
ON ESTIMATING A DYNAMIC FUNCTION OF STOCHASTIC

SYSTEM WITH AVERAGING

LIPTSER, R. AND SPOKOINY, V.

Weierstrass Institute for Applied Analysis and Stochastics,

Mohrenstr. 39, 10117 Berlin, Germany

and

Dept. Electrical Engineering-Systems,

Tel Aviv University,
69978 Tel Aviv, Israel

1991 Mathematics Subject Classi�cation. 62G05; Secondary 62M99.

Key words and phrases. fast and slow components, drift and di�usion coe�cients, ergodic

property, nonparametric estimation, bandwidth selection.

1



ON ESTIMATING A DYNAMIC FUNCTION 1

Abstract. We consider a two-scaled di�usion system, when drift and di�usion

parameters of a \slow" component are contaminated by an unobservable \ fast"

one. The goal is to estimate the dynamic function which is de�ned by averaging

the drift coe�cient of the \slow" component w.r.t. the stationary distribution

of the \fast" one. For estimation we use a locally linear smoother with a data-

driven choice of bandwidth. A procedure proposed is fully adaptive and nearly

optimal up to a log log factor.

1. Introduction

In this paper we consider an estimation problem for a two-scaled di�usion model
describing by the following Itô stochastic di�erential equations (SDE) with respect
to independent Wiener processes wt; Wt

dX"
t = f(X"

t ; Y
"
t )dt+ g(X"

t ; Y
"
t )dwt; X

"
0 = x0;(1.1)

"dY "
t = F (Y "

t ) +
p
"G(Y "

t )dWt; Y
"
0 = y0:(1.2)

Here " is a small parameter and therefore the process Y
"
t is fast-oscillating. Fur-

ther X
"
t (resp. Y

"
t ) is referred to as the slow (resp. the fast) component of the

stochastic system (1.1), (1.2).
All the drift and di�usion coe�cients f , g , F and G are unknown functions.

Moreover, only the \slow" component X"
t is observed. With respect to the un-

observed \fast" component Y "
t we only assume that the corresponding coe�cients

F;G satisfy some regularity conditions (see e.g. Veretennikov (1992) or assumption
(A5) in Section 3 below). These assumptions ensure that the fast component Y

"
t

forms an ergodic Markov process and its transition probabilities converge rapidly
to the stationary density, say p(y) . Furthermore, under these conditions the slow
component obeys the Bogolubov type averaging principle, that is, it can be ap-
proximated by a new di�usion with respect to another Wiener process wt and the

same initial condition x0:

dXt = f(Xt)dt + g(Xt)dwt:

Here the coe�cients f; g are obtained by averaging the original ones with respect
to the stationary distribution density p(y) of the fast component Y "

t :

f(x) =

Z
f(x; y)p(y)dy and g(x) =

�Z
g
2(x; y)p(y)dy

�1=2
(see Khasminskii (1980), Freidlin and Wentzell (1984), Veretennikov (1991)).
In this paper we focus on the problem of statistical estimation of a dynamic

function f(x) from observations X
"
t , 0 � t � T , where T is the observation time.

Such a problem arises in many applications: tracking of moving objects, description
of an incomplete market in �nancial mathematics, and the like provide examples.
To simplify the presentation, we restrict ourselves to the scalar case when both
slow and fast components X"

t and Y
"
t are real-valued processes. However a vector

case can be considered in the similar way.
The estimation theory for di�usion type processes is well developed under a para-

metric modeling when underlying functions (drift and di�usion coe�cients) are
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speci�ed up to a value of a �nite dimensional parameter (cf. Kutoyants, 1984b).
In contrast, a problem of nonparametric estimation is not studied in details. The

existing in the literature results concern only statistical inference for ergodic di�u-
sion processes with a small noise or for a large observation time T . The minimax
rate of estimating the drift coe�cient for such models was obtained by Kutoyants
(1984a). Some pertinent results for discrete time models can be found in Doukhan

and Ghindes (1980), Collomb and Doukhan (1983), Doukhan and Tsybakov (1993),
Delyon and Juditsky (1997). In this paper we do not assume any ergodic property
for the slow component. This makes the problem more complicated. Additional
di�culties come from the fact that the coe�cients of the slow process X"

t are con-
taminated by the unobserved fast component. To our knowledge, nonparametric

statistical inference for di�usion models (1.1), (1.2) with averaging has not yet been
considered.
We propose a locally linear nonparametric estimator of the dynamic function

with a data-driven bandwidth choice and show that this method provides a nearly

optimal rate of estimating up to a \log log" factor.
The paper is organized as follows. In the next section, we describe a locally linear

estimator. Its properties are discussed in Section 3. A data-driven bandwidth
selection and its properties are presented in Section 4. All proofs are gathered in

Sections 5.

