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ABSTRACT. A notion of stability for a special type of test equations is proposed. 
These are stochastic differential equations with multiplicative noise for which 
there is a connection between the parameters in the drift and diffusion coefficient. 
By means of the Euler scheme and two different implicit Euler schemes a method 
to find the regions of stability is also examined. 
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1. INTRODUCTION 

If we want to apply numerical methods to Stratonovich stochastic differential equa-
tions of the form dXt = a(t, Xt)dt+b(t, Xt) odWt we have to examine their regions 
of stability. The knowledge about the stability of a numerical method is a crucial 
point to decide for a given stochastic differential equation whether the method is 
appropriate or not. The existence of noise in the stochastic case provides a num-
ber of difficulties which we have not for ordinary differential equations. Before we 
consider the situation for stochastic differential equations we give a short overview 
about the concept of stability for deterministic numerical schemes. 
In the deterministic sense talking of numerical stability of a one - step method 

(1.1) 

with an increment function 'I! = 'I!(t, x, L.\) means that an error will remain 
bounded with respect to an initial error for an ordinary differential equation 

dx dt = a(t, x) (1.2) 

where a( t, x) satisfies a Lipschitz condition. We say more precisely that a one -
step method (1.1) is called numerically stable if for each time interval [to, T] and 
given differential equation (1.2) there exist positive constants L.\0 and M such that 

IYn -Y'nl ~Miya -Y'al (1.3) 

for all n = 0, 1, ... , nT (we have YnT = y(T) ) and any two solutions Yn, Yn of 
(1.1) corresponding to any time discretization with m:X.D.n < L.\a . 
Here the constant M can be quite large. In order to ensure that the error does 
not grow over an infinite time horizont one introduces the notion of asymptotic 
numerical° stability. A one - step method ( 1.1) is called asymptotically numerically 
stable for a given differential equation if there exist positive constants .6.a and 
M such that 

lim IYn - Ynl ~ Miya - Yal 
n-+oo 

(1.4) 

for any two solutions y, fj of ( 1.1) corresponding to any time discretization with m:X L.\n < .6.a . From the practical point of view one is not only interested in 
the problem whether a method is numerically stable or not , but one asks for the 
step size L.\ which one has to choose. For this purpose one considers the class of 
complex valued test equations 

dx = >.x 
dt 

( 1.5) 

with ,\ = >. 1 + ,\2i which is equivalent to the 2 - dimensional differential equations 

~~ ( :: ) = ( ~~ ~~2) ( :: ) 
where x = x1 + x 2i . To decide which step sizes one can use it is helpful to 
study the region of stability of the scheme. If one can write a numerical scheme in 
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a recursive form 

(1.6) 

then the set of all complex numbers .A6 with IG(.A6)1 < 1 describes the region 
of absolute stability of the scheme. For the Euler scheme 

the region of absolute stability is an open unit disc centered at the point --'1 + Oi . 
Including additive noise in the test equations (1.5) leads to a simple stochastic 
generalization of the concept of asymptotic numerical stability. For the resulting 
class of test equations 

(1.7) 

where the parameter A is a complex number with Re (.A) < 0 and W is a real -
valued standard Wiener process the regions of stability of some stochastic numerical 
schemes were considered in [5]. Under the assumption that a given scheme with 
equidistant step size 6 applied to the test equation (1.7) with Re(.\) < 0 allows 
a representation in the form 

(1.8) 

for n = 0, 1, ... , where G is a complex function and the Z0 , Z1, ... are random 
variables which do not depend on A or the Yo, ... , Yn+l the set of complex numbers 
.A6 with .A1 = Re(.\) < 0 and IG(.A6)1 < 1 is called the region of absolute 
stability of the scheme. For example we know from [5] that the region of absolute 
stability for the explicit Euler scheme 

is the same as in the deterministic case, namely the interior of an unit circle with 
the centre in the point -1 + Oi . Similar as in the deterministic case one also has the 
notion of A- stability for stochastic schemes. One says that a stochastic scheme is A 
- stable if its region of absolute stability is the whole left half of the complex plane. 
Of course an A - stable stochastic scheme is also A -stable in the deterministic 
sense for an ordinary differential equation. If we want to use stochastic numerical 
schemes to solve applied problems we have to simulate only in a few cases such 
simple equations as (1. 7). The underlying situatiori is a completely different one if 
the diffusion coefficient is more complicated. Then it is the first request to introduce 
·a new reasonable notion of stability of stochastic numerical schemes. The aim of 
this paper is to provide such a notion and to use it to find the regions of stability 
for given numerical methods with respect to a class of test equations. Here this 
will be a specific class of stochastic differential equations involving the effect of 
multiplicative noise. 
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2. A NOTION OF STABILITY FOR A CLASS OF TEST EQUATIONS 

