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Abstract

The scattering matrix describes monolithic microwave integrated cir-

cuits that are connected to transmission lines in terms of their wave

modes. Using a �nite-volume method the corresponding boundary

value problem of Maxwell's equations can be solved by means of a

two-step procedure. An eigenvalue problem for non-symmetric matri-

ces yields the wave modes. The eigenfunctions determine the bound-

ary values at the ports of the transmission lines for the calculation

of the �elds in the three dimensional structure. The electromagnetic

�elds and the scattering matrix elements are achieved by the solution

of large-scale systems of linear equations with inde�nite symmetric

matrices. Improved numerical solutions for the time and memory con-

suming problems are treated in this paper. The numerical e�ort could

be reduced considerably.
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1 Introduction

The design of monolithic microwave integrated circuits (MMIC) requires e�-

cient CAD tools in order to avoid costly and time-consuming redesign cycles.

The electromagnetic characteristics of microwave circuits and packages

can be described by equivalent circuit in terms of voltages and currents or

by the scattering matrix. With growing frequencies the voltage and current

de�nitions become ambiguous and the scattering matrix approach is more ap-

propriate. In order to determine the scattering matrix, the circuit is inserted

between transmission lines (see Figure 1). For typical microwave packages

one is dealing with transmission lines of the microstrip or coplanar type. The

scattering matrix describes the structure in terms of wave modes on these

lines.

In this way, a three dimensional boundary-value problem can be for-

mulated using the Maxwellian equations in frequency domain in order to

compute the electromagnetic �eld and, subsequently, the scattering matrix.

The application of a �nite-volume method to the boundary value prob-

lem for the Maxwellian equations results in the so-called Finite-Di�erence

method in Frequency Domain (FDFD) [1], [2], [3]. In contrast to the

common �nite-di�erence scheme, this method is based on the integral for-

mulation of Maxwell's equations for each cell. The FDFD allows the com-

putation of the scattering matrix of a given structure for a number of simul-

taneously excited modes. The typical package structures under investigation

are small compared to wavelength and contain inhomogeneous waveguide

cross-sections. Thus, approaches in the frequency domain show inherent ad-

vantages since their time-domain counterparts require excessive numbers of

time-steps and do not provide mode separation.

2 Scattering Matrix

The structure under investigation consists of in�nitely long transmission lines

and a discontinuity (see Figure 1). The transmission lines are assumed to

be longitudinally homogeneous. The discontinuity may have an arbitrary

structure. The �elds are computed in a rectangular volume, which contains

the discontinuity and short parts of the transmission lines. Ports are de-

�ned on the transmission lines. The remaining surface of the computational

volume is formed by electric or magnetic walls. The incoming modes al are
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Figure 1: Discretized structure under investigation: coupled spiral

inductivities, x direction on a larger scale

changed in the discontinuity. The changed outgoing modes are denoted with

bl. The scattering matrix S describes the energy exchange and phase relation

between all outgoing modes b
(p)
l and all incoming modes a

(p)
l [4]:

b�;� =

msX
�=1

S�;�a�;� ; S =

0
BB@

S11 S12 � � � S1ms

S21 S22 � � � S2ms

: : : : : : : : : : : : : : : : : : : : : : :

Sms1 Sms2 � � � Smsms

1
CCA = (S�;�); (1)
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�; �; � = 1(1)ms; ms =

pX
p=1

m(p): (2)

m(p) is the number of modes which have to be taken into account on the port

p. p is the number of ports. The modes on a port p are numbered with l.

Then the indices � (and �) are related to the mode l in the following way

� = l +

p�1X
q=1

m(q): (3)

The scattering matrix can be extracted from the orthogonal decomposition

of the electric �eld at a pair of two neighboring cross-sectional planes p and

p+�p (see Figure 1) on each waveguide for a number of linear independent

excitations of the transmission lines [4].