2. Locally linear estimator

For the �xed point x, we estimate the value f(x) by using locally linear smoothers
(cf. Katkovnik (1985), Tsybakov (1986), Fan and Gijbels (1996)).
We begin with some heuristic explanation of the proposed procedure. First let

us suppose that functions f(u; y) and g(u; y) are su�ciently smooth in u, at least

in some small neighborhood [x � h; x + h] of a point of the interest x. We can
therefore approximate for all u 2 [x� h; x+ h]

f(u; y) � f(x) + fx(x; y) (u� x);

g(u; y) � g(x; y)

(here fx stands for the derivative of f(x; y) in x). Then for all t with X
"
t 2

[x�h; x+h], the original model equation (1.1) can be approximated by the equation

dX"
t = [f(x; Y "

t ) + fx(x; Y
"
t ) (X

"
t � x)]dt + g(x; Y "

t )dwt:

In turn, such de�ned process X"
t , due to the averaging principle, can be approxi-

mated by a di�usion one with the averaged coe�cients

f(x) =

Z
f(x; y) p(y) dy and fx(x) =

Z
fx(x; y) p(y) dy

and we arrive at the linear SDE

dXt =
�
f(x) + fx(x) (Xt � x)

�
dt+ g(x) dwt:(2.1)

Now the parameters �0 = f(x) and �1 = fx(x) can be estimated by applying the
standard maximum likelihood method. The corresponding log-likelihood L�0;�1
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(for the case when only observations Xt 2 [x � h; x + h] are taken into account)
reads as follows:

L�0;�1 =
1

jg(x)j2

Z T

0

[�0 + �1(Xt � x)]Qt dXt �
1

2jg(x)j2

Z T

0

[�0 + �1(Xt � x)]2Qt dt

where Qt = 1(Xt 2 [x�h; x+h]) = 1
�
jXt�xj

h
� 1
�
. By maximizing this expression

w.r.t. �0 and �1 we get the estimate ef(x) of f(x) in the form

ef(x) = R T
0
(Xt � x)Qt dXt �

R T
0
Qt dXt

R T
0
Qt dtR T

0
(Xt � x)2Qt dt

R T
0
Qt dt�

�R T
0
(Xt � x)Qt dt

�2 :
To construct our estimate, we simply substitute in this expression Xt by the
original observations X"

t as if they obey the linear approximating equation (2.1).

For technical reasons, we also replace the indicator function 1(jzj � 1) by a smooth
function Q(z) .

Now we present the formal description of our method. First we introduce a
kernel Q , which is assumed to be a symmetric, non negative, bounded (for sake
of simplicity by 1), compactly supported on [�1; 1] , and in�nitely di�erentiable
function. One possible example is as follows:

Q(u) =

(
exp

n
� z2

1�z2

o
; jzj � 1;

0; jzj > 1:

Let us �x also a positive number h called a bandwidth and denote Q"
t = Q

�
X"

t
�x

h

�
.

We set

�0;T =
1

Th

Z T

0

Q
"
t dt;

�1;T =
1

Th2

Z T

0

(X"
t � x)Q"

t dt;

�2;T =
1

Th3

Z T

0

(X"
t � x)2Q"

t dt;

DT = �2;T�0;T � �
2
1;T

and

L
"
t = �2;T � �1;T

X
"
t � x

h
:

Then the estimate bfT (x) of f(x) is de�ned by the following formula:

bfT (x) =
1

DT T h

Z T

0

L
"
t Q

"
t dX

"
t(2.2)

=
1

DT T h

Z T

0

�
�2;T � �1;T

X
"
t � x

h

�
Q
"
t dX

"
t :

The choice of the bandwidth h is very essential for the quality of estimation. We
discuss the problem of the bandwidth selection in Sections 3 and 4.
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3. Accuracy of locally linear estimate

Hereafter, the following conditions are assumed to be satis�ed.

(A1) Functions f = f(x; y) and g = g(x; y) (F = F (y) and G = G(y) ) are
Lipschitz continuous in x; y (in y).

(A2) For some positive constants gmin � gmax

gmin � jg(x; y)j � gmax; gmin � jG(y)j � gmax:

(A3) Function f = f(x; y) is three times continuously di�erentiable in x ;
(A4) Functions F = F (y) and G = G(y) are continuously di�erentiable (F once,

G twice) and their derivatives are continuous and bounded.
(A5) There exist constants l > 0 and C > 1 such that for jyj > C

yF (y) � �ljyj2;
F

2(y)� jF 0(y)jG2(y) � (1=l)G2(y):

Under (A1), the Itô equations (1.1), (1.2) possess a unique strong solution, and
under (A4), (A5) (see e.g. Khasminskii (1980)) the fast component Y

"
t is an

ergodic di�usion process with the invariant density

p(y) = Const.

exp

�
2

yR
0

F (u)

G2(u)
du

�
G2(y)

:(3.1)

