
Abstract

We discuss extremal problems which arise in various nonparametric sta-

tistical settings with H�older function classes. We establish a new property of

the solution of an optimal recovery problem that leads to the exact constants

for asymptotic minimax risks. 1

1. Introduction

Consider a classic nonparametric model

yin = f(i=n) + �in; i = 1; 2; : : : ; n; n = 1; 2; : : : (1)

where yin are observations, �in are i.i.d. (0; �2)- Gaussian errors, f is an unknown

function belonging to H�older smoothness class �(�; L):

�(�; L) = ff : jf (m)(x)� f
(m)(x1)j � Ljx� x1j� g ; (2)

here m = b�c is an integer such that 0 < � � 1; � = � �m ; �; L are given

positive constants. As discovered recently, the exact minimax estimators in several

set-ups with H�older classes (2) are closely related to the solution g� of the extremal

problem

g(0)! sup;
Z
1

�1

g
2(t)dt � 1 ; g 2 �(�; 1) ; (3)

which was introduced into the nonparametrics by D.Donoho (see, e.g. Donoho

(1994)) and which is often referred to as \optimal recovery problem".

To illustrate results, de�ne a supremum norm minimax risk of a function class �

by

Rn(�) = inf
~fn

sup
f2�

Ef [d( ~fn � f)]
2
; (4)

where Ef (�) is the expectation w.r.t. the true regression f , ~fn is an arbitrary

estimator; d(�) is a uniform norm in [0; 1],

d(g) = d1(g) = sup
t2[0;1]

jg(t)j (5)

(for the sake of simplicity, we discuss only quadratic loss function which entails

mean squared error risk). As proved by Korostelev (1993), � � 1, and by Donoho

(1994), � > 1,

lim
n!1

Rn(�(�; L)) =  
2
n;� = C(�; L; �2) D(g�) ; (6)

1The author is grateful to A.Korostelev for the helpful remarks.
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where  n;� is a well-known rate of convergence for the sup-norm minimax risk,

 n;� = (logn=n)�=(2�+1)
; (7)

C(�; L; �2) is a constant explicitly depending on parameters �; L; �2; D(g�) is a

functional explicitly depending on the solution of (3). What's important, the lower

bound of the minimax risk Rn(�(�; L)) is attained at the kernel estimator

f̂n(t) =
1

n

X
i

yin
1

h
K(

t� i=n

h
) ; (8)

with certain modi�cations near the boundaries, where h = h(n) is a proper band-

width and K(t) = K�(t) = g�(t)=(
R
g�(s)ds). Moreover, function g� underlies

exact asymptotic estimators in other nonparametric settings with H�older classes:

density estimation (Korostelev and Nussbaum (1995)), adaptive estimation (Lep-

ski (1992), Lepski and Spokoiny (1995)), minimax estimation with risks based on

large deviation probabilities (Korostelev (1996), Korostelev and Leonov (1996)).

It is easier to deal with the solution x� of the extremal problem dual to (3):

kxk ! inf ; x(0) = 1 ; x 2 �(�; 1) ; (9)

where kxk = (
R
1

�1
x
2(t)dt)1=2: As shown by Donoho (1994), Section 2,

x�(t) = ag�(bt); a = [g�(0)]
�1
; b = [g�(0)]

1=�
; (10)

g�(t) = a1x�(b1t); a1 = kx�k
�2�

2�+1 ; b1 = kx�k
2

2�+1 : (11)

Further on we shall discuss the properties of x� while corresponding properties of

g� will be obtained as a consequence of (10) and (11).

So far, the solution of (9) in the closed form is known only for 2 special cases:

(a) � � 1 - the solution is straightforward (Korostelev (1993)): x�(t) = (1� jtj�)+.
(b) � = 2 - the solution was given by Fuller (1960), see also Zhao (1997).

For the general case, it was proved by Leonov (1995) that x� has a compact support

for any � > 1. The goal of the present paper is to prove a new identity for the

solutions of (9) which establishes a relation between L2-norm of x� and its integral,R
x�(s)ds, and which is given in Theorem 1.

The paper is organized as follows. In Section 2 we discuss how optimal recovery
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problems (3), (9) are related to other deterministic optimization problems tradi-

tionally arising in nonparametric settings with H�older classes. Main results are

presented in Section 3. Section 4 contains the comparison of various kernels for

H�older class with � = 2.

2. Preliminaries: bias-variance balance and optimization problems.

Asymptotic inference for deriving upper bounds in nonparametric regression (as

well as in density estimation) is based on the analysis of the bias-variance balance

of estimators. Here we compare the standard approach exploiting the Taylor ex-

pansion for the bias term, with renormalization techniques used by Donoho (1994).

