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Abstract. The main purpose of the present paper is to prove approximation and com-
mutator properties for projections mapping periodic Sobolev spaces onto shift-invariant

spaces generated by a �nite number of compactly supported functions. With these prereq-

uisites at hand and using certain localization techniques, we then characterize the stability

of generalized Galerkin-Petrov schemes for solving periodic pseudodi�erential equations in

terms of elliptic type estimates of the numerical symbol. Moreover, we establish optimal

convergence rates for the approximate solutions with respect to the Sobolev norms.

1 Introduction

It is well known that one of the central problems of the numerical analysis for pseudo-
di�erential equations is to �nd conditions ensuring the stability of the numerical scheme

in consideration. One possible approach to stability analysis for variable symbols is a re-
duction to the case of constant symbols by means of certain localization techniques which
could be viewed as a numerical counterpart to the well known principle of freezing coef-
�cients in the theory of partial di�erential equations. The main ingredients for applying

such techniques are certain superapproximation results for the projections de�ning the

numerical schemes.

Of course, the basic idea of localizing techniques has a long history in theory as well as in
the numerical analysis of partial di�erential equations. The �rst papers addressing this
particular aspect seem to be [Si1], [Si2], where classical Galerkin schemes with trigono-
metric trial functions for singular integral equations are investigated. The analysis of
piecewise linear spline collocation for Cauchy singular integral equations in [PS] already

involved implicitly certain discrete commutator properties and localization arguments as
well which also played then a crucial role in various subsequent papers treating one- and
multidimensional problems (see e.g. [AW2], [P], [PR1], [PR2], [S2], [CM1], [PSr1], [PSr2],

[DPS], [MP], [SW], [NS1]). An explicit abstract formulation of these principles was given
in [P1], [P]. For an overview of the various univariate results see also [PSi].

The main purpose of the present paper is to prove approximation and commutator prop-

erties for projections mapping periodic Sobolev spaces onto shift-invariant spaces gener-

ated by a �nite number of compactly supported functions. (Note that such spaces are

frequently used as trial spaces in numerical procedures for engineering applications, see
[MP].) To our knowledge, these results (see Theorems 2.1 through 2.4) are new in the

present form and generality and should be of some independent interest. In particular,
they cover all results in the univariate case and for uniform grids known in the literature

(e.g. for spline or classical wavelet spaces). With these prerequisites at hand we charac-
terize in the last section the stability of generalized Galerkin-Petrov schemes de�ned by

the aforementioned projections in terms of elliptic type estimates of the numerical sym-

bol. Further, we establish optimal convergence rates for the approximate solutions with

respect to the Sobolev norms. Note that our results can be extended to the corresponding
spaces of functions de�ned on Rn or Tn, respectively. Moreover, the estimates obtained

in the present paper are important in the case of function spaces over subdomains of Rn,

since the crucial ingredients of our analysis are local in nature.
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2 Notations and the main approximation results

Let us denote by k � kt the norm of the periodic Sobolev space H t(T) of order t 2 R

on the torus T := R=Z. The main ingredients for applying localization techniques to

pseudodi�erential equations with variable symbols are certain superapproximation results

for the projections (Pm)m2N0 de�ning the numerical schemes. These results are sometimes

referred to as discrete commutator properties and have the form

k(1 � Pm) f Pm uks � c 2�m(t�s+�) kPm ukt (CP I)

as well as

kPm f (1 � Pm) uks � c �m 2�m(t�s) kukt (CP II)

where c and � are positive constants independent of u 2 H t(T) (but depending on s and

t, in general). The orders t and s satisfy t � s and are restricted by the choice of the
projections. Here f is a smooth periodic function, (�m)m2N0 tends to zero as m!1 and
Pm is the projection onto a �nite dimensional space de�ned over a uniform mesh with

mesh size h = 2�m. In view of multiresolution analysis, we have chosen the step size to

be a power of two. From now on, we use the letter c to denote a generic constant the
value of which varies from instance to instance. In addition, we say that the projections
(Pm)m2N0 have the approximation property for s � t if and only if

k(1� Pm) uks � c 2�m(t�s) kukt (AP)

holds for any u 2 H t(T). Another important property is the inverse property for s � t

which means

kPm ukt � c 2m(t�s) kPm uks : (IP)

The main purpose of this paper is to prove (CP I) and (CP II) for appropriate families

of projections. For M 2 N, let

�M :=Z\ [�M

2 ;
M

2 ) :

We choose a sequence � := (�j)j2�M of generators for the spaces of approximating func-
tions satisfying

�j 2 L2 :=

(
f 2 L2(R) :

X
k2Z

jf(�+ k)j 2 L2([0; 1])

)

for j 2 �M . It is easy to see that L2 � L1(R) and therefore f̂ 2 C(R) for f 2 L2, where

f̂ (x) :=

Z
R

e�2�ixy f(y) dy
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is the Fourier transform on L2(R). For the step size h := 1
N
; N := 2m with m 2 N0, we

de�ne the approximation spaces

Sm(�) := Lin
�
�
j

k;m
:= 2

m
2 [�j(2m � �k)] : k 2 �N ; j 2 �M

	
: (1)

Hereby the periodization operator [ � ] is given by [f ] :=
P

l2Zf(� + l) for f 2 L2.

