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Abstract

In this paper we propose a method of piecewise constant approxi-

mation for the solution of ill-posed third kind Volterra equations

p(t)z(t) +

Z t

0

h(t; �)

(t� �)1��
z(�)d� = f(t); t 2 [0; 1]; 0 < � < 1:

Here p(t) vanishes on some subset of [t1; t2] � [0; 1] and jp(t)j < �

for t 2 [t1; t2], where � is a su�ciently small positive number. The

proposed method gives the accuracy O(�2�=(2�+1)) with respect to the

L2-norm, where � is the parameter of sourcewise representation of the

exact solution on [t1; t2], and uses no more thanO(��(2��)=� log2+1=� 1
�
)

values of Galerkin functionals, where � 2 (0; 1=2) is determined in the

act of choosing the regularization parameter within the framework of

Morozov's discrepancy principle.

1 Introduction

We are interested in linear integral equations of the form

(pI +H�)z(t) = f(t); t 2 [0; 1]; (1)
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where I is the identity operator,

(pI +H�)z(t) � p(t)z(t) +

Z t

0

h(t; �)

(t� �)1��
z(�)d�; 0 < � < 1; (2)

and the given function p(t) vanishes at least in one point of the interval [0; 1].

In his fundamental papers on integral equations D. Hilbert [2] introduced

the notion of integral equations of the �rst, second and of the third kind.

A linear integral equation (1), (2) is said to be of �rst kind if p(t) � 0, of

the second kind if p(t) is a non-zero constant, and of the third kind if p(t)

is a function with zeros in its domain (otherwise the equation is equivalent

to an equation of the second kind). If the function p(t) is continuous and

has a �nite number of zeros, then the equation (1), (2) is a special case of

non-elliptic singular integral equations investigated by S.Pr�ossdorf [11].

Note that Hilbert himself considered the case where p(t) is piecewise

constant with values 1 and �1 and with jumps at a �nite number of points

t = ti,

0 = t0 < t1 < t2 < : : : < tk < tk+1 = 1: (3)

He showed that these equations, with some slight modi�cations, have the

same properties as the equations of the second kind. But if p(t) vanishes

between two of the points ti, for example, p(t) � 0; t 2 [t1; t2], then, as has

been shown by E.Schock [14], the problem of solving the equation (1), (2)

is not well posed in the sense of J.Hadamard and regularization techniques

are required for solving (1), (2). In our opinion it makes sense to apply the

regularization methods even in the case when the function p(t) takes small

values at all points on [t1; t2], i.e.

jp(t)j < �; t 2 [t1; t2]; (4)

where � is a su�ciently small positive constant. Such equations occur, for

example, within the framework of the Newton- Kantorovich scheme

zm+1 = zm � [�0(zm)]
�1�(zm) (5)

for nonlinear integral equations

�(z) � F

 
t; z(t);

Z t

0

k(t; �; z(�))

(t� �)1��
d�

!
= 0: (6)
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Here �0(zm) is a Frechet derivative of �(z) calculated for z = zm, and the

singularities of the Frechet derivative give rise to the third-kind integral equa-

tion. Namely, �0(zm) is a related linear integral operator of the form (2),

where

p(t) = Fv

 
t; zm(t);

Z t

0

k(t; �; zm(�))

(t� �)1��
d�

!
;

h(t; �) = Fw

 
t; zm(t);

Z t

0

k(t; �; zm(�))

(t� �)1��
d�

!
kw(t; �; zm(�))

(for G = G(u; v; w) we use the following notations: Gu =
@G

@u
; Gv =

@G

@v
,

Gw = @G

@w
). Then the element [�0(zm)]

�1�(zm) may be obtained by solving

an integral equation of the form (1), (2), where

f(t) = F

 
t; zm(t);

Z t

0

k(t; �; zm(�))

(t� �)1��
d�

!
:

If the values of Fv become small then the Newton-Kantorovich scheme (5)

leads to the integral equation (1), (2) with an additional peculiarity (4).