Let t 2 (Th; 1� Th), let kernel K be continuous in its support [�T; T ], and inte-

grate to 1:
Z T

�T
K(t)dt = 1; T > 0: (12)

To introduce optimization problems, it is more convenient to consider a continuous

analogue of model (1), namely \white noise" model

dY (t) = f(t)dt + �=(
p
n)dW (t); t 2 [0; 1] ; (13)

where W (t) is a standard Wiener process. In that case a kernel estimator is de�ned

as

~fn(t) = (1=h)
Z
K((t� u)=h)dY (u) : (14)

(13) and (14) entail a standard decomposition of [ ~fn(t) � f(t)] into the sum of a

bias s1 and a stochastic term s2, such that

Ef [ ~fn(t)� f(t)]2 = s
2
1(t; f ; h) + var(s2(t;n; h)) ; (15)

where

s1(t; f ; h) =
Z T

�T
K(u)[f(t� uh)� f(t)]du ; (16)

var(s2(t;n; h)) =
�
2

hn
V (K) ; V (K) =

Z T

�T
K

2(t)dt: (17)

First, recall the standard approach for treating (15). Let � be an integer, � = m+1.

If f 2 ~�(�; L) \ ff (�) is continuous g; where

~�(�; L) = ff : jf (�)(t)j � Lg ;
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and if K satis�es orthogonality conditions

Z T

�T
K(t)tjdt = 0; j = 1; : : : ; m;

Z T

�T
K(t)t�dt 6= 0 ; (18)

then the Taylor expansion and (18) imply

sup
f2�(�;L)

js1(t; f ; h)j � Lh
�

�!
~B(K) for all t 2 [Th; 1� Th] ; (19)

with ~B(K) = j R T
�T K(t)t�dt j: If we switch for a while to the minimax risk at a

�xed point t 2 (0; 1), i.e. if we substitute the uniform norm (5) in (4) by a distance

dt( ~f � f) = j ~f(t)� f(t)j; then the balance equation between the squared bias and

the variance leads to the following rate of the bandwidth in this setting:

~hn = ~a ~ 
1=�
n;� ; ~ n;� = n

��=(2�+1)
; (20)

with some positive ~a, so putting ~hn into (15) and optimizing it via ~a give

lim
n!1

Ef [ ~fn(t)� f(t)]2= ~ 2
n;� = C1(�; L; �

2) ~D
2=(2�+1)
� (K) ; (21)

where C1(�; L; �
2) is a positive constant explicitly depending on �; L; �2,

~D�(K) = ~B(K)V �(K) ;

see Gasser and M�uller (1979). Thus, to minimize the right-hand side of (21), one

needs to solve the extremal problem

~D�(K) ! min ; subject to (18),(12): (22)

This problem is thoroughly studied by Legostaeva and Shiryaev (1971), Gasser

and M�uller (1979), Gasser et al. (1985). Note that though ~ n;� is indeed the

optimal rate of convergence for estimation at a �xed point (see Ibragimov and

Khasminskii (1981)), the exact constants for this problem are not known so far,

and non-linear estimators perform better than linear ones in this set-up, see Sacks

and Strawderman (1982).

Now if we return to the sup-norm minimax risk, it's worth noting that an extra

logarithmic term appears in the rate to suppress the large deviations probabilities
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(see Stone (1982), H�ardle (1990), Korostelev (1993)), so that hn;� = a 
1=�
n;� , with

 n;� de�ned by (7). But the optimization problems for multiplier a and for kernel

K remain the same as above for the minimax risk at a �xed point. However, the

solution of (22) do not generate kernels leading to the exact constants for the sup-

norm minimax risk.

To obtain the exact constants, a more accurate estimate for the bias term (16)

should be used. This is done by exploiting renormalization ideas (Donoho and Low

(1992), Donoho (1994)) for any � > 0: if f 2 �(�; 1), then f1(t) = Lh
�
f(t=h) 2

�(�; L) ; and

sup
f2�(�;L)

s1(t; f ; h) = Lh
�
B�(K) ; for all t 2 [Th; 1� Th] ; (23)

with

B�(K) = sup
f2�(�;1)

Z T

�T
K(u)[f(u)� f(0)]du:

Note that bandwidth h enters the right-hand sides of (19) and (23) in the same

way, but with di�erent multipliers. Therefore, the renormalization leads:

(a) to the same rates of convergence (7) and (20) for the sup-norm minimax risk

and minimax risk at a �xed point, respectively,

(b) to the analogue of (21) where functional ~D�(K) is substituted by D�(K),

D�(K) = B�(K)V �(K):

Thus, to optimize kernels, the following extremal problem should be solved:

D�(K)! inf; subject to (12) : (24)

Finally, it turns out that (24) is equivalent to (9) and that the solution of (9)

generates optimal kernels and the exact constants for the sup-norm minimax risk

(Donoho (1994)).