In this section we introduce a concept of stochastic numerical stability for stochastic 
differential equations with multiplicative noise. For this purpose we consider the 
class of complex valued test equations 

(2.1) 

where .X and r are complex numbers, W is a real standard Wiener process and 
the parameter a is a real number which belongs to the interval [O, 1] . Changing 
the par~meter a shifts the weights between drift and diffusion coefficients in the 
equation. In order to simplify the descriptions of the regions of stability it will be 
our aim to look at such equations (2.1) for which there is a suitable connection 
between the parameters .X and r. Suppose that we can write a given stochastic 
scheme with equidistant step size ~ applied to a test equation which belongs to 
the class (2.1) in the recursive form 

(2.2) 

where G is a complex valued function which is random and which does not depend 
on Yo, ... , Yn+t . Then we shall say that the subset r of the complex plane with 

r = {).fl E IC : Re(>.) < 0, Re(1'2 ) < 0, Jess s~p G(M, ')'v"E, w )I < 1} (2.3) 

forms the region of stability of the scheme. The main difference between the mul-
tiplicative noise case and the additive noise case is that we can not easily express 
the recursive representation of a given scheme in terms of a deterministic com-
plex mapping and a random variable which is separated from the mapping. That 
means it remains a complex mapping which involves a random variable. So, in some 
sense we have to consider all possible realizations of this random variable. By using 
the essential supremum of the mapping to characterize the region of stability we 
consider the worst case. 
Now, let us investigate whether the choice of our class of test equations is reason-
able. For this we have to examine the stability of the test equation itself. Obviously, 
it is helpful to show that for every t the absolute value of the p th moment of Xt 
remains bounded. At the beginning we refer to the fact that the explicit solution 
of(2.l)is 

(2.4) 

that is 

Xf = X8 exp{p((l - a).Xt +Var Wt)}. (2.5) 

Then we can understand Xf as solution of the Stratonovich equation 

Xf = Xg + l p(l - a)AX;'ds + l p..ja')'X;' o dW,. (2.6) 
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Rewriting (2.6) in the corresponding Ito form leads to 

Xf = X8 + !\p(l - a)>. + ~p2a·y2)X:ds Jo 2 
(2.7) 

+ it pfo1 x: dWs. 

By the help of the solution (2.5) of equation (2.7) we can derive the following 
expression for the p th moment 

E(Xi) E(X8) exp{p((l - a)>.+ ~pa12 )t} (2.8) 

E(X8) exp{p((l - a)(>.1 + >.2i) + ~pa(rf + 21112i - 1;))t}. 

From (2.8) follows for the absolute value 

jE(Xi)I = IE(X6)llexp{p(l - a)>.1t}l · lexp{~p2 aRe(r2 )t}I · (2.9) 

So, we get under the conditions >.1 = Re(>.) < 0 and Re( 1 2) < 0 the estimate 

IE(Xf)I < IE(X6)l · (2.10) 

That means in this case the test equation is stable for all moments. This shows 
that the restrictions Re(>.) < 0 and Re(r2 ) < 0 in (2.3) are reasonable. The 
condition Re(>.) < 0 is sufficient if we consider only test equations satisfying the 
relation 1 2 = >. . 
To be able to clear some questions concerning the stability of stochastic numerical 
methods we restrict our interest in this paper on test equations with 1 2 = >. . In 
this case we can hope that it is possible to express the ·regions of stability in terms 
of >...6. only. The fact that the condition Re(r2 ) < 0 vanishes is also a justification 
for our decision. 

