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1. Introduction

We consider the standard Hop�eld model [Ho] (see [BP] for recent reviews on mathematical

work on this model) with i.i.d. symmetric Bernoulli patterns. The most basic question that can

be asked in this model is whether the patterns are �xed points of the gradient dynamics, or,

equivalently, whether they are local minima of the Hamiltonian. This question was �rst raised in

a paper by G. Weisbuch and F. Fogelman-Souli�e [WF] in 1985 and answered using what is called

\signal-to-noise" analysis on a mathematically heuristic level. A more mathematical analysis was

later presented by R.J. McEliece et al. [MPRV] in 1986. They computed precisely the probability

that all patterns were �xpoints in the limit when the size of the network, N , tends tends to in�nity

in the case where the number of patternsM scales in a precise way like N
k logN

�
1 +

ln t
p
4�+ln lnN=2
lnN

�
with t a parameter. This probability was seen tends to zero as t goes to in�nity, but their proof

could not give information if M scaled in a di�erent way. Their result covered also the question

of one-step convergence. Beside its limitations, their proof is very complicated and tedious. A

simple proof of part of their analysis was later given by S. Martinez [M] and F. Vermet [V]. A good

presentation can is given in the review by Petritis [P]). These rigorous results provided lower bounds

on the number of patterns that could be stored before a patterns failed to be a �xed point, and

were, depending on the precise question asked, of the form Mc � N
k lnN

, with k = 2; 4; 6. Similar

results have recently been proven for biased and dependent patterns in some cases [Loe]. What

was missing on the rigorous level were upper bounds, that is, it was not shown that if M exceeded

such critical values, then the �xed point property would indeed fail.

The problem of the upper bound on the storage capacity is notorious also when other notions

of storage capacity are used (see e.g. Newman [N]). The only rigorous paper that addressed this

issue so far is the one by Loukianova [Lou]. She studied the issue whether the presence of local

minima of the Hamiltonian can be excluded in some neighborhood of a pattern if M = �N . Her

results show that indeed there is a function �(�) such that for any � > 0, there is no minimum in

a distance less than �(�) > 0 of any given patterns, if M = �N , with probability tending to one.

Unfortunately, the numerical estimates on �(�) that come out of the analysis are rather poor, and

it was only shown that lim inf �(�) � 0:05. Indeed the analysis was geared to the case of large �,

and no attempt was made to verify the results of Weisbuch et al.

In this note I will show that the approach of Loukianova [Lou], with some modi�cations, can

be used to prove that indeed sharp upper and lower bounds on the storage capacity, coinciding

with those of [WF], hold true.

While the issue of the storage capacity in this strict sense may be of limited interest by now,

signal-to-noise analysis of the kind used in [WF] is still used widely in the analysis of neural net-

works, with little regard given to the question whether the various assumptions made are applicable
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in the given situation. In view of this, it may be of interest to understand what is necessary to

obtain rigorous control of such an analysis.

The gradient dynamic of the Hop�eld model is de�ned by applying at random the maps

(Ti(�))k =

(
�k; if k 6= i

sign
�P

j 6=i
PM

�=1 �
�
i �

�
j �j

�
; if k=i

(1:1)

Thus a con�guration � is a �xed point of the gradient dynamic if and only if

�i = sign

0
@X

j 6=i

MX
�=1

�
�
i �

�
j �j

1
A (1:2)

for all i.

Theorem 1: For any 
 > 0, the following holds:

(i) If M(N) is such that limN"1
M(N)(2+
) lnN

N
� 1, then for any �

lim
N"1

IP
�
8Ni=1�

�
i = Ti�

�
�
= 1 (1:3)

and

(ii) If M(N) is such that limN"1
M(N)(2�
) lnN

N
� 1, then for any �

lim
N"1

IP
�
8Ni=1�

� = Ti�
�
�
= 0 (1:4)

Remark: As was mentioned before, part (i) has been proven earlier, and the best proof can be

found in [P]. There are some essentially obvious extensions that follow from the fact that the proof

provides estimates on the probabilities for the events ��i = sign
�P

j 6=i
PM

�=1 �
�
i �

�
j �

�
j

�
to fail that

are of the form N�
=2. Therefore, with 
 > 2, one may get either that the probability that all M

patterns are �xed points tends to zero, or that with probability one, a given pattern is a �xed point

for all but a �nite number of values N . If 
 > 4 it is even true almost surely that all M pattern

are �xed points for all but a �nite number of values N .