Next, we consider a family of distributions � := (�j)j2�M 2
�
H�s0(R)

�M
; s0 � 0; with

compact support to de�ne the functionals

�l
k;m

(f) := 2�
m
2 �l(f(2�m(�+ k))) ; l 2 �M ; k 2 �N ; (2)

for f 2 Hs
0

(T). We require that Sm(�) � Hs
0

(T) and

�r(�j(� � k)) = �r;j �0;k (3)

for r; j 2 �M ; k 2Z. Therefore, the operators

Qm(f) :=
X
k2�N
l2�M

�l
k;m

(f) �l
k;m

(4)

are projections de�ned for su�ciently smooth functions f . From now on, we denote by
Pm the orthogonal projections onto Sm(�) in H0(T) = L2(T). We remark that these
projections have a representation like (4), too, provided the functions � := (�j)j2�M have

compact support and their integer translates form a Riesz bases. Indeed, we have

Pm(u) =
X
k2�N
l2�M

hu ; �l
k;m
i l

k;m

for u 2 L2(T) with ( j)j2�M de�ned by

�
 ̂j(pM + l + x)

�
l2�M ;j2�M

:=

�
�̂j(pM + l + x)

�
l2�M ;j2�M

 X
m2Z

�̂r(m+ x)�̂j(m+ x)

!�1

r2�M ;j2�M

(5)

for p 2 Z. We will require the linear independence of the generators which is stronger

than Riesz stability. A family of compactly supported functions � := (�j)j2�M is called

linearly independent if the mapping ((cj
k
)j2�M )k2Z7!

P
j2�M ; k2Z

c
j

k
�j(� � k) is injective

on the space of sequences ofM�dimensional complex vectors. It is known ( cf. [DBDVR])

that in the univariate case there always exist linearly independent generators if the spaces

Sm(�) are generated by compactly supported functions. By de�nition the functions � :=
(�j)j2�M are said to satisfy the Strang-Fix condition of order d 2 N if there exists a �nite



4 S. Prössdorf, J. Schult / Approximation and commutator properties

linear combination ~� of integer translates of the (�j)j2�M which ful�ls the usual Strang-
Fix condition of order d, i.e. ~�(k)(l) = 0 for any l 2Znf0g, k = 0; : : : ; d�1, and ~�(0) 6= 0.
The integer translates of ~� reproduce algebraic polynomials up to degree d � 1 if ~� is a

compactly supported continuous function of bounded variation satisfying the Strang-Fix

condition of order d (cf. [DeVL]).

For the approximating functions, we require

Hypothesis: There exist compactly supported functions  := (j)
j2�M

and M � M

matrices ! := (!l)l2Zwith exponential decay such that both �(x) :=
P

l2Z!l e
2�ilx is

invertible on [0; 1] and�
�j
�
j2�M

= ! �0
M

�
j
�
j2�M

:=
X
l2Z

!l
�
j(� � l)

�
j2�M

: (6)

The integer translates of  have to be linearly independent. Further, there exist numbers

0 < � < 1; d; d0 2 N0 with d0 � d satisfying

1. Sm(�) � Hs(T)\Hs
0

(T) for any s < d + �; m 2 N0 where s0 is the Sobolev index

of the functionals �;

2. the integer translates of � reproduce algebraic polynomials up to degree d0 2 N0;

3. Sm(�) ful�l the inverse property, i.e. kumkt � c 2m(t�s) kumks for any um 2 Sm(�),
s � t < d+ �.

The third condition implies the inverse property of the projections and is ful�lled for

generators satisfying De�nition 4.4 (cf. also Theorem 3.1 in [PSch]). In particular, splines

of order r and defect M , i.e. piecewise polynomials of degree less than or equal to r � 1
which are r � M � 1 times continuously di�erentiable, ful�l the inverse property for
s � t < r�M+ 1

2
(cf. Example 3.3 in [PSch]). Further, if � in (5) satis�es the Hypothesis

then so does  .

Now we are in the position to formulate the main theorems.

Theorem 2.1 Let � ful�l the Hypothesis. Then the projections (Qm)m2N0 de�ned by (4)

satisfy (AP) and (CP II) for s = 0 and any s0 � t � d0 + 1.

In contrast to [DPS], to prove Theorem 2.1 we do not need any re�nability of the gener-

ators, i.e. the spaces Sm(�) are not required to be nested.

Next, we give a generalization under the additional assumptions that the projections are
orthogonal in H0(T) and the spaces Sm(�) are nested, i.e. in the case when � is re�nable.

Theorem 2.2 Let � satisfy the Hypothesis and let Sm(�) � Sm+1(�) for m 2 N. Then

the orthogonal projections (Pm)m2N0 onto Sm(�) ful�l the approximation property (AP)
for �d0 � 1 � s < d+ �, �d� � < t � d0 + 1 and s � t.
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Note that Theorem 2.2 and the subsequent Corollaries 2.3, 2.5, 2.8 and Theorem 2.4
generalize the results obtained in [DPS], Sect. 5, for M = 1, at least in the univariate

case. Moreover, here the range of Sobolev indices is larger than in the aforementioned

paper.

If the generators are splines of order r with knots of multiplicity M , then we are in the

situation of [MP]. In this case, Theorem 2.2 is valid with d0 = r � 1, d = r �M and
� = 1

2
. Then the results can be obtained from Theorem 3.4 in [MP].

Corollary 2.3 Let � satisfy the Hypothesis and let Sm(�) � Sm+1(�) for m 2 N. Then

the projections (Qm)m2N0 de�ned by (4) satisfy (AP) for any s � t with s0 � t � d0 + 1,
0 � s < d + �.