In the sequel we use also the following notation

�h(x) = sup
ju�xj�h;y2R

jf(u; y)� f(x; y)� (u� x)fx(x; y)j(3.2)

and

�
2
T =

1

D
2
T T

2 h2

Z T

0

jL"
t Q

"
t g(X

"
t ; Y

"
t )j

2 dt(3.3)

Finally, with given positive constants �max � �min and d1 , introduce random
events

A1;T = f�0;T � �maxg ;

A2;T =

�
�
2
1;T

�0;T�2;T
� d1

�
;(3.4)

A3;T =

�
1

Th

Z T

0

jL"
t Q

"
t j
2
dt � �min

�
;

AT = A1;T \ A2;T \ A3;T :

Theorem 3.1. Let conditions (A1){(A5) be ful�lled and let the values "T and
" T h

�2 be small if " is small enough. Then, for every � � 1 and su�ciently
small " ,

P

�
j bfT (x)� f(x)j > (1� d1)

�1=2�h(x) + ��T (x); AT

�
� C1� expf��2=2g
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where

C1 = e

�
2 + log

�
g
2
max �max

g2min �min

��
:

Remark 3.1. Note that the properties of the estimate bf(x) is examined on the set

AT only. Such an analysis allows to eliminate irregular cases when, for instance, the
trajectory X

"
t ; 0 � t � T; does not pass through the interval [x�h; x+h] (in this

situation �0;T = �1;T = �2;T = DT = 0 ). Our approach admits also the following
interpretation: comparing (1.1) with a standard regression model we see that the

observable trajectory X
"
t , 0 � t � T; serves also as a regression design and values

DT , �T (x) characterize the design regularity in the neighborhood of x . Therefore
the constrains from the de�nition of AT can be regarded as assumptions on the
design which guarantee a nontrivial estimation. The constants �min , �max and

d1 may be arbitrary positive numbers and they even might depend on " and T .
The result claims that if small �min or large qmax are taken, the error probability
degrades only by a log-factor.
It is also worth to mention that if the coe�cients f and g of the slow component

obey regularity conditions similar to (A5) , then the process X
"
t is ergodic as well,

and its transition probabilities converge to the stationary distribution as T tends
to in�nity, see e.g. Veretennikov (1991). It can be easily seen that in this situation
the probability of AT tends to one and we may therefore replace the risk on the
set AT by the unconditional risk on the whole probability space.

Remark 3.2. The result of the theorem claims also that the losses bf(x) � f(x) ,

being restricted to AT , are bounded by the sum of two terms: (1� d1)
�1=2�h(x)

and ��T (x) . The �rst one reects the error of approximation of f(u; y) by a
linear in u function in a small neighborhood [x � h; x + h] of the point x . The

second one is in proportion to �T (x) . This value is random (often �
2
T (x) is called

the \stochastic variance") but it can be precisely evaluated from observations Xt ,
0 � t � T (see Section 4).

3.1. Quality of estimation under smoothness assumptions

Due to assumption (A3), the function f is twice continuously di�erentiable with
respect to the �rst argument. Assume now that for u from a small vicinity of x
and any y ����@2f(u; y)@u2

���� � L:(3.5)

Then the approximation error �h(x) from (3.2) is bounded above by Lh
2
=2. On

the other hand, on the set AT the stochastic variance satis�es the condition

sminp
Th

� �T �
smaxp
Th

(see Lemma 5.1 below). Therefore, following to the standard approach in non-
parametric estimation, the bandwidth h can be chosen by balancing the error of



6 LIPTSER, R. AND SPOKOINY, V.

approximation and the stochastic error:

Lh
2 �

1
p
T h

;

where the symbol \� " means equivalence in the order. This leads to the choice
h � (T L

2)�1=5 and hence to rate of the estimation L
1=5
T
�2=5 which is optimal

in the minimax sense under the smoothness assumptions (3.5), see e.g. Ibragimov
and Khasmiskii (1981).

Unfortunately, such a bandwidth selection rule cannot be applied in practice
since no information of (3.5) type is available. An adaptive (data-driven) choice of
the bandwidth is discussed in the next section.

4. A data-driven bandwidth selection

In this section we consider the problem of the bandwidth selection for the locally
linear estimator described in Section 2. It is assumed here that the method of
estimation, i.e. the locally linear smoother with the kernel Q , is �xed and the

bandwidth h has to be chosen only. We apply the method from Lepski, Mammen
and Spokoiny (1997), see also Lepski and Spokoiny (1997).
Let some set H of all admissible values of bandwidth h be �xed. For technical

reasons, we assume that this set is �nite and denote by #H the number of its
elements. Usually H is taken as a geometric grid of the form

H = fh = hmina
k
; k = 0; 1; 2; : : : : h � hmaxg;

where hmin � hmax and a > 1 are some prescribed constants. To emphasize the

dependence of our estimator on h , we write hereafter bfh;T (x) , Ah;T , and �
2
h;T

instead of bfT (x) , AT , and �
2
T respectively. As in Section 3, we restrict ourselves

only to those h from H for which Ah;T is ful�lled.

