Lyapunov functions for cocycle attractors in

nonautonomous difference equations

P.E. Kloeden

Weierstraf3—Institut fiir Angewandte Analysis und Stochastik,
Mohrenstrafle 39, 10117 Berlin, Germany
kloeden@wias-berlin.de

January 12, 1998

Math. Sub Class.: 93D30, 34C35
Key words: Nonautonomous system, pull-back attraction, cocycle attractor,
Lyapunov function



Abstract

The construction of a Lyapunov function characterizing the pullback at-
traction of a cocycle attractor of a nonautonomous discrete time dynamical

system involving Lipschitz continuous mappings is presented.

1 Introduction

The Kishinev school of dynamical systems founded by K.S. Sibirsky has made many
wide ranging and important contributions to theory of dynamical systems, above
all in connection with multivalued and nonautonomous systems, for which the ref-
erences [2, 3, 4, 5, 11, 12, 15] are but a small sample. In this paper we consider a
result that falls within this Kishinev tradition, namely the construction of a Lya-
punov function that characterizes the pullback attraction of a cocycle attractor of a
nonautonomous discrete time dynamical system.

We consider a nonautonomous difference equation

Tpt1 = fn(xn) (1)

on IR? where f, is a Lipschitz continuous mapping from IR? into IR with do-
main Dom,, which is an open, but not necessarily bounded, subset of IR? such
that f,(Domy,)) C Domy, for each n € 7.

Such a difference equation (1) generates a cocycle mapping ® : Domg — IRY,
where Domg := IN X U,,ez {70 X Domy,}, through iteration by

(I)(n’ N, '770) = fno-l-n—l ©-+-0 fno (‘TO) (2)

for each zy € Dom,,,, no € £ and n € IN. This cocycle mapping ® satisfies the
initial condition property
(I)(O, no, 1'0) = Ty (3)

for each o € Dom,,,, nyp € Z and the cocycle property
®(m + n,ng, zo) = ®(m, ng + n, ®(n, ny, o)) (4)

for each o € Domy,,, ng € Z and n, m € IN U {0}.

The cocycle property (4) is the nonautonomous counterpart of the group or
semigroup evolutionary property of an autonomous dynamical system. The cocycle
formalism provides a natural generalization to nonautonomous systems which re-
tains the original state space in contrast to the skew—product flow formalism that
represents the nonautonomous system as an autonomous system on the cartesian
product of the original state space and some function space, see [14]. This is partic-
ularly advantageous in numerical dynamics [9, 10] and for random systems [1, 13].



It is too great a restriction of generality to consider as invariant just a single
subset A*, say, of IR? to be invariant w.r.t. every mapping f,,, that is, to satisfy
fro(A*) = A* for all ny € Z. Instead we will say that a family A = {A,,; no € Z}
of nonempty sets with A,,, C Dom,, for each ny € Z is invariant under ® or &-
invariant if

®(n,ng, Any) = Angins ng €Z,n € IN,

or, equivalently, if f,,(An,) = An 41 for all ny € Z. Consequently every trajectory of
® is ®—invariant, with each of the sets A,, consisting of a single point. Some of these
trajectories could have certain attractive properties w.r.t. the other trajectories, as
can invariant families of more complicated, non-singleton sets. The task is how to
formulate such attraction, particularly so the limit sets are also invariant. For this
the concept of pullback attraction of random dynamical systems [1, 13] (see also
[9, 10] is appropriate and leads to the concept of a pullback or cocycle attractor.

Let H*(A, B) denote the Hausdorff separation or semi—metric between nonempty
compact subsets A and B of IR?, and is defined by

H*(A,B) := max dist(a, B)

where dist(a, B) := mingep ||ja — b||.

The most obvious way to formulate asymptotic behaviour for a nonautonomous
dynamical system is consider the limit set of the forwards trajectory {®(n, ng, Zo }n>0
as n — oo for each fixed initial value (ng,zp), which now depends on both the
starting time ny and the starting point zy. This has been extensively investigated in
[3, 6, 8, 16], but has the disadvantage that the resulting (omega) limit sets w™(ng, o)
are generally not invariant under ®. On the other hand, if we consider a ®—invariant
family A = {A,,; no € Z} such forwards convergence would take the form

H*(®(n,no,x0), Angin) — 0 as n — oo.