For the sake of simplicity, in the sequel we shall assume that in (3) k = 2

and the datas p(t); h(t; �); f(t) are continuously di�erentiable functions for

t 2 [ti; ti+1]; � 2 [tj; tj+1]; i; j = 0; 1; 2. Moreover,

jp(t)j � d1; jp(t)j+ jp0(t)j � d2; t 2 [0; t1] [ [t2; 1]; (7)

jh(t; �)j+ jht(t; �)j+ jh� (t; �)j � d3; jf(t)j+ jf 0(t)j � d4; (8)

t 2 [ti; ti+1]; � 2 [tj; tj+1]; i; j = 0; 1; 2:

In this paper we consider some method of discretization for the problems

(1), (2) with coe�cients satisfying the conditions (4), (7), (8).

2 The discretization on the interval of well-

posedness

In the sequel we need some results of optimization of the Galerkin scheme

for solving operator equations

z +Hz = ' (9)
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in the Hilbert space X.

Let feig1i=1 be some orthonormal basis of X and let Pn be the orthogonal

projector on spanfe1; e2; : : : ; eng, that is

Pn' =
nX
i=1

('; ei)ei;

where (�; �) is the inner product in the Hilbert space X.

We denote by X
�
; 0 < � < 1; a normed subspace of X, which is

imbedded in X with imbedding constant not exceeding one and such that

for any n = 1; 2; : : :

kI � PnkX�!X � cn
��
; (10)

where the constant c is independent of n.

Let us consider the following class of linear operators

H�
� =

n
H : kHkX!X� � �1; kH�kX!X� � �2; k(I �H)�1kX!X � �3

o
;

� = (�1; �2; �3):

The Galerkin method applied to equation (9) consists in solving a uniquely

solvable equation

zG + PnHPnzG = Pn'

and zG is taken as an approximate solution of (9). It is clear that to construct

the approximate solution zG it is necessary to have the following collection

of inner products as an information regarding equation (9):

(ei; Hej); (ei; '); i; j = 1; 2; : : : ; n: (11)

Information of such type is called the Galerkin information.

Keeping in mind (10) and the well-known error estimate of the Galerkin

method (see, for example, [12], p.33) for equation (9) with H 2 H�
� and

' 2 X
�, we have

kz � zGkX � c�k'kX�kI � PnkX�!X � c1;�n
��k'kX�; (12)

where the constants c� and c1;� depend only on �. In the sequel we shall

often use the same symbol c for possibly di�erent constants.

Denote by Card(IP; ") the number of inner products of the form (11)

required to construct an approximate solution zG realizing the accuracy "
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with respect to the norm k � kX . Then by virtue of (12) for H 2 H�
� and

' 2 X
�, we have

Card(IP; ") = n
2 + n = O("�2=�): (13)

In the sequel a point (i; j) on the coordinate plane will be called the

number of the Galerkin functional (inner product) (ei; Hej).

Let us associate to each operator H 2 H�
� the �nite-dimensional operator

H�m =
2mX
k=1

(P2k � P2k�1)HP22m�k + P1HP22m :

We note that the operator H�m acts into the subspace spanfe1; e2; : : : ; e22mg.
To construct this operator it is necessary to have the values of the Galerkin

functionals (ei; Hej) with numbers from the following plane set

�m = f1g � [1; 22m]
2m[
k=1

(2k�1; 2k]� [1; 22m�k]:

If we denote by Card(
) the number of points (i; j) with integer coordinates

belonging to 
 then it is easy to calculate that

Card(�m) � m22m: (14)

For each equation (9) we determine the sequence of elements

z
0 = 0; z

k = z
k�1 + (I +H�mP2n)

�1(P22m'� z
k�1 �H�mz

k�1); (15)

k = 1; 2; 3; 4; n = [2m=3]:

All these elements belong to spanfe1; e2; : : : ; e22mg and to construct z1; : : : ; z4
we need Card(�m) + 22m values of Galerkin functionals

(ei; Hej); (i; j) 2 �m; (ek; '); k = 1; 2; : : : ; 22m: (16)
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Theorem 1 (see [9],p.296) Let z be the solution of equation (9) with H 2
H�

� ; ' 2 X
�. Then

kz � z
4kX � c�2

�2m�k'kX�:

To represent an approximate solution z
4 in the form

z
4 =

22mX
k=1

akek

it su�ces to perform O(m22m) arithmetic operations on the values of Galer-

kin functionals (16).