Proof. Using the inverse estimate we conclude that

k(1�Qm)uks � k(1� Pm)uks + c 2msk(1 �Qm)uk0 � c 2�m(t�s)kukt (7)

for u 2 H t(T).

Now we turn to the commutator property (CP I) for the orthogonal projections.

Theorem 2.4 Let � satisfy the Hypothesis and let the orthogonal projections (Pm)m2N0
onto Sm(�) ful�l the approximation property for s � t with 0 � t � d0+1 and 0 � s < d+�.
Then the orthogonal projections (Pm)m2N0 have the following properties:

i) (CP I) is valid for �d0 � 1 � s � t < d+ �;

ii) (CP II) is valid for s � t � d0 + 1 and �d� � < s < d+ �.

Using the boundedness of the projections (Qm)m2N0 in k � ks for s
0 � s < d + �, we infer

from Theorem 2.4

Corollary 2.5 Let � ful�l the Hypothesis and let Sm(�) � Sm+1(�) for m 2 N. Then the

projections (Qm)m2N0 satisfy (CP I) for s0 � s � t < d + �.

Proof. The assertion follows directly from the identity

1�Qm = (1� Pm) +Qm(Pm � 1) : (8)

The proofs of Theorems 2.1, 2.2 and 2.4 are deferred until the next section.

The interpolation property of Sobolev spaces allows to reduce the proofs of (CP I) and
(CP II) from di�erent orders of Sobolev spaces to the order s = 0.
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Proposition 2.6 Let (Rm)m2N0 be a family of projections and let 0 � a � b � c be real

numbers such that for any

0 � s < b; a � t � c with s � t (9)

the approximation property (AP) and for 0 � s � t < b the inverse property (IP) are

satis�ed. Then we infer from (CP I) (resp. (CP II) ) for s = 0 and a � t � c that (CP I)

(resp. (CP II) ) is valid for any s and t restricted by (9).

Proof. Let (CP I) be satis�ed with s = 0 and a � t � c. Assume 0 < s < b and s � t.
For s < t choose � > 0 such that s+ � < t and s+ � < b. We obtain

k(1 �Rm) f Rm uks+� � c 2�m(t�s��) kRm ukt (10)

by the approximation property. In the case s = t, we conclude (10) from the uniform

boundedness of the projections in k � ks+� with s + � < b and from (IP). Using the
interpolation inequality

k � ks � c k � k
1� s

s+�

0 k � k
s

s+�

s+� (IE)

we conclude from (CP I) for s = 0 and (10) that

k(1�Rm) f Rm uks � c 2�m(t�s) 2�m�
�

s+� kRm ukt :

For (CP II) the assertion follows directly from the inverse property.

Let ( ~Rm)m2N0 be another family of projections with the same ranges as (Rm)m2N0, i.e.
R( ~Rm) = R(Rm) for anym 2 N0, and such that k ~Rmk0 � c. Then all properties excepting
(CP II) remain valid with (Rm)m2N0 replaced by ( ~Rm)m2N0. More precisely, because of

(8), the following holds.

Corollary 2.7 If the (Rm)m2N0 ful�l the assumptions of Proposition 2.6 then so do the

( ~Rm)m2N0. Further we infer from (CP I) for (Rm)m2N0 and s = 0; a � t � c that (CP I)

is valid for ( ~Rm)m2N0 and any s and t restricted by (9).

Further, we infer from Proposition 2.6, Theorem 2.1 and Corollary 2.3

Corollary 2.8 Let � satisfy the Hypothesis and let Sm(�) � Sm+1(�) for m 2 N. Then

the projections (Qm)m2N0 de�ned by (4) satisfy (CP II) for any s � t with s0 � t � d0+1,
0 � s < d + �.
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Remark 2.9 Let (Rm)m2N0 be a family of projections satisfying (CP I) and (CP II). Let
L : H t(T)! H t�r(T) be a bounded operator with r 2 R given. Using the identity

Rm f L� f Rm L = Rm f (1�Rm) L � (1 �Rm) f Rm L ;

we obtain from (CP I) and (CP II) that

kRm f L u� f Rm L uks�r � c 2�m(t�s)�mkukt (11)

is valid for the corresponding Sobolev indices s � t, where the constant does not depend

on u 2 H t(T).

Property (11) has been proved in [SW] for the case of qualocation projections Rm, peri-

odic pseudodi�erential operators L and functions u belonging to subspaces of smoothest

splines. In this case, property (CP I) follows from Theorem 2.1 in [SW], however, Theo-
rem 2.1 can not be applied, since the functionals occuring in the qualocation do not have
compact support. Nevertheless, it is our conjecture that (CP II) is satis�ed for qualo-

cation projections, too. If so, then, for the qualocation method studied in [SW], results
similar to Theorems 4.8 and 4.10 of the present paper can be derived.

3 Proof of the Theorems

The proof of Theorem 2.1 is based on techniques of [DPS], but uses no re�nability. It will
be divided into two steps. We show �rst (AP) and then (CP II). To this end we need the
lth forward di�erences of u de�ned by

(�l

h
u)(x) :=

lX
j=0

�
l

j

�
(�1)l�ju(x+ jh)

for h 2 R. As usually k � k0(
) denotes the L2�norm relative to some domain 
 � R.

