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Summary. Based on a hierarchical modular modeling the large nonlinear systems of differen-
tial algebraic equations arising from industrial applications in electric circuit simulation or in
dynamic process simulation of chemical plants can be structured into subsystems. Parallelized
numerical methods for solving such systems are considered at the level of nonlinear and linear
equations. Merging subsystems to blocks and extending the systems of nonlinear equations
resulting from backward differentiation formulas block–structured Newton–type methods can
be used for their solution on parallel computers. A parallelized Gaussian elimination method
using pseudo code techniques for the LU–factorization of the large sparse systems of linear
equations is implemented. The methods are successfully used on parallel and vector com-
puters for the time domain simulation of VLSI circuits as well as for the dynamic process
simulation of complex chemical production plants.
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1 Introduction

For the time domain simulation in many industrial applications structural properties of
the considered objects are used for a hierarchical modular modeling. Thus electronic
circuits usually consist of identical repetitive subnetworks as inverter chains, adders,
or NAND– and NOR–gates. Analogously, complex chemical production plants are
networks of coupled process units as pumps, reboilers, condensers, or trays of dis-
tillation columns. To each subcircuit or unit a mathematical model is assigned and
they are linked to form the electric circuit or chemical plant respectively. For the time
domain simulation this leads to initial value problems for large nonlinear systems of
differential–algebraic equations (DAE’s) which are structured corresponding to the
subcircuits or units into m coupled subsystems

Fi(t; y(t); _y(t); u(t)) = 0; i = 1(1)m; (1)

Fi : R � R
n
� R

n
� R

q
! R

ni ;

mX
i=1

ni = n; t 2 [t0; tEND];
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with given vector valued parameter function u(t) and unknown function y(t).
In today’s applications the system of DAE’s can involve tens of thousands of equa-
tions or more. For solving such large–scale problems we consider a two level hierar-
chical structure of the system. The first level of the structure is build by the subsys-
tems of the DAE–system. To exploit this structure for parallelization, it is assumed
that for each subsystem the corresponding part of the function Fi as well as the hy-
perrows of the Jacobian @Fi=@y +� � @Fi=@ _y, with integration constant � (see [6]),
can be computed independently of the other subsystems. The second level of the hi-
erarchy is obtained by merging subsystems to blocks

~Fj = (Fj
1
; Fj

2
; : : : ; Fjmj

)T ; j = 1(1)p;

pX
j=1

mj = m: (2)

There are different algorithms for generating a so called block partitioning (2). The
algorithm used in this connection exploits only topological informations. It merges
subsystems to nearly equal sized blocks while trying to minimize the number of cou-
pling variables between blocks and to optimize the number of blocks in relation to the
number of equations and the number of available concurrent processors. The imple-
mented algorithm is reliable for general problems, it is of low complexity and there-
fore it is fast. An algorithm to generate a block partitioning with numerically weakly
coupled blocks is described in [12, 13].
In Section 2 it is described how the hierarchical structure of the DAE–system can
be used to construct effective parallelizable block–structured Newton–type methods.
These methods require to solve many linear systems with the same pattern structure
of the matrices but with different right hand sides. For it the Gaussian elimination
method with pseudo code techniques is used. How this method can be adapted advan-
tageously to vector and parallel computers is described in Section 3. Finally, results
for large scale real life applications are given in Section 4.

2 Block–structured Newton–type methods

Based on a block partitioning (2) we extend the system of nonlinear equations arising
from backward differentiation formulas (BDF) [6] to use Block–structured Newton–
type methods for its solution on parallel computers. The extension is done by de-
termining the internal variables x = (x1; : : : ; xp)

T of the blocks, doubling of exter-
nal couple variables z = (z1; : : : ; zp)

T , and appending linear identification equations
G(z) = 0, yielding the extended system

Fj(xj; zj) = 0; j = 1(1)p; (3)

G(z) = 0;

where the nonlinear functions Fj , corresponding to the blocks ~Fj, have disjunctive
arguments.
We split each block function Fj, with Fj : R

rj � R
sj �! R

nj ; rj + sj � nj; into
Fj = (F1

j ;F
2

j )
T by determining rj pivot elements in the nj � rj dimensional matrix

@xjFj := @Fj=@xj . Thus the rj pivot rows determineF1

j (see Fig. 1) and it is ensured
that @xjF

1

j is regular.
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@xjFj @zjFj
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j

9>>>>=
>>>>;

pivot rows

Fig. 1 Splitting of the equations Fj.