Corollary 1 Under the conditions of Theorem 1 the number Card(IP; ") of

inner products (16) required to construct an approximate solution z
4 realizing

the accuracy " with respect to the norm k � kX has the order

Card(IP; ") = O("�1=� log1+1=�
"
�1): (17)

When (17) is compared with (13) it is apparent that for equations (9)

with H�
� ; ' 2 X

� the modi�ed Galerkin scheme (15) is more economical

than the standard Galerkin method.

Now we apply the modi�ed scheme (15) to the equation (1), (2) considered

on the interval [0; t1].

First of all we rewrite (1), (2) in the form (9), where

'(t) = f(t)=p(t); (18)

Hz(t) =

Z t

0

H(t; �)

(t� �)1��
z(�)d�; H(t; �) = h(t; �)=p(t): (19)

Thereby as Hilbert space X we take the space L2(0; t1) of square-summable

functions on (0; t1) with the usual norm and inner product. Moreover, as X�

we introduce the space W �
2 (0; t1) of functions g 2 L2(0; t1) for which

kgkW�

2
(0;t1) := kgkL2(0;t1) + sup

0<h<t1

!2(g; h)

h�
<1;
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where

!2(g; h) = !2(g; h; a; b) =

(
sup

0<�<h<b�a

Z b��

a
jg(t+ �)� g(t)j2dt

)1=2

is the integral modulus of continuity of the function g 2 L2(a; b).

If f�i(t) = �i(t; a; b)g1i=1 is the Haar orthonormal basis of piecewise con-

stant functions on the interval [a; b] and S(a;b)
m is the orthogonal projector onto

spanf�1(t; a; b); �2(t; a; b); : : : ; �m(t; a; b)g then it is known [3],p.82, that

kI � S
(a;b)
m kW�

2
(a;b)!L2(a;b) � cm

��
: (20)

This means that for X = L2(0; t1); X
� = W

�
2 (0; t1) and Pm = S

(0;t1)
m the

condition (10) holds.

Let C1(a; b; c; d) be the space of functions G(t; �) which are continuously

di�erentiable on [a; b]� [c; d] with the norm

kGkC1(a;b;c;d) = max
a�t�b

c���d

fjG(t; �)j+ jGt(t; �)j+ jG�(t; �)jg :

Lemma 1 For H 2 C
1(a; b; c; d); 0 < � < 1; and t 2 [a; b] the operators

Hz(t) =
tR
a

H(t;�)

(t��)1�� z(�)d�;

H
�
z(t) =

bR
t

H(�;t)

(��t)1�� z(�)d�

act boundedly from L2(a; b) into W
�
2 (a; b). Moreover,

max
n
kHkL2(a;b)!W�

2
(a;b); kH�kL2(a;b)!W�

2
(a;b)

o
� ckHkC1(a;b;a;b):

The assertion of the lemma follows immediately from Lemma 31.4 and

Theorem 14.2 of [13].

From (7), (8) one can see that the kernel H(t; �) = h(t; �)=p(t) of the in-

tegral operator (19) belongs to the space C1(0; t1; 0; t1) and '(t) = f(t)=p(t)

belongs to W
�
2 (0; t1). Then by virtue of Lemma 1 the Volterra integral op-

erator (19) belongs to H�
� for X = L2(0; t1); X

� = W
�
2 (0; t1) and for some

� depending on d1; d2; : : : ; d4 (see (7), (8)).
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Thus, to the equation (1), (2) considered on the interval [0; t1] and repre-

sented in the form (9), (18), (19), Theorem 1 is applicable. This means that

to construct a piecewise constant approximation

zm(t; 0; t1) =
22mX
k=1

ak�k(t; 0; t1)

for the solution z(t) = z(t; 0; t1) of (1), (2) on the interval [0; t1] realizing the

accuracy � with respect to the norm k � kL2(0;t1) it su�ces to have no more

than

Card(IP; �) = O(��1=� log1+1=�
�
�1) (21)

values of Galerkin functionals (16), where (�; �) is the inner product in L2(0; t1);

ei = �i(t; 0; t1), and H;' are determined by (18), (19).