3 Boundary Value Problem

We use the integral form of the Maxwellian equations in the frequency do-

main: I
@


1

~��0
~B � d~s =

Z



(|!~��0 ~E) � d~
;
I
[


(~��0 ~E) � d~
 = 0;

I
@


~E � d~s =

Z



(�|! ~B) � d~
;
I
[


~B � d~
 = 0

(4)

taking into account the constitutive relations

~B = � ~H; ~D = � ~E; with � = � +
�

|!
; � = ~��0; � = ~��0: (5)

The electric and the magnetic �eld intensity ~E and ~H, and the electric and

magnetic �ux density ~D and ~B, respectively, are complex functions of the

spatial coordinates only. ! is the angular frequency and |2 = �1. The

permeability �, the permittivity �, and the conductivity � are assumed to be

scalar functions of the spatial coordinates.

At the port p the transverse electric �eld ~Et(zp) is given by superposing all

transmission line modes ~Et;l(zp) with weighted mode-amplitude sums wl(zp):

~Et(zp) =

m(p)X
l=1

wl(zp) ~Et;l(zp): (6)
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The transverse electric mode �elds ~E
(p)
t;l = ~Et;l(zp) are computed using an

eigenvalue problem for transmission lines (see section 6).

At all other parts of the enclosure the tangential electric or magnetic �eld

is assumed to be zero:

~Etang = 0 or ~Htang = 0: (7)

The transverse mode �elds ~E
(p)
t;l satisfy an orthogonality relation

Z



( ~E
(p)
t;l � ~H

(p)
t;m) � d~
 = �m�l;m; �m = 1Watt: (8)

The orthogonality relation (8) is applied at two neighboring cross-sectional

planes zp and zp +�zp:

1
�m

R



( ~E
(p)
t � ~H

(p)
t;m) � d~
 = a

(p)
m + b

(p)
m = w

(p)
m ;

1
�m

R



( ~E
(p+�p)
t � ~H

(p)
t;m) � d~
 = a

(p+�p)
m + b

(p+�p)
m = w

(p+�p)
m :

(9)

The weighted mode-amplitude sums w
(p)
l are given. Because of

a(p+�p)
m = a(p)m e�|k

(p)
z
l
�zp; b(p+�p)

m = b(p)m e+|k
(p)
z
l
�zp (10)

we can compute the mode amplitudes a
(p)
m and b

(p)
m from (9), and subsequently,

the scattering matrix (1). k
(p)
zl ; l = 1(1)m(p), are the propagation constants

(see section 6) at the port p.

4 Matrix Representation of the

Maxwellian Equations

The region is divided into elementary cells (see Figure 1) using a three dimen-

sional nonequidistant orthonormal Cartesian grid. We use staggered grids

[5], [6]. The electric �eld components are located at the centers of the edges

of the cell and the magnetic �ux density components are normal to the cen-

ters of the faces. Thus, the electric �eld components form a primary grid, and
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the magnetic �ux density components a dual grid. We use the lowest-order

integration formulaeI
@


~f � d~s �
X

(�fisi);
Z



~f � d~
 � f
 (11)

in order to approximate Maxwellian equations (4). Thus, we get the matrix

representation of (4):

ATDs=~�
~b = |!�0�0DA~�

~e; BDA~�
~e = 0;

ADs~e = �|!DA
~b; BTDA

~b = 0:

(12)

The vectors ~e and ~b contain the components of the electric �eld intensity

and the components of the magnetic �ux density of the elementary cells,

respectively. The diagonal matrices Ds=~�, DA~�
, Ds, and DA contain the

information on cell dimension and material for the speci�ed structure and

the corresponding mesh. A is de�ned as the operator of the line integral in

the second Maxwellian equation (left formula of the second row of (4)) using

the primary grid. B represents the surface integral of the divergence. A and

B are sparse, and contain the values 1, -1 and 0 only.