To ensure convergence to a specific compnent set A, for a fixed ny, we would have
to start progressively earlier in order to finish at time ny. This leads to the concept
of pullback convergence

H*(®(n,ny — n,xzp), An,) - 0 as n — oo,

that was first considered in connection with random dynamical systems, which are
intrinsically nonautonomous [1, 3, 4, 13]. The invariant family A is then called a
pullback or cocycle attractor.

In this paper we construct a Lyapunov function which characterizes such pullback
attraction and attactors. The main result is stated in the next section, a lemma on
the existence of a pullback absorbing neighbourhood family is proved in Section 3,
and finally in Section 4 an appropriate Lyapunov function is defined and shown to
satisfy the properties asserted in the the theorem.



2 Lyapunov Functions for Pullback Attractors

A ®-invariant family of compact subsets A = {A,,; no € Z} will be called a cocycle
attractor if it satisfies the pullback attraction

Jim H* (®(n,ny — n, Dpy 1), An,) =0 (5)
for all ng € Z and all D = {D,.,; no € Z} belonging to a basin of attraction system

D, consisting of families of sets D = {D,,; no € Z} such that D, is bounded and
D,,, C Dom,, for each ny, € Z with the properties:

i) there exists a Diint) ¢ D, such that A, C intD,(fg”) for each ny € Z; and

ii) DV ={DY ; ng €2} € Dy if D® = {DP ; ng €Z} € Dy and DY) € DR
for all ny € 7.

Obviously A € Dy Although somewhat complicated, the use of such a basin of
attractionsystem allows us to consider both nonuniform and local attraction regions
which are typical in nonautonomous systems.

Our main result is the construction of a Lyapunov function that characterizes

this pullback attraction.

Theorem 1 Let f,, be uniformly Lipschitz continuous on Dom,, for each ny €
Z and let A be a family of nonempty compact ®—invariant sets that is pullback
attracting with respect to ® with a basin of attraction system D,y. Then there
exists a Lipschitz continous function V : IN XU, cz {{no} X Dau(no)} — IR", where
Datt(no) = Uben, ., D,,, for each ny € Z, such that

Property 1 (upper bound): Forallnyg € Z and zy € Dyy(no)

V(no, zo) < dist(zg, An,); (6)

Property 2 (lower bound): For each ny € Z there ezists a function a(ng, ) :
R* — IR' with a(ny,0) = 0 and a(ng,r) > 0 for all > 0 which is monotonic
increasing in r such that

a(ng, dist(zg, Any)) < V(ng, o) (7)

for all zy € Dyy(ny);

Property 3 (Lipschitz condition): For all ng € Z and g, Yo € Das(no)

[V (no, z0) = V(no, )| < 20 = w0ll; (8)



Property 4 (pullback convergence): For allny € Z and any D € Duy

limsup, ,., sup  V(ng, ®(n,ng —n, 2,,-n)) = 0. (9)

Zno—neDnO—n

In addition,

Property 5 (forwards convergence): There exists N € D,y which is positively
invariant under ® and consists of nonempty compact sets N,, with A,, C intN,,
for each ny € Z such that

V(ng+1,®(1,n9,20)) < e 'V (ng, o) (10)
for all xy € N,, and hence

V(no + 5, (4, no, 7)) < e 7V (ng, z0) (11)
for all zy € N,, and 7 € IN.

Note 1: It would be nice to use ®(n,ng — n,zg) for a fixed z, in the pullback
convergence property (9), but this may not always be possible due to nonuniformity
of the attraction region, i.e. we may not have a D € D,y and an zy € D,,,_, for all
n € IN.