The corresponding lth order modulus of continuity is given by

!l(u; t;
) := sup
jhj�t

k�l

h
uk0(
h;l) ;

where


h;l := fx 2 
 : x+ jh 2 
 ; j = 0; : : : ; lg :

For 
 = T we write !l(u; t) instead of !l(u; t;T). Now we are ready to introduce the

Besov norms

kukBt
2;2
(
) := kuk0(
) + jujt(
)
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where for any �xed l 2 N; l > t

jujt(
)
2 :=

1X
j=0

22jt !l(u; 2
�j ;
)2 :

In the following we need the norm equivalence (see e.g. [DP], [T])

k � kt(
) � k � kBt
2;2
(
) (12)

for any 0 < t < l where 
 is an interval. We remind that � 2 H�s0(R) with support in
� := (�a; a) for some �xed a 2 N.

Proof of Theorem 2.1. Step 1. For any t � s0 we obtain from (12)

j�l
k;m

(u)j2 = j2�
m
2 �l(u(2�m(�+ k)))j2 � c 2�m ku(2�m(�+ k))k2

t
(�)

� c

 
kuk0(�

m

k
)2 +

1X
j=0

22tj !d0+1(u; 2
�m�j ;�m

k
)2

!

� c
�
kuk0(�

m

k
)2 + 2�2tmkukBt

2;2
(�m

k
)2
�

(13)

with �m
k
:= 2�m (k + �). By our hypothesis

�
�
j

k;m

�
j2�M

=
X
i2�N

!m
i�k

�

j

i;m

�
j2�M

(14)

is valid with

!m
k
:=
X
p2Z

!pN+k

where N = 2�m. Using the exponential decay of the coe�cients, one concludes that

X
k2�N

X
i22m

l;

k!m
i�kk � c ;

X
l2�N

X
i22m

l;

k!m
i�kk � c (15)

with 2m

l;
:= fi 2 �N : [j2�M supp

j

i;m
\2m

l
6= ;g, 2 := [�1

2;
1
2 ] and 2

m

l
:= 2�m(l +2).

Lemma 3.1 For 0 � s � t; s0 � t; s < d + �; u 2 H t(T) we have

kQmuks(2
m

l
) � c 2ms

X
k2�N

0@X
i22m

l;

k!m
i�kk

1A�kuk0(�mk ) + 2�mt kukBt
2;2
(�m

k
)
�

:
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Proof. From our hypothesis and (14) we deduce that

k�j
k;m
ks(2

m

l
) � c 2ms

X
i22m

l;

k!m
i�kk :

Since

kQmuks(2
m

l
) �

X
k2�N
j2�M

j�j
k;m

(u)j k�j
k;m
ks(2

m

l
) ;

the assertion follows from (13).

Because of the linear independence of the integer translates of  there exist functionals

(F j)j2�M with compact support F := [j2�M supp F
j such that

jF j(g)j �

Z
F

jg(x)j2 dx

for g 2 L2(R) and that

Gmu :=
X
k2�N
j2�M

F
j

k;m
(u) j

k;m

are projections (cf. [B-AR]).

Lemma 3.2 Let 
 � R be a �xed bounded interval. Then we have, for 0 � s � t � d0+1
with s < d + �,

kGmu� ukBs
2;2
(
m

k
) � c 2�m(t�s) kukBt

2;2
(e
m

k
)

for any u 2 H t(T) where e
m

k
:= [l2�NfF

m

l
: [j2�M supp 

j

l;m
\ 
m

k
6= ;g [ 
m

k
.

Proof. Without loss of generality, we may assume that m is su�ciently large such that
j
m

k
j < 1. Because of ii) in the Hypothesis the Gm reproduce all polynomials up to degree

d0 on 
m

k
, and hence,

kGmu� ukBs
2;2
(
m

k
) � kGm(u� p)kBs

2;2
(
m

k
) + ku� pkBs

2;2
(
m

k
) : (16)

Thus, when s = 0, we conclude that

kGmu� uk0(

m

k
) � c inf

p2�d0

ku� pk0(e
m

k
) (17)

where �d0 is the space of all polynomials of degree less than or equal to d0. A Whitney

type estimate (cf. [DP]) ensures the existence of a polynomial p0 2 �d0 such that
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ku� p0k0(e
m

k
) � c !d0+1(u; 2

�m; e
m

k
) � c 2�mt

 
1X
j=0

22jt !d0+1(u; 2
�j; e
m

k
)2

! 1

2

(18)

� c 2�mt kukBt
2;2
(e
m

k
) : (19)

Using the inverse property we obtain, by (19),

kGm(u� p0)kBs
2;2
(
m

k
) � k

X
j2�M ; l2
m

k;

F
j

l;m
(u� p0) 

j

l;m
ks

� c 2ms ku� p0k0(e
m

k
) � c 2�m(t�s) kukBt

2;2
(e
m

k
) : (20)

The estimate !d0+2(u; t;
) � ckuk0(
) reveals

1X
l=0

22sl!d0+2(u� p0; 2
�l;
m

k
)2

=
mX
l=0

22sl !d0+2(u� p0; 2
�l;
m

k
)2 +

1X
l=m+1

22sl !d0+2(u� p0; 2
�l;
m

k
)2

� c

mX
l=0

22sl ku� p0k0(

m

k
)2 + 2�2m(t�s)

1X
l=m+1

22sl 22l(t�s) !d0+2(u� p0; 2
�l;
m

k
)2

� c 2�2m(t�s) kukBt
2;2
(
m

k
)2 + 2�2m(t�s)

1X
l=m+1

22lt !d0+2(u; 2
�l;
m

k
)2

� c 2�2m(t�s) kukBt
2;2
(
m

k
)2 (21)

where we have used �d0+2
h

p0 = 0. Thus, the assertion follows from (16), (20) and (21).