5 System of Linear Algebraic Equations

Eliminating the components of the magnetic �ux density from the two equa-

tions of the left-hand side of (12) we get the system of linear algebraic equa-

tions

Q1~e = 0; Q1 = ATDs=~�D
�1
A ADs � k20DA~�

; k0 = !
p
�0�0: (13)

The ingoing wave modes at the ports of the structure act as sources for the

�eld inside the discontinuity. Thus, a source term has to be induced by

partitioning of the matrix Q1:

Q1 = Q1;A +Q1;r; Q1;A~e = �Q1;r~e; (14)

where Q1;r~e is known. Using ~r = �Q1;r~e the matrix Q1;A is transformed into

the symmetric matrix ~Q1;A, after some manipulations:

~Q1;A
~~e = D

1
2
s Q1;AD

�
1
2

s D
1
2
s ~e = �D

1
2
s Q1;r~e = D

1
2
s ~r = ~~r: (15)
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Now we derive advantage from the fact, that there is no space charge in

our volume, and therefore div(~��0 ~E) = 0. The gradient of the electric-�eld

divergence

~��0r(
1

(~��0)2
r � ~��0 ~E) = 0 (16)

is equivalent to the matrix equation

Q2~e = 0 with Q2 = D�1
s DA~�

BTD�1
V~�~�
BDA~�

: (17)

We carry out a similar partitioning like (14) for Equation (17):

Q2 = Q2;A +Q2;r: (18)

Using Q2;r~e = 0 the matrix Q2;A is transformed into the symmetric matrix
~Q2;A, after some manipulations:

~Q2;A
~~e = D

1
2
s Q2;AD

�
1
2

s D
1
2
s ~e = �D

1
2
s Q2;r~e = 0; ~~e = D

1
2
s ~e: (19)

Adding Equation (19) to (15) the new system can be solved numerically

faster [1] (see also section 8).

6 Eigenvalue Problem

The transverse electric mode �elds ~E
(p)
t;l at the ports have to be computed

before we can solve the system of linear equations. Because the transmission

lines are longitudinally homogeneous any �eld can be expanded into a sum

of so-called modal �elds

~E(x; y; z � 2h) = ~E(x; y; z)e�|kz2h; (20)

which vary exponentially in the longitudinal direction. kz is the propagation

constant. 2h is the length of an elementary cell in z-direction. We consider

the �eld components in three consecutive elementary cells. The electric �eld

components of the vector ~e (see Equation (13)) Exi;j;k+1
, Exi;j;k�1 , Eyi;j;k+1

,

Eyi;j;k�1 , Ezi;j;k�1, Ezi+1;j;k�1
, and Ezi;j+1;k�1

are expressed by the values of cell

k using ansatz (20). The longitudinal electric �eld components Ez can be

eliminated by means of the equation BDA~�
~e = 0 (see (12)) [7] . Thus, we
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get an eigenvalue problem for the transverse electric �eld on the transmission

line region:

C~e = ~e ; type(C) = (2nxy � nb; 2nxy � nb): (21)

~e consists of components Exi;j;k and Eyi;j;k , k = const, of the eigenfunctions.

Thus, the problem for the transmission line is reduced to a two dimensional

problem. The sparse matrix C is non-symmetric or non-Hermitean in the

lossless or the lossy case, respectively. nxy is the number of elementary cells

at the port. The size of nb depends on the boundary conditions at the port.

The relations between the eigenvalues  and the propagation constants kz
are

 = e�|kz2h + e+|kz2h � 2 = �4 sin2(kzh) = u+ |v; (22)

kz =
|

2h
ln

�


2
+ 1 +

r


2

�
2
+ 2
��

= � � |�: (23)

A propagation constant kz and its corresponding eigenfunction is called a

mode. The energy of the complex and evanescent modes decreases expo-

nentially with the distance from the discontinuity. Thus, in technical ap-

plications most of the modes can be neglected within the limit of accuracy.