Using an argument like that in the proof of Lemma 17.1 [9], we can show

that the estimate (21) is order-optimal in the power scale for the class of

equations (1), (2) considered on the interval [0; t1] and having coe�cients

satisfying the conditions (7), (8).

3 The discretization on the interval of

ill-posedness

Now we consider the integral equation (1), (2) on the interval [t1; t2], where

the condition (4) is ful�lled. Moreover, we also admit that the coe�cient

p(t) vanishes on some subset of [t1; t2] having positive Lebesgue measure. As

has been shown by E.Schock, [14] in this case the problem of solving this

equation on the interval [t1; t2] is ill-posed and regularization techniques are

required to construct an approximate solution of (1), (2) on [t1; t2]. In this

section we propose one possible approach to such regularization connected

with Morozov's discrepancy principle for the method of Tikhonov.

First of all, we assume that

h(t; t) 6= 0; t 2 [t1; t2] (22)

and represent (1), (2) in the form

p(t)z(t) +

Z t

t1

h(t; �)

(t� �)1��
z(�)d� = f1(t); t 2 [t1; t2]; (23)
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where

f1(t) = f(t)�
Z t1

0

h(t; �)

(t� �)1��
z(� ; 0; t1)d�;

and z(t; 0; t1) is the solution of (1), (2) on the interval [0; t1]. If ~z(t) =

z(t; t1; t2) is the solution of (23) then the �rst-kind integral equation

Az(t) �
Z t

t1

h(t; �)

(t� �)1��
z(�)d� = f1(t)� p(t)~z(t) (24)

has the solution z(t) = z(t; t1; t2) too. Moreover, from Theorem 31.13 [13]

and (22) it follows that z(t; t1; t2) is the unique solution of (24). Therefore we

can seek an approximate solution of (23) from the �rst-kind integral equation

Az(t) = f1;�(t) (25)

considered as a perturbed equation for (24). Here

f1;�(t) = f(t)�
Z t1

0

h(t; �)

(t� �)1��
zm(� ; 0; t1)d�;

and zm(t; 0; t1) is the piecewise constant approximation for the solution z(t; 0; t1)

constructed in the previous section in such a way that

kz(t; 0; t1)� zm(t; 0; t1)kL2(0;t1) � �: (26)

If, as it is usually in the theory of ill-posed problems, we assume that the

solution of (24) can be sourcewise represented, that is, for some � > 0 and

� > 0

z(t; t1; t2) = (A�A)�v(t); kvkL2(t1;t2) � �; (27)

then the level of perturbation of the right-hand side of (24) is estimated as

kf1(t)� p(t)z(t; t1; t2)� f1;�(t)kL2(t1;t2) �

� k
t1R
0

h(t;�)

(t��)1�� [z(� ; 0; t1)� zm(� ; 0; t1)]d�kL2(t1;t2)+

+�k(A�A)�vkL2(t1 ;t2) � c�: (28)

Here we used (4), (26), (27) and the fact that the Fredholm integral operator

with weakly singular kernel acts boundedly from L2(0; t1) into L2(t1; t2).
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Now we modify an adaption strategy [5] for discretizing the ill-posed

integral equation (25). This strategy, in essence, is as follows: within the

framework of a posteriori parameter choice for Tikhonov's regularization, an

appropriate discretization in dependence of the regularization parameter has

to be chosen.

The same steps as in the previous section lead to the �nite-dimensional

operator

A�m =
2mX
k=1

(S
(t1;t2)

2k
� S

(t1;t2)

2k�1
)AS

(t1 ;t2)

22m�k
+ S

(t1;t2)
1 AS

(t1;t2)

22m

considered as a discretization of the operator A from the left-hand side of

(24), (25).

The Tikhonov algorithm with a parameter selection according to the dis-

crepancy principle for solving (24) has the following form:

1. Initialization: �0; 0 < q < 1;

2. Iteration

(a) � = �k = q
k
�0,

(b) determine a discretization level m such that

m2�2m� = c�
p
�k; (29)

(c) compute the inner products

(�i(�; t1; t2); f1;�(�)) ; i = 1; 2; : : : ; 22m; (30)

in L2(t1; t2);

(d) compute the inner products

(�i(�; t1; t2); A�j(�; t1; t2)) ; (i; j) 2 �m; (31)

required to construct A�m ,

(e) compute z
�
�
k
;m by solving a system of linear algebraic equations

corresponding to the equation of Tikhonov's regularizationmethod

�kz + A
�
�m
A�mz = A

�
�m
f1;� (32)
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until

kA�mz
�
�
k
;m � f1;�kL2(t1;t2) � d�;

where d > c=q.