Note 2: The forwards convergence inequality (11) does not imply forwards Lya-
punov stability or asymptotic stability. Athough we then have

a(nO + ja dISt((I)(.]a No, 11,'0), An0+j)) S eijV(nOa xU)
there is no guarantee (without additional assumptions) that

}Izlga(ng +j,7) >0

for r > 0, so dist(® (4, no, o), Ano+;) need not become small as j — oo.

As a counterexample consider the cocycle mapping ® on IR generated f,, = f for
n <0 and f, = g for n > 1 where the mappings f, g : IR — IR are given by f(z) :=
sz and g(z) := max{0,4z(1 — z)} for all z € IR. Then A with A,, = {0} for all n,
€ 4 is pullback attracting for ® but is not forwards Lyapunov asymptotically stable.
(Note we can restrict f, g to [—-R, R| — [—R, R| for any fixed R > 1 to ensure the
required uniform Lipschitz continuity of the f,).

Note 3: We can rewrite the forwards convergence inequality (11) as
V(nO’ (I)(j’ no — J, ‘/'ETLO*].)) < eij(nO —J; an*J.) < eijdiSt(xHO*j’ AHO*]')
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for all z,,_; € Npy—j and j € IN.
We will say that D € Dyy is past—tempered with respect to Aif

1
lim - log+ H*(Dnofja Ano*j) =0

for each ny € Z, or equivalently if

lim e Y H*(Dp, j, Any_j) =0

j—o0
for each ny € 4 and every real v > 0. This says that there is at most subexponential
growth backwards in time of the starting sets. It is reasonable to restrict our atention

to such sets.
For a past-tempered set D C N we thus have

V(”O; (b(j; no — J, xno—j)) < e_jH*(Dno—j’ Ano—j) —0
as j — oo, and hence
a(ng, dist(®(4, no — 7, Tng—j)s Any)) < e’jH*(Dno,j,Ano,j) —0

as j — oo. Since ng is fixed in the lower expression, this implies the pullback
convergence

Jim H*(®(j,n0 — , Dy5), Ang) = 0.
A rate of pull-back convergence for more general sets D c D, will be considered
in the appendix.

3 Pullback Absorbing Neighbourhood Systems

We will say that a family B = {Byn, ; no €L} € Dy of nonempty compact sub-
sets with nonempty interior is a pullback absorbing neighbourhood system for a ®—
pullback attractor A if it is positively invariant w.r.t. ® in the sense that

®(n, ng, Bny) C Bnyin VneIN,nyeZ

and if it pullback attracts all Dc Das, that is for each D e D and ng € 4 there
exists an N (D, ng) € IN such that

®(n,ng —n, Dy, ) C intBy,,, VYn > N.

Obviously we then have AcCBe Dass. Moreover, by positive invariance and the
cocycle property we have

®(n+m,ng—n—m, By, n-m) C ®P(n,ng —n, By, n)
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for all n, m € IN and ny € Z. From this we see that

A, = ﬂ ®(n,ng —n, Bny_n), Vng €.
nclN
The following lemma shows that there always exists such a pullback absorbing
neighbourhood system for any given cocycle attractor. This will be required for the
construction of the Lyapunov function for the proof of Theorem 1

Lemma 2 If A is a cocycle attractor with a basin of attraction system Dy for a
cocycle ® which is continuous in its spatial variable, then there exists a pullback
absorbing neighbourhood system B C Day offT w.r.t. .

Proof:  For each ny € Z pick d,, > 0 such that B[A,,;d,,] := {z € R? :
dist(z, Any) < dny} C Dase(ng) and define

Bno = U (I)(j’ no _j)B[ATLO*].;(SnO*].])'

j=0

Obviously A,, C intB[A,,;0n,] C Byn,- To show positive invariance we use the
cocycle property in what follows.

(I)(].,’I’Lo, Bno) - U <I>(1,n0, (D(]a ng — ja B[Ano—j; 5n0—j]))

j=0

= U (D(J + 17”0 - j) B[Ano_]7 5”0_]])

320

= U (D('l; no + 1- 7;; B[Ano—l—l—i; 6n0—|—1—i])

i>1

g U (D('l; no + 1- 7;; B[Ano—l—l—i; 6n0—|—1—i]) = Bng—l—l;

i>0
so ®(1,ng, By,) C By,+1. By this and the cocycle property again we obtain
<I>(2, no, Bno) = (D(l, o —|— ]_, (D(l, Ny, Bno))
C ®(1,n9 + 1, Bpys1) € Bryeo.