Our goal now is to select such a value h 2 H which provides for bfh;T (x) a
minimal in some sense estimation error. To understand which bandwidth might

be considered as a \good" one, we apply again the trade-o� arguments between
the accuracy of approximation and the stochastic error. Without loss of a gener-
ality one can assume that for every �xed h the value �h;T (x) is known (it can be
exactly evaluated from observations Xt , 0 � t � T , see Subsection 4.2). Due
to Lemma 5.1 below, it holds �

2
h;T (x)T h 2 [s2min; s

2
max] . We additionally suppose

that �h;T (x) decreases in h (otherwise each h with the property 9h0 2 H; h0 <
h : �h;T (x) > �h0;T (x) is excluded from H). Furthermore, for a regular function f ,
the value �h(x) is small when h is small, and it increases in h . We may therefore
de�ne a \good" bandwidth h

� as the largest possible h from H such that �h(x)
is still not larger in order than �h;T (x) .
Since the function �h(x) is unknown, this bandwidth h

� is also unknown,

and therefore it might be also called an \ideal" bandwidth. We present below
an adaptive procedure and show that the corresponding accuracy of estimation is
essentially the same as if we knew in advance the \ideal" bandwidth.
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Our procedure involves two additional positive parameters �1 and �2 whose
choice will be discussed a bit later. We de�ne the data-driven bandwidth bybh(x) = max

n
h 2 H : j bfh;T (x)� bf�;T (x)j(4.1)

� �1

�
�h;T (x) + ��;T (x)

�
+ 2�2�h;T (x); 8� 2 H; � < h

o
:

In other words, the procedure selects the largest value h 2 H for which the corre-

sponding estimate bfh;T (x) does not di�er essentially from every estimate bf�;T (x)
with smaller bandwidth values � 2 H .

Finally, we plug the data-driven bandwidth bh(x) in the estimate bfh;T (x) :bfT (x) = bf
bh(x);T

(x):(4.2)

In the next theorem we describe some properties of the adaptive estimate bfT (x)
restricting ourselves to the set

A
�
T =

\
h2H

Ah;T :

Theorem 4.1. Let (A1) through (A5) be satis�ed and let the values "T and "Th
�2
min

be small for su�ciently small " . Assume also that there exists a bandwidth h
� 2 H

such that

�h�(x) � (1� d1)
1=2
�2�h�;T (x)(4.3)

with the same �2 as in (4.1). Then for the estimate bfT (x) de�ned in (4.1), (4.2)
and every � � 1

P

�n�� bfT (x)� f(x)
�� > (�+ �

�)�h�;T (x)
o
\ A

�
T

�
(4.4)

� C1(#H)2�1 expf��21=2g+ C1� expf��2=2g;

where the constant C1 is de�ned in Theorem 3.1 and

�
� = 2�1 + 3�2:(4.5)

Remark 4.1. A choice of parameters �1 , �2 from (4.1) plays an important role.

The bound in (4.4) states that the probability for j bfT (x)� f(x)j of being large is
small, provided that the value (#H)2�1 expf��21=2g is su�ciently small as well.
This leads to a choice

�1 �
p
4 log(#H) + �2

so that

(#H)2�1 expf��21=2g � expf��2=2g:
If H is taken in the form of a geometric grid then we get #H � loga(hmax=hmin).
Therefore taking hmax � T and hmin � 1 , we arrive at

�1 �
p
4 log logT + �2:

We have much more degree of freedom in the choice of �2 . This parameter controls

the balance between the accuracy of approximation and the stochastic error in the
de�nition of the \ideal" bandwidth h

� (see (4.3)). The results from Lepski and
Spokoiny (1997) motivate the choice �2 = Const �1 (see also the next subsection).
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At the same time, Lepski and Levit (1997) have showed that for a very smooth
function f , a relevant choice is �2 = o(�1) .

4.1. The rate of adaptive estimation

Next, we compare the accuracy of the adaptive procedure (4.1) with the \opti-
mal" one, designed for the case of known smoothness properties of the underlying
function f (see Subsection 3.1).
Assume (3.5). Then �h(x) � Lh

2
=2 and the constraints �h(x) � �2�h;T (x)

and smin(hT )
�1=2 � �h;T � smax(hT )

�1=2 provide inequality (4.3) with

h
� � (TL2

�
2
2)
�1=5

:

Hence, for the above indicated choice �1 �
p
log logT and for �2 � �1 , by

Theorem 4.1 we obtain the rate of adaptive estimation

(�+ 2�1 + 3�2)�h�;T (x) � L
1=5

�
log logT

T

�2=5

:(4.6)

At the same time the \optimal" choice of the bandwidth leads to the rate L1=5
T
�2=5 ,

see Section 3.1. Thus, the adaptive rate is worse than the \optimal" one by some

log log -factor only.
Note that due to Lepski (1990) and Brown and Low (1992) (see also Lepski and

Spokoiny (1997)), for the problem of pointwise adaptive estimation, the optimal
adaptive rate has to be worse than the optimal one by a log-factor. This is not
in contradiction with our conclusions since the above-mentioned results have been

obtained for the case of the loss function w(x) = jxjp with p > 0 whereas we
consider a bounded loss function. It can be also shown that the obtained rate
is optimal in the problem of poinwise adaptive estimation with a bounded loss
function, cf. Spokoiny (1996).

