
be caused e.g. by rounding errors preparing the problem to a discretization,
measurement errors, and modelling errors. As a result, instead of f(in�1)
and 
(jm�1) we have at our disposal some f�(in

�1) and 
"(jm
�1), where the

parameters � > 0; " > 0 characterize the level of the noises in the data. As
in [2] we accept the following model of disturbations of f(t) and 
(t):

(n�1
nX

j=1

jf�(jn
�1)� f(jn�1)j2)

1
2 � �kfk�+1; (1:14)

j
"(im
�1)� 
(im�1)j � "; j


0

"
(im�1)� 


0

(im�1)j � m"; i = 1; 2; : : : ; m:

(1:15)
Here we assume that f 2 H�+1. Let

b"(t; s) =

(
log j
"(t)�
"(s)j

j sin �(t�s)j
; t 6= s

log(j

0

"
(t)j=�); t = s:

As has been shown in [2] from (1.15) it follows that

jb"(km
�1; lm�1)� b(km�1; lm�1)j �

8<
:

c"

j sin
�(k�l)

m
j
; 1 � k; l � m; k 6= l;

cm"; k = l; 1 � l � m:

(1:16)
Let un;";� be the solution of the perturbed problem ~An;"u = Qnf�, where

~An;" corresponds to the perturbed data (cf. (1.4),(1.12),(1.14)):

~An;" = A0 +Qn
~Bn;"; ( ~Bn;"u)(t) = n�1

nX
j=1

b"(t; jn
�1)u(jn�1):

One of the main results of [2] yields the following theorem.

4



Theorem 1.1 ([2]). Assume cap� 6= 1; f 2 H�+1 and b(t; s) satis�es the

condition (1.6) for some � � 1; � � 0. Then for

n � ("+ �)�
1

�+1 ; (1:17)

ku� un;";�k0 � cf�
�

�+1 + "
�

�+1 log
1

"+ �
gkuk�; (1:18)

where u = A�1f 2 H�; un;";� = ~A�1
n:"
Qnf�.

Note that in case of " or �-perturbations in the data of some well-posed
problem we have the possibility to obtain the same order of accuracy of the
approximate solution O(") or O(�). But in the ill-posed case we usually
lose order of accuracy with respect to the level of the noise and obtain the
accuracy of order O(�

�

�+1 ), for example.
The relationships (1.17),(1.18) give an insight how the discretization pa-

rameter n should be chosen to obtain a regularization e�ect for Symm's ill-
posed problem (1.2); no special regularization of the problem is needed. This
phenomenon is sometimes called the self-regularization of an ill-posed prob-
lem through its discretization. In some abstract settings, the self-regularization
of ill-posed problems through projection methods has been analyzed in [5],[9],[2].
On the other hand, from estimate (1.18) one sees that caused by ill-posedness,
losses of accuracy with respect to the level of the noise " in the parametric
representation of the boundary and with respect to the level of the noise � in
the right-hand term are more or less the same. As we shall see subsequently
this circumstance is connected only with the structure of the collocation-
Galerkin method (1.12), where one discretization parameter n must attend
to the noises of both types simultaneously. In the next section, we propose
another scheme of fully discrete projection method which allows to improve
the order of accuracy with respect to " up to O(" logq 1

"
).

2 Fully discrete projection method

Approximate the equation (1.2) by the equation

Amu := A0u+Bmu = Qnf; n > m; (2:1)
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where

(Bmu)(t) =

1Z
0

bm(t; s)u(s)ds;

bm(t; s) = (Qm;t 
Qm;sb)(t; s) =
X

k;l2Zm

b̂m(k; l)e
2�i(kt+ls);

b̂m(k; l) = m�2
mX

p;q=1

e�
2�i
m

(kp+lq)b(pm�1; qm�1): (2:2)

By de�nition Bm : L2(0; 1)! Tm,

bm(km
�1; lm�1) = b(km�1; lm�1); k; l = 1; 2; : : : ; m;

and for n > m

PnBm = BmPn = Bm: (2:3)

Moreover, from (1.5) it follows that

PnA0 = A0Pn: (2:4)

To obtain a �nite linear system from which the solution un;m of equation
(2.1) can be calculated, note �rst that if (2.1) is solvable, then

