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Abstract. A number of new layer methods for solving semilinear parabolic equa-

tions and reaction-di�usion systems is derived by using probabilistic representations

of their solutions. These methods exploit the ideas of weak sense numerical inte-

gration of stochastic di�erential equations. In spite of the probabilistic nature these

methods are nevertheless deterministic. A convergence theorem is proved. Some

numerical tests are presented.
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1. Introduction

Parabolic type quasilinear di�erential equations are of great interest both in theo-

retical and applied aspects. Their investigation is presented in many publications in

which (see, e.g., [6], [9], [18], [19], [22] and references therein) a deterministic approach

is applicable. A few authors only make use of a probabilistic approach (see [5], [8], [21]

and references therein). A similar state takes place in numerical analysis as well.

The aim of this paper is to develop layer approximation methods for solving the

Cauchy problem for semilinear parabolic equations

@u

@t
+
1

2

dX
i;j=1

aij(t; x; u)
@2u

@xi@xj
+

dX
i=1

bi(t; x; u)
@u

@xi
+ g(t; x; u) = 0; t0 � t < T; x 2 Rd;

(1.1)

u(T; x) = '(x): (1.2)

The form of equation (1.1) is relevant to a probabilistic approach, i.e., the equation

is considered under t < T , and "initial" conditions are prescribed at t = T: Assume a

solution of (1.1) should be found at the moment t0 < T: Consider a time discretization

T = tN > tN�1 > � � � > t0: The proposed here methods give an approximation �u(tk; x)
of the solution u(tk; x); k = N; :::; 0: Using the well known probabilistic representation

of the solution to (1.1)-(1.2) (see [4], [5]), we get

u(tk; x) = E(u(tk+1; Xtk;x(tk+1)) +

Z tk+1

tk

g(s;Xtk;x(s); u(s;Xtk;x(s)))ds):
(1.3)

In (1.3)Xtk;x(s) is the solution of the Cauchy problem for the Ito system of stochastic

di�erential equations

dX = b(s;X; u(s;X))ds+ �(s;X; u(s;X))dw(s); X(tk) = x; (1.4)

where w(s) = (w1(s); :::; wd(s))> is a standard Wiener process, b(t; x; u) = (b1(t; x; u);
:::; bd(t; x; u))> is the column vector, and the matrix � = �(t; x; u) is obtained from the

equation ��> = a = faij(t; x; u)g:
Further we exploit the ideas of weak sense numerical integration of stochastic di�er-

ential equations (see [7], [11]) and obtain some approximate relations from (1.3)-(1.4).

The relations allow to express �u(tk; x) recurrently in terms of �u(tk+1; x); k = N�1; :::; 0;
i.e., to construct some layer methods which are discrete in the variable t only. Despite
the probabilistic nature these methods turn out nevertheless to be deterministic. How-

ever the probabilistic approach takes into account a coe�cient dependence on the

space variables and a relationship between di�usion and advection in an intrinsic way.
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Therefore it can be expected that the proposed methods allow to avoid the di�culties

stemming from essentially changing coe�cients and strong advection.

In Section 2, a comparison of di�erence and probabilistic methods in the case of

linear parabolic equations is given. In Section 3, we derive a few methods, relying on

the numerical integration of ordinary stochastic di�erential equations, for nonlinear

parabolic equations. In Section 4, we give a proof of a convergence theorem for one of

the proposed methods using deterministic type arguments. The recurrent realization

of any of the proposed layer methods makes use of the function �u(tk+1; x); in general,

at all points x. Because it is possible to �nd the next layer �u(tk; x) numerically for

a �nite number of knots only, we need a discretization in the variable x with some

kind of interpolation at every step to turn an applied method into an algorithm. Such

numerical algorithms are constructed in Section 5. All main ideas can be demonstrated

at d = 1 though that we restrict ourselves to this case in Sections 3 - 5. The case d � 2

is shortly discussed in Section 6. In addition we show in Section 7 how the results

obtained can be extended for reaction-di�usion systems. Numerical tests are presented

in the last section.

This article is devoted to initial value problems. Boundary value problems for nonlin-

ear parabolic equations will be considered in a separate work. The probability approach

to boundary value linear problems is treated in [12], [13].

2. The probabilistic approach to linear parabolic equations

Consider the Cauchy problem for linear parabolic equation

@u

@t
+
1

2

dX
i;j=1

aij(t; x)
@2u

@xi@xj
+

dX
i=1

bi(t; x)
@u

@xi
+ c(t; x)u+ g(t; x) = 0;

t0 � t < T; x 2 Rd; (2.1)

with the initial condition

u(T; x) = '(x): (2.2)

The matrix a(t; x) = faij(t; x)g is supposed to be symmetric and positive semide�-

nite.

Let �(t; x) be a matrix obtained from the equation

a(t; x) = �(t; x)�>(t; x) :

This equation is solvable with respect to � (for instance, by a lower triangular matrix)

at least for a positively de�nite a:
The solution to the problem (2.1)-(2.2) has various probabilistic representations:

u(t; x) = E('(Xt;x(T ))Yt;x;1(T ) + Zt;x;1;0(T )) ; t � T; x 2 Rd; (2.3)

where Xt;x(s); Yt;x;y(s); Zt;x;y;z(s); s � t; is the solution of the Cauchy problem to the

system of stochastic di�erential equations

dX = b(s;X)ds� �(s;X)h(s;X)ds+ �(s;X)dw(s); X(t) = x; (2.4)

dY = c(s;X)Y ds+ h>(s;X)Y dw(s); Y (t) = y; (2.5)

dZ = g(s;X)Y ds; Z(t) = z: (2.6)

Here w(s) = (w1(s); :::; wd(s))> is a d-dimensional standard Wiener process, b(s; x)
is the column-vectors of dimension d compounded from the coe�cients bi(s; x); h(s; x)
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is a column-vector of dimension d , Y and Z are scalars. The usual representation (see

[4]) can be seen in (2.3){(2.6) if h = 0; the others rest on Girsanov's theorem.

In what follows it is supposed that all the coe�cients in (2.1) and in (2.4)-(2.6) and

the solution of the problem (2.1)-(2.2) (which is supposed to exist and to be unique)

are su�ciently smooth and satisfy needed conditions of growth under big jxj; so that

these conditions are su�cient for applying the theory of weak methods (see, e.g., [11]).

Let us consider the time discretization (equidistant for de�niteness)

T = tN > tN�1 > � � � > t0 = t ;
T � t0

N
= h :

Remember that weak approximation of the system (2.4){(2.6) consists in construc-

tion of the system of stochastic di�erence equations

X0 = x; Xm+1 = Xm + A(tm; Xm; h; �m) (2.7)

Y0 = 1; Ym+1 = Ym + �(tm; Xm; h; �m)Ym (2.8)

Z0 = 0; Zm+1 = Zm + �(tm; Xm; h; �m)Ym; m = 0; 1; :::; N � 1; (2.9)

where Xm is a vector of dimension d; Ym and Zm are scalars, �m is a random vector of a

certain dimension, A is a vector function of dimension d, � and � are scalar functions,

�m is independent of X0; :::; Xm and �0; :::; �m�1:
Let the system (2.7)-(2.9) be a weak scheme of order p for the system (2.4)-(2.6). It

means that (see [7], [11])

�u(t0; x) = �u(t; x) := E('(XN )YN + ZN) = u(t; x) + RN ; (2.10)

where

jRN j � K(1 + jxj�)hp;
and K > 0; � � 0 are some constants.

The well known numerical methods, including the �nite di�erence ones (see, e.g., [15],

[16], [17], [20], [23]), can be applied successfully provided the dimension d of the space
variable x is comparatively small (d � 3) while for larger dimensions these numerical

procedures become unrealistic due to huge volume of computations. Fortunately in

many cases, functionals only, or even individual values of a solution, have to be found.

For such problems, a probabilistic approach has an essential advantage as long as the

problem under consideration can be reduced to solving the corresponding system of

ordinary stochastic di�erential equations.

The probabilistic representation (2.3){(2.6) and its approximation (2.10), (2.7)-(2.9)

give an example of such an approach which allows to �nd the individual values u(t; x)
of the solution to problem (2.1)-(2.2) even in the essentially multi-dimensional (d > 3)

cases. In addition, the value �u(t; x) is evaluated by applying the Monte-Carlo technique:

�u(t; x) �= 1

L

LX
l=1

('(X
(l)
N )Y

(l)
N + Z

(l)
N );

where (X
(l)
N ; Y

(l)
N ; Z

(l)
N ); l = 1; :::; L; are independent realizations of the process de�ned

by the system (2.7)-(2.9).

But it should be noted that the probabilistic approach is useful not only in this

respect. Here we apply it to constructing some layer methods. To show this let us

consider the Cauchy problem

Xk = x; Xm+1 = Xm + A(tm; Xm; h; �m) (2.11)
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Yk = y; Ym+1 = Ym + �(tm; Xm; h; �m)Ym (2.12)

Zk = z; Zm+1 = Zm + �(tm; Xm; h; �m)Ym; (2.13)

m = k; k + 1; :::; N � 1; 0 � k � N � 1;

which is connected with the system (2.7)-(2.9).