Now we are ready to prove the approximation property. Using Qmu � u = �Qm(Gmu�
u) + (Gmu� u), we infer from the Lemmas 3.1 and 3.2 that

kQmu� uk20 � c
X
l2�N

kQmu� uk0(2
m

l
)2

� c 2�2mt
X
l2�N

0@X
k2�N

0@X
i22m

l;

k!m
i�kk

1A kukBt
2;2
(e�m

k
) + kukBt

2;2
(e2m

l
)

1A2

� c 2�2mt
X
l2�N

0@X
k2�N

X
i22ml;

k!m
i�kk

1A0@X
k2�N

X
i22ml;

k!m
i�kk kukBt

2;2
(e�m

k
)2

1A
+c 2�2mt

X
l2�N

kukBt
2;2
(e2m

l
)2

� c 2�2mt
X
k2�N

kukBt
2;2
(e�m

k
)2 � c 2�2mtkuk2

B
t
2;2
� c 2�2mtkuk2

t
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where we have used diam e�m
k
_=2�m.

Step 2. The same arguments as in the proof of Theorem 5.4 in [DPS] with rl;k :=P
i22m

k;
k!m

i�lk, Nm := 2
m
2 , Kk;m :=

�
l 2 �N : jl� kj < 2

m
2

	
, d replaced by d0, imply

(CP II) for s = 0.

Proof of Theorem 2.2. First we show the assertion for 0 � s � t. A crucial point is to

prove the equivalence of the norm

kuk2
�;t

:= kuk20 +
X
m2N

22mtk(Pm � Pm�1) uk
2
0 (22)

and the Sobolev norm of order t on [m2N0Sm(�). By Theorem 2.1 the orthogonal projec-

tions Pm onto Sm(�) satisfy for 0 � t � d0 + 1 the estimate

k(1� Pm)fk0 � c 2�mt kfkt ; f 2 H t(T) : (23)

Now we introduce the norm jjj � jjjd0+1 de�ned by jjjf jjjd0+1 := kf (d
0+1)k0 + jf(0)j for

f 2 Hd
0+1(T). Using the norm equivalence of k � kd0+1 and jjj � jjjd0+1 and the fact that the

constant functions are contained in Sm(�), we obtain from (23) the relation

k(1� Pm)fk0 � c 2�m(d
0+1) kf (d

0+1)k0 ; f 2 Hd
0+1(T) : (24)

From (24) we get similarly to the proof of Proposition 4.1 in [DK] that

k(1� Pm)fk0 � c !d0+1(f; 2
�m) (25)

for f 2 Hd
0+1(T).

Lemma 3.3 For any u 2 Hd+s(T), 0 � s � 1, we have

!d+1(u; t) � c td+s kukd+s :

Proof. For u 2 Hs(T), 0 � s � 1, it is known that

!1(u; t)
2 � c

1

t

Z
t

�t

Z 1�h

0

jf(x+ h)� f(x)j2 dx dh

� c t2s
Z 1

0

Z 2

�1

jf(x)� f(y)j2

j sin(�(x� y))j1+2s
dx dy � c t2skuk2

s
:

Therefore, we obtain for any u 2 Hd+s(T) that
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!d+1(u; t) � c td !1(u
(d); t) � c td+sku(d)ks � c td+s kukd+s :

Let 0 � s < �. From the inverse property and Lemma 3.3 we conclude that

!d+1(um; t) � c minfkumk0 ; t
d+s kumkd+sg � c minf1 ; (2m t)gd+s kumk0 (26)

for um 2 Sm(�). In view of (25) and (26), Theorem 4.1 of [DK] applies and yields

kukt _=kuk�;t ; u 2 [m2N0Sm(�)

for any �xed 0 � t < d + �. By (23) the smooth functions are contained in

closk�k�;t [m2N0 Sm(�). Hence, the norm equivalence is valid even on H t(T). Arguing
as in the proof to Theorem 5.1 of [DPS], we obtain for 0 � s � t � d0+1, s < d+ �, that

k(1� Pm)uk
2
s
� c

 
k(1� Pm)uk

2
0 +

1X
j=1

22js k(Pj � Pj�1)(1� Pm)uk
2
0

!

= c

 
k(1� Pm)uk

2
0 +

1X
j=m+1

22js k(Pj � Pj�1)(1� Pm)uk
2
0

!