The general positive invariance assertion then follows by induction.

Now by the continuity of ®(j,n9 — j,-) and the compactness of B[An,_;; 0no—;l,
the set ®(j, ng — j, B[Any—j; Ono—j]) is compact for each j > 0 and ny € Z. Moreover,
by pullback convergence, there exists an N = N(ng, d,,) € IN such that

(I)(j, no — J, B[Anoﬂ'; 6nofj]) - B[Ano; 6no] C Bh,
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for all j > N. Hence

(I)(lantno) = U(I)(j,no—j,B[AnO_j;an_j])

3=0

- B[Ano;(sno]U U (I)(j,ng—j,B[Ano_j;an_j])

0<j<N

— U q)(jan() _jaB[AWO*J';(SnO*]'])’

0<j<N

which is compact, so B,,, is compact.
To see that B so constructed is pullback absorbing w.r.t. Dy, let De Do Fix
no € Z. Since A is pullback attracting, there exists an N(/D\, 0no, Mo) € IN such that

H* (®(j,m0 — J, Dng—j), Any) < Ony

for all j > N(D, 6,,,10). But (8(j, ng — j, Dny—;) C intB[Apny; 0n,] and B[Ap,; bn,]
C B,,, so
(D(]) ny — j; Dno—j) - intBnO

for all 5 > N(D, 6,,,n0). Hence B is pullback absorbing as required. O

4 Proof of Theorem 1

We want to construct a Lyapunov function V(ng, z,) that characterizes a pullback
attractor A and satisfies properties 1-5 of Theorem 1.

For this we define for all ng € Z and zy € Dyy(ng) = as

UBEDatt Dno

V(no, o) := sglg e~ Trordist (2, ®(n, g — N,y Bpg—n))
n

where .
_ +
Thon =N + Z Qo
Jj=1
with T, , = 0. Here a,, = log L,,, where L,, is the uniform Lipschitz constant of f,
on Dom,, and a* = (a + |a|)/2, i.e. the positive part of a real number a.

Note 4: We have T,,, , > n and Ty nim = Tngn + Tng—nm for all n, m € IN and
ng € Z.

4.1 Proof of property 1

Since e Trom < 1 for all n € IN and dist (zg, ®(n, n9 — n, Bp, »)) is monotonically
increasing from 0 < dist (zg, ®(0, ng, By,)) at n = 0 to dist (z, 4,,) as n — 00, we
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have

V(ng,z0) = supe rordist (zg, ®(n,ng — 1, Bny_n))
nelN

S 1 - dist ($0, Ano) .

4.2 Proof of property 2

If zy € Ay, we have V(ngy,zy) = 0 by Property 1, so let us assume that we have z;
€ Datt(ng) \ Ano' Now in

V(no, zo) = sup e Trondist (zg, ®(n,np — 1, Bny_n))
n>0

the supremum involves the product of an exponential decreasing quantity bounded
below by zero and a bounded increasing function, since the ®(n,ny — n, Bp,_,) are
a nested family of compact sets decreasing to A, with increasing n. In particular,

dist (zg, An,) > dist (zg, ®(n,ny — n, Bny_n)), Vn € IN.
Hence there exists an N* = N*(ng, zy) € IN such that

1
§dist(:1:0, Ap,y) < dist (zg, ®(n,n9g — n, Bpy 1)) < dist(zg, An,)
for all n > N* but not for n = N* — 1. Then from above

V(ng,zo) > e moN*dist (zg, ®(N*,ng — N*, Byy_n+))