Denote the solution of the problem by �Xtk;x(tm);
�Ytk;x;y(tm);

�Ztk;x;y;z(tm); tm �
tk: Introduce the function (remember T = tN)

�u(tk; x; y; z) = E('( �Xtk;x(T ))
�Ytk;x;y(T ) +

�Ztk;x;y;z(T )) :

Clearly, the function �u(tk; x; y; z) has the form

�u(tk; x; y; z) = �u(tk; x)y + z;

where

�u(tk; x) = E('( �Xtk;x(T ))
�Ytk;x;1(T ) +

�Ztk;x;1;0(T )) :

Let t = t0 � tk < tm � T: Since

�Xtk;x(T ) =
�Xtm; �Xtk;x

(tm)(T )

�Ytk;x;1(T ) =
�Ytm; �Xtk;x

(tm); �Ytk;x;1(tm)(T )

�Ztk;x;1;0(T ) =
�Ztm; �Xtk;x

(tm); �Ytk;x;1(tm); �Ztk;x;1;0(tm)(T ) ;

we have

�u(tk; x) = EE('( �Xtm; �Xtk;x
(tm)(T )) �Ytm; �Xtk;x

(tm); �Ytk;x;1(tm)(T )

+ �Ztm; �Xtk;x
(tm); �Ytk;x;1(tm); �Ztk;x;1;0(tm)(T )� �Xtk;x(tm);

�Ytk;x;1(tm);
�Ztk;x;1;0(tm))

= E(�u(tm; �Xtk;x(tm))
�Ytk;x;1(tm) +

�Ztk;x;1;0(tm)) ; �u(tN ; x) = '(x) :
(2.14)

Using (2.14) sequentially with m = k + 1 :

�u(tk; x) = E(�u(tk+1; �Xtk;x(tk+1))
�Ytk;x;1(tk+1) +

�Ztk;x;1;0(tk+1)) ; k = N � 1; :::; 0;
(2.15)

one can recurrently �nd the approximate solution �u(tN�1; x); �u(tN�2; x); :::; �u(t0; x) of
the problem (2.1)-(2.2) beginning from

�u(tN ; x) = '(x): (2.16)

This method becomes a deterministic one indeed if we are able to calculate the math-

ematical expectations explicitly (see, for instance, formulas (2.20) or (2.23) below). For

numerical realization of (2.15) it is su�cient to calculate the functions �u(tk; x) in some

knots xi with applying some kind of interpolation at every layer.

It turns out that despite lack of probabilistic representations like (2.3){(2.6) for

solutions of nonlinear parabolic equations, such an approach as (2.15) can be adapted

to nonlinear equations as well.

Further, it is more convenient to expound some additional ideas on simple examples.

To this end let us consider the following one-dimensional (d = 1) problem

@u

@t
+
1

2
�2
@2u

@x2
= 0; t < 0; �1 < x <1; u(0; x) = '(x): (2.17)
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Because c = 0; g = 0; we omit the equations for Y and Z: We have

dX = �dw(s) ; X(t0) = x; t0 < 0: (2.18)

Example 2.1. Consider the weak Euler scheme

Xk+1 = Xk + �
p
h�k ; X0 = x; (2.19)

where P (�k = �1) = 1

2
:

If we set m = k + 1 in (2.14), we obtain

�u(tk; x) = E�u(tk+1; �Xtk;x(tk+1))

=
1

2
�u(tk+1; x� �

p
h) +

1

2
�u(tk+1; x+ �

p
h); �u(tN ; x) = '(x): (2.20)

Here tN = 0; h = �t0=N; tk = �h(N � k) = tk+1 � h; k = N � 1; :::; 0:
The relation (2.20) is a linear di�erence equation. The equation (2.19) can be con-

sidered as a characteristic one for (2.20), and the formula

�u(tk; x) = E'( �Xtk;x(tN)) (2.21)

gives the probabilistic representation of the solution to the equation (2.20).

It is well known that this solution is distinguished from the solution of the problem

(2.17) by a quantity of the order O(h):
It is easy to see that the layer determination of the values �u(tk; xi) due to the formula

(2.20) coincides with the simplest explicit di�erence method of solving (2.17) if we

set ht = h; hx = �
p
h; and consider the equidistant space discretization : xi =

x0 + i�
p
h; i = 0;�1;�2; ::: ; x0 is a point belonging to R1:

In Example 2.1, if we need the solution of (2.20) for all points (tk; xi); we can use

(2.20) to �nd �u(tk; xi) layerwise. But if we need it at a separate point (tk; x); it is more

convenient to use the formula (2.21). Of course, in the last case the Monte-Carlo error

arises in addition.

Example 2.2. Now consider a more general scheme than (2.19):

Xk+1 = Xk + �
p
h�k ; X0 = x; (2.22)

where the constant � � �; P (� = �1) = �2

2�2
; P (� = 0) = 1� �2

�2
:

Instead of (2.20) we get

�u(tk; x) = E�u(tk+1; �Xtk;x(tk+1)) = (1� �2

�2
)�u(tk+1; x)

+
�2

2�2
�u(tk+1; x� �

p
h) +

�2

2�2
�u(tk+1; x + �

p
h); �u(tN ; x) = '(x):

(2.23)

Again due to the theory of weak methods for stochastic di�erential equations the

formula (2.21) with �X from (2.22) gives the solution of the problem (2.17) to within

O(h): The formula (2.21) can be realized either by the Monte-Carlo method or layerwise

in accord with (2.23). The layer realization (2.23) is deterministic and coincides (after

a choice of the corresponding net) with the following di�erence method

�u(tk; xi)� �u(tk+1; xi)

ht
=
�2

2
� �u(tk+1; xi+1)� 2�u(tk+1; xi) + �u(tk+1; xi�1)

h2x
;
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ht = h; hx = �
p
h : (2.24)

Due to the Lax-Richtmyer equivalence theorem, the method (2.24) (or, what is

the same, the method (2.23)) converges with accuracy O(h) if � � �: If � < � the

numerical approximation (2.24) is not stable from the point of view of the theory of

di�erence methods, and the method (2.24) diverges. We underline that there does

not exist any probabilistic scheme of the form (2.11){(2.13), (2.15) corresponding to

(2.24) under � < �, i.e., there is no such a bad probabilistic scheme. The convergence

theorems for weak methods (in comparison with the theory of di�erence methods) do

not include any conditions about stability of their approximations. The point is that

Xk+1 (and consequently the distribution of Xk+1 which generalizes the step hx) of a
suitable weak scheme is in a reasonable way connected with the step ht; with Xk;
and with the coe�cients of the problem. Thus, the methods having a probabilistic

nature like (2.11){(2.13), (2.15) are more adjusted (especially when the coe�cients of

the considered problem are nonconstant) because the suitable choice of hx is achieved
automatically.

Let us remark that the methods (2.20) and (2.23) do not need any interpolation

because the layer �u(tk; xi) makes use of the previous layer �u(tk+1; x) in the knots xj
only. But such a property of layer methods under consideration is rather exception

than a rule.

In conclusion let us give another two examples.

Example 2.3. Consider the scheme (2.22) under � = �
p
3 :

Xk+1 = Xk + �
p
3h�k ; X0 = x ; (2.25)

where P (� = �1) = 1

6
; P (� = 0) =

2

3
:

Because

E� = E�3 = 0; E(
p
3�)2 = 1; E(

p
3�)4 = 3;

this scheme has the second order of accuracy.

From (2.25) we obtain the following di�erence method

�u(tk; xi) =
1

6
(�u(tk+1; xi+1) + �u(tk+1; xi�1)) +

2

3
�u(tk+1; xi) ; (2.26)

where xi+1 � xi = �
p
3h :

Since the scheme (2.25) is of the second order, the method (2.26) is also of order

2, i.e., ju(tk; xi) � �u(tk; xi)j = O(h2). The method (2.26) is known as the di�erence

method of excited accuracy.

Example 2.4. Consider one more scheme

Xk+1 = Xk + �
p
h�k ; X0 = x ; (2.27)

where P (� = 0) = p; P (� = ��) = q; P (� = ��) = r:

If, for example, � = 1; � =
p
6; p =

1

3
; q =

3

10
; r =

1

30
; then

E� = E�3 = E�5 = 0; E�2 = 1; E�4 = 3; E�6 = 15;

and the scheme is of order 3. The corresponding method

�u(tk; x) = E�u(tk+1; �Xtk;x(tk+1)) = E�u(tk+1; x+ �
p
h�k)

=
1

30
�u(tk+1; x� �

p
6h) +

3

10
�u(tk+1; x� �

p
h) +

1

3
�u(tk+1; x)
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+
3

10
�u(tk+1; x + �

p
h) +

1

30
�u(tk+1; x+ �

p
6h) (2.28)

is of order 3 too. But an interpolation is necessary for numerical realization of (2.28)

in some net of knots xi; because of incommensurability of �
p
h and (�

p
6h� �

p
h).