Theorem 2 Assume that the solution of (23), (24) can be sourcewise repre-

sented in the form (27) for � 2 (0; 1=2]. If � = �N satis�es the discrepancy

principle

kA�mz
�
�
k
;m � f1;�kL2(t1;t2) � d� for k < N; (33)

kA�mz
�
�
N
;m � f1;�kL2(t1 ;t2) � d� (34)

and m is chosen according to (29) for �k = �N then

kz(�; t1; t2)� z
�
�
N
;mkL2(t1;t2) � c�

2�=(2�+1)
:

Remark. Without assumption (27) it is possible to prove the conver-

gence z
�
�;m �! z(�; t1; t2) provided � is determined by (33), (34) and m is

chosen according to (29).

The proof of Theorem 2 is based on the following lemmas.

Lemma 2 Let A denote the operator de�ned by (24). Then

kA�A� A
�
�m
A�mkL2(t1;t2)!L2(t1;t2) � cm2�2m�

;

kAA� � A�mA
�
�m
kL2(t1;t2)!L2(t1;t2) � cm2�2m�

;

k(A� � A
�
�m
)AkL2(t1;t2)!L2(t1;t2) � cm2�2m�

:

Proof. Taking into account Lemma 1, we �nd that for X = L2(t1; t2),

X
� =W

�
2 (t1; t2) the operator A belongs to H�

� . Then using an argument like

that in the proof of Lemma 1 of [10], we get the �rst estimate of our lemma.

The other estimates are established in a similar manner.

11



Lemma 3 Assume that z(t; t1; t2) obeys (27). Then for � 2 (0; 1=2]

kz(�; t1; t2)� z
�
�;mkL2(t1;t2) �

�

2
p
�
+ �

�
c�;�(v) +

cm2�2m�

�
;

where

c�;�(v) = �
1��k(�I + A

�
A)�1z(�; t1; t2)kL2(t1;t2):

Proof. The same steps as in the proof of Lemma 2.5 of [7] lead to the

inequality

kz(�; t1; t2)� z
�
�;mkL2(t1;t2) � �

2
p
�
+ �

�
c�;�(v)+

+k(�I + A
�
A)�1A�y � (�I + A

�
�m
A�m)

�1
A
�
�m
ykL2(t1;t2);

(35)

where

y(t) = f1(t)� p(t)z(t; t1; t2):

Moreover, from standard estimates using the singular value decomposi-

tion of a compact operator T one knows that

k(�I + T
�
T )�1kX!X � �

�1
; k(�I + T

�
T )�1T �kX!X � 1

2
p
�
;

k(�I + T
�
T )�1T �TkX!X � 1:

(36)

On the other hand, from (27), Lemma 2 and (36) we �nd that

k(�I + A
�
A)�1A�y � (�I + A

�
�m
A�m)

�1
A
�
�m
ykL2(t1;t2) �

� �
�1kA�A� A

�
�m
A�mkL2(t1;t2)!L2(t1 ;t2)k(�I + A

�
A)�1A�Az(�; t1; t2)kL2(t1;t2)+

+��1k(A� � A
�
�m
)Az(�; t1; t2)kL2(t1 ;t2) � c�

�1
m2�2m�kz(�; t1; t2)kL2(t1;t2) �

� c
m2�2m�

�
: (37)

The assertion of the lemma follows from (35){(37).
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Lemma 4 If the conditions of Theorem 2 are ful�lled then there exist d1; d2 >

0 such that

d1� � kAz�
N
� ykL2(t1;t2) � d2�;

where z�
N
= (�NI + A

�
A)�1A�y, y(t) = f1(t)� p(t)z(t; t1; t2).

Proof. We follow the proof of Lemma 7 and Lemma 10 in [4], [6].