1
> Ee_T"OJV*dist (zo, Apy) -

Define

A~

N(ng,r) := sup{N*(ng, zo) : dist (zg, A,,) = 7}
We have N(ng,r) < oo for &y ¢ Ay, with dist (zo, An,) = 7 and N(ng,r) is nonde-
creasing with » — 0. To see this note that by the triangle rule

dist(zg, Ay, ) < dist(zg, ®(n,ng — 1, Bpyn)) + H(®(n,n9 — 1, Bny 1), Ang)-

Also by pullback convergence there exists an N(ng,r/2) such that

1
H*(®(n,nyg — n, Bpy_n), An,) < 51"

for all n > N(ng,r/2). Hence for dist(zg, An,) = r and n > N(ng,r/2) we have

1
r < dist(zg, ®(n,ng — n, Bny—n)) + =T,
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that is .
57 < dist(zg, ®(n,nog — n, Bpy_n))-

Obviously we have N(ng,r) < N(ng,7/2).
Finally, we define

1 7
ax(n[],’)") = 57- e TnO,N(nO,r). (12)

Note that there is no guarantee here (without further assumptions) that a(ng,r)
does not go to 0 for fixed r # 0 as ng — oo.

4.3 Proof of property 3
We have |V (ng, zo) — V (10, %0)|

= |sup e"Trondist (2, ®(n, ng — 1, Bpy—n)) — sup e~ rondist (yo, ®(n, ng — 1, Bpg—n))
neclN nclN

< sup e Tron |dist (2o, ®(n, ng — 0, Bpy_n)) — dist (yo, ®(n,n9 — 1, Bpy_n))|
nclN

< sup efT"O’"on — ol < |lzo — woll-
nelN

4.4 Proof of property 4

Assume the opposite. Then there exists an g9 > 0, a sequence n; — oo in IV and
points z; € ®(n;,ng — nj, Dy, _n;) such that V(ng,z;) > & for all j € IN. Since D
€ Dy and B is pullback absorbing, there exists an N = N(/D\, ny) € IN such that

(b(nj;no - nj, Dno—n]‘) C Bh,, an > N.

Hence for all j such that n; > N we have z; € B,,,, which is a compact set, so there
exists a convergent subsequence z;, — z* € B,,. But we also have

Ty € U ®(n,ng —n, Dyy_n)

>n.
n>n;

and

ﬂ U q)(na no —n, Dnofn) g Ano

Ly nZn]-/

by the definition of a cocycle attractor. Hence we must have z* € A,,, and V(nyg, z*)
= 0. But V is Lipschitz continuous in its second variable by property 3, so

eo < Vi(ng,zy) = [V(no,a5) — Vg, )| < lley — °|]
which contradicts the convergence z;; — z*. Hence property 4 must hold.
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Proof of property 5

Define
Nno = {xg € B[Bnm 1] . <I>(1,n0,x0) € Bn0+1},

where B[B,,,; 1] = {z¢ : dist(zo, By, < 1} is bounded because B, is compact and
IR? is locally compact, so N, is bounded. It is also closed, hence compact, since
®(1, ng, ) is continuous and B, 1 is compact. Now A,, C intB,, and B,, C N,,,
so A,, C intN,,. In addition,

q)(lanOaNno) C Bn0+1 C Nn0+1a

so N is positive invariant.
It remains to establish the exponential decay inequality (10). For this we will
need the following Lipschitz condition

||(b(]-) no, "EO) - (D(ly N, Z/O)“ < e“mo ||.’L'0 - yO”
for all zy, yo € Domy, on ®(1,ng,-) = f,,(-). It follows from this that
dist(®(1, ng, zo), ®(1, no, Cpy)) < e*modist(zg, C,,)

for any compact subset C,,, C Domy,.
From the definition of V' we have

V(ng+1,®(1,n9,20)) = supe mortrdist(®(1, ng, zo), (1, n0 — 1, Brg_n))
n>0

= supe ‘rottrdist(®(1, ng, o), ®(n,n0 — 1, Bny_n))
n>1

since ®(1,ng,z9) € Bpny+1 when zy € N,,. Hence re-indexing and then using the
cocycle property and the Lipschitz condition on ®(1,ny,-) we have