Let us indicate in passing that, for example, the scheme

Xk+1 = Xk + �
p
h�k ; X0 = x ;

where P (� = 0) =
7

18
; P (� = �1) = 1

4
; P (� = �2) = 1

20
; P (� = �3) = 1

180
; also

induces a method of order 3. Evidently, this method has the form

�u(tk; xi) =
1

180
�u(tk+1; xi�3) +

1

20
�u(tk+1; xi�2) +

1

4
�u(tk+1; xi�1)

+
7

18
�u(tk+1; xi) +

1

4
�u(tk+1; xi+1) +

1

20
�u(tk+1; xi+2) +

1

180
�u(tk+1; xi+3) ;

(2.29)

where xi+1 � xi = �
p
h :

Remark 2.1. Consider the Cauchy problem for an autonomous linear parabolic

equation in the usual form (with the positive direction of time �)

@v

@�
=

1

2

dX
i;j=1

aij(x)
@2v

@xi@xj
+

dX
i=1

bi(x)
@v

@xi
+ c(x)v + g(x); � > 0; x 2 Rd;

(2.30)

v(0; x) = '(x): (2.31)

Changing the variables t = �; u(t; x) = v(�t; x); we get the Cauchy problem of the

form (2.1)-(2.2) for the function u(t; x) where t < 0; x 2 Rd; T = 0; u(T; x) = '(x):
The system (2.4)-(2.6) in the considered case is autonomous as well (we suppose the

function h(s; x) in (2.4)-(2.6) to be independent of s). Therefore (see (2.3))

v(�; x) = u(��; x) = E('(X��;x(0))Y��;x;1(0) + Z��;x;1;0(0))

= E('(X0;x(�))Y0;x;1(�) + Z0;x;1;0(�)) ; � > 0; x 2 Rd;

i.e., we can consider the positive direction of time for both the parabolic equation and

its characteristic system of stochastic di�erential equations. Accordingly to this fact

we can write the following more convenient procedure in place of (2.15), (2.16):

�v(0; x) = '(x);

�v(�k+1; x) = E(�v(�k; �X0;x(h)) �Y0;x;1(h) + �Z0;x;1;0(h)) ; k = 0; :::; N � 1;
(2.32)

where 0 = �0 < �1 < ::: < �N = �; h = �=N (of course, we consider A; �; and � in

the scheme (2.11)-(2.13) to be independent of tm). At the same time we preferred to

remain the general style of our exposition in Examples 2.1 - 2.4.
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3. Constructing some methods for semilinear parabolic equations

For simplicity in writing we restrict ourselves to the case d = 1 in this and the next

two sections.

Let us consider the Cauchy problem

@u

@t
+
1

2
�2(t; x; u)

@2u

@x2
+ b(t; x; u)

@u

@x
+ g(t; x; u) = 0; t0 � t < T; x 2 R1;

(3.1)

u(T; x) = '(x) : (3.2)

Let u = u(t; x) be the solution of the problem (3.1)-(3.2), which is supposed to exist,

to be unique, to be su�ciently smooth, and to satisfy needed conditions of boundedness.

One can �nd many theoretical results on this topic in [6], [9], [18], [19], [22] (see also

references therein). If we substitute u = u(t; x) in the coe�cients �2; b; g; we obtain
a linear parabolic equation. We suppose that all the requirements mentioned above in

connection with the equation (2.1) are ful�lled for the obtained linear equation as well.

Let us note that in comparison with (2.1) this linear equation does not contain the

linear term with u: It is so because of the general form of g in (3.1). Sometimes may

occur that it is more preferable to represent g(t; x; u) as g(t; x; u) = c(t; x)u+g0(t; x; u)
(for instance, in the case of small g0(t; x; u)) and to substitute u = u(t; x) in the

function g0 only. Clearly, in that case we obtain another kind of linear equation and

another kind of probabilistic representation. For de�niteness, we shall consider the

case without linear term of u and we take c(s; x) � 0 and h(s; x) � 0 in the equation

(2.1) and in the system (2.4)-(2.6).

We have (see (2.3) under Y � 1)

u(t; x) = E('(Xt;x(T )) +

Z T

t

g(s;Xt;x(s); u(s;Xt;x(s)))ds) ; t � T; x 2 R1;
(3.3)

where Xt;x(s) is the solution of the Cauchy problem for the following equation

dX = b(s;X; u(s;X))ds+ �(s;X; u(s;X))dw(s); X(t) = x:

Consider the equidistant time discretization

T = tN > tN�1 > � � � > t0 = t ;
T � t0

N
= h :

Due to (3.3) we have

u(tk; x) = E(u(tk+1; Xtk;x(tk+1)) +

Z tk+1

tk

g(s;Xtk;x(s); u(s;Xtk;x(s)))ds)

= E(u(tk+1; Xtk;x(tk+1)) + Ztk;x;0(tk+1)) ; (3.4)

where X; Z satisfy the following system

dX = b(s;X; u(s;X))ds+ �(s;X; u(s;X))dw(s); X(tk) = x; (3.5)

dZ = g(s;X; u(s;X))ds; Z(tk) = 0: (3.6)

Applying the explicit weak Euler scheme with the simplest simulation of noise to the

system (3.5)-(3.6), we get

Xtk;x(tk+1) ' �Xtk;x(tk+1) = x + b(tk; x; u(tk; x))h+ �(tk; x; u(tk; x))
p
h�k ;

(3.7)
8



Ztk;x;0(tk+1) ' �Ztk;x;0(tk+1) = g(tk; x; u(tk; x))h ; (3.8)

where �N�1; �N�2; :::; �0 are i.i.d. random variables which are distributed by the law:

P (� = �1) = 1

2
:

Using (3.4), we obtain

u(tk; x) ' E(u(tk+1; �Xtk;x(tk+1)) +
�Ztk;x;0(tk+1))

=
1

2
u(tk+1; x + b(tk; x; u(tk; x))h+ �(tk; x; u(tk; x))

p
h)

+
1

2
u(tk+1; x + b(tk; x; u(tk; x))h� �(tk; x; u(tk; x))

p
h) + g(tk; x; u(tk; x))h:

(3.9)

Following (3.9) one can write for the approximations �u(tk; x) :

�u(tN ; x) = '(x); �u(tk; x) =
1

2
�u(tk+1; x + b(tk; x; �u(tk; x))h+ �(tk; x; �u(tk; x))

p
h)

+
1

2
�u(tk+1; x + b(tk; x; �u(tk; x))h� �(tk; x; �u(tk; x))

p
h)

+g(tk; x; �u(tk; x))h; k = N � 1; :::; 1; 0: (3.10)

The method (3.10) is an implicit layer method for solution of the Cauchy problem

(3.1)-(3.2). This method is a deterministic one though the probabilistic approach is

used for its constructing. Remember, it rests on the explicit Euler scheme.

Now let us use the following implicit scheme instead of (3.7)-(3.8):

�Xtk;x(tk+1) :=
�Xk+1 = x + b(tk+1; �Xk+1; u(tk+1; �Xk+1))h

+�(tk+1; �Xk; u(tk+1; �Xk))
p
h�k ; (3.11)

�Ztk;x;0(tk+1) :=
�Zk+1 = g(tk+1; �Xk+1; u(tk+1; �Xk+1))h ; (3.12)

where �N�1; �N�2; :::; �0 are the same as in (3.7).

Let �Xk+1 = �Xk+1(�k) be the solution of (3.11) (remember that the function u(tk+1; x)
is considered to be known). The variable �k gets two di�erent values. Denote by
�X1
k+1;

�X2
k+1 the corresponding values of �Xk+1: Accept the analogous notation for two

values of �Zk+1: As a result we obtain the following method

�u(tN ; x) = '(x); �u(tk; x) =
1

2
(�u(tk+1; �X

1
k+1) +

�Z1
k+1) +

1

2
(�u(tk+1; �X

2
k+1) +

�Z2
k+1):
(3.13)

It is a deterministic one just as the method (3.10).

The formula (3.13) is explicit but to �nd �Xk+1 we have to use the implicit scheme

(3.11). Therefore both the method (3.10) and the method (3.13) are implicit.

To search for �u(tk; x) from (3.10), one can apply the method of simple iteration. If

we take �u(tk+1; x) as a null iteration, we get the following �rst iteration (we denote this
iteration as �u(tk; x) again)

�u(tN ; x) = '(x);

�u(tk; x) =
1

2
�u(tk+1; x+ b(tk; x; �u(tk+1; x))h+ �(tk; x; �u(tk+1; x))

p
h)
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+
1

2
�u(tk+1; x + b(tk; x; �u(tk+1; x))h� �(tk; x; �u(tk+1; x))

p
h)

+g(tk; x; �u(tk+1; x))h; k = N � 1; :::; 1; 0: (3.14)

The formula (3.14) gives an explicit method for recurrent layer solving of the problem

(3.1)-(3.2). Let us note that if we apply another approximate method for solving (3.10)

(for example, taking the second iteration), we obtain some other explicit method which

can be possessed of better properties than (3.14) (just as under numerical integration

of ordinary di�erential equations).