Generally speaking, the larger the magnitude of the imaginary part of kz the

stronger the decay. Therefore, to sort the propagation constants according

to their importance in our problem, we use the

Criterion: The propagation constants kz are sorted in ascending order of

j � j. In the case if some j � j have the same value the constants kz are sorted

in descending order of j � j.
Computing the wanted propagation constants and the corresponding ei-

genfunctions the transverse electric �elds ~E
(p)
t;l , l = 1(1)m(p), are known at

the ports p, and the boundary condition (6) can be build superposing the

transmission line modes.

7 Numerical Solution of the

Eigenvalue Problem

In an earlier version of the method [3] the complete set of eigenvalues and

of corresponding propagation constants was computed and sorted in order to
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select the interesting propagation constants. The sparse matrix was stored

as a dense matrix.

We avoid the computation of all eigenvalues to �nd the few required

propagation constants using the implicitly restarted Arnoldi method [8],

[9]. The sparse storage technique is applied.

The Arnoldi algorithm is called iteratively to solve the standard eigen-

value problem using the inverse mode C�1x = 1

x with the solution of linear

algebraic equations. In general the method does not converge using the reg-

ular mode for our eigenvalue problem. We use a Gaussian elimination for

sparse matrices, to solve the ill-conditioned systems of linear equations.

By means of the Arnoldi iteration we can compute a set of eigenvalues of

largest or smallest magnitude, real part or imaginary part, but we can not

�nd in one step the set of eigenvalues according to our criterion. Therefore,

we must proceed in two steps.

In a �rst run we compute a subset E of eigenvalues  of smallest mag-

nitude using the Arnoldi method in inverse mode looking for eigenvalues of

largest magnitude, and compute the corresponding subset �E of propagation

constants. However, we have to �nd a subset �A of propagation constants

with the smallest magnitude of the imaginary part, but possibly with large

real part. In general, we have �A \ �E 6= ; but �A 6� �E.
To search for the corresponding additional eigenvalues, we use a second

run of the Arnoldi method with a modi�ed matrix.

The wave number

kf = !
p
�� = k0

p
~�~� (24)

is an upper bound for the interesting propagation constants of undamped

modes in a waveguide. Using the maximum wave number k(max) of the cells

we extend the matrix C by a diagonal matrix which consists of the negative

elements

(a)� = (max)(1 +
�

10
); � = 1(1)ma; (max) = �4(hk(max))2: (25)

In a second run we compute a subset E l ofma+mr eigenvalues of smallest

real part of the extended matrix C� using the Arnoldi method in inverse

mode. mr is the number of negative eigenvalues of the subset E computed

in the �rst run. Separating the new eigenvalues of E l and computing the

corresponding propagation constants we have found all propagation constants

according to our criterion [10].
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The modes satisfy the orthogonality relation (8) if kzl 6= �kzm . In the

case of multiple eigenvalues the eigenfunctions are orthogonalized according

to (8) using the method of Gram-Schmidt.

The computation of all eigenvalues with the QR algorithm and the calcu-

lation of the eigenfunctions of the wanted propagation constants by solving

systems of linear homogeneous algebraic equations in the original version [1],

[3], [11] is very time and memory consuming. Computing the wanted propa-

gation constants only, using of the sparse storage technique, and neglecting

relative small elements in the matrix C reduce the computing time from days

to minutes for a non-Hermitean matrix C of order 2nxy�nb � 5000 (see (21))

using a workstation. The total storage requirement is reduced by a factor 18

in the new version for this example.

8 Numerical Solution of the System of

Linear Algebraic Equations

The high-dimensional inde�nite symmetric system of linear algebraic equa-

tions (see (13), (15), (19)) with multiple right hand sides

U~~e = ~~r; U = D
1
2
s Q1;AD

�
1
2

s = ~Q1;A; (26)

V~~e = 0; V = D
1
2
s Q2;AD

�
1
2

s = ~Q2;A (27)

is solved using iterative methods. The number of right hand sides is ms (see

(2)).