3. STABILITY OF THE EXPLICIT EULER SCHEME 

In this section by means of the explicit Euler scheme we want to show how we can 
find a. region of the complex >...6. - plane for which we have reliable information 
about the step size ..6. and the parameter >. to yield a stable behaviour . For 
reasons we already explained above we assume that 1 2 = >. . Thus we can express 
/ in terms of >.. Supposing 12 = >. leads to 

>.1=Re(>.)=1f - I~ 

and 
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The two equations are equivalent to 

(3.1) 

and (3.2) 

By using (3.1) we get from (3.2) the quadratic equation 

where 71 := 1i . The two solutions of this equation are 

and hence four different cases are possible . By applying (3.1) to every 1 2 we can 
find the corresponding 11 . We discuss the situation in the following way : 

bih = ~(j,\j - ,\i) 

leads to 

that is we can use either 

/2 = 

or 

/2 =-

Furthermore from 

it follows 

such that either 

or 

1 -(j,\j - ,\i) 
2 

1 -(1,\1- ,\1) 2 

and 
,\2 

11 = -J=2(=1,\=j =_=,\=1) 

and 

and 

and 

5 
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Now, we are especially interested in the Euler scheme with respect to the following 
question. In which way can we characterize the region of .stability for the Euler 
scheme for each of the four different possibilities to choose / ? 
The simplified Euler scheme which is suitable for weak approximation applied on 
the test equation (2.1) has the.form 

Yn + ((1- a).AYn + ~a·r2Yn) 6. + fo1Yn.,/E. e 
(1 + ((1- a),\+ ~a12) 6. + va1VE. e)Yn 

(3.7) 

where e is a two - point distributed random variable with P( e = ~ 1) = ~ . So, 
we have a recursive representation of the scheme involving a complex mapping G 
with 

We choose / in the form (3.3). It follows 

G(.Ab.., w) 

1 + (1 - a)(.A16. + .A26. i) +~a ( J >., + -21 (I.Al - .A1) i) 2 
2 2(1.AI - .A1) 

"'+Va (,;2(\~'- >.,) + ~(\>.\ - >.,) i) . ../E. e. (3.8) 

Then the third condition on the set r in (2.3) leads to 

I ess s~p G( .Ab.., 1VE., w) I = 

I a,\~ 6. ab.. / ab.. 
1 + (1 - a).A16. + 4(1.AI - .A1) - 4(1.AI - >i1) + .A2y 2(1.AI - .A1) 

+ [(1 - a),\26. + ~a,\26. + Ja~ (l,\I - ,\i)] ii < 1. (3.9) 
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Squaring this inequality we obtain 

(1 - a),\1~{ 2 + (1 - a),\1~ - a~(l,\1- ,\1) 

+ A2~ ( ~2 / 2(1,\7~ ,\1) + 1)} 
+ (1 - ~a),\2~{ (1 - ~a),\2~ + J2a~(l,\I - A1)} 

2 a~ { ,\~a~ . / a~ } 
+ "22(1"1- "1) 2 + 8(1"1- "1) + "2V 2(1"1- ,\1) 

+ >.,~ - ~a'>.U>~ - ~a>.,tl/a~(IAI - >.,) 

+ 1
1
6 [a~(1,\1- "1)r < o. (3.10) 

Setting a = 0 reduces (2.1) to the ordinary differential equation dXt = ,\Xtdt 
for which the region of absolute stability of the explicit Euler scheme is the interior 
of the unit disc centered on -1 + Oi . On the other hand for a = 1 we obtain 

1 (,\ ~ )4 1 1 ( ,\ ~ )3 1 
16 2 (l"I~ - A1~)2 + 2y'2 2 V(l"I~ - ,\1~)3 

+ (,\2~)2 l"I~ ~ ,\1~ + ~(,\2~)2 
1 1 + rn,\2~/l,\I~ - A1~ + ../2,\2~. I 

2v 2 v 1"1~ - "1~ 

+ 116 (l"I~ - "1~)2 < o . 

Multiplying this inequality with (I,\ I~ - ,\1 ~ ) 2 provides an implicit representation 
which is appropriate to describe the region of stability. So, we get 

1 4 1 3/ ) -(,\2~) + Jr\(,\2~) (l,\J~ - A1~ 
16 2v2 

+ (,\2~)2 { ~(1,\1~ - ,\1~)2 + (1,\1~ - A1~)} 

+ ,\2~{ 2~V(l,\I~ - ,\1~)5 + hj(J,\J~ - A1~)3 } 

+ 116(1,\J~ - ,\1~)4 < 0 (3.11) 

and we obtain the following result for a situation without drift coefficient . 
For every complex number ,\~ = ,\ 1 ~ + ,\ 2 ~i with ,\1 < 0 which satisfies the 
inequality (3.11) the explicit Euler scheme is numerically stable if we choose / as 
in (3.3). 
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The other three possibilities to choose r yield corresponding but other inequalities. 
More precisely that means we obtain 