4.2. Estimation of �h;T

We use a well known fact that a \di�usion parameter" of a continuous Itô process
can be correctly recovered from observations of the process.
We use here this fact to �nd �h;T . Let us note that (X"

t )t�0 is a continuous

semimartingale with the predictable quadratic variation hX"it =
R t
0
g
2(X"

s ; Y
"
s )ds:

Introduce a new continuous semimartingale

Zt =

Z t

0

L
"
sQ

"
s dX

"
s :

It is well known that its predictable quadratic variation is de�ned by the formula

hZit =
R t
0
jL"

sQ
"
sj2 dhX"is and therefore we have hZiT = �

2
h;T D

2
T T

2
h
2 , that is,

since hZiT and D
2
T T

2 are generated by X
"
t ; t � T only, the parameter �2h;T is

reconstructed exactly via observation of the \slow" component. By the Itô formula
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1

hZiT = Z
2
T � 2

Z T

0

ZsdZs

which implies

�
2
h;T =

Z
2
T � 2

R T
0
Zt dZt

D
2
TT

2h2
:

5. Proofs

In this section we proof Theorems 3.1 and 4.1. For a generic positive constant, a

notation ``' will be used hereafter.

5.1. Decomposition of bfT (x)

Due to (2.2) and (1.1), the estimate bfT (x) can be represented in the form

bfT (x) =
1

DT T h

Z T

0

L
"
t Q

"
t dX

"
t(5.1)

=
1

DT T h

Z T

0

L
"
t Q

"
t f(X

"
t ; Y

"
t ) dt

+
1

DT T h

Z T

0

L
"
t Q

"
t g(X

"
t ; Y

"
t ) dwt

with Q
"
t = Q

�
X"

t
�x

h

�
and L

"
t = �2;T � �1;T

X"

t
�x

h
. Next, we make use of the fact

that Q
"
t � 0 for jX"

t � xj > h and of a decomposition

f(X"
t ; Y

"
t ) = f(x; Y "

t ) + fx(x; Y
"
t )(X

"
t � x) + remainder:

Substituting the right side of this decomposition in (5.1) we get

bfT (x)(5.2)

=
1

DT T h

Z T

0

f(x; Y "
t )L

"
t Q

"
t dt+

1

DT T h

Z T

0

fx(x; Y
"
t )L

"
t (X

"
t � x)Q"

t dt

+
1

DT T h

Z T

0

L
"
t Q

"
t g(X

"
t ; Y

"
t ) dwt + rT

= fT (x) + �T + �T + rT

1for more details see e.g. Liptser and Shiryaev (1989).
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where

fT (x) =
1

DT T h

Z T

0

f(x; Y "
t )L

"
t Q

"
t dt;

�T =
1

DT T h

Z T

0

fx(x; Y
"
t )L

"
t (X

"
t � x)Q"

t dt

�T =
1

DT T h

Z T

0

L
"
t Q

"
t g(X

"
t ; Y

"
t ) dwt;

rT =
1

DT T h

Z T

0

L
"
t Q

"
t

h
f(X"

t ; Y
"
t )(5.3)

�f(x; Y "
t )� fx(x; Y

"
t )(X

"
t � x)

i
dt:

5.2. Upper bound for rT

Let �h(x) and A2;T be de�ned in (3.2) and (3.4) respectively. We aim to show

that on the set A2;T it holds rT � (1� d1)
�1=2�h(x): In fact, due to (3.2)

rT �
�h(x)

DT T h

TZ
0

jL"
t jQ

"
t dt:

Further, by the Cauchy-Schwarz inequality

Z T

0

jL"
t jQ

"
t dt �

�Z T

0

jL"
t j
2
Q
"
t dt

Z T

0

Q
"
t dt

�1=2

and so, by using the equality
R T
0
Q
"
t dt = T h�0;T we obtain

Z T

0

jL"
t j
2
Q
"
t dt(5.4)

=

Z T

0

�
�2;T � �1;T

X
"
t � x

h

�2

Q
"
t dt

= �
2
2;T

Z T

0

Q
"
t dt�

2�2;T�1;T

h

Z T

0

(X"
t � x)Q"

t dt +
�
2
1;T

h2

Z T

0

(X"
t � x)2Q"

t dt

= T h (�22;T�0;T � �2;T�
2
1;T )

= T h�2;T DT :
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Therefore,

rT �
�h(x)

DT T h
(T h�2;T DT T h�0;T )

1=2
(5.5)

= �h(x)

�
�2;T �0;T

DT

�1=2

= �h(x)

 
�2;T �0;T

�2;T�0;T � �
2
1;T

!1=2

� �h(x)

�
1

1� d1

�1=2

as required.