3. Main results.

We begin the section with the technical lemmas used for establishing the result of

Theorem 1. Introduce the following notation.

Let [�T�; T�] be the support of x�, i.e. x� = 0 for jtj � T�. Further on we shall

omit the limits of integration if it is over the interval [�T�; T�]. Let t� be the

support of g�. Put

I1� =
Z
x�(t)dt; I2� =

Z
x
2
�(t)dt;

~I1� =
Z t�

�t�

g�(t)dt;
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Q(f) =
Z
x�(t)(f(t)� f(0))dt; Q� = sup

f2�(�;1)

Q(f) ;

K�(t) = x�(t)=I1� ; ~K�(t) = g�(t)=~I1� :

Remark that (11) leads to

~K�(t) = b1K�(b1t) : (25)

The �rst two lemmas are a reformulation of the results by Donoho (1994), Sections

2 and 4; see also Lepski and Tsybakov (1996), Lemma 1.

Lemma 1. If

z(�; b) = sup
f2�(�;1)

Z
1

�1

x�(bt)[f(t)� f(0)]dt;

then z(�; b) = b
�(�+1)

Q� for any b > 0.

Proof. If f 2 �(�; 1), then g(t) = b
��
f(bt) 2 �(�; 1) as well, thus by changing

variables for the integration,

z(�; b) = b
�� sup

f2�(�;1)

Z
1

�1

x�(bt)[f(bt)� f(0)]dt = b
�(�+1)

Q�:

Lemma 2. Q� = Q(1� x�) = I1� � I2�; Q� � 0:

Proof. To begin with, remark that Q� � Q(0) = 0: Next, note that Q(f) =

Q(f + C) for any constant C. If f 2 �(�; 1), then g = �f 2 �(�; 1) as well, thus

Q� = sup
f2�(�;1)

Q(�f) = sup
f2�(�;1); f(0)=1

Z
x�(t)[�f(t)]dt +

Z
x�(t)dt =

= I1� � inf
f2�(�;1); f(0)=1

Z
x�(t)f(t)dt :

Hence, to prove the lemma, it is su�cient to establish that

inf
f2�(�;1); f(0)=1

Z
x�(t)f(t)dt = I2�: (26)

Let g be an arbitrary function from �(�; 1) with g(0)=1. Similar to Lemma 2

from Leonov (1995), it is proved that there exists a �nite constant T; T � T�, and

~g 2 �(�; 1), such that

~g(t) = g(t) for jtj � T�; ~g(t) = 0 for jtj � T;
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and

k~g � x�k2 =
Z
[g(t)� x�(t)]

2
dt +

Z
T��jtj�T

~g2(t)dt < 1: (27)

Let g�(t) = �~g(t) + (1 � �)x�(t) for 0 � � � 1. Note that g� 2 �(�; 1) and

g�(0) = 1; thus, kg�k2 � kx�k2, or

�[�k~g � x�k2 + 2(
Z
x�(t)g(t)dt � kx�k2)] � 0 :

Due to (27) the last inequality is valid for all �; 0 � � � 1, if and only ifR
x�(t)g(t)dt � kx�k2. This proves the lemma since the in�mum in (26) is at-

tained at f = x�:2

Corollary 1. B�(K�) = 1� I2�=I1�:

Corollary 2. B�( ~K�) = g�(0)� 1=~I1�:

Proof follows immediately from Lemmas 1,2 and from (10), (11).2

Let K satisfy (12) and be continuous in [�T; T ]. Introduce an equivalence class of

kernels

F(K) = f ~K : ~K(t) = Kb(t) = bK(bt); b > 0g:

Lemma 3. Functional D�( ~K) is invariant for ~K 2 F(K).

Proof is straightforward and is similar to Lemma 1 from above and to Lemma

1 from Gasser and M�uller (1979) which establishes the invariance of functional

~D�( ~K) for ~K 2 F(K):2

Let F� = ff : f is a solution of (24)g.
Lemma 4. F� = F(K�).