Using the Newton–ansatz leads to
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�
�zj; j = 1(1)p; (4)

0 = G + @zG�z; (5)

with the following block structure of the Jacobian matrix:

2
666666666664

@x1F
1

1
@z1F

1

1

@x1F
2

1
@z1F

2

1

@x2F
1

2
@z2F

1

2

@x2F
2

2
@z2F

2

2

. . .
@xpF

1

p @zpF
1

p

@xpF
2

p @zpF
2

p

@z1G @z2G @zpG

3
777777777775

Because the matrices @xjF
1

j ; j = 1(1)p; are regular, one gets

�xj = ��x̂j � Bj�zj; j = 1(1)p; (6)

0 = F̂j + Cj�zj; j = 1(1)p; (7)

0 = G + @zG�z; (8)

with

�x̂j := (@xjF
1

j )
�1
F
1

j ; F̂j := F
2

j � @xjF
2

j�x̂j;

Bj := (@xjF
1

j )
�1

@zjF
1

j ; Cj := @zjF
2

j � @xjF
2

jBj:

Thus the correction of the external variables �z can be computed from the so called
main system equations (7),(8) and the correction of the internal variables �x can then
be computed from the block system equations(6). Using the notations C :=diag(Cj)

and F̂ := (F̂1; F̂2; : : : ; F̂p)
T we can formulate the following basic algorithm for the

evaluation of the corrections �x
k+1 = x

k+1� x
k and �z

k+1 = z
k+1� z

k in the k’th
iteration step of a modified Newton method with scalar constant c:

3



(1) do parallel for all j 2 f1; : : : ; pg:

(a) for new Jacobian: (i) compute the Jacobians @xjFj and @zjFj

and do LU–factorization for @xjFj

(ii) solve: �
@xjF

1

j ;

@xjF
2

j I

� �
Bj

Cj

�
=

�
@zjF

1

j

@zjF
2

j

�
(9)

(b) compute the function Fj(x
k
j ; z

k
j ) and solve:

�
@xjF

1

j ;

@xjF
2

j I

��
�x̂

k+1
j

F̂
k+1
j

�
= c

�
F1

j (x
k
j ; z

k
j )

F2

j (x
k
j ; z

k
j )

�
(10)

enddo

(2) do sequential

(a) for new Jacobian: do LU–factorization of main system matrix [C; @zG]
T

(b) solve: �
C

@zG

�
�z

k+1 = �

�
F̂k+1

c G(zk)

�
(11)

enddo

(3) do parallel for all j 2 f1; : : : ; pg: �x
k+1
j = ��x̂

k+1
j �Bj�z

k+1
j enddo

Both main parts of the computational amount, namely all the calculation of func-
tions and Jacobians and most of the amount for the solution of the linear systems,
are included together in one parallel loop (step 1) resulting into a coarse grain paral-
lelism. The bottleneck is the sequential part (step 2) which is dominated by the LU–
factorization of the main system matrix. To reduce this sequential amount of the algo-
rithm and increase the efficiency of the implementation on parallel computers various
modifications of the method can be considered.
At first, the main system factorization can be speeded up by eliminating zero elements
(sparsing) from the dense computed submatrix blocks Cj. For instance for a DAE
system of a distillation plant with 13 436 equations using 14 blocks the resulting 1 138
equations of the main system comprise 67 342 matrix elements which can be reduced
to 24 504 nonzero elements.
At second, by using multilevel Newton iteration techniques [3, 17] it is possible to
shift computational costs from the main system solution (outer iteration) to the solu-
tion of the blocks by substituting step (1)(b) by an inner iteration loop:

set x̂k+1;0j := x
k
j

do l = 0(1)lj : compute Fj(x
k+1;l

j ; z
k
j ) and solve:

�
@xjF

1

j ;

@xjF
2

j I

��
�x̂

k+1;l+1

j

F̂
k+1;l+1

j

�
= c

�
F1

j (x
k+1;l

j ; z
k
j )

F2

j (x
k+1;l
j ; z

k
j )

�
(12)

and set x̂
k+1;l+1

j := x̂
k+1;l

j +�x̂
k+1;l+1

j

enddo
set �x̂

k+1
j := �x̂

k+1;lj+1

j and F̂k+1
j := F̂

k+1;lj+1

j
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At third, by formally extending the main system (11) with the last factorized block–
diagonal matrix Ĉ,

�
C+Ĉ � Ĉ

@zG

�
�z

k+1 = �

�
F̂k+1

c G(zk)

�
;

a new factorization of the main system matrix can be avoided, in some cases, by using
the following iterative scheme for solving the main system instead of step (2)(b):

set zk+1;0j := z
k
j ; j = 1(1)p

do l = 0(1)l0 :
do parallel for all j 2 f1; : : : ; pg

�
@xjF

1

j ;

