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Abstract. From a hopping rate equation for disordered materials we derive a macroscopic
drift{di�usion equation. For this purposes two space{time scales are simultaneously con-
sidered. The microscopic dynamics is characterized by the distribution of localized states

and the hopping rate. On the macroscopic space scale both the hopping rate and the
disordered material are allowed to be inhomogeneous.

1. Introduction

Transport of charge carriers in solids is frequently described at a microscopic level by a
hopping model on a lattice of sites. When multiple occupations of sites are forbidden the
time evolution of an ensemble of interacting charge carriers can be rigorously described

by the dynamics of an exclusion process (cf.[7],[4]).
On much longer time and length scales a process of \averaging\ takes place so that the
complicated microscopic structure of transport dynamics is replaced by a macroscopic

drift{di�usion equation. But only if the material on the small microscopic scale will have
some special, repetitive, structure and the range of hopping rate remains local the charge
density will have a difussion-drift behaviour on a large time{space scale. For example,
when the lattice is periodic and the charge carriers only jump to neighbouring sites. In
the periodic lattice case there are rigorous results. The di�usivity is a closed expression

and it coincides with that given from the Green-Kubo formula. A review of stochastic
dynamics of particle systems on a lattice is given by H.Spohn ([7]) , and the literature
cited therein.
When the underlying lattice is disordered the situation is much more di�cult. Disor-
der have to take into consideration if the sites of lattice are randomly distributed and
if hopping rates depend on energy states on the sites. For disordered systems there are
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substantial di�culties to overcome in order to be able to analyze rigorously a transition
from microscopic to macroscopic level. In general, the large scale problem for disordered
lattices cannot be solved by a closed formula for the macroscopic transport coe�cients.
Particular contributions have been given, for example, in the papers ([4],[8]). In ([6],[8])
Monte Carlo simulations have been perfomed in order to approximate the di�usivity for
certain disordered systems.
In this paper we study a mean �eld transport dynamic based on a model which is interme-
diate between the microscopic and macroscopic scales. We assume a particular hopping

rate equation describes the time evolution of the one{particle distribution function which
depends on macroscopic position, localized energy state and the microscopic time. In
this model both the disordered material and hopping rates are allowed to be spatially
inhomogeneous at the large space scale. We shall concerned with the derivation of a
macroscopic drift{di�usion equation. The equation will have several drift terms caused
by the spatially inhomogeneities. The assumption of the principle of a detailed balance
for hops between the localized energy states will play a crucial role for the derivation of
the transport equation.

2. Transport Model

2.1. The Hopping Rate. In this paper, a basic assumption for the microscopic charge
transport is that carriers jump on a lattice of localized energy states. Arising from the
Pauli principle, multiple occupancies of a state by charge carriers are excluded. A localized

energy state (x,Ex), x 2 R3 and Ex 2 R, is described by its spatial position x on the
lattice and the assigned energy value Ex. Lattice is called a disordered lattice if (x,Ex)
is randomly distributed. A jump of a carrier from state (x; E) to a vacant state (y; Q)
occurs with a hopping rate w(x; E;y; Q). In order to establish a hopping dynamics and
to derivate a macroscopic equation we need two space{time scales. Let t0; x0 be the time,
length parameters on the microscopic time{space scale and

t = �2t0; x = �x0

the time, length parameters on macroscopic time{space scale. Ratio � of length parameters
is chosen so that the average distance of sites x of lattice on the macroscopic scale is of
order �.
We make the following fairly general ansatz for a hopping rate1

w(x; E;y; Q) = r(jx0 � y
0j) s(x; E;y; Q) (2.1)

with respect to time scale t0. The di�usive moment of transport is essentially characterized

by the function r de�ned on the small scale and only depending on distance jx0 � y
0j.