5.3. Upper bound for �T

We study here some properties of the \stochastic term"

�T =
1

DT T h

Z T

0

L
"
t Q

"
t g(X

"
t ; Y

"
t ) dwt:

Namely, we intend to show that the probability of the event f�T > ��Tg with �T

from (3.3) is small provided that � is large enough.

Denote by Mt =
R t
0
L
"
sQ

"
s g(X

"
s ; Y

"
t ) dws: The Itô integral Mt forms a continuous

local martingale with the predictable quadratic variation

hMit =
Z t

0

jL"
sQ

"
s g(X

"
s ; Y

"
t )j

2 ds (:= V
2
T );(5.6)

(see e.g. Liptser and Shiryayev (1989)). Note that f�T > ��Tg = fMT > �VTg:
We give below the bound for P (MT > �VT ) having an independent interest.

Proposition 5.1. Let (Mt)t�0 be a continuous local martingale (M0 = 0) with a

predictable quadratic variation (V 2
t )t�0. Then, with every positive Vmin < Vmax and

� � 1 , it holds

P

�
MT > �VT ; Vmin � VT � Vmax

�
� 2�

h
log

Vmax

Vmin

+ 1
i
exp

�
�
�
2

2
+

1

2

�
:

Proof. With  2 R let us set Rt() = exp
�
Mt�

2
V

2
t =2

�
: By the Itô formula we

�nd Rt() = 1 +
tR
0

Rs()dMs and so, Rt() is a local martingale as well. Being

positive, Rt() is a supermartingale (see Problem 1.4.4 in Liptser and Shiryayev

(1986)). Hence, for every T > 0,

ERT () � 1:(5.7)

Given a > 1 , introduce numbers vk = Vmina
k , and de�ne random events Ck =

fvk � VT < vk+1g , k = 0; 1; : : : . Now for every k � 0 , bound (5.7) with  = �

avk+1
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implies

1 � ERT ()1(MT > �VT ; Ck)

= E exp
�
MT � 

2
V

2
T =2

�
1(MT > �VT ; Ck)

� E exp
�
�VT � 

2
V

2
T =2

�
1(MT > �VT ; Ck)

� E exp
�

inf
vk�v�vk+1

h
�
2
v

vk+1

�
�
2
v
2

2v2k+1

i�
1(MT > �VT ; Ck)

= exp
�
�
2(a� a

2
=2)
�
P

�
MT > �VT ; Ck

�
and therefore

P

�
MT > �VT ; Ck

�
� exp

�
� �

2(a� a
2
=2)
�
:

This yields

P (MT > �VT ; Vmin � VT � Vmax) �
KX
k=0

P (MT > �VT ; Ck)

with K = loga(Vmax=Vmin) , and we get

P (MT > �VT ; Vmin � VT � Vmax) �
h
loga

Vmax

Vmin

+ 1
i
expf��2(a� a

2
=2)g:

We �nally set a = 1 + 1=� so that �2(a� a
2
=2) = (�2 � 1)=2 and use the obvious

inequality log(1 + 1=�) � 1=(2�) for � � 1 . This gives

loga
Vmax

Vmin

� 2� log
Vmax

Vmin

and the assertion follows.

To apply this proposition for estimating the probability of the event f�T >

��Tg = fMT > �VTg , we have to specify lower and upper bounds for VT . This is
done in the next lemma.

Lemma 5.1. On the set AT , it holds

v
2
min �

V
2
T

Th
� v

2
max

s
2
min � �

2
TTh � s

2
max

where

v
2
min = g

2
min �min; s

2
min = g

2
min �min �

�4
max;

v
2
max = g

2
max �max; s

2
max = g

2
max(1� d1)

�2
�max �

�4
min:

(5.8)

Proof. Recall that the kernel Q is compactly supported on [�1; 1] and bounded

above by 1. For all t this implies jL"
t Q

"
t j2 � jL"

t j2Q"
t � Q

"
t and hence

1

Th

Z T

0

jL"
t Q

"
t j
2
dt � �2;T � �0;T :
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Now, restricting ourselves to the set AT , we have �2;T � �0;T � �max and also

�0;T � �2;T � 1
Th

R T
0
jL"

t Q
"
t j
2
dt � �min. Since V

2
T =

R T
0
jL"

t Q
"
tg(X

"
t ; Y

"
t )j

2
dt , we

get in view of assumption (A2)

g
2
min �min �

V
2
T

Th
� g

2
max �max:

Similarly,

DT = �2;T�0;T � �
2
1;T � �2;T�0;T � �

2
max;

DT = �2;T�0;T � �
2
1;T � (1� d1)�2;T�0;T � (1� d1)�

2
min

and

�
2
T (x) � g

2
max

R T
0
jL"

t Q
"
t j
2
dt

T 2h2D2
T

�
g
2
max�max

(1� d1)2�
4
minTh

;

�
2
T (x) � g

2
min

R T
0
jL"

t Q
"
t j
2
dt

T 2h2D2
T

�
g
2
min�min

�4maxTh
;

and the assertion follows.