The convergence rate of iterative methods depends on spectral properties

of the coe�cient matrix U . Thus, we transform the linear system (26) into

one that is equivalent in the sense that is has the same solution but more

favorable spectral properties. A preconditioner M = M1M2 is a matrix that

performs such a transformation:

M�1
1 UM�1

2 (M2
~~e) = M�1

1
~~r (28)

We use four kinds of preconditioning:

1. The e�ect of the addition of the two equations (15) and (19) described

in section 5 can be interpretated as preconditioning. Using (27) we

construct a preconditioner M for the original system (26):

M�1
1 = I + V U�1; M1 = (I + V U�1)�1; M2 = I: (29)
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Substituting (29) in (28) we get

(I + V U�1)U~~e = (I + V U�1)~~r ) (U + V )~~e = ~~r + V~~e = ~~r (30)

or

~U~~e = ~~r with ~U = U + V: (31)

2. A commonly used approach for solving large sparse linear systems is to

�nd sets of unknowns which are independent. A set of such unknowns is

called an independent set. Independent set orderings are permutations
~P to transform the system (31) into the form

~P ~U ~P T~t =

�
~D ~ET

~E ~H

��
~t1
~t2

�
=

�
~s1
~s2

�
(32)

with

~t = ~P~~e =

�
~t1
~t2

�
; ~s = ~P~~r =

�
~s1
~s2

�
: (33)

~D is a diagonal matrix, ~E is a general sparse matrix, and ~H is a

quadratic sparse matrix. The unknowns of the independent set ~D are

eliminated to get the next reduced matrix

Û = ~H � ~E ~D�1 ~ET ; (34)

and we have to solve the system of linear equations

Û~t2 = ( ~H � ~E ~D�1 ~ET )~t2 = ~s2 � ~E ~D�1~s1 (35)

or

Û~̂e = ~̂r; Û = ~H � ~E ~D�1 ~ET ; ~̂e = ~t2; ~̂r = ~s2 � ~E ~D�1~s1: (36)

Thus, we get

~t1 = ~D�1(~s1 � ~ET~t2) = ~D�1(~s1 � ~ET~̂e): (37)

Then we have to permute the solution vector ~t (see (33)) back to the

vector ~~e (see (19), (31)).
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3. Using a preconditioner M̂ = M̂1M̂2 Equation (36) can be written as

M̂�1
1 ÛM̂�1

2 (M̂2
~̂e) = M̂�1

1
~̂r: (38)

Let be

M̂1 = D̂
1
2

Û
; M̂2 = D̂

1
2

Û
; D̂Û = diag(Û): (39)

Combining (38) and (39) with (36) we obtain

�U~�e = ~�r; �U = D̂
�

1
2

Û
ÛD̂

�
1
2

Û
; ~�e = D̂

1
2

Û
~̂e; ~�r = D̂

�
1
2

Û
~̂r: (40)

4. We construct a SSOR preconditioner for the matrix �U (see (40)) [12].

If the matrix �U is decomposed as

�U = I + L + LT (41)

in its diagonal, strict lower, and strict upper triangular part, the SSOR

matrices are de�ned as

�M1 = (I + !L); �M2 = (I + !LT ) with 0 < ! < 2: (42)

We have to solve the system of linear algebraic equations

�M�1
1

�U �M�1
2 ( �M2

~�e) = �M�1
1
~�r: (43)

We use Eisenstat's trick [13]. Because of (see (41))

�M�1
1

�U �M�1
2 =

1

!
((I + !LT )�1 + (I + !L)�1(I � (2� !)(I + !LT )�1))

the matrix vector product ( �M�1
1

�U �M�1
2 )v, for any vector v, requires two

solves [14] with the triangular matrices (I + !L) and (I + !LT ) plus

a few arithmetical operations.

The Equations (43) are solved with Krylov subspace methods described in

[15], [16], [17].

At present, we can handle structures with up to 3 million unknowns on

modern workstations with a memory of half a GByte. The computing time

for the solution of the linear algebraic equations are reduced compared to the

original version [1], [3] by a factor of 10.
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