~(.:\2~)4 - \~P2~)3 1(1.XI~ - A1~) 16 2y2 v 
+ (.:\2~)2 { ~(I.XI~ - A1~) 2 +(I.XI~ - A1~)} 

A2~{2~V(l.Xl6 - .:\16)5 + h)(l.Xl6 - .:\16)3 } 

+ 116 (l.Xl6 - .:\16)4 < 0 (3.12) 

for r as in (3.4), 

1 4 2{ 1 I )2 16 (.:\26) + (.:\26) 8(1.X 6 + .:\16 

1,r.;)(1.x16 + .x16)3 } + ~(1.x16 + .x16)4 
2v2 16 

1,r.;)(l.Xl6 + .:\16)7 + (l.Xl6 + A1~)3 
2v2 

h)(l.XI~ + .X16)5 < o 
for r as in (3.5) and 

116 (.X26)4 + (.X26)2{ ~(I.XI~+ .X16)2 

+ 1,r.; · 1(1.Xl6 + .X16)3 } + 2_(1.XIL1 + .X16)4 
2v2 Y 16 

+ 1,r.;)(1.x16 + >.16)1 + (1.x16 + .x1~)3 
2v2 

+ h)(l>.I~ + >.16)5 < o 

(3.13) 

(3.14) 

for r as in (3.6). All these results refer to the fully stochastic case a = 1. On one 
hand we can show that any solution of (3.11) with a:- negative imaginary part is a 
solution of (3.13) too. The same conclusion holds for any solution of (3.12) for which 
the imaginary part is positive. On the other hand we can show that any solution of 
(3.11) with a positive imaginary part is a solution of (3.14) too. The same conclusion 
holds for any solution of (3.12) for which the imaginary part is negative. However 
it is easy to see that the set of complex numbers >.6 which satisfy the inequality 
(3.14) is empty. Hence the whole region of stability is described by (3.13). Th~t is 
in the fully stochastic case a = 1 the Euler scheme is stable inside a subset r of 
the complex .:\~ - plane where 

f = { .:\6 EC: Re(>.) < 0, (3.13) is fulfilled}. (3.15) 

In order to obtain regions of stability for other parameter values of a one has 
to handle the corresponding more general inequality (for example (3.10)) in an 
appropriate way. To plot the regions of stability one has to evaluate the equation 
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for its boundary numerically. For example, a complex number >.ti. belongs to the 
boundary of r if the relation 

is satisfied. 

116 (>.26.)4 + (>.26.)2{ ~(l.Alti. + >.16.)2 

2~J(1>-1ti. + >-16.)3 } + 116 (1>-1ti. + >-16.)4 

\~J(l.Alti. + >.16.)7 + (l.Alti. + >.16.)3 
2v2 

h)(l.Alti. + >.16.) 5 = 0 

4. IMPLICIT EULER SCHEMES 

(3.16) 

Now, we want to investigate under which conditions the application of the drift 
implicit Euler scheme 

1 
Yn + ( a(tn+1, Yn+1) + 2b(tn+1, Yn+1) · 
5 

5Y b( in+l, Yn+l)) L). + b( in, Yn)L). Wn 

and the fully implicit Euler scheme 

Yn+i = Yn + ( a(tn+i, Yn+i) - ~b(tn+i, Yn+1) · 

~ b(in+l, Yn+1))6. + b(in+li-Yn+i)6.Wn 

increase the stability. For this purpose we will compare the two different implicit 
Euler schemes with each other and with the explicit Euler scheme respectively. In 
one case we introduced implicitness only in the drift coefficient and in the other 
case we also made the diffusion coefficient implicit. Later we will see that for a 
suitable choice of the involved random variables the fully implicit Euler scheme 
with implicit drift and diffusion coefficients is more stable than other schemes of 
Euler type. At first let us look on the implicit Euler scheme which is implicit only 
in the drift term. This method applied to equation (2.1) yields 

. ( 1 Yn+i = Yn + (1 - a)>.Yn+i + 20:12Yn+1)ti. + vfa1Ynv1Ee. 