� c

1X
j=m+1

22j(s�t) kuk2
t
� c 2�2m(t�s) kuk2

t

where u 2 H t(T). In the last step we have used (23). It remains to prove the case s < 0.
If s � t < 0, then

ku� Pmuks = sup
06=v2H�s(T)

hu� Pmu ; vi

kvk�s
= sup

06=v2H�s(T)

hu ; v � Pmvi

kvk�s

� kukt sup
06=v2H�s(T)

kv � Pmvk�t
kvk�s

� c 2m(s�t) kukt :

In the case s < 0 � t � d0 + 1 we obtain

ku� Pmuks = sup
06=v2H�s(T)

hu � Pmu ; vi

kvk�s
= sup

06=v2H�s(T)

hu� Pmu ; v � Pmvi

kvk�s

� ku� Pmuk0 sup
06=v2H�s(T)

kv � Pmvk0
kvk�s

� c 2m(s�t) kukt :
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Proof of Theorem 2.4. Step 1. For any h > 0, we have

�d+1
h

f um(x) =

d+1X
k=0

�
d+ 1

k

�
�k

h
f(x) �d+1�k

h
um(x+ kh) :

Hence,

k�d+1
h

f umk0(
)
2 �

c

 
d+1X
k=1

k�k

h
fk0;1(
)

2 k�d+1�k
h

umk0(
h;k)
2 + kfk0;1(
)

2 k�d+1
h

umk0(
h;d+1)
2

!

where kfkl;1(
) := sup
��l supx2
 jf

(�)(x)j. Now we conclude from (17) and (18), with d0

replaced by d, that

kGmfum � fumk0(2
m

k
)2 = kGm(f � f(kh))um � (f � f(kh))umk0(2

m

k
)2

� c !d+1((f � f(kh))um; 2
�m; e2m

k
)2

� c
h
2�2m kfk21;1 !d+1(um; 2

�m; e2m

k
)2

+

d+1X
q=1

2�2mq kfk2
q;1 !d+1�q(um; 2

�m; e2m

k
)2
i
:

Since um 2 Hd(T) we have !l(um; �;
) � c � l kumkd(
) for 0 � l � d. So, we infer

kGmfum � fumk0(2
m

k
)2

� c kfk2
d+1;1

�
2�2m !d+1(um; 2

�m; e2m

k
)2 + 2�2m(d+1) kumkd(e2m

k
)2
	

and therefore

kGmfum � fumk
2
0 � c kfk2

d+1;1

�
2�2m !d+1(um; 2

�m)2 + 2�2m(d+1) kumk
2
d

	
:

For �xed s00 with d < s00 < d + �, we obtain

kGmfum � fumk
2
0

� c kfk2
d+1;1

n
2�2m(s

00+1) 2�2ms00 !d+1(um; 2
�m)2 + 2�2m(d+1) kumk

2
d

o
� c kfk2

d+1;1 2�2m(d+1)

 
1X
l=0

2�2ls
00

!d+1(um; 2
�l)2 + kumk

2
d

!
� c kfk2

d+1;1 2�2m(d+1) kumk
2
s00
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where we have used (12). For � := 1 � � < d + 1 � s00, we conclude from the inverse
property that

kPmfum � fumk0 � kGmfum � fumk0

� c kfkd+1;1 2�m� 2�mt kumkt

for any t � s00. Hence, by Proposition 2.6, the assertion i) is shown for 0 � s � t < d+ �.

Thus, it remains to consider the case �d0 � 1 � s < 0. Applying the approximation

property, we obtain

k(1 � Pm) f Pmuks � c 2ms k(1� Pm) f Pmuk0 :

If t � 0 the assertion follows from (CP I) for s = 0. Otherwise we apply (CP I) with
~t := 0 and employ the inverse property.

Step 2. Next, we prove the second part of Theorem 2.4. Because of part i) there exists
� > 0 such that

kPm f (1� Pm) uk
2
0 � k(1� Pm) f Pm f (1� Pm) uk0 kuk0

� c 2�m� kPm f (1 � Pm) uk0 kuk0 � c 2�m� kuk20

for any u 2 L2(T). Let 0 � s � t � d0 + 1 with s < d + � be �xed. Then we conclude
from (IP) and (AP) that

kPm f (1� Pm) uks � c 2ms kPm f (1� Pm) uk0

� c 2�m(�=2�s) k(1� Pm) uk0 � c 2�m(�=2+t�s) kukt

provided u 2 H t(T).

In the case s < 0 we proceed as in the proof of Corollary 5.2 in [DPS] to obtain

kPm f (1 � Pm)uks = sup
kvk�s=1

h(1� Pm)u ; (1 � Pm) f Pmvi

� k(1� Pm)uks sup
kvk�s=1

k(1� Pm) f Pmvk�s

� c 2�m(t�s+�) kukt sup
kvk�s=1

kPmvk�s � c 2�m(t�s+�) kukt

where we have applied (AP) to the �rst factor and Theorem 2.4, i) to the second factor

on the right hand side of the second inequality.
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4 Applications to pseudodi�erential equations

In the present section, we establish some convergence and stability results for numerical

methods to solving periodic pseudodi�erential equations. First we introduce the class

of pseudodi�erential operators which will be studied throughout the remainder of this

paper. For r 2 R we denote by Sr(T) the class of symbols which consists of functions

� 2 C1(T�Z) satisfying

j@�
x
��

1 � �(x; �)j � c�;� (1 + j�j)r�� for all x 2 T; � 2Z;

where �1 � is the forward di�erence operator with respect to � with step size 1 de�ned

in Section 3 and �; � are non-negative integers. The corresponding pseudodi�erential
operator with the symbol � is given by

�(x;D)u(x) :=
X
�2Z

e2�ix� �(x; �) ~u(�) ; u 2 C1(T) ;

~u(�) :=

Z 1

0

e�2�i�x u(x) dx :

It is well known that the symbol of a pseudodi�erential operator is uniquely determined
up to a function belonging to \r2RS

r(T).