The actual estimates on the probabilities in (ii) we get are such that the Borel-Cantelli lemma also

yield the corresponding almost sure statements for any 
 > 0, that is we can repalce (ii) by

(ii') If M(N) is such that limN"1
M(N)(2�
) lnN

N
� 1, then for any �xed �, with probability one,

there are only �nitely many values N such that 8Ni=1Ti�
� = �� .

Note that on the contrary we cannot show that already for 
 > �2, IP
�
8M�=18Ni=1�

� = Ti�
�
�
tends

to zero.
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As a further illustration we mention that the method of our proof also yields with almost no

modi�cation sharp two sided estimates on the one-step convergence of the sequential dynamics.

Recall that this dynamics is de�ned by applying all the maps Ti simultaneously to a con�gurations,

i.e. at each time step we apply the operator T de�ned through

(T�(t))i � sign

0
@X

j 6=i

MX
�=1

�
�
i �

�
j �j

1
A (1:5)

We want to know under which circumstances T acting on a con�guration close to one pattern ��

returns �� immediately. A worst case analysis yields poor results (but see [Bu] for a careful analysis

of this question), so we want to only get results for a typical such initial conditions. To make this

notion precise, we introduce a new independent r.v., � 2 S1, with the same distribution as the ��

on the probability space (
;F ; IP ). Then we modify the distribution of this variable by conditioning

it to be close to, say, �1. That is we de�ne the new measure IP �[�] � IP
�
�jPi �

1
i �i = N�

�
. With

this de�nition we have

Theorem 2: Let 0 < � � 1. For any 
 > 0, the following holds:

(i) If M(N) is such that limN"1
M(N)(2+
) lnN

�2N
� 1, then

lim
N"1

IP �
�
T� = �1

�
= 1 (1:6)

and

(ii) If M(N) is such that limN"1
M(N)(2�
) lnN

�2N
� 1, then

lim
N"1

IP �
�
T� = �1

�
= 0 (1:7)

The �rst part of this theorem is known and due to Komlos and Paturi [KP] (see also [Bu,P,V]).

The second part was proven in [MPRV] under special assumptions on the scaling of M , as in the

case of Theorem 1.

2. Proofs of the theorems

We choose to give the proof of Theorem 1 in detail �rst, although it can be seen as a particular

case of Theorem 2 with � = 1. There are just a few modi�cations necessary to cover the case of

general � and we indicate those in the proof of Theorem 2.
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Proof of Theorem 1: Part (i) is known (see [P]), but we repeat the proof for the convenience

and to show how easy it is compared to part (ii). We will in fact prove that

IP

2
49Ni=1�

�
i 6= sign

0
@X

j 6=i

MX
�=1

�
�
i �

�
j �

�
j

1
A
3
5 # 0 (2:1)

The whole idea is to observe that

sign

0
@X

j 6=i

MX
�=1

�
�
i �

�
j �

�
j

1
A = sign

0
@(N � 1)��i +

X
j 6=i

MX
�6=�

�
�
i �

�
j �

�
j

1
A

= ��i sign

0
@(N � 1) +

X
j 6=i

MX
�6=�

��i �
�
i �

�
j �

�
j

1
A

(2:2)

so that the �xed point condition amounts to sign
�
(N � 1) +

P
j 6=i
PM

�6=� �
�
i �

�
i �

�
j �

�
j

�
= 1 orP

j 6=i
PM

�6=� �
�
i �

�
i �

�
j �

�
j � �(N � 1). This yields

IP

2
49Ni=1�

�
i 6= sign

0
@X

j 6=i

MX
�=1

�
�
i �

�
j �

�
j

1
A
3
5 � NX

i=1

IP

2
4��i 6= sign

0
@X

j 6=i

MX
�=1

�
�
i �

�
j �

�
j

1
A
3
5

� NIP

2
4 NX
j=2

M�1X
�=1

��1 �
�
1 �

�
j �

�
j � �(N � 1)

3
5 = NIP

2
4 NX
j=2

M�1X
�=1

�
�
j � �(N � 1)

3
5

(2:3)

where we used that ��1 �
�
1 �

�
j �

�
j for j 6= 1 and �xed � 6= � have the same distribution as �

�
j . By a

standard Gaussian domination bound one has that

IP

2
4 NX
j=2

M�1X
�=1

�
�
j � �(N � 1)

3
5 � exp

�
� (N � 1)

2(M � 1)

�
(2:4)

from which the claimed result follows immediately.