Analogously applying the method of simple iteration to (3.11) with x as a null

iteration and substituting the obtained �rst iteration in (3.12) and (3.13), we obtain

the following explicit method which di�ers from (3.14) in a small way:

�u(tN ; x) = '(x);

�u(tk; x) =
1

2
�u(tk+1; x+ b(tk+1; x; �u(tk+1; x))h+ �(tk+1; x; �u(tk+1; x))

p
h)

+
1

2
�u(tk+1; x + b(tk+1; x; �u(tk+1; x))h� �(tk+1; x; �u(tk+1; x))

p
h)

+g(tk+1; x; �u(tk+1; x))h; k = N � 1; :::; 1; 0: (3.15)

Consider the action of a higher order method of numerical integration of stochastic

di�erential equations on an example of the equation (3.1) with the constant coe�cient

�. Let us apply the second order (in the weak sense) Runge-Kutta scheme [11] to the

system (3.5)-(3.6) with constant �. We get (instead of (3.7)-(3.8))

Xtk;x(tk+1) ' �Xtk;x(tk+1) = x+ �
p
h�k +

1

2
b(tk; x; u(tk; x))h

+
1

2
b(tk+1; x+ b(tk; x; u(tk; x))h+ �

p
h�k; u(tk+1; x+ b(tk; x; u(tk; x))h+ �

p
h�k))h;

(3.16)

Ztk;x;0(tk+1) ' �Ztk;x;0(tk+1) =
1

2
g(tk; x; u(tk; x))h

+
1

2
g(tk+1; x+ b(tk; x; u(tk; x))h + �

p
h�k; u(tk+1; x + b(tk; x; u(tk; x))h+ �

p
h�k))h;

(3.17)

where �N�1; �N�2; :::; �0 are i.i.d. random variables distributed by the law: P (� =

0) =
2

3
; P (� = �

p
3) = P (� =

p
3) =

1

6
:

Now instead of (3.10) we obtain the following implicit layer method

�u(tN ; x) = '(x); �u(tk; x) =
2

3
�u(tk+1; x+

1

2
�bh +

1

2
b(tk+1; x+�bh; �u(tk+1; x+ �bh))h)

+
1

6
�u(tk+1; x+ �

p
3h+

1

2
�bh+

1

2
b(tk+1; x+ �

p
3h+ �bh; �u(tk+1; x + �

p
3h+�bh))h)

+
1

6
�u(tk+1; x� �

p
3h +

1

2
�bh+

1

2
b(tk+1; x� �

p
3h+ �bh; �u(tk+1; x� �

p
3h+�bh))h)
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+
1

2
g(tk; x; u(tk; x))h+

1

3
g(tk+1; x +�bh; �u(tk+1; x +�bh))h

+
1

12
g(tk+1; x + �

p
3h+�bh; �u(tk+1; x+ �

p
3h+�bh))h

+
1

12
g(tk+1; x� �

p
3h+�bh; �u(tk+1; x� �

p
3h+�bh))h; (3.18)

where �b = b(tk; x; �u(tk; x)):
This method has the one-step error of the third order. If we take �u(tk+1; x) as a null

iteration, we obtain the �rst iteration di�ering from the solution of (3.18) by a quantity

of the order O(h2); and only beginning from the second iteration we attain the needed

exactness. So, the implicit method (3.18) becomes explicit of the same order after two

simple iterations.

Clearly, resting on the ideas led to the obtained methods, one can construct a lot of

new methods using some other probabilistic representations or some other methods of

numerical integration of stochastic di�erential equations. Of course, the development

of suitable recommendations for applying any such a method requires both a theo-

retical studying and computational testing. Here we con�ne ourselves to problems of

convergence of the method (3.14) and to construction of some numerical algorithms on

its basis.

Remark 3.1. There are special methods of numerical integration in the weak sense

for stochastic di�erential equations with small noise which are more e�ective than

general ones [14]. They can be adapted for constructing new methods within the scope

of our approach in the case of small di�usion �. Nonlinear parabolic equations with

small parameter at higher derivatives are of great signi�cance both in mathematical

physics and in numerical mathematics. Some special layer methods for such equations

will be considered in a separate work.

4. Convergence theorem

We continue to treat the problem (problem (3.1)-(3.2))

@u

@t
+
1

2
�2(t; x; u)

@2u

@x2
+ b(t; x; u)

@u

@x
+ g(t; x; u) = 0; t0 � t < T; x 2 R1;

(4.1)

u(T; x) = '(x): (4.2)

We shall keep the following assumptions (remind that for simplicity in writing the

case d = 1 is taken).

(i) The coe�cients b(t; x; u); �(t; x; u); g(t; x; u) are uniformly bounded:

jbj � K; j�j � K; jgj � K; t0 � t � T; x 2 R1; u� < u < u
�

; (4.3)

where �1 � u� < u
� � 1 are some constants.

(ii) The coe�cients b(t; x; u); �(t; x; u); g(t; x; u) uniformly satisfy the Lipschitz

condition with respect to x and u :

jb(t; x2; u2)� b(t; x1; u1)j+ j�(t; x2; u2)� �(t; x1; u1)j+ jg(t; x2; u2)� g(t; x1; u1)j

� K(jx2 � x1j+ ju2 � u1j); t0 � t � T; x1; x2 2 R1; u� < u1; u2 < u
�

:
(4.4)

11



(iii) There exists the only bounded solution u(t; x) of the problem (4.1)-(4.2) such

that

u� < u� � u(t; x) � u� < u
�

; t0 � t � T; x 2 R1; (4.5)

and there exist the uniformly bounded derivatives:

j @
mu

@ti@xl
j � K; i = 0; l = 1; 2; 3; 4; i = 1; l = 0; 1; 2; i = 2; l = 0; t0 � t � T; x 2 R1:

(4.6)

Let us note that the various constants which depend only on the problem (4.1)-(4.2)

and do not depend on t; x; and so on have been given by the same letter K (or C)
without any index. In connection with this, instead of, e.g., K + C; 2C; K2; etc., we
write K (or C).

First of all let us evaluate the one-step error of the method (method (3.14))

�u(tN ; x) = '(x);

�u(tk; x) =
1

2
�u(tk+1; x+ b(tk; x; �u(tk+1; x))h+ �(tk; x; �u(tk+1; x))

p
h)

+
1

2
�u(tk+1; x + b(tk; x; �u(tk+1; x))h� �(tk; x; �u(tk+1; x))

p
h)

+g(tk; x; �u(tk+1; x))h; k = N � 1; :::; 1; 0: (4.7)

This error on the k-th layer (on the (N � k)-th step) is evidently equal to v(tk; x)�
u(tk; x); where

v(tk; x) =
1

2
u(tk+1; x + b(tk; x; u(tk+1; x))h+ �(tk; x; u(tk+1; x))

p
h)

+
1

2
u(tk+1; x+ b(tk; x; u(tk+1; x))h� �(tk; x; u(tk; x))

p
h) + g(tk; x; u(tk+1; x))h:

(4.8)

Lemma 4.1. Under the assumptions (i) � (iii) the one-step error of the method

(4.7) has the second order of smallness with respect to h :

jv(tk; x)� u(tk; x)j � Ch2; (4.9)

where C does not depend on x; h; k:

Proof. Expanding the functions u(tk + h; x + bh � �
p
h) at (tk; x) in powers of h

and bh� �
p
h and using the assumptions of boundedness (4.3) and (4.6), we get

v(tk; x) = u(tk; x) +
@u

@t
(tk; x)h+

@u

@x
(tk; x)bh +

1

2

@2u

@x2
(tk; x)�

2h+ gh+O(h2):
(4.10)

In (4.10) b; �2; g have tk; x; u(tk+1; x) as their arguments, and

jO(h2)j � Ch2; (4.11)

where C does not depend on x; h; k:
Now applying the Lipschitz condition (4.4) with respect to the variable u; it is not

di�cult to obtain

v(tk; x) = u(tk; x) +
@u

@t
(tk; x)h +

@u

@x
(tk; x)b(tk; x; u(tk; x))h
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+
1

2

@2u

@x2
(tk; x)�

2(tk; x; u(tk; x))h + g(tk; x; u(tk; x))h+O(h2); (4.12)

where O(h2) satis�es the relation (4.11) again.

Because u(t; x) is a solution of the equation (4.1), the inequality (4.9) runs out from

(4.12). Lemma 4.1 is proved.

Theorem 4.1. Under the assumptions (i)�(iii) the method (4.7) has the �rst order,

i.e.,

j�u(tk; x)� u(tk; x)j � Kh; (4.13)

where K does not depend on x; h; k:

Proof. Denote the error of the method (4.7) on the k-th layer as "(tk; x) := �u(tk; x)�
u(tk; x). Thus, we have

�u(tk; x) = u(tk; x) + "(tk; x); �u(tk+1; x) = u(tk+1; x) + "(tk+1; x):
(4.14)

By (4.7) and (4.14) we get

u(tk; x) + "(tk; x) = �u(tk; x) =
1

2
�u(tk+1; x +�bh+ ��

p
h) +

1

2
�u(tk+1; x +�bh� ��

p
h) + �gh

=
1

2
u(tk+1; x +�bh + ��

p
h) +

1

2
u(tk+1; x+�bh� ��

p
h) + �gh

+
1

2
"(tk+1; x+ �bh+ ��

p
h) +

1

2
"(tk+1; x +�bh� ��

p
h); (4.15)

where �b; ��; �g are the coe�cients b(t; x; u); �(t; x; u); g(t; x; u) calculated at t =

tk; x = x; u = �u(tk+1; x) = u(tk+1; x)+"(tk+1; x): For example, �b = b(tk; x; u(tk+1; x)+
"(tk+1; x)):
Here we have to suggest for a while that the value u(tk+1; x) + "(tk+1; x) remains

in the interval (u�; u
�

) (see the conditions (4.3) and (4.4)). Clearly, "(tN ; x) = 0; and
below we prove recurrently that "(tk; x) is su�ciently small under a su�ciently small

h: Thereupon thanks to (4.5) this suggestion will be justi�ed.