The second factor s describes the dependence of hopping rate on the energy levels E;Q

1A typical example for a hopping rate is

w(x; E;y; Q) = exp[eF � (x � y)=2kT ] �

8><
>:
1 Q � E; jx� yj � a "

exp[�(Q� E)=kT ] Q > E; jx� yj � a "

0 jx� yj > a ",

where e is the elementary charge, k the Boltzmann constant, T the absolute temperature, a a positive

constant, and F an electric �eld.
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and on a possible drift caused by an external force or an other spatial inhomogenety of
hopping rate. We require they have to satisfy the following

Conditions:

Local interaction: r(a) (a � 0) is a non{increasing function with the conditions

S 00 :=

Z
R3

r(jx0j) d 3x0 = 1 (2.2)

and

S02 :=

Z
R3

jx0j2r(jx0j) d 3x0 < +1: (2.3)

This condition for the �rst factor r of w guarantees that interaction only take place on
microscopic distances and is necessary that the charge current will be �nite.
Detailed balance: There is a su�cently smooth \potential" function  (x) so that the

equation

exp
h
�E + e (x)

kT

i
s(x; E;y; Q) = exp

h
�Q+ e (y)

kT

i
s(y; Q;x; E);

E;Q 2 R; x;y 2 R3 (2.4)

is full�eld.

2.2. The Hopping Rate Equation. Given positive numbers N(x) and a family of
density functions g(x; E); x 2 R3 withZ

g(x; E) dE = 1:

N(x) describes the concentration of sites of lattice and g(x; E) is the energy state density

of localized states at macroscopic position x: If N(x) and g(x; E) vary with x then the
disordered material is spatially inhomogeneous. The quantity

N 0(x) =
N(x)

��3
(2.5)

is, roughly speaking2 , the microscopic concentration in surrounding of x.
We still requireZZ

exp(�E=kT ) s(x; E;x; Q) g(x; E) g(x; Q) dE dQ < +1; x 2 R3: (2.6)

When the conditions (2.3) and (2.6) hold the macroscopic di�usion and drift currents will
be �nite.
Let f = ft(x; E) be the distribution function, depending on the position x 2 R3, the

2A more precise interpretation of spatial concentration N
0(x) and energy state density g(x; E) at the

microscopic scale give the following approach. Given is a family P� of distribution laws of disordered

lattices depending on the parameter �. Let ]�(�; B) denotes the number of lattice points in the microscopic

region � which have the energy state in B � R. Further, let us choose a box ��(x) centered at x0 = x=�

and such that j��(x)j ! 1 but �3j��(x)j ! 0 as �! 0: The following ergodic property explains meaning

of both N
0(x) and g(x; E).

lim
�!0

]
�(��(x); B)

j��(x)j
= N

0(x)

Z
B

g(x; E)dE

taking the limit in a suitable sense with respect to P�
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energy state E 2 R and the time t. It is the probability of �nding a charge carrier at
position x with energy state E at time t. One obtains the relative concentration of charge
carriers

ht(x) =

Z
ft(x; E) g(x; E) dE (2.7)

and the charge density

%t(x) = eN 0(x)ht(x) (2.8)

at x and at time t.
Further, the distribution function ft(x; E) is assumed to be a su�cently smooth function

of t;x and E.
We assume the charge carriers motion is governed by the hopping rate equation

@ft0(x; E)

@t0
=� ft0(x; E)

Z
R3

Z
(1� ft0(y; Q)) s(x; E;y; Q) r(jx0 � y

0j) g(y; Q)dQN(y)d 3y

+ (1� ft0(x; E))

Z
R3

Z
ft0(y; Q) s(y; Q;x; E) r(jx0 � y

0j) g(y; Q)dQN(y)d 3y:
(2.9)

for all x 2 R3; E 2 R and t0 � 0:
The �rst term on the right{hand side describes the average current from \state" (x; E) to
other possible states. Analogeously, the second term expresses the average current from
outside to the given state.
This continuummodel (2.9) does not take into account the complex microscopic structure
of hopping transport. An interesting question is whether and under which conditions the
hopping rate equation can be derived from a more basic level of microscopic dynamics.
Summarizing, in this paper hopping transport in disordered material is described by the
material parameters

fN 0(x); g(x; E); w(x; E;y; Q)g
at all the macroscopic positions x and the hopping dynamics governed by a hopping rate
equation (2.9). Here we assume in addition that the parameters are su�ciently smooth
functions of x and y.