We turn now to the proof of part (ii). Using our foregoing discussion, here we have to show

that

IP

2
48Ni=1

X
j 6=i

M�1X
�=1

�
�
i �

�
j � �(N � 1)

3
5 # 0 (2:5)

The essential di�culty that did not bother us in the previous bound is the lack of independence of

the random variables X
�
i � �

�
i

P
j 6=i �

�
j for di�erent i. The way out of this di�culty was shown by

Loukianova. Write �
�
i

P
j 6=i �

�
j = �

�
i

PN
j=1 �

�
j � 1 and de�ne

W� �
1p
N

NX
j=1

�
�
j (2:6)
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We can obviously write

IP

2
48Ni=1

X
j 6=i

M�1X
�=1

�
�
i �

�
j � �(N � 1)

3
5

=
X

fw�g�=1;:::;M�1

IP

"
8Ni=1

M�1X
�=1

[�
�
i w� � 1=

p
N ] � �(N � 1)=

p
N
��W� = w�;8�

#
IP [W� = w�;8�]

(2:7)

where the sum is over the (�nite) set of values w� which the r.v.'s W� can attain. The crucial

observation made in [Lou] is that under the conditional law IPw[�] � IP [�jW� = w�;8�], the random
variables �

�
i are negatively associated, so that in particular

IPw

"
8Ni=1

M�1X
�=1

[�
�
i w� � 1=

p
N ] � �(N � 1)=

p
N

#
�

NY
i=1

IPw

"
1p
N

M�1X
�=1

�
�
i w� � �1 + �

#

�
 
IPw

"
1p
N

M�1X
�=1

�
�
1w� � �1 + �

#!N (2:8)

where here and in the sequal we use the abbreviation � � M
N

(for the relevant results on negative

associated random variables, and proofs, see [JP]) . Our main task is thus to control the probability

IPw

h
1p
N

PM�1

�=1 �
�
1w� � �1 + �

i
, and in fact only for a set of w's that have probability tending to

one. Recall that the �
�
1 are still independent, and, moreover, their distribution under IPw is easily

found explicitly. Namely, as given in [Lou],

IPw [�
�
1 = �1] = 1

2

�
1� w�p

N

�
(2:9)

Thus

IEw

 
1p
N

M�1X
�=1

�
�
1w�

!
=

1

N

X
�

w2
� (2:10)

and

V arw

 
1p
N

M�1X
�=1

�
�
1w�

!
=

1

N

X
�

w2
�

 
1� w2

�

N

!
(2:11)

Now both those quantities are close to � with overwhelming probability. Indeed, we have

Lemma 1.1: Let W� be the r.v.'s de�ned in (2.6). De�ne the set 
�;c;N � 
 s.t. for all

! 2 
�;c;N

1

M

X
�

W 2
� [!] 2 [1� �; 1 + �] (2:12)

and
M�1
sup
�=1

jW�[!]j �
p
2c lnM (2:13)
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then, for �� 1,

IP [
�;c;N ] � 1� 2e�
�
2
M

8 �M�c+1 (2:14)

Proof: This Lemma results from standard and well known estimates on Rademacher sums. }

Remark: We note that we can choose without harm � =

q
8c lnM
M

.

From these observations we should get the idea that for those w that are in the realm of 
�;c;N ,

the random variables 1p
M

P
� �

�
1w� � 1 should converge to standard Gaussian, implying that

IPw

"
1p
N

X
�

�
�
1w� � �1 + �

#
!
Z 1

�1=�

dzp
2�

e�x
2=2 (2:15)

Unfortunately, this observation alone would not give su�ciently sharp estimates. We need some

control on the speed of convergence. In [Lou] the speed of convergence was controlled via a Berry-

Ess�en theorem. If we were to follow this approach, we would be able to prove the estimate in (ii

only for 
 > 1 which would leave a gap with respect to part (i).