Coupled these bounds with Proposition 5.1 we arrive at the main result of this
subsection ( vmax and vmin are de�ned in (5.8)):

P

�
�T >

�
��

1

2�

�
�T ; AT

�
(5.9)

� 2�

�
1 + log

vmax

vmin

�
exp

(
�
1

2

�
��

1

2�

�2

+
1

2

)

< e�

�
log

v
2
max

v2min

+ 2

�
expf��2=2g:

5.4. Upper bound for fT (x)� f(x)

Recall that fT (x) =
1

DT T h

R T
0
f(x; Y "

t )L
"
t Q

"
t dt: Due to the de�nition of L

"
t and

Q
"
t , we obtain

fT (x)(5.10)

=
1

DT T h

Z T

0

f(x; Y "
t )

�
�2;T � �1;T

X
"
t � x

h

�
Q

�
X

"
t � x

h

�
dt

=
�2;T

DT T h

Z T

0

f(x; Y "
t )Q

�
X

"
t � x

h

�
dt

�
�1;T

DT T h

Z T

0

f(x; Y "
t )

X
"
t � x

h
Q

�
X

"
t � x

h

�
dt:

We apply now a large deviation type estimation for the two scaled di�usion model
(1.1), (1.2).
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Proposition 5.2 (Liptser and Spokoiny, 1997). Let (A1){(A5) hold and let 	
"(u)

be a twice continuously di�erentiable function such that for some constants C
"
0 ,

C
"
1 , depending on " and for all u

j	"j � C
"
0 ;

j _	"(u)j+ j�	"(u)j � C
"
1 ;

where _	"(u) and �	"(u) stand for the �rst and second derivative of 	"(u). Let also
a = a(y) be a continuously di�erentiable function with a bounded derivative. De-

note a =
R
R
a(y) p(y) dy; where p(y) is the invariant density of the fast component

Y
"
t , and de�ne

U
"
T " =

Z T "

0

[a(Y "
t )� a] 	"(X"

t ) dt:

If

lim
"!0

T
"
" = 0;

lim
"!0

(C"
0)

2
p
" = 0;

lim
"!0

(C"
1)

2
T
"
" = 0;

then for every positive z > 0 and 0 < � < 1=2

lim
"!0

("T ")1�2� logP
�
("T ")��jU "

T " j > zC
"
0

�
� �

z
2

2
;

where

 =

Z
R

v
2(y)G2(y) p(y) dy;

and the function v(y) is de�ned by

v(y) =
2

G2(y) p(y)

yZ
1

[a(s)� a] p(s) ds:

Corollary 5.1. For " small enough and �1 < 1� 2�

P

�
jU "

T " j > C
"
0("T

")�
�
< exp

�
�

1

("T ")�1

�
:

For �xed x, we apply now Corollary 5.1 for a(y) = f(x; y) and 	"(u) = Q
�
u�x
h

�
:

Under the assumptions of the theorem this function ful�lls the conditions of Propo-
sition 5.2 with C

"
0 � 1 and C

"
1 � `h

�2 . Since a =
R
R
f(x; y) p(y) dy = f(x); by

Corollary 5.1 we conclude that

P

�����Z T

0

�
f(x; Y "

t )� f(x)
�
Q

�
X

"
t � x

h

�
dt

���� � ("T )�
�
< exp

�
�("T ")��1

	
:

Next, it is easy to see that function 	"
1(z) =

z�x
h
Q
�
z�x
h

�
ful�lls the conditions of

Proposition 5.2 with the same constants C
"
0 � 1 and C

"
1 � `h

�2 . Hence again

P

�����Z T

0

[f(x; Y "
t )� f(x)]

X
"
t � x

h
Q

�
X

"
t � x

h

�
dt

���� � ("T )�
�
< exp

�
�("T ")��1

	
:
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Coupling these estimates and using (5.10) and the equality

f(x) = f(x)
�2;T�0;T � �

2
1;T

DT

=
�2;T

DT T h

Z T

0

f(x)Q

�
X

"
t � x

h

�
dt

�
�1;T

DT T h

Z T

0

f(x)
X

"
t � x

h
Q

�
X

"
t � x

h

�
dt

we obtain, provided that h
�2("T ) is small for small " , that

P

�
jfT (x)� f(x)j � ("T )�

�2;T + j�1;T j
DT T h

�
< 2 exp

�
�("T ")��1

	
:

Next, by Lemma 5.1 on the set AT the inequalities hold: �2;T � �max, j�1;T j � �max

and DT � (1� d1)�
2
min. Therefore

�2;T + j�1;T j
DT

�
2�max

(1� d1)�
2
min

� `

and hence

P
�
jfT (x)� f(x)j > `(Th)�1("T )�; AT

�
< 2 exp

�
�("T )��1

	
:(5.11)

If " is small enough, then we get in view of Lemma 5.1 on the set AT

1

4�
�T (x) �

smin

4�
p
T h

�
`("T )�

T h
:

Along with (5.11) this gives for su�ciently small "

P

�
jfT (x)� f(x)j >

1

4�
�T (x); AT

�
< 2 exp

�
�("T )��1

	
:(5.12)

5.5. Upper bound for �
T

Recall that �T = 1
DT T

R T
0
fx(x; Y

"
t )

(X"

t
�x)

h
L
"
t Q

"
t dt: We again apply Corollary 5.1,

now with a(z) = fx(x; z) . SinceZ T

0

(X"
t � x)L"

t Q
"
t dt =

Z T

0

(X"
t � x)

�
�2;T � �1;T

X
"
t � x

h

�
Q
"
t dt

= T h
2(�2;T�1;T � �1;T�2;T ) = 0;

we get in the same line as for evaluating fT (x)� f(x)

P

�
j�T j >

1

4�
�T (x); AT

�
� exp

�
�("T )��1

	
:

We are now in the position to complete the proof of Theorem 3.1. Decomposition
(5.2) along with (5.5), (5.9) and (5.12) implies

P

���� bfT (x)� f(x)
��� > (1� d1)

�1=2�h(x) + ��T (x); AT

�
< C1� expf��2=2g+ 3 exp

�
�("T )��1

	



16 LIPTSER, R. AND SPOKOINY, V.

and, since the second summand in the right side is exponentially small for small
" , the statement of the theorem holds. 2

5.6. Proof of Theorem 4.1

Let h
� be shown in the theorem. Obviously

P

���� bfT (x)� f(x)
��� > (�+ �

�)�h�;T (x); A
�
T

�
� P

���� bfT (x)� f(x)
��� > (�+ �

�)�h�;T (x); bh � h
�
; A

�
T

�
+ P

�bh < h
�
; A

�
T

�
:

Each summand in the right hand side of this inequality is evaluated separately.

Since �h;T (x) decreases in h, it holds on the set fbh � h
�g in view of the de�nition

of bh
j bf
bh;T

(x)� bfh�;T (x)j � �1

�
�
bh;T

(x) + �h�;T (x)
�
+ 2�2�bh;T (x) � 2(�1 + �2)�h�;T (x):

Further, using the inequality (1 � d1)
�1=2�h�(x) � �2�h�;T and applying Theo-

rem 3.1, we get

P

�
j bfh�;T (x)� f(x)j > (�2 + �)�h�;T (x); A

�
T

�
� P

�
j bfh�;T (x)� f(x)j > ��h�;T (x) +

�h�(x)p
1� d1

; A
�
T

�
� C1� exp

�
�
�
2

2

�
:

Coupled with the previous inequality this implies

P

�
j bfT (x)� f(x)j > (�+ �

�)�h�;T (x); A
�
T ;
bh � h

�
�

(5.13)

� C1� exp

�
�
�
2

2

�
:

Therefore, it remains to evaluate P (bh < h
�) only. Due to the de�nition of bh

fbh < h
�g =[

h2H:h<h�

[
�2H:�<h

fj bfh;T (x)� bf�;T (x)j > �1

�
�h;T (x) + ��;T (x)

�
+ 2�2�h;T (x)g:

Note also that for every �; h 2 H with � < h < h
� it holds

(1� d1)
�1=2�h(x) � (1� d1)

�1=2�h�(x) � �2�h�;T (x) � �2�h;T (x)

(1� d1)
�1=2��(x) � (1� d1)

�1=2�h�(x) � �2�h�;T (x) � �2�h;T (x):
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Hence, by Theorem 3.1

P

�
j bfh;T (x)� bf�;T (x)j > �1

�
�h;T (x) + ��;T (x)

�
+ 2�2�h;T (x); A

�
T

�
� P

�
j bfh;T (x)� f(x)j > �1�h;T (x) +

�h(x)p
1� d1

; A
�
T

�
+P

�
j bf�;T (x)� f(x)j > �1��;T (x) +

��(x)p
1� d1

; A
�
T

�
� 2C1�1 exp

�
�
�
2
1

2

�
:

Clearly an amount of pairs �; h 2 H with above-mentioned property � < h < h
�

is at most (#H)2=2 . Therefore

P

�bh < h
�
�
� (#H)2C1�1 exp

�
�
�
2
1

2

�
and the required assertion follows in view of (5.13). 2
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