Proof. Let K be an arbitrary function such that

kKk = kK�k: (28)

To prove the lemma, due to Lemma 3 it is su�cient to validate that K� is a unique

solution of the following problem

B�(K)! inf; subject to (12), (28):

LetK be a continuous function satisfying (12),(28), where without loss of generality

T � T�. If r(t) = K(t)�K�(t), then (12) and (28) imply

Z T

�T
r(t)dt = 0;

Z T

�T
r
2(t)dt = �2

Z
K�(t)r(t)dt: (29)
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Let g(t) = 1� x�(t): Then Lemma 2 entails:

B�(K) �
Z T

�T
K(t)[g(t)� g(0)]dt =

Z T

�T
[K�(t) + r(t)][g(t)� g(0)]dt =

= B�(K�)�
Z
x�(t)r(t)dt = B�(K�) +

Z T

�T
r
2(t)dt=2

due to (29), thus B�(K) � B�(K�), and this inequality is a strict one if K 6= K�

which proves the lemma. 2

Theorem 1. I2�=I1� = 2�=(2� + 1) for any � > 0.

Proof. We shall prove the theorem via the analysis of the minimax risk based

on large deviations probabilities (see Korostelev (1996), Korostelev and Leonov

(1996)). Let f̂n(t) be a kernel estimator (8) with continuous kernel K satisfying

(12) and with a bandwidth h, such that t 2 (Th; 1� Th) and for some b > 0

Lh
� = bc; c is a small positive: (30)

Let f be uniformly bounded,

f 2 �(�; L;A) = �(�; L) \ fjf(t)j � Ag;

A > 0 is a su�ciently large constant. Then f̂n(t)�f(t) = S1(t; f ;n; h)+S2(t;n; h),

where

S1(t; f ;n; h) = s1(t; f; h) + o1(1) ; (31)

var(S2(t;n; h)) =
�
2

hn
V (K) + o2(1) ; (32)

s1(t; f; h) and V (K) are de�ned by (16) and (17), respectively, and oi(1) ! 0

uniformly in f 2 �(�; L;A) as n ! 1; i = 1; 2. Then, following the proof of

Theorem 2 in Korostelev (1996), we get

P
(n)
f (jf̂n(t)� f(t)j � c) � P

(n)
f (jS2(t;n; h)j � c� sup

f2�(�;L;A)

S1(t; f ;n; h)) ;

here P
(n)
f is the probability of observations yin for a �xed regression f . (17), (23),

(30)-(32) entail

sup
f2�(�;L;A)

lim sup
n!1

1

n
logP

(n)
f (jf̂n(t)� f(t)j � c) � � c

2+1=�

2�2L1=�
M(K; b) ;
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where M(K; b) = [1 � bB�(K)]
2
b
1=�
=V (K). Maximizing M(K; b) via b leads to

bK = [B�(K)(1 + 2�)]�1; and

M(K; bK) = (2�)2(2� + 1)�(2+1=�)[B�(K)V �(K)]
�1=�

: (33)

As proved by Korostelev (1996), kernel ~K� with a speci�c choice of b = b ~K�
maxi-

mizes (33),

M( ~K�; b ~K�
) = [g�(0)]

�(2+1=�)
;

which due to (11), (25), (33), and Lemma 4, is equivalent to

(2�)2(2� + 1)�(2+1=�)[B�(K�)V
�(K�)]

�1=�
= I2� : (34)

Put z = I2�=I1�: Lemma 2 and Corollary 1 imply:

0 < z � 1; B�(K�) = 1� z; V (K�) = z
2
I
�1
2� ;

and (34) entails:

(2�)2(2� + 1)�(2+1=�)(1� z)�1=�z�2I2� = I2�:

Taking �-power of both sides leads to

r
r
=(r + 1)r+1 = z

r � z
r+1

; where r = 2� : (35)

A function v(z) = z
r � z

r+1 in the interval [0; 1] has a unique maximum at a point

zr = r=(r + 1), moreover v(zr) = r
r
=(r + 1)r+1

; which together with (35) means

that

I2�=I1� = r=(r + 1) = 2�=(2� + 1) :2

Corollary 3. g�(0)
R
g�(t)dt = (2� + 1)=(2�):

Proof follows directly from Theorem 1 and (10).

Remark 1. For 0 < � � 1 and � = 2 the result of Theorem 1 can be veri�ed

directly via the explicit solutions of (9).

Remark 2. Theorem 1 and Corollary 1 provide an explicit formula for the bias

term of the optimal kernel estimator,

B�(K�) = 1=(2� + 1) for any � > 0:
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4. Some examples for class �(2; 1).

The solution of (9) for � = 2 (Fuller (1960)) remained unknown to the statistical

community until recently. Therefore, it seems interesting to compare the perfor-

mance of various kernels with respect to values of functionalD2(K). To accomplish

it, we prove the following lemma.