We put R�(T ) = (�I + T
�
T )�1T �. Then

Az�
N
� y = (A�mz

�
�
N
;m � f1;�)� (I � A�mR�

N
(A�m))(y � f1;�)+

+(AR�
N
(A)� A�mR�

N
(A�m))y:

(38)

Keeping in mind that T (�I + T
�
T )�1 = (�I + TT

�)�1T we have

(AR�
N
(A)� A�mR�

N
(A�m))y =

= �N(�NI + A�mA
�
�m
)�1(AA� � A�mA

�
�m
)(�NI + AA

�)�1Az(�; t1; t2):

Using this formula, (27), (36) and Lemma 2, we obtain the estimate

k(AR�
N
(A)� A�mR�

N
(A�m))ykL2(t1;t2) �

� cm2�2m�k(�NI + AA
�)�1AkL2(t1 ;t2)!L2(t1;t2)kz(�; t1; t2)kL2(t1;t2) �

� c
m2�2m�

p
�N

� c�: (39)

Moreover, from (28) one sees that

k(I � A�mR�
N
(A�m))(y � f1;�)kL2(t1 ;t2) �

� c�N�k(�NI + A�mA
�
�m
)�1kL2(t1;t2)!L2(t1;t2) � c�:

(40)

If � = �N satis�es (34) then combining (38){(40), we have

kAz�
N
� ykL2(t1;t2) � d� + c� � d2�:

On the other hand, the same steps as in the proof of Lemma 10 [4] lead to

the inequality

kA�mz
�
�
N
;m � f1;�kL2(t1;t2) � qd�;

13



where q is the denominator of the geometric progression �k = q
k
�0; k = 1; 2; : : : ; N .

Then combining similarly (38){(40), by the inverse triangle inequality for

d > c=q and for su�ciently large c we have

kAz�
N
� ykL2(t1;t2) � kA�mz

�
�
N
;m � f1;�kL2(t1;t2) � c� � (qd� c)� � d1�:

The lemma is proved.

Proof of Theorem 2. From Lemma 3 it follows that for any �k and m

satisfying (29)

kz(�; t1; t2)� z
�
�
k
;mkL2(t1;t2) �

c�p
�k

+ �
�
kc�;�k(v): (41)

Moreover, we note that inserting the singular value decomposition shows

(see,e.g., [8]) that

kAz�
k

� yk2L2(t1;t2) = �
2�+1
k d

2
�
k
;�(v); (42)

where d�
k
;�(v) itself is bounded for 0 < � � 1=2 and

c�;�
k

(v) fd�
k
;�(v)g�2�=(2�+1) � c: (43)

Now if �N satis�es (34) and m is chosen according to (29) for �k = �N then

from Lemma 4 and (42), (43) we �nd that

�p
�N

= �

(
d�

N
;�(v)

kAz�
N
� ykL2(t1;t2)

)1=(2�+1)

�

� �

(
d�

N
;�(v)

d1�

)1=(2�+1)

� c�
2�=(2�+1)

; (44)

�
�
Nc�;�N (v) = c�;�

N
(v)

 
kAz�

N
� ykL2(t1;t2)

d�
N
;�(v)

!2�=(2�+1)

�

� c�;�
N
(v) fd�

N
;�(v)g�2�=(2�+1)

(d2�)
2�=(2�+1) � c�

2�=(2�+1)
: (45)

The assertion of the theorem follows from (41), (44), (45) .

To estimate the number Card(IP; �2�=(2�+1)) of inner products of the form

(30), (31) required to construct an approximate solution z
�
�
N
;m realizing the

14



accuracy �
2�=(2�+1) with respect to the norm k � kL2(t1;t2) we assume that �N

satisfying (34) has the order �2�2� for some � 2 (0; 1=2). This is a su�ciently

natural assumption because (see, e.g.[1]) the regularization parameter � is

normally chosen in dependence of � such that

lim
�!0

�
2
�
�1 = 0; lim

�!0
� = 0:

Keeping in mind (29) for �N = q
N
�0 = O(�2�2�), we have N = O(log 1

�
);

m22m = O(��(2��)=� log1+1=� 1
�
). Then the total number Card(IP; �2�=(2�+1))

of inner products of the form (30), (31) required to construct an approximate

solution with accuracy �2�=(2�+1) within the framework of the algorithm (29){

(32) is no more than

Card(IP; �2�=(2�+1)) � Nm22m = O

�
�
�(2��)=� log2+1=� 1

�

�
: (46)