It turns out that for � tending to zero, a better estimate can be obtained using conventional

techniques used to obtain large deviation estimates.

Write

IPw

"
1p
N

X
�

�
�
1w� � �1 + �

#
= 1� IPw

"
1p
N

X
�

�
�
1w� < �1 + �

#
(2:16)

The second probability concerns already, if � is small, a \rare" event. Thus we may hope to get a

good lower bound on it using the method of tilting. That is, for t � 0 we introduce the measure

IP t
w[�] �

IEw

�
1f�ge

t
P

�
�
�

1
w�

�

IEw

�
e
t
P

�
�
�

1
w�

� (2:17)

Now note that for any � > 0,

IPw

"
1p
N

X
�

�
�
1w� < �1 + �

#

� IPw

"
�1 + �� � <

1p
N

X
�

�
�
1w� < �1 + �

#

= IEt
w

�
1If�1+���< 1p

N

P
�
�
�

1
w�<�1+�ge

�t
P

�
�
�

1
w�

�
IEw

�
e
t
P

�
�
�

1
w�

�

� e�t(�1��+�)IEw

�
e
t
P

�
�
�

1
w�

�
IP t

w

"
�1 + �� � <

1p
N

X
�

�
�
1w� < �1 + �

#
(2:18)
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Now choose t = t� such that

IEt�

w

"
1p
N

X
�

�
�
1w�

#
= �1� �=2 + � (2:19)

Now a simple calculation shows that

IEw

h
e

tp
N
�
�

1
w�
i
= cosh(tw�=

p
N) +

w�p
N

sinh(tw�=
p
N) (2:20)

and

IEw

�
1p
N
�
�
1w�

�
= sinh(tw�=

p
N) +

w�p
N

cosh(tw�=
p
N) (2:21)

Hence

IEt
w

"
1p
N

X
�

�
�
1w�

#
=

1p
N

X
�

w�

"
w�=

p
N + tanh(tw�=

p
N)

1 +
w�p
N
tanh(tw�=

p
N)

#
(2:22)

Using the fact that on 
�;c;N the w� are at most like
p
lnN and anticipating that t� will be of order

1=�. Therefore, if we expand in tw�=
p
N and keep only the highest terms, we will make errors of

order lnN=
p
M at most. Thus

Et
w

"
1p
N

X
�

�
�
1w�

#
=

1

N

X
�

w2
�(1 + t)(1 +O(lnN=

p
M)) (2:23)

and so (anticipating the choice e � lnN=
p
M)

t� = � 1

�
(1 + �=2 +O(�)) (2:24)

By the same means, we see already that

e�t
�(�1��+�)IEw

�
e
t� 1p

N

P
�
�
�

1
w�

�

e�t
�(�1��+�)

Y
�

cosh(t�w�=
p
N)

�
1 +

w�t
�

p
N

tanh(t�w�=
p
N)

�

� e�
1
2�

(1+6�+O(�))

(2:25)

It remains to consider the last term in (2.18). But here again the variables �
�
1 are independent

under IP t
w and their sum converges to a Gaussian by the CLT. Since t� is chosen to guarantee

(2.19) and a simple computations shows that the variance

IEt�

w

 
1p
N

X
�

�
�
1w� � IEt�

w

1p
N

X
�

�
�
1w�

!2

=
1

N

X
�

�
IEt�

w (�
�
1w�)

2 �
�
IEt�

w (�
�
1w�)

�2�

=
1

N

X
�

"
w2
� cosh(tw�=

p
N) +

w�p
N

sinh(tw�=
p
N)

+ w2
�

"
w�=

p
N + tanh(t�w�=

p
N)

1 +
w�p
N
tanh(tw�=

p
N)

#2#

= �(1 +O(�))

(2:26)
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A often convenient way to exploit this is to use the 2nd order Tchebychev inequality,

IP t
w

"
�1 + �� � <

1p
N

X
�

�
�
1w� < �1 + �

#
� 1� 4�(1 + 0(�))

�2
(2:27)

which allows e.g. to choose d = 4
p
� (which tends to zero) and to have this probability bounded

from below by 1=2. Collecting this we see that on 
�;c;N we have indeed

IPw

"
8Ni=1

1p
N

M�1X
�=1

�
�
i w� � �1� �

#

�
h
1� e�

1
2�

(1+6�+O(�))=2
iN

� e�Ne
� 1
2�

(1+6�+O(�))
=2

(2:28)