@xjF
2

j I

��
Bj�z

k+1;l

j

(Cj � Ĉj)�z
k+1;l

j

�
=

�
@zjF

1

j�z
k+1;l

j

(@zjF
2

j�Ĉj)�z
k+1;l

j

�
(13)

enddo
�

Ĉ

@zG

�
�z

k+1;l+1 = �

�
F̂

k+1
2

+ (C � Ĉ)�z
k+1;l

c G(zk;l)

�
(14)

enddo

set �z
k+1 := �z

k+1;l0+1

Step (3) can then be replaced by:

do parallel for all j 2 f1; : : : ; pg: �x
k+1
j = ��x̂

k+1
j �Bj�z

k+1;l0
j enddo

In (12) as well as in (13) and (14) only existing factorizations are used and the cor-
rections in (13) can be computed in parallel for all blocks j = 1(1)p. The integer
constants lj; j = 0(1)p depend on the convergence properties of the method.

3 Gaussian elimination method with pseudo code

For solving systems of linear equations

Ax = b; A 2 R
n�n

; x; b 2 R
n
;

with unsymmetric and sparse matrices A, we use the Gaussian elimination method

PAQ = LU; (15)

Ly = Pb; UQ
�1
x = y: (16)

L is a lower triangular matrix and U an upper triangular matrix. The row permutation
matrix P is used to provide numerical stability and the column permutation matrix Q
is used to control sparsity. In the following, two cases for the determination of P and
Q are considered.
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In the first case, we determine in each elimination step a permutation of Q and then
a permutation of P . With it also the columns are reordered dynamically. The permu-
tation of Q is done by using the first column of the eliminated matrix with a minimal
number of nonzero elements as the pivot column [13]. For keeping the method nu-
merically stable at stage k of the elimination, the pivot ai;j is selected among those
candidates satisfying the numerical threshold criterion

jai;jj = � max
l=k

jal;jj; (17)

with a threshold parameter � 2 (0; 1].
In the second case, we find the permutation matrix Q by minimum degree ordering
of AT

A or of AT + A. Then, in a separate step we determine P using the numerical
threshold criterion (17).
To perform several factorizations of PAQ into the product of L and U for matrices
A with the same pattern structure and the same pivot sequence as well as to solve
Ly = Pb and UQ

�1
x = y for several right hand sides, a pseudo code is generated.

This code describes the operations that are necessary to refactorize A with (15) and
to resolve the linear systems (16). It can be formulated independently of a computer
[12]. For vectorization as well as for parallelization one has to find elements of LU
just as x and y respectively that can be computed independently of each other. Using
the algorithm of Yamamoto and Takahashi [18] a level of independence is defined for
each matrix element of LU in (15) and each vector element of x and y in (16), so that
elements with the same level number can be computed concurrently. Based on this
information, one can define vector statements for the pseudo code instructions (vec-
torization) or spread the pseudo code instructions among different processors (paral-
lelization).
Let a(i) denote the nonzero elements inLU . Then for vector computers the following
vector statements have been proven to be successful for the factorization:

s =
X
�

a(i�) � a(j�);

a(ik) = 1=a(ik);

a(ik) = a(ik) � a(il);

a(ik) = (a(il) � a(im) + a(ip) � a(iq)) � a(ik);

The array elements are addressed indirectly because of the representation of LU as a
sparse matrix.
For parallel computers we distribute the pseudo code for each level of independence
to about equal parts on the processors. After the processors have executed their part
of the pseudo code instructions of a level concurrently, a synchronization among the
processors is needed, before the execution of the next level can be started.

4 Applications

Both the nonlinear and the linear solver have been proven successfully for dynamic
process simulation of real life chemical plants. They are now included in a block ori-
ented process simulation code BOP using block partitioning algorithms and numerical
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integration with BDF methods [6]. It uses a structured data interface, which is cur-
rently generated [15] out of the data supplied by the commercial process simulator
SPEEDUP 1 [1]. The interface describes the system of DAE’s structured into subsys-
tems corresponding to the units of the plant and is usable for an independent evalua-
tion of subsystem functions and Jacobian matrices. Our simulation code BOP is cur-
rently implemented on moderate parallel computers Cray J90 with up to 32 processors
and on a SGI Origin 2000 with 8 processors. Carrying out dynamic process simula-
tions for large–scale distillation plants of the Bayer AG Leverkusen have shown the
potential parallelism of the methods realized in BOP (see Tables 1 and 2).