We have

�b = b(tk; x; u(tk+1; x) + "(tk+1; x)) = b(tk; x; u(tk+1; x)) + �b = b+�b;

where b := b(tk; x; u(tk+1; x)) and �b satis�es the inequality (thanks to (4.4))

j�bj � Kj"(tk+1; x)j: (4.16)

Analogously

�� = � +��; j��j � Kj"(tk+1; x)j; �g = g +�g; j�gj � Kj"(tk+1; x)j:
(4.17)

From (4.16), (4.17) it is not di�cult to obtain the following equalities

u(tk+1; x +�bh� ��
p
h) = u(tk+1; x+ bh� �

p
h)

+
@u

@x
(tk+1; x + bh) � (�bh���

p
h) + �� � h ; (4.18)

where �� satis�es the inequality of the type (4.16).
13



Substituting this in (4.15), we get

u(tk; x) + "(tk; x) =
1

2
u(tk+1; x+ bh + �

p
h) +

1

2
u(tk+1; x + bh� �

p
h) + gh

+
1

2
"(tk+1; x +�bh + ��

p
h) +

1

2
"(tk+1; x+ �bh� ��

p
h) + rk

= v(tk; x) +
1

2
"(tk+1; x +�bh + ��

p
h) +

1

2
"(tk+1; x+ �bh� ��

p
h) + rk ;

(4.19)

where

jrkj � Kj"(tk+1; x)j � h : (4.20)

Finally, using Lemma 4.1, we arrive at

"(tk; x) =
1

2
"(tk+1; x +�bh + ��

p
h) +

1

2
"(tk+1; x+ �bh� ��

p
h) + rk +O(h2):

(4.21)

Now introduce

"k := max
�1<x<1

j"(tk; x)j : (4.22)

From (4.20) and (4.21) we obtain (in addition remember that "(tN ; x) = 0)

"N = 0; "k � "k+1 +K"k+1h+ Ch2; k = N � 1; :::; 1; 0: (4.23)

From here

"k �
C

K
(eK(T�t0) � 1) � h; k = N; :::; 0:

Theorem 4.1 is proved.

Remark 4.1. The result (4.13) for the method (4.7) can be justi�ed under some

other conditions as well. For instance, it is possible to allow a linear growth of the

coe�cients b; �; g under jxj ! 1 instead of the condition (i); if at the same time to

assume, that the derivatives of the solution u(t; x) from (4.6) are not only bounded

but some of them go to zero in a corresponding way under jxj ! 1: Namely, if we

assume that the expressions j @
mu

@ti@xl
j � (1+ jxjl); i = 0; l = 1; 2; 3; 4; i = 1; l = 1; 2; are

uniformly bounded. In addition it should be remarked that the conditions of Theorem

4.1 are not necessary and the action of the method (4.7) is much broader than it is

determined by (i)� (iii). At the same time, the conditions (i)� (iii) are fairly suitable
in many situations.

5. Numeric algorithms

A recursive procedure can be applied for implementation of the method (4.7). But

under big T � t0 and small h such a procedure requires too much computational ex-

panses.

To avoid any recursive calculations and to have become a numerical algorithm, the

method (4.7) (just as other layer methods) needs a discretization in the variable x:
Consider the equidistant space discretization : xj = x0 + j�h; j = 0;�1;�2; ::: ; x0 is
a point belonging to R1; � > 0 is a number, i.e., hx is taken to be equal to �h = �ht:
Using, for example, the linear interpolation, we construct the following algorithm

�u(tN ; x) = '(x);
14



�u(tk; xj) =
1

2
�u(tk+1; xj + b(tk+1; xj; �u(tk+1; xj))h+ �(tk+1; xj; �u(tk+1; xj))

p
h)

+
1

2
�u(tk+1; xj + b(tk+1; xj; �u(tk+1; xj))h� �(tk+1; xj; �u(tk+1; xj))

p
h)

+g(tk; xj; �u(tk+1; xj))h; j = 0;�1;�2; :::; (5.1)

�u(tk; x) =
xj+1 � x

�h
�u(tk; xj) +

x� xj

�h
�u(tk; xj+1); xj < x < xj+1; k = N � 1; :::; 1; 0:

(5.2)

Theorem 5.1. Under the assumptions (i) � (iii) the algorithm (5.1)-(5.2) has the

�rst order, i.e., the approximation �u(tk; x) from the formula (5.2) satis�es the relation

j�u(tk; x)� u(tk; x)j � Kh; (5.3)

where K does not depend on x; h; k:

Proof. Let us introduce the error of the algorithm (5.1)-(5.2) on the k-th layer

"(tk; x) := �u(tk; x)� u(tk; x)

and "k in accord with (4.22):

"k := max
�1<x<1

j"(tk; x)j :

Of course, these new "(tk; x) and "k di�er from the old ones. Just as earlier we are

able to obtain for the nodes xj (cf. (4.21)):

"(tk; xj) =
1

2
"(tk+1; xj + �bh+ ��

p
h) +

1

2
"(tk+1; xj +�bh� ��

p
h) + rk +O(h2);

whence the following inequality runs out:

j"(tk; xj)j � "k+1 +K"k+1h + Ch2: (5.4)

We have

u(tk; x) =
xj+1 � x

�h
u(tk; xj) +

x� xj

�h
u(tk; xj+1) +O(h2); xj < x < xj+1;

(5.5)

where the interpolation error O(h2) satis�es the inequality of the form (4.11).

From (5.5) and (5.2) we get

"(tk; x) =
xj+1 � x

�h
"(tk; xj) +

x� xj

�h
"(tk; xj+1) +O(h2); xj < x < xj+1;

whence due to (5.4) for all x

j"(tk; x)j � "k+1 +K"k+1h+ Ch2; (5.6)

of course, with another constant C:
The inequality (5.6) implies (4.23). Theorem 5.1 is proved.

Remark 5.1. To reduce the amount of the nodes xj; it is natural at �rst sight to

take advantage of the cubic interpolation with step hx = �
p
h instead of the linear

interpolation with step �h. Then in place of (5.2) we get

�u(tk; x) =

3X
i=0

�j;i(x) �u(tk; xj+i); xj < x < xj+3; �j;i(x) =

3Y
k=0;k 6=i

x� xj+k

xj+i � xj+k
;
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in place of (5.5) we get

u(tk; x) =

3X
i=0

�j;i(x) u(tk; xj+i) +O(h4x); xj < x < xj+3;

and, consequently,

"(tk; x) =

3X
i=0

�j;i(x)"(tk; xj+i) +O(h2); xj < x < xj+3:

Though
P3

i=0�j;i(x) = 1 for any x; the sum of the absolute values
P3

i=0 j�j;i(x)j can
take values greater than one. And instead of the inequality (5.6), we can obtain the

following one only:

j"(tk; x)j � A"k+1 +K"k+1h+ Ch2;

where the constant A is, unfortunately, more than one.

Therefore, our proof of Theorem 5.1 cannot be carried over for the case of the cubic

interpolation.

Remark 5.2. Along with the linear interpolation (5.2) it is natural to use the spline

approximation of the form

�u(tk; x) =

1X
i=�1

�u(tk; xi)B(
x� ih

h
); xi < x < xi+1; k = N � 1; :::; 1; 0;

(5.7)

where B(x) is the standard cubic B-spline

B(x) =

8>>>><
>>>>:

2

3
� x2 + 1

2
jxj3; jxj � 1;

1

6
(2� jxj)3; 1 � jxj � 2;

0; jxj � 2:

The spline (5.7) is twice continuously di�erentiable, and because B(x) is locally

supported, the series (5.7) has not more than four nonzero terms for any x 2 R:
It is known (see, e.g., [1]), that the spline �(x) =

P1
i=�1 f(xi)B(

x� ih

h
) possesses

fairly good approximating and smoothing properties. In particular, if there exists the

third derivative of f(x) and it is bounded, then there exist constants C1 and C2 such

that

jf(x)� �(x)j � C1h
2; jf 0(x)� �0(x)j � C2h; x 2 R:

And since the sequence Bi(x) = B(
x� ih

h
) provides a nonnegative partition of unity:

1X
i=�1

Bi(x) = 1; Bi(x) � 0; all i;

the proof of Theorem 5.1 can be carried over for the case of the approximation (5.7).

Remark 5.3. Consider the Cauchy problem for an autonomous semilinear parabolic

equation with the positive direction of time t

@u

@t
=

1

2
�2(x; u)

@2u

@x2
+ b(x; u)

@u

@x
+ g(x; u); t > 0; x 2 R1; (5.8)
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u(0; x) = '(x): (5.9)

If we substitute a solution u(t; x) to the problem (5.8)-(5.9) in the coe�cients �; b; g;
the equation (5.8) becomes nonautonomous and that is why the reasoning of Remark

2.1 cannot be carried over for the problem (5.8)-(5.9). Nevertheless, from (5.1)-(5.2) it

is not di�cult to obtain the following procedure with positive direction of time

�u(0; x) = '(x);

�u(tk+1; xj) =
1

2
�u(tk; xj + b(xj; �u(tk; xj))h+ �(xj; �u(tk; xj))

p
h)

+
1

2
�u(tk; xj + b(xj; �u(tk; xj))h� �(xj; �u(tk; xj))

p
h)

+g(xj; �u(tk; xj))h; j = 0;�1;�2; :::; tk = kh; h = t=N; (5.10)

�u(tk; x) =
xj+1 � x

�h
�u(tk; xj) +

x� xj

�h
�u(tk; xj+1); xj < x < xj+1; k = 0; 1; :::; N � 1:

(5.11)

Just the procedure (5.10)-(5.11) is used in Section 8 in numerical calculations.