It follows 

that is 

Yn+l = (1- (1- o:)>.ti. - ~0:12 6.)- 1 . (1 + Fa1v1EOYn (4.1) 

where e is two-point distributed with P( e = ~ 1) = ~ . In the deterministic case 
a = 0 the scheme ( 4.1) is stable in the whole left half of the complex plane as 
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already explained in [5). Hence the scheme is A - stable . In the case a =.1 we 
have for / as in (3.3) 

G( .XL\, 1..//5., w) 

(4.2) 

For ( 4.2) the condition 

I ess s~p G( .XL\, 1..//5., w) I < 1 

leads to the inequality 

11+ ( J2<1:i' _ .\,) + ~(l.\I - .\1) i) ,(,';I < 

I 1 ( A~ . 1 ( ) I 1 - 2 2(1.XI - A1) + A2i - 2 I.XI - .X1) .!'.\ 
and we obtain finally 

1 4 2{ 1 2 } - 16(.:\2.!'.\) - (;\2.!'.\) 8(1.Xl.0. - .X1L'.\) - (I.AIL\ - A1L'.\) 

+ v'2.X2L'.\V(l.XIL'.\ - .X1L'.\)3 --' 116 (I.AIL\ - A1L'.\)4 < 0. ( 4.3) 

In similar way follows 

116 (.X2L'.\)4 - (.X2L'.\)2{ ~(I.AIL\ - .X1L'.\)2 - (I.AIL\ - .X1L'.\)} 

- v'2.X2L'.\V(l.XIL'.\ - A1L'.\)3 - 116 (I.AIL\ - .X1L'.\)4 < 0 ( 4.4) 

for / as in (3.4), 

- _!_(.X2L'.\)4 - ~(;\2.!'.\) 2 (1.XIL'.\ + A1L'.\)2 - _!_(I.AIL\+ .X1L'.\)4 
16 8 16 

+ (I.AIL\+ A1L'.\)3 - J2yf (l.XIL'.\ + A1L'.\)5 < 0 ( 4.5) 
for / as in (3.5) and 

- 116 (;\2.!'.\)4 - ~(;\2.!'.\)2(1.XIL'.\ + .X1L'.\)2 - 116 (I.AIL\+ A1L'.\)4 

+ (I.AIL\+ A1L'.\)3 + J2yf (l.XIL'.\ + A1L'.\)5 < 0 ( 4.6) 
for / as in (3.6). It is possible to show that any solution of ( 4.3) with a negative 
imaginary part and any solution of ( 4.4) with a positive imaginary part respectively 
is a solution of ( 4.5) too. Just as any solution of ( 4.3) with a positive imaginary part 
and any solution of ( 4.4) with a negative imaginary part respectively is a solution 
of ( 4.6) too. Furthermore we can show that ( 4.5) also follows from ( 4.6). Therefore 
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for the drift implicit Euler scheme the inequality ( 4.5) is sufficient to characterize 
the region of stability. So, we can say that in the case a = 1 the drift implicit 
Euler scheme is stable inside a subset r 1 of the complex X.6. -plane where 

fi = { .A.6. EC: Re(>.) < 0, (4.5) is fulfilled}. (4.7) 

Once again we start with equation (2.1) and now we use the fully implicit Euler 
scheme to obtain 

So, we have 

that is 

Yn+l Yn + ((1- a)>.Yn+l - ~a·,2Yn+i).6.. 
+ Va 'Y Yn+i .JE.. ( 

( 1 - (1 - a)>..6.. + ~a/2 .6. - va1.JE.. e)-1Yn 
1 . 

(4.8) 

Here we also choose e as two- point distributed with P(e = ~ 1 = ~. Under the 
familiar assumption we proceed in the same manner as ·above to find the region 
of stability. That is for each of the four possible choices of. / we try to get the 
inequality which describes our region of stability. We have for example for / from 
(3.3) 

G( .A.6., 1-JE.., w) G( >..6., w) 

( 1 - (1 - a)(>.1.6. + .A2.6.i) 

+~a( 2(l>.t~ >.1) + >.2i - ~(I.Al - >.1)).6. 

-v'a( ).2 + ~(l>.1- >.1)i). 
J2(1>.1 - >.1) 2 

VE..e)-1. ( 4.9) 

For ( 4.9) in the case a = 1 the condition 

I esssup G(>..6..,1.JE.., w)I < 1 
w 
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leads to the inequality 

1 4 1 3) -(.X2b.) - ;;;-(.X2.6.) \.X\b. - .X1.6. 
16 2v2 

+ (.X2.6.)2{ ~(J.X\b. - .X1b.)2 + (\.X\b. - .X1b.)} 

- .x2b.{ 2~J(1.x1.6. ~ >-1.6.)5 + V2J(1.x1.6. - >-1.6.)3} 
1 . 