3. A Drift-Diffusion Equation

In order to derive from the hopping rate equation (2.9) a partial di�erential equation
we need the following elementary proposition. Let u(x) on R3 be a su�ciently smooth
function. Generating the Taylor series expansion for u(y) about the point y0 = x to
order jy � xj2, using (2.2) and (2.3), the following equation

��3
Z
r(jy0 � x

0j)u(y) dy 3 = u(x) + �2
S02
6
�u(x) +O(�2) (3.1)

holds.
After multiplying of equation (2.9) by eN(x) g(x; E) and integrating with respect to
energy E, the calculation of the integrals regarding the variable y, using (2.5),(2.7),(2.8),
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and (3.1), leads to a equation on the large time scale t = �2 t0

@%t(x; E)

@t
=

Z
V [ft](x;y) r(jx� yj=�) d 3y

=
1

�2
e V [ft](x;x) +

1

6
S02 e�yV [ft](x;y)

����
y=x

(3.2)

with

V [f ](x;y) =

ZZ
N 0(x)N 0(y)

h
�f(x; E)(1� f(y; Q)) s(x; E;y; Q)

+ (1� f(x; E)) f(y; Q) s(y; Q;x; E)
i
g(y; Q) g(x; E) dQdE:

(3.3)

The evolution equation (3.2) can be interpreted as multiscale equation in time. First term
V [f ](x;x) works on the fast microscopic time scale and its stationary solution provides
the local equilibria. Therefore, one can assume that local equilibria are achieved at all the
macroscopic times t and all the macroscopic positions x. Using detailed balance (2.4) the

equation

V [f ](x;x) = 0; x 2 R3 (3.4)

is solved with f equal to the Fermi equilibrium

ft(x; E) =
exp(�t(x)=kT ) exp(�E=kT )

1 + exp(�t(x)=kT ) exp(�E=kT )
: (3.5)

As usual, here �(x) denotes the chemical potential at spatial position x. For a given
relative concentration h(x) at x the chemical potential � = �(x; h(x)) which characterizes
the local equilibrium can be calculated, using (2.7), from

h(x) =

Z
exp(�=kT ) exp(�E=kT )

1 + exp(�=kT ) exp(�E=kT )g(x; E) dE: (3.6)

Now �rst \fast" term of the right{hand side of equation (3.2) can be canceled. Remaining
expression produces a current what leads to new local equilibria. Next we will calculate
the macroscopic current.
From (3.3) using (3.5) and the detailed balance (2.4) we obtain

V [f ](x;y) =

(b(y)� b(x))

ZZ
N 0(x)N 0(y) exp[�(E + e (x))=kT ]s(x; E;y; Q) g(x; E) g(y; Q) dE dQ

(1 + b(x) exp[�(E + e (x))=kT ])(1 + b(y) exp[�(Q+ e (y))=kT ])

=: (b(y)� b(x)) I(x;y)

with

b(x) = exp
h�(x; h(x)) + e (x)

kT

i
:

Due to the detailed balance relation (2.4) last duoble integral I(x;y) is a symmetrical

function of x and y. Therefore the proposition

ryI(x;y)
��
y=x

= 1
2
rxI(x;x)
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is valid. Hence we obtain

�yV [f ](x;y)
��
y=x

= rx �
�
I(x;x) rxb(x)

�
= rx �

�
b(x) I(x;x) rx log b(x)

�
(3.7)

and �nally the partial di�erential equation

@%t(x)

@t
=

S 02
6
e r �

�
b(x) I(x;x) r log b(x)

�
= r �

�
�(x; ht(x)) e

�1 r
�
�t(x; ht(x)) + e (x)