In what follows we restrict ourselves to the subclass ��(T) � Sr(T) of all symbols � 2
Sr(T) which admit a decomposition � = �0 + �1, where �1 2 Sr1(T) with r1 < r := Re�,
� 2 C , and �0 2 C1(T�Rnf0g). The function �0 is required to be positively homogeneous
of degree � , i.e.,

�0(x; � �) = �� �0(x; �)

for � > 0 and � 6= 0. Without loss of generality, we assume �0(x; 0) = 1. We will denote

by 	r(T), and ��(T), the class of pseudodi�erential operators (	DO's) which admit a

decomposition L = �(x;D) + K where � 2 Sr(T), and ��(T) respectively, and K is a
smoothing operator given by K u(x) =

R
u(y) k(x; y) dy with k 2 C1(T�T). Note that

if L 2 ��(T), then L : Hs(T) ! Hs�r(T) is a bounded operator. We remark that the

class ��(T) contains all classical operators occuring in boundary element methods (cf.

[AW1], [DPS]).

Our central objective is to solve the pseudodi�erential equation

L u = f (27)

where L 2 ��(T) and f 2 Hs�r(T) are given. For the solution of (27) we examine
the numerical methods considered in [PSch]. To this end we have to introduce �nite-

dimensional trial spaces of approximating functions and sets of test functionals. We

choose a sequence � := (�j)j2�M 2 LM

2 of generators for the spaces of approximating

functions. Then the trial spaces are de�ned by (1).
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Now we turn to the test functionals. Choose a family of distributions � := (�j)j2�M 2�
H�s0(R)

�M
; s0 � 0; with compact support to de�ne the test functionals

�l
k;m

(f) := 2�
m
2 �l(f(2�m(�+ k))) ; l 2 �M ; k 2 �N ; (28)

for f 2 Hs
0

(T). The numerical method which we are going to investigate is the Galerkin-

Petrov method corresponding to the aforementioned trial spaces and test functionals.

This method reads as follows:

Find an approximate solution um 2 Sm(�) such that

�l
k;m

(Lum) = �l
k;m

(f) ; l 2 �M ; k 2 �N (29)

for a �xed and all su�ciently large m 2 N0. The scheme (29) corresponding to the trial

and test spaces generated by � and �, respectively, is called numerical method f�; �g for
the operator L. The following two examples are particular realizations of the scheme (29).

Example 4.1 Collocation method: Choose a strictly increasing sequence (�j)j2�M 2
[0; 1)M and de�ne the test functionals by

�j(f) := f(�j)

for j 2 �M . So, we have to �nd a solution um 2 Sm(�) satisfying

L um(2
�m(�j + k)) = f(2�m(�j + k)) ; j 2 �M ; k 2 �N :

Example 4.2 Galerkin method: Let (�j)j2�M 2 LM

2 be a family of compactly supported

functions. Then the test functionals in (29) are de�ned by (28) and

�j(f) := hf; �jiL2(R) ; j 2 �M ;

for f 2 L2(T).

Example 4.3 Biorthogonal Galerkin method: Let (~�j)j2�M 2 LM

2 be a family of com-

pactly supported functions biorthogonal to (�j)j2�M , i.e.

h�r; ~�s(� � k)iL2(R) = �r;s�0;k

for r; s 2 �M and k 2Z. Then the test functionals in (29) are de�ned by (28) and

�j(f) := hf; ~�jiL2(R) ; j 2 �M ;

for f 2 L2(T).
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It turns out that the convergence analysis of the numericalmethod (29) essentially depends
on the behavior of the matrix valued function [��0�] de�ned by

[��0�](y; x) :=
X
l2Z

�
�r
�
e2�i(l+x)�

�
�0(y; l + x) �̂s(l + x)

�
(r;s)2�2

M

; x 2 [�1
2
; 1
2
]:

This function [��0�] will be called numerical symbol of the numerical method f�; �g for

the operator L with principal symbol �0. Using the notation

�̂r(x) := �r(e2�ix�) ;

�̂p(x) :=
�
�̂r(pM + l + x)

�
(l;r)2�2

M

;

�̂p(x) :=
�
�̂r(pM + l + x)

�
(l;r)2�2M

;

fp(x) := diag(f(pM + l+ x))l2�M ; (30)

for f : R! C , the numerical symbol takes the simple form

[��0�](y; x) =
X
p2Z

�̂p(x)
� (�0(y; �))p(x) �̂p(x) : (31)

To de�ne a class of admissible numerical methods (cf. [PSch]) we need the notation

hxi :=

�
jxj if x 6= 0
1 else :

We recall the following de�nition from [PSch].

De�nition 4.4 The numerical method f�; �g is called s�admissible for 	DO's in ��(T),
s 2 R, if the following is satis�ed:

i) the matrices �̂0 and �̂0 are invertible on [�1
2
; 1
2
];

ii)
P

p6=0 khxi
s

p
�̂p(x)�̂0(x)

�1hxi�s0 k2 is uniformly bounded on [�1
2
; 1
2
];

iii)
P

p6=0 k�̂p(x)
�jxj�

p
�̂p(x)k is convergent on [�1

2;
1
2 ].

Here the matrices h�ip ; j � j�
p
arising in ii) and iii) are de�ned by (30) and k � k means any

matrix norm. The letter s denotes the Sobolev index of the space Hs(T).