If � � lnN
2�
 , with 
 > 0, while � # 0, we can choose � and � such that for su�ciently large

N , Ne�
1
2�

(1+6�+O(�)) > N�
=4 so that the right hand side of (2.28) tends to zero rapidly. Since

IP [
c
�;c;N ] tends to zero also, the proof of Theorem 1 is complete. }

Proof of Theorem 2: Let us observe that the condition �11 = (T�)i amounts to

X
j 6=i

�1j�j +

MX
�=2

X
j 6=i

�1i �
�
i �

�
j �j � 0 (2:29)

But under IP � with probability one we have that
P

j 6=i �
1
j�j = �N � �1i �i. Without any signi�cant

further modi�cation of the proof of part (i) of theorem 1 one obtains thus that

IP � [9i��i 6= (T�)i] � Ne
� �

2(N���1)2

2(M�1)(N�1) (2:30)

from which the claim in (i) follows.

To prove (ii) we have to deal with the random variables

Xi �
MX
�=2

�1i �
�
i

X
j 6=i

�
�
j �j =

MX
�=2

0
@�1i ��i

NX
j=1

�
�
j �j � �1i �i

1
A (2:31)

It is convenient to introduce the new variables �̂
�
j � �

�
j �j for all � � 2 and for all j � 1. Then

Xi = �1i �i

0
@ MX
�=2

�̂
�
i

NX
j=1

�̂
�
j � (M � 1)

1
A (2:32)

Note that the family of random variables
n
�i; �

1
i ; �̂

�
i

o��2

i�1
has the same distribution as our original

family, so that the hats can be dropped in all computations of probabilities. As before we de�ne
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W� = 1p
N

PN
j=1 �̂

�
j . The trick is now to condition not only on the values of W� but also on those

of the variables �1i �i, that is

IP �

2
48Ni=1

X
j 6=i

M�1X
�=1

�1i �
�
i �

�
j �j � ��N � �1i �i)

3
5 =

X
xi=�1

X
fw�g�=1;:::;M�1

IP �

"
8Ni=1xi

 
M�1X
�=1

�̂
�
i w� � (M � 1)=

p
N

!
� �(�N � xi)=

p
N
��W� = w�;8�; �1i �i = xi;8i

#

� IP � [W� = w�;8�] IP �
�
�1i �i = xi;8i

�
(2:33)

Due to the di�erent signs of the Xi the estimate (2.8) does now no longer hold, but a su�ciently

good estimate is obtained by throwing out all those conditions that have xi = �1, i.e.

IP �

"
8Ni=1xi

 
M�1X
�=1

�̂
�
i w� � (M � 1)=

p
N

!
� �(�N � xi)=

p
N
��W� = w�;8�; �1i �i = xi;8i

#

�
Y

i:xi=+1

IP �

"
M�1X
�=1

�̂
�
i w� � (M � 1)=

p
N � �(�N � 1)=

p
N
��W� = w�;8�; �1i �i = xi;8i

#

�
 
IP �

"
M�1X
�=1

�̂
�
i w� � (M � 1)=

p
N � �(�N � 1)=

p
N
��W� = w�;8�; �1i �i = xi;8i

#!�N

(2:34)

where we used the fact that with probability one, the number of i such that �i�
1
i is �N . Inserting

this bound in (2.33) leaves us with

IP �

2
48Ni=1

X
j 6=i

M�1X
�=1

�1i �
�
i �

�
j �j � ��N � �1i �i

3
5

�
X

fw�g�=1;:::;M�1

 
IPw

"
M�1X
�=1

�
�
i w� � (M � 1)=

p
N � �(�N � 1)=

p
N

#!�N

� IP [W� = w�;8�]

(2:35)

From here on we may use all the estimates from the proof of Theorem 1. The only di�erence is

the �nal estimate corresponding to (2.28) becomes exp
�
�N�e�

�
2

2�
(1+6�+O(�))=2

�
from which the

claimed estimate follows.}
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