+ 16(1.X\b. ~ >.1.6.)4 > 0. (4.10) 

If we denote the subsets of the complex >.b. - plane which correspond to the in-
equalities (3.11), (3.12), (3.13) and (3.14) with i\, l\, i\ and f\, respectively, then 
it is not difficult to see that the set i\ := C\(:i\ uai\) corresponds to (4.10) where 
oi\ denotes the boundary of i\. For 'Y from (3.4) we obtain in an analogous way 
the inequality 

J:_(.X2b.)4 + 1;;;-(>.2.6.)3jf .X\b. - >.1.6. 16 2v2 

+ (,\2.6.) 2 {~(\.Xlb. - .X1.6.)2 + (\.X\b. - .X1.6.)} 

+ .x2.6.{ 2~J(1>-1.6. - >-1.6.) 5 + hJ(l.x\b. - >-1.6.)3} 

1 4 + 16(\.X\b.- .X1.6.) > 0. (4.11) 

which is fulfilled for every element from i\ := C\(I\ u ai\). For 1 from (3.5) we 
ge.t the inequality 

116 (>-2.6.)4 + (>-2.6.)2{ ~(1>-1.6. + >-1.6.)2 + 2~J(1>-1.6. + >-1.6.)3} 
1 1 ~---

+ 16 (\.Xlb. + .X1b.)4 + 272)(\>.\b. + >.1.6.)7 

+ (\.Xlb. + .X1b.)3 + hJ(\>.\b. + >.1.6.)5 > 0 (4.12) 

which holds for every element from f\ := C\IR_ and for 'Y from (3.6) we get the 
inequality 

_!_(,\2.6.)4 + (.X2.6.)2{~(\>.J~ + A1.6.)2 - 1/Ci j(\.X\,6. + A1~)3} 
16 8 2v2 
1 1 ,-------

+ 16 (l>-\.6. + >-1~)4 - 272)(1>-1~ + >-1~)7 
+ (\.X\b. + .X1b.)3 - J2J(\.X\~ + >.1.6.)5 > O (4.13) 

which holds for every element from j\ := C\(.i\ u oi\) . We notice that the >.~ 
with Im(>.)= 0 and Re(,\) < 0 are not elements of f\ , but they are elements of 
both f\ and f 2 • So, we obtain for the fully implicit Euler scheme with a = 1 the 
whole left half of the complex A~ - plane as region of stability. With other words 
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we can say that to every complex number A we can find a suitable / such that 
the fully implicit Euler scheme ( 4.8) is numerically stable. 
From the investigations of section 2 and 3 we learned that the applicability of a 
method is strongly dependent on the choice of the random variable e . If we take 
for instance in the scheme (3. 7) e as a standard Gaussian random variable then 
ess supw G( .X.6., 1\/"E, w) is infinite because of (3.8). We note easily that one of 
the factors may become extremely large for standard Gaussian e if we represent 
scheme ( 4.8) in the form 

( 1 )n Yn= Yo. 
1 -(1 - a).X.6. + ~a12 .6. - fo1\/"Ee 

( 4.14) 

This clearly can not be a stable scheme. 

5. SUMMARY AND OUTLOOK 

We introduced a suitable test equation to make statements about the stability 
of stochastic numerical methods applied to stochastic differential equations with 
multiplicative noise. Similar as in the additive noise case (see [5]) we observed clear 

. advantages of implicit Euler schemes compared with the explicit Euler scheme also 
in the multiplicative noise case. 
Furthermore, we proposed a fully implicit scheme with implicitness in drift and 
diffusion coefficient. 
We noticed the surprising and appealing fact that we obtain in the case a = 1 
the same region of stability as in the deterministic case a = 0. So it makes sense 
to expect that this scheme is in more general situations a very powerful one. It 
will be our next aim to evaluate the corresponding regions of stability numerically 
and to apply our notion of stability in a more general situation. It should be also 
our interest to get regions of stability for higher order schemes. Another idea is 
to look for a characterization of the regions of stability by the use of Lyapunov 
exponents corresponding to the discrete time systems. That means we search for 
the Lyapunov exponents of the stochastic numerical schemes. 
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