6. Many-dimensional case

Consider the Cauchy problem for d > 1

@u

@t
+
1

2

dX
i;j=1

aij(t; x; u)
@2u

@xi@xj
+

dX
i=1

bi(t; x; u)
@u

@xi
+ g(t; x; u) = 0 ;

t0 � t < T; x 2 Rd; (6.1)

u(T; x) = '(x) : (6.2)

Just as in Section 3 we can write the same relations (3.3)-(3.8) with the distinction

that x; X; and b are d-vectors, � is a d � d-matrix such that ��> = a = faijg; and
�N�1; �N�2; :::; �0 in (3.7) are i.i.d. vectors of dimension d with i.i.d. components

�ik; i = 1; :::; d; and each component �i is distributed by the law: P (� = �1) = 1

2
:

Using (3.4) we obtain (here we restrict ourselves to the two-dimensional case in

writing)

u(tk; x) = u(tk; x
1; x2)

' Eu(tk+1; �X
1
tk;x

(tk+1); �X
2
tk;x

(tk+1)) +E �Ztk;x;0(tk+1)

=
1

4
u(tk+1; x

1 + b1h+ �11
p
h+ �12

p
h; x2 + b2h + �21

p
h + �22

p
h)

+
1

4
u(tk+1; x

1 + b1h + �11
p
h� �12

p
h; x2 + b2h+ �21

p
h� �22

p
h)

+
1

4
u(tk+1; x

1 + b1h� �11
p
h+ �12

p
h; x2 + b2h� �21

p
h + �22

p
h)
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+
1

4
u(tk+1; x

1 + b1h� �11
p
h� �12

p
h; x2 + b2h� �21

p
h� �22

p
h) + gh ;

(6.3)

where bi = bi(tk; x
1; x2; u(tk; x

1; x2)); �ij = �ij(tk; x
1; x2; u(tk; x

1; x2)); i; j = 1; 2; g =
g(tk; x

1; x2; u(tk; x
1; x2)):

Now the analogous to (4.7) method has the following form:

�u(tN ; x
1; x2) = '(x1; x2);

�u(tk; x
1; x2) =

1

4
�u(tk+1; x

1 +�b1h+ ��11
p
h+ ��12

p
h; x2 +�b2h + ��21

p
h+ ��22

p
h)

+
1

4
�u(tk+1; x

1 + �b1h + ��11
p
h� ��12

p
h; x2 +�b2h+ ��21

p
h� ��22

p
h)

+
1

4
�u(tk+1; x

1 + �b1h� ��11
p
h+ ��12

p
h; x2 +�b2h� ��21

p
h + ��22

p
h)

+
1

4
�u(tk+1; x

1 +�b1h� ��11
p
h� ��12

p
h; x2 +�b2h� ��21

p
h� ��22

p
h) + �gh ;

(6.4)

where �bi = bi(tk; x
1; x2; �u(tk+1; x

1; x2)); ��ij = �ij(tk; x
1; x2; �u(tk+1; x

1; x2)); i; j = 1; 2,
�g = g(tk; x

1; x2; �u(tk+1; x
1; x2)); k = N � 1; :::; 1; 0:

This method is deterministic though the probabilistic approach is used for its con-

structing.

Consider the equidistant space discretization : x1j = x10+j�
1h; x2l = x20+ l�

2h; j; l =

0;�1;�2; ::: ; (x10; x20) is a point belonging to R2; �1 > 0; �2 > 0 are numbers, i.e.,

hx1 ; hx2 are taken to be equal to �1h; �2h: Using the linear sequential interpolation,

we construct the following algorithm based on the method (6.4):

�u(tN ; x
1; x2) = '(x1; x2);

�u(tk; x
1
j ; x

2
l ) =

1

4
�u(tk+1; x

1
j +

�b1h+ ��11
p
h+ ��12

p
h; x2l +

�b2h + ��21
p
h+ ��22

p
h)

+
1

4
�u(tk+1; x

1
j +

�b1h + ��11
p
h� ��12

p
h; x2l +

�b2h+ ��21
p
h� ��22

p
h)

+
1

4
�u(tk+1; x

1
j +

�b1h� ��11
p
h+ ��12

p
h; x2l +

�b2h� ��21
p
h + ��22

p
h)

+
1

4
�u(tk+1; x

1
j +

�b1h� ��11
p
h� ��12

p
h; x2l +

�b2h� ��21
p
h� ��22

p
h) + �gh ;

(6.5)

where all the coe�cients �b and �� are calculated at tk; x
1
j ; x

2
l ; �u(tk+1; x

1
j ; x

2
l );

�u(tk; x
1; x2) =

x1j+1 � x1

�1h
� x

2
l+1 � x2

�2h
�u(tk; x

1
j ; x

2
l ) +

x1j+1 � x1

�1h
� x

2 � x2l
�2h

�u(tk; x
1
j ; x

2
l+1)

+
x1 � x1j

�1h
� x

2
l+1 � x2

�2h
�u(tk; x

1
j+1; x

2
l ) +

x1 � x1j

�1h
� x

2 � x2l
�2h

�u(tk; x
1
j+1; x

2
l+1) ;

x1j � x1 � x1j+1; x
2
l � x2 � x2l+1; (x

1; x2) 6= (x1i ; x
2
m);

i;m = 0;�1;�2; ::: ; k = N � 1; ; 1; 0 : (6.6)
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Remark 6.1. The sequential linear interpolation in (6.6) is not linear with respect

to both variables x1 and x2: The following triangular interpolation is linear one and

just as the interpolation (6.6), to be applied to the solution u(t; x1; x2); has an error of

O(h2) :

�u(tk; x
1; x2) = (1� x1 � x1j

�1h
� x2 � x2l

�2h
)�u(tk; x

1
j ; x

2
l )

+
x2 � x2l
�2h

�u(tk; x
1
j ; x

2
l+1) +

x1 � x1j

�1h
�u(tk; x

1
j+1; x

2
l ): (6.7)

This interpolation is not suitable for the all points (x1; x2) from the rectangle �j;l =

f(x1; x2) : x1j � x1 � x1j+1; x
2
l � x2 � x2l+1g by the same reasons as it was mentioned in

Remark 5.1. But for the points from the triangle with the corners (x1j ; x
2
l ); (x

1
j ; x

2
l+1);

(x1j+1; x
2
l ) such an interpolation is suitable because

x1 � x1j

�1h
+
x2 � x2l
�2h

� 1 (6.8)

for those points.

For the other points of the rectangle �j;l

x1j+1 � x1

�1h
+
x2l+1 � x2

�2h
< 1 (6.9)

and we can use the following formula:

�u(tk; x
1; x2) = (1� x1j+1 � x1

�1h
� x2l+1 � x2

�2h
)�u(tk; x

1
j+1; x

2
l+1)

+
x1j+1 � x1

�1h
�u(tk; x

1
j ; x

2
l+1) +

x2l+1 � x2

�2h
�u(tk; x

1
j+1; x

2
l ): (6.10)

Thus, the formulas (6.7) and (6.10) for (x1; x2) belonging to �j;l, satisfying (6.8) and

(6.9) correspondingly, give another suitable rule of interpolation.

The theorems for the method (6.4) and for the algorithm (6.5) with both interpola-

tions (6.6) and (6.7)-(6.10) are analogous to Theorems 4.1 and 5.1.

7. Reaction-Di�usion systems

The above constructed methods can also be applied to the Cauchy problem for

systems of reaction-di�usion equations of the form (for simplicity we write them for

the one-dimensional x):

@uq

@t
+ Lquq + gq(t; x; u) = 0; t0 � t < T; x 2 R1; q = 1; :::; n; (7.1)

uq(T; x) = 'q(x); (7.2)

where

u := (u1; :::; un) ;

Lq :=
1

2
�2q(t; x; u)

@2

@x2
+ bq(t; x; u)

@

@x
:

It is not di�cult to derive the method which is analogous to (4.7):

�uq(tN ; x) = 'q(x);
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�uq(tk; x) =
1

2
�uq(tk+1; x+ bq(tk; x; �u(tk+1; x))h+ �q(tk; x; �u(tk+1; x))

p
h)

+
1

2
�uq(tk+1; x + bq(tk; x; �u(tk+1; x))h� �q(tk; x; �u(tk+1; x))

p
h)

+gq(tk; x; �u(tk+1; x))h; k = N � 1; :::; 1; 0; (7.3)

and then the corresponding algorithm (see (5.2)).