V(ng+1,®(1,n9,29)) = supe rotbi+idist(®(1,n9,zo), ®(5 + 1,70 — 7, Bny_j))
320

= s_g%) e~ Tro+Li+1dist(®(1, ng, 2o ), (1, no, ®(4, 70 — 7, Bno_j)))
JZ

< sup e_T"O“’J'“e""Odist(xo, ®(j, o — 7, Bro—j))
j=0
Now Thgi1,j41 = Thoj +1— g, SO

no’

V(ng+1,®(1,n9,20)) < supe Trottititemodigt(zg, ®(§,n9 — §, Bny_j))
320

= s_g}o) e~ Trowi 1~ @ngFang dist(zo, ®(4, 70 — J, Bno—j))
1z
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< e 'supe Troddist(zg, (4, mo — 4, Bny—j))
320

< e’lV(ng,xO),

which is the desired inequality.
Moreover, since ®(1,ng,zo) € Bpyi1 C Npyt1, the proof continues inductively to

give
V(no + 5, 2(4, no, o)) < eV (ng, o)
for all 7 € IN.
This completes the proof of Theorem 1. O

Appendix: Rate of pull-back convergence

Since B is a pullback absorbing neighbourhood system for every ny € Z, n € IN and
D € D,, there exists an N(ﬁ, ng,n) € IN such that

®(m,ng —n—m,Dpy n-m) C Bnyn, VYm > N.
Hence by the cocycle property we have
d(n+m,ng—n—m,Dpy nm) = P(n,ng—n,®(m,ng—n—m,Dpy n m))
C ®(n,ng—n,Bny_n), Ym >N,
= ®(i,ng —i,P(n—i,n9 —n,Bpy 1)), V<i<n,
C ®(i,m9 — 4, Bpy_i)

where we have used the forward positive invariance of B in the last line. Hence we
have
(b(n + m,ny —n—m, Dno—n—m) g (D(Zy noy — 7;) Bno—i)

for all m > N(ﬁ, ng,n) and 0 < ¢ < n, or equivalently
q)(ma ng —m, Dnofm) g (I)(Za no — 7:) Bnofi)

forallm >n + N(/D\, ng,n) and 0 < ¢ < n. This means that for any z,,_m € Dyy—m

the supremum in

V (no, ®(m, ng—m, zn,_m)) = supe oidist (®(m, ng — m, Zny—m), ®(4, 10 — i, Bpy_i))
i>0

need only be considered over ¢ > n. Hence
V(ng, ®(m,ng — m, 2ny-m))
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= supe Troidist (®(m, ng — M, Zng—m), ®(4, 1m0 — 1, Bny_;))

< e Trom gup e Tro-mi dist (®(m,ng — M, Zng—m), ®(n+ j,m9 — 1 — 7, Brg—n—j))
7>0

< e Tromdist (®(m, no — M, 2ng—m), Any)
S e_T"O’ndiSt (Bnoa Ano)

since Any C ®(n+j,n9 —n — j, Bug—n—;) and ®(m,ng — m, zny—m) € By,.
We thus have

V(ng, ®(m,ng —m, 2ny—m)) < e rondist (Bp,, Ang)

for all z,,—m € Dpy—m, m > n + N(/D\, ng,n) and n > 0.
We can assume that the mapping n — n + N (D, ny, n) is monotonic increasing

in n (by taking a larger N(D,no,n) if necessary), and is hence invertible. Let the
inverse of m = n + N(D, ng,n) be n = M(m) = M(D,n,,m). Then

V(no, ®(m,ng — m, 2py—m)) < e Tro.(m) digt, (Bry, Ang)

for all m > N(D, ng,0) > 0. Usually we will have N(D,no,0) > 0. We can modify
the expression to hold for all m > 0 by replacing M (m) by M*(m) defined for all
m > 0 and introducing a constant Kﬁ,no > 1 to account for the behaviour over the
finite time set 0 < m < N (D, ng,0). This will give us

V(ng, ®(m,ng —m, zny—m)) < K5 noe_Tno’M“m)dist (Bry, Ang)

for all m > 0.
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