A0un;m = Qnf � Bmun;m 2 Tn:

This together with (1.5) implies that un;m is a trigonometric polynomial of
the same degree. Thus

un;m(t) =
X
k2Zn

ûn;m(k)e
2�ikt;

where the unknown coe�cients ûn;m(k) are determined from the following
system of linear algebraic equations:

�kûn;m(k) +
P

l2Zm

b̂m(k;�l)ûn;m(l) = f̂n(k); k 2 Zm;

�kûn;m(k) = f̂n(k); k 2 ZnnZm:

(2:5)

Here �0 = � log 2; �k = �(2jkj)�1,

f̂n(k) = n�1
nX

p=1

e�
2�ikp

n f(pn�1): (2:6)
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It is interesting that to determine an element un;m belonging to the n-
dimensional space of trigonometric polynomials Tn it su�ces to solve the
system of m < n linear algebraic equations.

In our analysis of the method (2.1) we will use some auxiliary approxi-
mation of the kernel b(t; s) satisfying the condition (1.6). Let

bm;�(t; s) =
X

k;l2�m;�

b̂(k; l)e2�i(kt+ls);

where �m;� = f(k; l) : jkj1=� + jlj1=� < (m
2
)1=�; k; l = 0;�1;�2; : : :g. Now we

de�ne the dicretized operator Bm;� by

(Bm;�u)(t) =

1Z
0

bm;�(t; s)u(s)ds:

Lemma 2.1 Assume that b(t; s) satis�es the condition (1.6). Then for

m > 2 (��=�)�

kB �Bm;�kH0!H� � cm�e��m
1=�

kbk�;�;

where � = �(�; �) = �=21=�.

Proof. Using the Fourier representations, for any v 2 H0 we have

k(B � Bm;�)vk
2
�
= j

X
jlj�

m

2

b̂(0;�l)v̂(l)j2+

+
X
jkj>0

jkj2�j
X

l:(k;l)62�m;�

b̂(k;�l)v̂(l)j2: (2:7)

We estimate only the second term in (2.7). The �rst term can be estimated
in a similar manner. We obtain

X
jkj>0

jkj2�j
X

l:(k;l)62�m;�

b̂(k;�l)v̂(l)j2 � kvk20
X
jkj>0

jkj2�
X

l:(k;l)62�m;�

jb̂(k; l)j2 =

= kvk20
X

0<jkj�m

2

jkj2�
X

l:(k;l)62�m;�

jb̂(k; l)j2 + kvk20
X
jkj>

m

2

jkj2�
X

l:(k;l)62�m;�

jb̂(k; l)j2 =

= S1 + S2; (2:8)
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S1 � kvk20

�
m

2

�2� 1X
k=�1

X
l:(k;l)62�m;�

e�2�(jkj
1=�+jlj1=�)jb̂(k; l)j2e2�(jkj

1=�+jlj1=�) �

� kvk20

�
m

2

�2�

e�2�(
m

2
)1=�kbk2

�;�
: (2:9)

Note that x =
�
��

�

�
�

is the point at which the function x2�e�2�x
1=�

has a

global maximum. Then for jkj > m

2
>
�
��

�

��
,

jkj2�e�2�jkj
1=�

<

�
m

2

�2�

e�2�(
m

2
)1=� :

Therefore

S2 = kvk20
X
jkj>

m

2

jkj2�e�2�jkj
1=� X

l:(k;l) 62�m;�

e2�jkj
1=�

jb̂(k; l)j2 �

� kvk20

�
m

2

�2�

e�2�(
m

2
)1=�kbk2

�;�
: (2:10)

The assertion of the lemma follows from (2.7)-(2.10). 2

Let

k'k2
�1;�2

:=
1X

k;l=�1

max(1; jkj2�1)max(1; jlj2�2)j'̂(k; l)j2:

Using an argument like that in the proof of Lemma 2.1 we get the following
lemma.