The system (7.1) is such that the linear system of parabolic equations, obtained

after substituting u = u(t; x) in the coe�cients �q; bq; gq; splits and therefore every

parabolic equation can be solved separately. In connection with this fact, one can

consider n separate simple systems of the type (3.5)-(3.6). Such a way is impossible for

reaction-di�usion systems containing equations with derivatives of di�erent functions

among u1; :::; un: Consider, for example, the system

@uq

@t
+
1

2
�2(t; x; u)

@2uq

@x2
+

nX
j=1

�(t; x; u)bjq(t; x; u)
@uj

@x
+ gq(t; x; u) = 0

(7.4)

with the conditions (7.2) (we pay attention that � in (7.4) does not depend on q).
In this case one can use the following probabilistic representation (see [10]):

uq(tk; x) = E

nX
l=1

ul(tk+1; Xtk;x(tk+1))Y
l
tk;x;q

(tk+1) + EZtk;x;q;0(tk+1); (7.5)

where Xtk;x(s); Y l
tk;x;q

(s); Ztk;x;q;0(s) is the solution of the Cauchy problem to the

system of stochastic di�erential equations

dX = �(s;X; u(s;X))dw(s); X(tk) = x;

dY j =

nX
l=1

bjl(s;X; u(s;X))Y ldw(s); Y j(tk) = �jq =

�
0; j 6= q;
1; j = q;

dZ =

nX
l=1

gl(s;X; u(s;X))Y lds; Z(tk) = 0: (7.6)

Now it is not di�cult to derive the method which is analogous to (4.7):

�uq(tN ; x) = 'q(x);

�uq(tk; x) =
1

2

nX
l=1

�ul(tk+1; x+ �(tk; x; �u(tk+1; x))
p
h) � (�lq + blq(tk; x; �u(tk+1; x))

p
h)

+
1

2

nX
l=1

�ul(tk+1; x� �(tk; x; �u(tk+1; x))
p
h) � (�lq � blq(tk; x; �u(tk+1; x))

p
h)

+gq(tk; x; �u(tk+1; x))h; k = N � 1; :::; 1; 0; (7.7)

and then the corresponding algorithm.

Convergence Theorems 4.1 and 5.1 can be carried over to these method and algo-

rithm.
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Figure 1. Solution (8.2), � = 2; T0 = 1

8. Numerical examples

Example 1. Consider the quasilinear equation with power law nonlinearities (see,

e.g., [18])

@u

@t
=

@

@x
(u�

@u

@x
) + u�+1; t > 0; x 2 R; (8.1)

where � > 0 is a constant.

The equation (8.1) has the following automodelling solution (see Figure 1 as well)

u(t; x) =

8<
:

(T0 � t)�1=�( 2(�+1)
�(�+2)

cos2 �x
L
)1=�; jxj < L

2
;

0; jxj � L
2
; 0 < t < T0;

(8.2)

where

L =
2�

�
(�+ 1)1=2:

The temperature u(t; x) grows in�nitely under t! T0: At the same time the heat is

localized in the interval (�L=2; L=2): The function

v =
1

�+ 1
u�+1

satis�es the equation

@v

@t
=

1

2
� 2(�+ 1)�=(�+1)v�=(�+1)

@2v

@x2
+ (� + 1)(2�+1)=(�+1) � v(2�+1)=(�+1)

(8.3)

which has the form of (5.8).
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Table 1. The absolute errors of algorithm (5.10)-(5.11) to the Cauchy

problem (8.3)-(8.4) at t = 0:5

h = 10�1 h = 10�2 h = 10�3 h = 10�4

err�v 0:9931 � 10�1 1:422 � 10�2 1:489 � 10�3 1:500 � 10�4
err�u 0:9572 � 10�1 1:643 � 10�2 4:432 � 10�3 13:77 � 10�4
err�u[�2; 2] 0:7015 � 10�1 0:9552 � 10�2 1:215 � 10�3 1:003 � 10�4

Table 2. The relative errors �(t; h) of algorithm (5.10)-(5.11) to the

Cauchy problem (8.3)-(8.4) and the explosion time

h = 10�1 h = 10�2 h = 10�3 h = 10�4

t = 0:9 3:644 � 10�1 1:024 � 10�1 1:313 � 10�2 1:353 � 10�3
t = 0:99 - - - - - - 5:298 � 10�1 1:815 � 10�1 2:585 � 10�2
t = 0:999 - - - - - - - - - - - - 6:167 � 10�1 2:436 � 10�1
t = 0:9999 - - - - - - - - - - - - - - - - - - 6:704 � 10�1
t� 1:5 1:07 1:008 1:0001

We make use of algorithm (5.10)-(5.11) to �nd the solution of (8.3) under � = 2

with the initial conditions

v(0; x) =

8<
:

p
3

8
cos3 �x

L
; jxj < L

2
;

0; jxj � L
2
:

(8.4)

Table 1 presents the errors

err�v = max
xi
j�v(t; xi)� v(t; xi)j;

err�u = max
xi
j�u(t; xi)� u(t; xi)j; �u(t; xi) = (3�v(t; xi))

1=3;

err�u[�2; 2] = max
jxij�2

j�u(t; xi)� u(t; xi)j

for t = 0:5 depending on h (ht = hx = h):
The rather large values err�u are connected with the fact that under xi, being close to

the ends of the interval (�L=2; L=2); the values v(t; xi) are very small and, consequently,

for such xi

j�u(t; xi)� u(t; xi)j = j(3�v(t; xi))1=3 � (3v(t; xi))
1=3j ' 31=3j�v(t; xi)� v(t; xi)j1=3;

i.e. err�u = O(h1=3):
But the di�erence �u(t; xi) � u(t; xi) on a subinterval (�a; a); a < L=2; behaves as

O(h) (see the row err�u[�2; 2] in Table 1).

For times t which are close to the explosion time T0; the errors err�v become fairly

large (we pay attention that v in our example is proportional to cube of u). However
if we are interested in �nding the explosions time it is natural to consider another

characteristic under t! T0: Table 2 presents the values

�(t; h) =
err�u

u(t; 0)

and the time t� at which the values of u become more than 104; i.e., this time evaluates

the explosion time.
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Example 2. Consider the one-dimensional Burger equation

@u

@t
=

1

2
�2
@2u

@x2
� u

@u

@x
; t > 0; x 2 R; (8.5)

u(0; x) = '(x): (8.6)

Due to the Cole-Hopf transformation the solution to the problem (8.5)-(8.6) can be

found explicitly:

u(t; x) =

R1
�1K(t; x; y)'(y) exp(� 1

�2

R y
0
'(�)d�)dyR1

�1K(t; x; y) exp(� 1

�2

R y
0
'(�)d�)dy

; (8.7)

K(t; x; y) =
1p

2��2t
exp(�(x� y)2

2�2t
): (8.8)

If

u(0; x) =  (x) =

�
1; x < 0;
0; x � 0;

(8.9)

then

u(t; x) =  (t; x) := 1�
erfc(� xp

2�2t
)

erfc(� xp
2�2t

) + exp( t�2x
2�2

) � (2� erfc( t�xp
2�2t

))
;

(8.10)

where

erfc(x) =
2p
�

Z 1

x

exp(��2)d�:

Under a su�ciently small � the solution (8.9) is close to the travelling shock wave

 (x� 1

2
t) with speed

1

2
:

Tables 3 and 4 give numerical results obtained by using the algorithm (5.10)-(5.11)

with ht = hx = h to the Cauchy problem (8.5), (8.9). They present the errors of

approximate solution �u in the discrete Chebyshev norm (the top position) and in l1-
norm (the lower position):

errc�u = max
xi
j�u(t; xi)� u(t; xi)j;

errl�u =
X
i

j�u(t; xi)� u(t; xi)j � h:

These results illustrate the good properties of the algorithm (5.10)-(5.11). Besides

they show more wide capabilities of the algorithm than it is ensured by Theorem 4.1

(we have in mind the discontinuity of the function  (x)): The big values of the errors
(especially of errc�u) for small � and t are easy explicable: the corresponding solution

has the very large derivatives with respect to x in these cases. Clearly, the errors

can be essentially decreased if we improve the exactness of interpolation, for instance,

by means of choice a smaller hx. In connection with this example, see the numerical

experiments in [2], [3] as well.

Example 3. Consider the asymptotic behavior of some solutions to the problem

(8.5)-(8.6). Figure 2 shows that the solution of the problem (8.5), (8.9) for large t is
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Table 3. Dependence of the errors errc�u and err
l
�u in h and � under �xed

t = 1

h = 10�1 h = 10�2 h = 10�3 h = 10�4

� = 0:05
> 0:5
0:2516

> 0:5
0:1198

> 0:5
0:2960 � 10�1

0:3232
0:3349 � 10�2

� = 0:1
> 0:5
0:1874

> 0:5
0:7501 � 10�1

0:2104
0:8495 � 10�2

0:2198 � 10�1
0:8692 � 10�3

� = 0:2
0:4849
0:1057

0:1484
0:2316 � 10�1

0:1582 � 10�1
0:2412 � 10�2

0:1625 � 10�2
0:2485 � 10�3

� = 0:5
0:7295 � 10�1
0:5137 � 10�1

0:7704 � 10�2
0:5580 � 10�2

0:8448 � 10�3
0:6035 � 10�3

0:9010 � 10�4
0:6538 � 10�4

� = 1
0:1033 � 10�1
0:2150 � 10�1

0:1151 � 10�2
0:2631 � 10�2

0:1351 � 10�3
0:2769 � 10�3

0:1506 � 10�4
0:3247 � 10�4

Table 4. Dependence of the errors errc�u and err
l
�u in h and t under �xed

� = 0:5

h = 10�1 h = 10�2 h = 10�3

t = 0:02
������
������

0:1348
0:1923 � 10�1

0:4270 � 10�1
0:4703 � 10�2

t = 0:1
0:1427
0:2850 � 10�1

0:2216 � 10�1
0:6567 � 10�2

0:1099 � 10�2
0:3503 � 10�3

t = 0:5
0:6368 � 10�1
0:3198 � 10�1

0:5438 � 10�2
0:3463 � 10�2

0:6311 � 10�3
0:3824 � 10�3

t = 2:5
0:1147
0:1018

0:1296 � 10�1
0:1125 � 10�1

0:1362 � 10�2
0:1181 � 10�2

close to a wave which preserves its shape and moves with speed 1=2. Figure 3 is related
to the solution with the initial data

u(0; x) =

8<
:

1; x < �10;
0:75; �10 < x < 0;
0; x > 0:

(8.11)

Comparing these two �gures one can conclude that there exist the limit shape and

the limit speed of the waves which are the same for the initial conditions (8.9) and

(8.11).