��
(3.8)

with a electric conductivity

�(x; h) =

S02 (N
0(x))2 e2

6 kT

ZZ
exp[(�(x; h)� E)=kT ]s(x; E;x; Q) g(x; E) g(x:Q)

(1 + exp[(�(x; h)� E)=kT ])(1 + exp[(�(x; h)�Q)=kT ])
dE dQ (3.9)

depending on x and the relative concentration h. Because (2.3) and (2.6) the conductivity
is �nite.
If  is equal to an electric potential the quantity � + e can be viewed as electrochem-
ical potential. Then the transport equation (3.8) has a form well known from the phe-
nomenological theory of charge transport where the current is proportional to gradient of
electrochemical potential.
Assume g(x; E) = g�(x)(E), where g�(E) is a one-parametric family of energy state den-

sities. Equation (3.8) can be rewritten in a drift{di�usion equation for the charge density
%t(x) = eN 0(x)ht(x) as following,

@%

@t
= r �

�
Dr%� �N %rN 0 � �� %r�+ � %re 

�
: (3.10)

The di�usivity D is calculated, from (3.8) and via (2.8), (3.6), by

D(x; h)=
�

e

�
@%

@�

�
�1

=
S02N

0(x)

6

ZZ
exp[(�(x; h)� E)=kT ]s(x; E;x; Q) g�(x)(E) g�(x)(Q)

(1 + exp[(�(x; h)� E)=kT ](1 + exp[(�(x; h)�Q)=kT ])
dE dQ/

Z
exp[(�(x; h)� E)=kT ] g�(x)(E)

(1 + exp[(�(x; h)� E)=kT ])2
dE (3.11)

It is easily to see that the mobilities �N ; �� and � in (3.10) satisfy the relations

D : �N : �� : � = % :
@%

@N
:
@%

@�
:
@%

@�
: (3.12)

In case  (x) is assumed to be equal to an electric potential '(x) from (3.12) we obtain
a generalized Einstein relation (cf.[5])

�'(%)

D(%)
=
@ log %

@�
: (3.13)
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4. Particular Cases

In Sect.3 could be shown that a hopping model with the material parameters

fN 0(x); g(x; E); w(x; E;y; Q)g; x 2 R3

and a dynamics (2.9) leads, under certain assumptions, to a fairly general transport
equation (3.10). In the following we investigate several particular situations.

4.1. Hopping Independing of Energy. If the dependence of hopping transport on
anyone energy E can be neglected we set

w(x; E;y; Q) = r(jx0 � y
0j) s(x;y)

with the local interaction condition (2.2, 2.3). As above, we assume the hopping rate

factor s(x;y) obeys a
detailed balance: There are a su�ciently smooth function  (x);x 2 R3 so that the

equation

exp[�e (x)=kT ] s(x;y) = exp[�e (y)=kT ] s(y;x) x;y 2 R3 (4.1)

is full�eld.

Following the derivation of drift-di�usion equation in Sect.3, f(x; E) in (3.5) is indepen-
dent of E and coincides with the relative concentration

h(x) =
exp[�(x)=kT ]

1 + exp[�(x)=kT ]

where �(x) denotes the chemical potential. Finally one obtains a drift-di�usion equation

@%

@t
= r �

�
Dr%� �N %rN 0 + � %re 

�
(4.2)

with

D(x; h) =
S02
6
N 0(x) s(x;x);

�N (x; h) =
S02
6
s(x;x);

� (x; h) =
S02
6 kT

N 0(x) s(x;x) (1� h):

Equation (4.2) is a generalized version of Burgers equation with viscosity (cf.[3]).