Lemma 2.2 Assume the conditions of Lemma 2.1. Then

kb� bm;�k0;0 � ce��m
1=�

kbk�;�; kb� bm;�k1;0 � cme��m
1=�

kbk�;�;

kb� bm;�k0;1 � cme��m
1=�

kbk�;�; kb� bm;�k1;1 � cm2e��m
1=�

kbk�;�:

Lemma 2.3 Assume the conditions of Lemma 2.1. Then

kb� bmk0;0 � ce��m
1=�

kbk�;�:
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Proof. From (1.10) it follows that for '(t; s)

k'�Qm;t'k0;0 � cm�1





@'@t





0;0

� cm�1k'k1;0:

Analogously
k'�Qm;s'k0;0 � cm�1k'k0;1;

k(I �Qm;t)
 (I �Qm;s)'k0;0 � cm�2k'k1;1:

Then

k'�Qm;t 
Qm;s'k0;0 � c(m�1k'k1;0 +m�1k'k0;1 +m�2k'k1;1): (2:11)

Now we note that for (k; l) 2 �m;� � Zm � Zm

Qm;t 
Qm;se
2�i(kt+ls) = Qme

2�iktQme
2�ils = e2�i(kt+ls) (2:12)

Using (2.11), (2.12) and Lemma 2.2, we obtain the assertion of the lemma:

kb� bmk0;0 = k(I �Qm;t 
Qm;s)(b� bm;�)k0;0 �

� c(m�1kb� bm;�k1;0 +m�1kb� bm;�k0;1 +m�2kb� bm;�k1;1) �

� ce��m
1=�

kbk�;�: 2

Lemma 2.4 Assume the condition of Lemma 2.1. Then

kB �BmkH0!H� � cm�e��m
1=�

kbk�;�:

Proof. Recalling Lemma 2.1, we have

kB �BmkH0!H� � kB �Bm;�kH0!H� + kBm;� �BmkH0!H� �

� cm�e��m
1=�

kbk�;� + kBm;� � BmkH0!H� : (2:13)

Keeping in mind that Bm;��Bm : H0 ! Tm, from (1.11) and Lemmas 2.2,2.3
we obtain the estimate

kBm;� � BmkH0!H� � 2�m�kBm;� � BmkH0!H0 �

9



� cm�kbm;� � bmk0;0 � cm�(kb� bm;�k0;0 + kb� bmk0;0) �

� cm�e��m
1=�

kbk�;�:

Summing up we get the assertion of the lemma. 2

Now we are able to carry out the convergence analysis of our fully discrete
projection method (2.1).

Theorem 2.1 Let the assumptions of Theorem 1.1 be ful�lled. Then there

is some m0 such that for m > m0

ku� un;mk0 � c(n�� +me��m
1=�

)kbk�;�kuk� (2:14)

Proof. First we show that for any v 2 Tn and n > m > m0 the stability
condition

kvk0 � ~c0kAmvk1 (2:15)

holds with some constant ~c0 which does not depend on n and m. Indeed,
from (1.7) and Lemma 2.4 we have

kvk0 � c0kAvk1 � c0kAmvk1 + c0k(A� Am)vk1 =

= c0kAmvk1 + c0k(B � Bm)vk1 � c0kAmvk1+

+cc0me��m
1=�

kbk�;�kvk0:

Consequently, for su�ciently large m

kvk0 �
c0

1� cc0me��m
1=�kbk�;�

kAmvk1 = ~c0kAmvk1:

Now we pass to the estimation of the norm ku� un;mk0. By (1.8) we have

ku� un;mk0 � ku� Pnuk0 + kPnu� un;mk0 �

�
�
n

2

���
kuk� + kPnu� un;mk0: (2:16)

Since Pnu� un;m 2 Tn, from (2.15) we obtain

kPnu� un;mk0 � ~c0kAm(Pnu� un;m)k1 =
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= ~c0kAmPnu�Qnfk1 = ~c0kAmPnu�QnAuk1 �

� ~c0kPnAu�QnAuk1 + ~c0kPnAu� AmPnuk1 = ~c0(T1 + T2): (2:17)

Using (1.8),(1.9) we �nd

T1 := kPnAu�QnAuk1 � k(I � Pn)Auk1 + k(I �Qn)Auk1 �

� cn��kAuk�+1 � cn��kuk�: (2:18)