Recently the following two-parameter solution of Burger's equation (8.5) is found in

[2]:

ua;b(t; x) = b� a tanh
a(x� bt)

�2
; (8.12)

where a and b are constants and (we remind)

tanh x = sign(x)
1� e�2jxj

1 + e�2jxj
:

Clearly, ua;b(t; x) = ujaj;b(t; x) (therefore one can consider the case a � 0 only) and

b� a � ua;b(t; x) � b+ a; a > 0:
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Figure 2. The solution to the problem (8.5), (8.9) at the moments

t = 1; t = 5; t = 10; t = 15; t = 20; t = 25; � = 0:5
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Figure 3. The solution to the problem (8.5), (8.11) at the moments

t = 1; t = 5; t = 10; t = 15; t = 20; t = 25; � = 0:5

Let us also note that the function

u0(x) = � tanh
x

�2

is a stationary solution of Burger's equation, i.e.,

1

2
�2
d2u0

dx2
� u0

du0

dx
= 0; (8.13)

and if some function u0(x) is a solution of the steady-state Burger equation (8.13) then
the function

u(t; x) = b + au0(a(x� bt))

is a solution of the general equation (8.5).
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The solution ua;b(t; x) is a traveling wave which runs with speed b, i.e., it runs from
the left to the right if b > 0, it runs conversely if b < 0, and it is immovable if b = 0.

The shape of this wave is determined by the function ua;b(0; x).

We say that the shape of u(t; x) converges to f(x) as t becomes in�nite if there exists

the function m(t) such that

lim
t!1

sup
x

ju(t; x+m(t))� f(x)j = 0:

It is not di�cult to prove that the shape of  (t; x) (see (8.10)) converges to u0:5;0:5(0; x) =
1

2
� 1

2
tanh

x

2�2
. To show it you should to set m(t) =

t

2
(let us remind that

erfc(�x) + erfc x = 2 and therefore  (t;
t

2
) =

1

2
).

Theorem 8.1. Let

u(0; x) =

8<
:

c; x < l0;
�(x); l0 � x � l0 + l;
d; x > l0 + l;

(8.14)

where c; d; l0; l are some constants: c > d; l � 0; �(x) is a measurable function and

d � �(x) � c:
Then the shape of u(t; x) converges to ua;b(0; x) with

a =
c� d

2
> 0; b =

c+ d

2
:

More exactly:

lim
t!1

sup
x

ju(t; x+ l0 + bt + �)� ua;b(0; x)j = 0; (8.15)

where

� =
S � d � l
c� d

; S =

Z l

0

�(�)d�:

Thus, the limit shape of a solution of Burger's equation with initial data of the form

(8.14) depends on c and d only and for large t it is close to the traveling symmetric

wave of the shape ua;b(0; x) with speed b and with center

m(t) = l0 + bt + � : (8.16)

Proof. Because u(t; x+ l0) is also a solution of Burger's equation, it is su�cient to

prove the theorem for the case l0 = 0. Let us make use of the formula (8.7). We obtain

u(t; x) =
c � I1(t; x) + d � I2(t; x) + I4(t; x)� d � I5(t; x)

I1(t; x) + I2(t; x) + I3(t; x)� I5(t; x)
;

where

I1(t; x) =

Z 0

�1
K(t; x; y) exp(� c

�2
y)dy = exp(

c2t� 2cx

2�2
) � (1� 1

2
erfc(

ct� xp
2�2t

));

I2(t; x) =

Z 1

0

K(t; x; y) exp(�S + d � (y � l)

�2
)dy

= exp(
d2 � t� 2d � x

2�2
� S � d � l

�2
) � 1

2
erfc(

d � t� xp
2�2t

);
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I3(t; x) =

Z l

0

K(t; x; y) exp(� 1

�2

Z y

0

�(z)dz)dy;

I4(t; x) =

Z l

0

K(t; x; y)�(y) exp(� 1

�2

Z y

0

�(z)dz)dy;

I5(t; x) =

Z l

0

K(t; x; y) exp(�S + d � (y � l)

�2
)dy:

The direct calculations give

I1(t; x+m(t)) = exp(�cd � t
2�2

� c�

�2
) � exp(�cx

�2
) � (1� 1

2
erfc(

(c� d)t� 2x� 2�

2
p
2�2t

));

I2(t; x +m(t)) = exp(�cd � t
2�2

� c�

�2
) � exp(�d � x

�2
) � 1

2
erfc(

(d� c)t� 2x� 2�

2
p
2�2t

)):

We have (see (8.8) and (8.16))

K(t; x+m(t); y) =
1p
2��2t

exp(�(c+ d)2 � t
8�2

)�

� exp(�(c + d) � x
2�2

) � exp(�(x� y + �)2

2�2t
� (�� y)(c+ d)

2�2
) :

Because

�(c + d)2 � t
8�2

� �cd � t
2�2

;

it is not di�cult to obtain the following representation for the integrals I3(t; x +

m(t)); I4(t; x+m(t)); I5(t; x +m(t)) :

Ij(t; x+m(t)) =
1p

2��2t
exp(�cd � t

2�2
� c�

�2
) � exp(�(c+ d) � x

2�2
) � Jj(t; x); j = 3; 4; 5;

where the functions Jj(t; x) are bounded: there exists a constant C > 0 such that

jJj(t; x)j � C; j = 3; 4; 5; t � 0; x 2 R: (8.17)

Now the function u(t; x + m(t)) with m(t) from (8.16) (remind l0 = 0) can be

represented in the form

u(t; x+m(t)) =

=
c � exp(� cx

�2
) � p(t; x) + d � exp(�d�x

�2
) � q(t; x) + 1p

2��2t
exp(� (c+d)�x

2�2
) � (J4 � d � J5)

exp(� cx
�2
) � p(t; x) + exp(�d�x

�2
) � q(t; x) + 1p

2��2t
exp(� (c+d)�x

2�2
) � (J4 � J5)

;
(8.18)

where

p(t; x) := 1� 1

2
erfc(

(c� d)t� 2x� 2�

2
p
2�2t

); q(t; x) :=
1

2
erfc(

(d� c)t� 2x� 2�

2
p
2�2t

):

We have

lim
t!1

p(t; x) = 1; lim
t!1

q(t; x) = 1: (8.19)

27



Due to (8.17) and (8.19) we get from (8.18)

lim
t!1

u(t; x+m(t)) =
c � exp(� cx

�2
) + d � exp(�d�x

�2
)

exp(� cx
�2
) + exp(�d�x

�2
)

� b� a tanh
ax

�2
= ua;b(0; x):

Thus, the pointwise convergence in (8.15) is proved. It is not too di�cult to justify

the uniform convergence as well. Theorem 8.1 is proved.

Table 5. Dependence of the errors err�u and sherr�u in h and t under
�xed � = 0:5

h = 10�1 h = 10�2 h = 10�3

t = 10
0:3098
0:1866 � 10�1

0:3751 � 10�1
0:7637 � 10�3

0:3829 � 10�2
0:2068 � 10�3

t = 20
0:5324
0:1906 � 10�1

0:7048 � 10�1
0:9203 � 10�3

0:7153 � 10�2
0:1264 � 10�3

t = 30
0:6970
0:1900 � 10�1

0:1033
0:9212 � 10�3

0:1048 � 10�1
0:1274 � 10�3

Table 5 gives numerical results obtained by using the algorithm (5.10)-(5.11) with

ht = hx = h to the Cauchy problem (8.5), (8.9) under � = 0:5. The table presents

the usual errors err�u = errc�u of approximate solution �u and the distances sherr�u of

�u (shape errors) from the shape determined by u0:5;0:5(0; x) = 1

2
� 1

2
tanh

x

2�2
: These

distances are calculated by the formula

sherr�u = max
xi
j�u(t; xi + �m(t))� u0:5;0:5(0; xi)j;

where �m(t) is a root of the equation �u(t; x) =
1

2
.

We see that the shape error sherr�u is stabilized as t becomes in�nite and it tends

to zero if h tends to zero. This proves that the solution of the procedure (5.10)-(5.11)

has a limit shape which is close to the limit shape of the solution of the problem (8.5),

(8.9) under small h:
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