4.2. The Low Concentration Case. Interaction of carriers caused by the Pauli prin-
ciple can be neglected at low concentration and the drift{di�usion equation (3.10)

@%

@t
= r �

�
Dr%� �N %rN 0 � �� %r�+ � %re 

�
(4.3)

becomes in limit a linear partial di�erential equation. In order to obtain a limit we have
to require two conditionsZ

exp(�E=kT ) g�(x)(E) dE <1; x 2 R3
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and Z
exp(�E=kT ) @g�(x)(E)

@�(x)
dE <1; x 2 R3:

Then the limit D(x) = limh!0D(x; h) exists and is positive. One obtains the di�usivity

D(x) =
S02
6
N 0(x)

RR
s(x; E;x; Q) exp(�E=kT ) g�(x)(E) g�(x)(Q) dE dQR

exp(�E=kT ) g�(x)(E) dE

and the mobilities

�N (x) = limh!0 �
N (x; h) =

D(x)

N 0(x)
; (4.4)

��(x) = limh!0 �
�(x; h) = D(x)

R
exp(�E=kT ) @g�(x)(E)

@�(x)
dER

exp(�E=kT ) g�(x)(E) dE
; (4.5)

� (x) = limh!0 �
 (x; h) =

D(x)

kT
: (4.6)

When  is equal to an electric potential the last equation is the inhomogeneous version
of the classical Einstein relation.
In the end we give

4.3. Two Examples for the Low Concentration Case.

4.3.1. Example1: Hopping Transport on Sites Having an Gaussian Distribution of En-

ergie States. We consider a modi�ed Gaussian disorder model of H.B�assler and co{writer
(cf.[1]). Given a concentration N 0(x) and assume the energy states at surrounding of x
are distributed according a Gaussian distribution

g(x; E) =
1p

2��2(x)
exp

�
�(E ��1(x))

2

2�2(x)2

�
�1 < �1(x) <1; �2(x) > 0

with mean �1(x) and standard deviation �2(x): Assume �1(x); �2(x) are su�ciently
smooth functions of x: We choose a local interaction rate r holds (2.3) and a rate

s(x; E;y; Q) = 
(x) exp[�(Q� E + e('(y)� '(x)))=2kT ];

where '(x) is an electric potential and 
(x) a positive function. Then s obeys a detailed
balance (2.4) with

 (x) = '(x) +
kT

e
log 
(x):

According to (4.3), (4.4), (4.6) and (4.5) (here generalized for two parameters �1;�2) the
charge transport is described by following drift-di�usion equation

@%

@t
=
S02
6
div

�
N 0
 exp

�
� �2

2

4 (kT )2

��
grad %� %

1

N 0
gradN 0 + %

1



grad 
 + %

e

kT
grad'

+%
1

kT
grad�1 � %

1

(kT )2
�2 grad�2

��
:

(4.7)
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The gradients of material parameters N 0; 
;�1;�2 produce drift currents analogeously as
an electric �eld F = �grad'.3

4.3.2. Example 2. The following example shows that two di�erent microscopic structures
can leads to the same transport law on a macroscopic scale. Assume we have two micro-
scopic structure 1 and 2 without energy component with the characteristics

N 0

1(x) = a(x) N 0

2(x) � 1

w1(x; E;y; Q) = r(jx0 � y
0j) s1(x;y) w2(x; E;y; Q) = r(jx0 � y

0j) s2(x;y)
s1(x;y) = a(x) s2(x;y) = a(x) a(y)

The hopping rate s1 and s2 satisfy the detailed balance equation (4.1) with the functions

 1(x) =
kT

e
log a(x)  2(x) � const.,

respectively.
According to 4.1 and 4.2, in the law concentration case the marcroscopic transport equa-
tions for 1 and 2 coincide. The equation reads

@%t(x)

@t
= div

�
S02
6
a2(x) grad %t(x)

�
:
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3Obviously, several combinations of material parameters can lead to a pure di�usion equation. For

example, under the assumption there are constants c1 > 0; c2; c3 > 0 so that

N
0(x) = c1 
(x)

�1(x) + e '(x) = c2

�2(x) = c3

hold then the sum of drift currents vanishes. It remains only a di�usion equation

@%

@t
= div (D grad %)

with a spatially inhomogeneous di�usivity

D(x) =
S
0

2

6
N
0(x) 
(x) exp

�
�(c3)

2
=4(kT )2

�
:
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