Table 1. Dynamic simulation of plant bayer11 (190 subsystems, 10 226 equations)

Processors 1 1 4 8 12
Blocks 1 24 24 24 24
Coupling variables 0 500 500 500 500P

CPU time (in seconds) 694.90 730.96 855.37 865.72 839.65
Wall clock time (in seconds) 701.37 732.12 245.33 160.72 116.21
Speedup factor 1 0.96 2.86 4.35 6.04

Table 2. Dynamic simulation of plant bayer12 (170 subsystems, 19 558 equations)

Processors 1 1 7 8 12
Blocks 1 21 21 24 24
Coupling variables 0 819 819 897 897P

CPU time (in seconds) 1 038.39 934.31 1 079.93 1 059.01 1 080.07
Wall clock time (in seconds) 1 040.60 936.04 230.31 219.82 175.96
Speedup factor 1 1.11 4.52 4.73 5.91

The times given in Table 1 and 2 are measured for whole simulation runs on non ded-
icated machines Cray J90 and include the times for sequential pre– and post–proces-
sing, which are usually about 5% of the overall CPU time. From a performance analy-
sis using the Cray tool ATExpert it was found that for the dynamic simulation of plant
bayer12 using 16 processors and a 16 block partitioning a speedup factor of 11.5 is
possible.
For some large matrices arising from circuit simulation and chemical process simu-
lation (Table 3) our linear solver GSPAR has been compared with the solvers UMF-
PACK [7] and SuperLU [8]. Results for using GSPAR with dynamical column re-
ordering and with minimum degree ordering of AT

A or AT + A, signed with � and
F respectively, are given in Table 4. In this table op LU denotes the number of oper-
ations for the factorization, nz LU the number of nonzero elements in L+U, and strat
the CPU time (in seconds) on a DEC AlphaServer with a EV5.6 processor used for
the first factorization including the analysis and the generation of pseudo code.

1Used under licence 95122131717 for free academic use from AspenTech
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Table 3. Matrices for GSPAR, UMFPACK and SuperLU

Name Discipline Equations Nonzero elements
advice3388 circuit 3 388 40 545
advice3776 simulation 3 776 27 590
meg1 2 904 58 142
meg4 5 960 46 842
bayer01 chemical 57 735 277 774
bayer04 engineering 20 545 159 082
bayer10 13 436 94 926

Table 4. GSPAR with dynamical column reordering and minimum degree ordering

Dynamical column reordering Minimum degree ordering
Name op LU nz in LU strat op LU nz in LU strat

advice3388 310 348 49 842 1.03 396 965F 50 363 1.70
advice3776 355 465 53 246 1.10 382 224F 53 664 1.60
meg1 796 797 98 578 0.72 1 245 847F 117 700 1.26
meg4 420 799 85 626 1.30 376 324F 81 850 0.78
bayer01 10 032 621 921 672 47.90 13 860 173� 1 090 279 15.70
bayer04 5 954 718 427 088 9.26 6 340 579� 449 103 4.72
bayer10 5 992 500 322 601 5.60 3 953 687� 298 559 2.68

Table 5 gives the CPU times (in seconds) needed for one refactorization of the matri-
ces on a DEC AlphaStation with a EV4.5 processor. Here GSPAR was used with dy-
namical column reordering (dco) and minimum degree ordering (mmd) alternatively.

Table 5. Refactorization with GSPAR, UMFPACK, and SuperLU

GSPAR UMFPACK SuperLU
Name with dco with mmd

advice3388 0.10 0.12F 0.25 0.28F

advice3776 0.10 0.12F 0.30 0.42F

meg1 0.22 0.37F 0.58 1.43F

meg4 0.13 0.13F 0.37 0.75F

bayer01 3.18 4.62� 5.02 6.70�

bayer04 1.68 1.70� 3.37 2.77�

bayer10 1.63 1.02� 1.60 1.57�

For some large matrices arising from chemical process simulation we compared the
vector version of our linear solver GSPAR with FAMP [19], the frontal method of
SPEEDUP [1], and found that factorizations with GSPAR are up to two times faster on
Cray vector computers [13]. Thus using GSPAR alternatively to FAMP in SPEEDUP
it was possible to reduce the CPU–time for the whole dynamic simulation of large
distillation plants to up to 62%.
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The performance of the parallel version of GSPAR on a computer Cray T3D is shown
in Table 6. For this example the pseudo code is to large to distribute it among up to 8
processors.

Table 6. Example bayer01: CPU time (in seconds) for refactorization on Cray T3D

Processors CPU time Speedup factor
16 2.36 set to 1.00
32 1.45 1.63
64 0.95 2.47
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