From Lemma 2.4 and (2.3),(2.4) it follows that for n > m

T2 := kPnAu� AmPnuk1 = kPn(A� Am)uk1 = kPn(B �Bm)uk1 �

k(B � Bm)uk1 + k(I � Pn)(B �Bm)uk1 � cme��m
1=�

kbk�;�kuk0+

+cn�1k(B � Bm)uk2 � c(m+ n�1m2)e��m
1=�

kbk�;�kuk0 �

� cme��m
1=�

kbk�;�kuk�: (2:19)

Now by virtue of (2.16)-(2.19) we get the assertion of the theorem. 2

Remark. Using an argument like that in the proof of Theorem 2.1 we
get the estimate

ku� un;mk� � c(n��+� +m�+1e��m
1=�

)kbk�;�kuk�;

0 � � < �: 2

Let us compare our result (2.14) with the convergence of the discrete
collocation-Galerkin method (1.12). From [6], [7] it follows that under the
conditions of Theorem 1.1

ku� unk0 � cn��kuk�;

where un is the solution of (1.12). Keeping in mind the structure of (1.12)
it is easy to see that to obtain the approximate solution of (1.2) with accu-
racy O(n��) one must solve a system of O(n) linear algebraic equations and
have a collection of O(n2) values (1.13). On the other hand, from (2.5) and
Theorem 2.1 it follows that to guarantee an accuracy of order O(n��) within
the framework of method (2.1) it su�ces to take m = (�+1

�
)� log� n, to solve

a system of O(log� n) equations and to use m2 = O(log2� n) values of the
kernel b(t; s) and n values of the right-hand side f(t).
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3 Characterization of self-regularization

properties

In the above analysis we have assumed that 
(t); b(t) and f(t) have been
determined exactly. Now we will discuss the in
uence of noises in the data.
Assume that instead of 
; b; f we have at our disposal noisy data 
"; b"; f�
satisfying (1.14)-(1.16).

Lemma 3.1 Under the condition (1.15)

kBm �Bm;"kH0!H1 � cm3=2";

where

(Bm;"u)(t) =

1Z
0

bm;"(t; s)u(s)ds;

bm;"(t; s) = (Qm;t 
Qm;sb")(t; s):

Proof. Since Bm � Bm;" : H
0 ! Tm, from (1.11) it follows that

kBm �Bm;"kH0!H1 � cmkBm �Bm;"kH0!H0 � cmkbm � bm;"k0;0: (3:1)

Keeping in mind that in both variables the function bm(t; s)� bm;"(t; s) is a
trigonometric polynomial from Tn, we have

kbm � bm;"k
2
0;0 =

1

m2

mX
k=1

mX
l=1

����bm
�
k

m
;
l

m

�
� bm;"

�
k

m
;
l

m

�����
2

= Im;" (3:2)

Due to (1.16) we can continue:

Im;" =
1

m2

m�1X
p=0

X
1�k;l�m

jk�lj=p

����bm
�
k

m
;
l

m

�
� bm;"

�
k

m
;
l

m

�����
2

�

�
c

m2

X
1�k;l�m

k=l

m2"2 +
c

m2

m�1X
p=1

X
1�k;l�m

jk�lj=p

"2

sin2 �jk�lj

m

=

= c"2m +
c

m2

X
1�p�m

2

X
1�k;l�m

jk�lj=p

"2

sin2 �jk�lj

m

+
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+
c

m2

X
m

2
<p<m

X
1�k;l�m

jk�lj=p

"2

sin2(� � �jk�lj

m
)
= c(m"2 + I1;" + I2;"): (3:3)

Since sin x � 2x
�
; x 2 [0; �

2
], we obtain

I1;" =
1

m2

X
1�p�m

2

X
1�k;l�m

jk�lj=p

"2

sin2 �jk�lj

m

�
c

m2

X
1�p�m

2

(m� p)"2m2

�p2
�

� c"2m
X

1�p�m

2

1

p2
+ c"2

X
1�p�m

2

1

p
� c("2m+ "2 logm): (3:4)

Analogously, I2;" � c"2 logm and the assertion of the lemma follows from
(3.1)-(3.4). 2

Corollary 3.1 Let the assumptions of Theorem 1.1 and Lemma 3.1 be ful-

�lled. Then for Am;" = A0 +Bm;" and m � m0 satisfying

cm3=2" < q=~c0; q 2 (0; 1)

the stability inequality

kvk0 � c
0

0kAm;"vk1

holds for all v 2 Tn; n � m.