To illustrate some advantages of considering (23) as an ill-posed problem

we assume for the moment that p(t) � �
q
; t 2 [t1; t2] and apply to (23) the

modi�ed scheme (15) which is order-optimal in the sense of amount of used

Galerkin information for Volterra integral equations of the second kind with

weakly singular kernels. Then by virtue of Theorem 1 and Corollary 1, for

' = f1=�
q
; " = �

2�=(2�+1), we have

Card(IP; �2�=(2�+1)) = O

�
�
�q� 2�

(2�+1)� log1+1=� 1

�

�
: (47)

When (47) is compared with (46) it is apparent that, for example, for q � 2=�

the discretization scheme (29){(32) is more e�cient than (15) even if p(t) 6= 0,

t 2 [t1; t2].

4 The discretization on the next interval of

well-posedness

In line with our assumptions (7), (8) jp(t)j � d1 on the next interval [t2; 1]

and we can rewrite (1), (2) in the form (9) again, where

'(t) =
1

p(t)

"
f(t)�

Z t1

0

H(t; �)z(� ; 0; t1)

(t� �)1��
d� �

Z t2

t1

H(t; �)z(� ; t1; t2)

(t� �)1��
d�

#
;

(48)

15



Hz(t) =

Z t

t2

H(t; �)

(t� �)1��
z(�)d�; H(t; �) = h(t; �)=p(t): (49)

As the perturbed equation for (9), (48), (49) we take the equation

z(t) +

Z t

t2

H(t; �)

(t� �)1��
z(�)d� = '�(t); (50)

where

'�(t) =
1

p(t)

"
f(t)�

Z t1

0

H(t; �)zm(� ; 0; t1)

(t� �)1��
d� �

Z t2

t1

H(t; �)z��
N
;m(�)

(t� �)1��
d�

#
:

Then by virtue of (26) and Theorem 2 we �nd

k'� '�kL2(t2;1) � c�
2�=(2�+1)

:

Here � is the parameter of sourcewise representation (27). Keeping in mind

that the operator from left-side of equations (9), (48), (49) and (50) has

the inverse operator which acts boundedly from L2(t1; 1) into L2(t1; 1), for

solutions z(t; t2; 1) and z�(t; t2; 1) of these equations we have

kz(�; t2; 1)� z�(�; t2; 1)kL2(t2;1) � ck'� '�kL2(t2;1) � c�
2�=(2�+1)

:

By virtue of the same reasons as in the section 2, we �nd that the Volterra

integral operator from (50) belongs toH�
� for X = L2(t2; 1); X

� = W
�
2 (t2; 1)

and '� belongs to W
�
2 (t2; 1). Thus, from Theorem 1 it follows that to

construct a piecewise constant approximation z�;m(t; t2; 1) for the solution

z�(t; t2; 1) of (50) realizing the accuracy �
2�=(2�+1) with respect to the norm

k � kL2(t2;1) it su�ces to have no more than

Card(IP; �2�=(2�+1)) = O

�
�
� 2�

(2�+1)� log1+1=� 1

�

�
(51)

values of Galerkin functionals (16), where (�; �) is the inner product in L2(t2; 1);

ei = �i(t; t2; 1) and H; ' = '� are determined by (50).

In such a way, the piecewise constant function

zm(t) =

8>>>>>><
>>>>>>:

zm(t; 0; t1); t 2 [0; t1)

z
�
�
N
;m(t); t 2 [t1; t2)

z�;m(t; t2; 1); t 2 [t2; 1]

16



gives the approximate solution of (1), (2) with accuracy O(�2�=(2�+1)) in

regard to the norm k � kL2(0;1). From (21), (46) and (51) it follows that

to construct this approximate solution it su�ces to have no more than

O(��(2��)=� log2+1=� 1
�
) values of Galerkin functionals of the form (16), where

� 2 (0; 1=2) is determined in the act of choosing the regularization parameter

within the framework of Morozov's discrepancy principle.
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