Lemma 5. B2(K) =
R
1

0 K(t)t2dt for any symmetric non-negative kernel K.

Proof. Similar to the proof of Lemma 2, note that for any � > 0

B�(K) = sup
f2�(�;1); f(0)=0

Z
1

�1

K(t)f(t)dt : (36)

Next, if f(0) = 0, then the de�nition of �(2; 1) entails

f(t) = tf
0(0) + Ff(t); jFf(t)j � t

2
=2 ; (37)

thus,

Z
1

�1

K(t)f(t)dt =
Z
1

0
K(t)[f(t) + f(�t)]dt =

Z
1

0
K(t)[Ff (t) + Ff(�t)]dt :

The lemma follows from (36) and (37) since for � = 2 the supremum in (36) is

attained at f(t) = t
2
=2:2

Table 1 presents values of B2; V;D2 for several popular kernels. Theorem 1 is

applied for computing B2 for the optimal kernel K2 while Lemma 5 is used for all

other non-negative kernels. It is worthy to note that

(K1) x2 is a symmetric quadratic spline having an in�nite number of knots in the

�nite interval. Local extrema of x2 form a geometric series with parameter �q,
q = (3 +

p
33�

q
26 + 6

p
33)2=16 � 0:0586, so that

x2(t) =

8><
>:
1� t

2
=2; if jtj � t1; t1 =

p
1 + q � 1:03;,

�q + (jtj � t2)
2
=2; if t1 � jtj � t3; t2 = 2t1; t3 =

p
1 + q(2 +

p
q) � 2:31;

q
2 � (jtj � t4)

2
=2; if t3 � jtj � t4; t4 = 2

p
1 + q(1 +

p
q) � 2:56;

and for t > t4; jx2(t)j < q
2 � 0:0034: The support of x2 is [�T2; T2]; T2 =

2
p
1 + q=(1�p

q) � 2:715; and

kx2k2 = 2(23q2 � 14q + 23)
q
1 + q=(30(1� q

5=2)) � 1:528;
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(see Fuller (1960), or Leonov (1995)).

(K2) xopt(t); for t > 0, is the solution of time-optimal problem

T ! min; jx(2)(t)j � 1; x(0) = 1; x0(0) = 0; x(T ) = x
0(T ) = 0 :

xopt(t) =

8><
>:
1� t

2
=2; if 0 � jtj � 1,

(jtj � 2)2=2; if 1 � jtj � 2,

0; if jtj > 2.

xopt is \nearly" optimal for (9) since kx2k2=kxoptk2 � 0:9965 (see Fuller (1960)).

(K4) Triangular kernel is the solution of (9) for � = 1.

Table 1. Comparison of kernels for � = 2

# Kernels B2(K) V (K) D2 = B2V
2

D�=D2

1. Optimal 0.2 0.4188 D� � 0:0351 1

K2(t) = x2(t)=
R
x2(s)ds

2. Time-optimal 0.25 23/60 0.0367 0.955

Ko(t) = xopt=
R 2
�2 xopt(s)ds

3. Epanechnikov 0.1 0.6 0.0360 0.974

Ke(t) = 0:75(1� t
2)+

4. Triangular 1/12 2/3 1/27 � 0:0374 0.938

K1(t) = (1� jtj)+

5. Uniform 1/6 0.5 1/24 � 0:0417 0.842

Ku(t) = 0:5�ft 2 [�1; 1]g

6. Gaussian 0.5 1=(2
p
�) 1

8�
� 0:0398 0.881

Kg(t) = exp(�t2=2)=p2�

The above results show that kernels (K1)-(K6) do not di�er greatly with respect to

values of D2(K). However, such results are not surprising for kernel comparison,

see e.g. Epanechnikov (1969), Sacks and Ylvisaker (1981), Silverman (1986).

If kernels have compact support, then Lemma 3 allows to compare them visually in

the interval [�1; 1] (for a discussion on other methods of comparison see Marron and

Nolan (1989)): in Fig. 1 kernels (K1) and (K2) are reduced to [�1; 1], so that Fuller
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kernel KF and time-optimal kernel Kt�opt belong to corresponding equivalence

classes and are de�ned as:

KF (t) = T2K2(T2t) = T2x2(T2t)=
Z
x2(s)ds; KF (0) � 1:42;

Kt�opt(t) = 2Ko(2t) = xopt(2t):

 Fuller      

 time−optimal

 triangular  

 Epanechnikov

 uniform     

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 1: Kernels in [-1,1]
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