Proof. It follows from (2.15) and Lemma 3.1 that for any v 2 Tn; n � m,

kvk0 � ~c0kAmvk1 � ~c0kAm;"vk1 + ~c0k(Am � Am;")vk1 =

= ~c0kAm;"vk1 + ~c0k(Bm � Bm;")vk1 � ~c0kAm;"vk1 + ~c0cm
3=2"kvk0

which results to

kvk0 �
~c0

1� ~c0cm3=2"
kAm;"vk1 = c

0

0kAm;"vk1

as claimed. 2

Lemma 3.2 Assume the conditions of Theorem 1.1 and (1.14). Then

kun;m � un;m;�k0 � cn�kuk�;

where un;m = A�1
n;m

Qnf; un;m;� = A�1
n;m

Qnf�.
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Proof. From Lemma 2.1 [2] it follows that under the condition (1.14)

kQnf �Qnf�k0 � �kfk�+1:

Moreover, it is easy to see that un;m � un;m;� 2 Tn. Then from (1.11),(2.15)
we have

kun;m � un;m;�k0 � ~c0kAn;m(un;m � un;m;�)k1 =

= ~c0kQnf �Qnf�k1 � 2n~c0kQnf �Qnf�k0 �

� cn�kfk�+1 � cn�kuk�: 2

Within the framework of the fully discrete projection method (2.1) for
solving Symm's integral equation (1.2), from the noisy data 
"; b"; f� one
takes the solution un;m;";� of the equation

Am;"u := A0u+Bm;"u = Qnf� (3:5)

as approximate solution for (1.2).

Theorem 3.1 Assume the conditions of Theorem 1.1 and (1.14),(1.15).

Then for

n � ��
1

�+1 ; m = ��� ln�
1

"
=

2

��
log�

1

"
� log�

1

"
(3:6)

equation (3.5) with perturbed data is uniquely solvable and

ku� un;m;";�k0 � c(�
�

�+1 + " log
3
2
�
1

"
)kuk�:

Proof. It follows from Theorem 2.1 and Lemma 3.2 that for su�ciently
large n;m

ku� un;m;";�k0 � ku� un;mk0 + kun;m � un;m;�k0+

+kun;m;��un;m;";�k0 � c(n��+me��m
1=�

+n�)kuk�+kun;m;��un;m;";�k0: (3:7)

Further, using Lemma 3.1 and Corollary 3.1 we �nd

kun;m;� � un;m;";�k0 � c
0

0kAm;"(un;m;� � un;m;";�)k1 =

14



= c
0

0kAm;"un;m;� �Qnf�k1 = c
0

0kAm;"un;m;� � Amun;m;�k1 �

� c
0

0kAm;" � AmkH0!H1kun;m;�k0 = c
0

0kBm �Bm;"kH0!H1kun;m;�k0 �

� c"m3=2kun;m;�k0: (3:8)

Moreover, from Lemma 3.2 and Theorem 2.1 we have

kun;m;�k0 � kun;mk0 + kun;m;� � un;mk0 �

� kuk0 + ku� un;mk0 + cn�kuk� �

� kuk0 + c(n�� +me��m
1=�

)kuk� + cn�kuk� � ckuk�: (3:9)

Combining (3.7)-(3.9) with (3.6), we obtain the error estimate

ku� un;m;";�k0 � c(n�� +me��m
1=�

+ n� + "m3=2)kuk� �

� c

�
�

�

�+1 + " log
3
2
�
1

"

�
kuk� (3:10)

as claimed. 2

Estimates (1.17),(1.18) and (3.6),(3.10) characterize the self-regularization
of the problem (1.2), considered in an ill-posed setting, through its discretiza-
tions

A0u+Qn
~Bn;"u = Qnf� (3:11)

and (3.5), respectively. It is clear that having the noises with levels " and � in
the data of our problem (1.2), we can not obtain an order of accuracy more
than O(") and O(�). From Theorem 3.1 it follows that unlike discretization
(3.11), our fully discrete projection method (3.5) allows to obtain the optimal
order of accuracy in the power scale with respect to the level of the noise "
in the parametric representation of the boundary 
(t).
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