Remark 4.5 Properties i) and ii) are su�cient conditions for a certain discrete Sobolev

norm to be equivalent to the continuous Sobolev norm (see Section 3 in [PSch]). Condition
i) is stronger than the Riesz stability. Property ii) is a uniform Strang-Fix condition

combined with a growth condition for the (�̂j)j2�M (see Section 4 in [PSch]). The last

condition ensures that the numerical symbol is well de�ned.
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To interpret the numerical scheme (29) as a projection method we have to assume

Hypothesis H: There exist functions  := ( j)j2�M 2 LM

2 such that

�  ̂0 is invertible on [�1
2
; 1
2
] and condition ii) of De�nition 4.4 is ful�lled with s and �

replaced by s� r and  , respectively;

�  satis�es the duality conditions �l( j(� � k)) = �l;j�0;k for l; j 2 �M ; k 2Z;

�
jxjs�r0  ̂0(x)�̂0(x)�jxj

r�s
0

 � c and
jxjs�r0 ( ̂0(x)�̂0(x)�)�1jxj

r�s
0

 � c

for x 2 [�1
2;

1
2] n f0g.

Su�cient conditions for the above hypothesis are formulated in Section 3 of [PSch]. There

are also given some hints how to construct such functions  in a general situation. Note

that the last condition of Hypothesis H is a uniform Strang-Fix condition. Moreover, the

second property implies that the operators

Qmf :=
X
k2�N
l2�M

�l
k;m

(f)  l

k;m
(32)

are projections de�ned for su�ciently smooth functions f . In view of the notation (32)
and the representation of um 2 Sm(�) as

um = u �0 � :=
X
j2�M

X
k2�N

uj
k
�j
k;m

(33)

with the coe�cient vector u := ((uj
k
)j2�M )k2�N 2 C

MN , the numerical scheme (29) is
equivalent to the projection equation

QmL(u �
0 �) = Qmf :

De�nition 4.6 The numerical method f�; �g is called stable for L : Hs(T)! Hs�r(T) if

kQm Lumks�r � ckumks

for any um 2 Sm(�) and su�ciently large m 2 N0.

Our strategy is to reduce the problem of stability of the numerical method for L to that

of the 	DO of convolution type de�ned by the principal symbol �0(y; �) for �xed y. The
stability and convergence analysis of such operators has been developed in [PSch]. The

aforementioned reduction is based on localization techniques introduced in [P] and [DPS]

and essentially uses the properties of the projections proved in Section 2. To this end
we need the concept of local stability (cf. [P], [DPS]). Following [P], we denote for �xed

y 2 T by My � C1(T) the localizing classes consisting of functions which are equal to

1 in a neighborhood of y. From now on Pm are the orthogonal projections onto Sm(�)
relative to the scalar product in H0(T).
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De�nition 4.7 The numerical method f�; �g is locally stable for L : Hs(T)! Hs�r(T)
if for each y 2 T there exist gy 2 My and operators Ty; T

0
y
2 	r

0

(T) , r0 < r, and

linear operators Cy;m; Dy;m : Sm(�) ! Sm(�) with sup
m2NkCy;mkHs�r(T);Hs(T) < 1 ,

sup
m2NkDy;mkHs�r(T);Hs(T) <1 such that

Qmgy(�y(D) + Ty)Cy;m _=s�r QmgyPm ;

Dy;mQm(�y(D) + T 0
y
)gyPm _=s PmgyPm :

Here for any two sequences of operators Bm; Cm the notation Bm _=sCm stands for

limm!1 kBm � Cmks = 0, and �y(D) is the operator with the symbol �0(y; �).

Applying the localization principle proved in [P] and using the results of Section 2, we

can now deduce the equivalence of local and global stability. To this end, we assume

L : Hs(T)! Hs�r(T) (34)

to be an invertible 	DO belonging to ��(T), r = Re�, and the functions � to ful�l the

Hypothesis of Section 2. Further suppose  satis�es the Hypothesis of Section 2 with

�; d; ; d0; �; s replaced by  ; ~d; ; ~d0; ~�; s � r, respectively. We assume that
 and � are re�nable. The number s0 is determined by the choice of the functionals in
(28). The following restrictions on the parameter s in (34) are necessary to ensure the
approximation and commutator properties by using the results of Section 2. We require

that the Sobolev index s ful�lls the inequalities

�d0 � 1 � s < d+ � and

0 � s� r < ~d+ ~� or � d0 � 1 � s� r < d + � if Pm = Qm :
(35)

Using the results of Section 2 and proceeding as in the proofs of Propositions 6.4 and 6.5

of [DPS], we obtain

Theorem 4.8 Let f�; �g be s�admissible for 	DO's in ��(T) with s restricted by (35)
and let � ful�l the Hypothesis H. Assume that L : Hs(T) ! Hs�r(T) is invertible and

L 2 ��(T), r = Re�. Then the numerical method f�; �g is stable for L if and only if one

of the following conditions is satis�ed:

i) The method is local stable.

ii) The method is stable for the operator �y(D) with symbol �0(y; �) for all y 2 T.

Combining now Theorem 4.8 and Theorem 2.6 of [PSch] establishes the main result of

this section.

Theorem 4.9 Suppose that the assumption of Theorem 4.8 is ful�lled. Then the numer-

ical method f�; �g is stable for the operator L if and only if
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�hxis�r0

�
�̂0(x)

�1
��

[��0�](y; x) �̂0(x)
�1hxi�s0

��1 � c (36)

for any x; y 2 [�1
2;

1
2].

The stability combined with approximation properties of the projections guarantees er-
ror estimates via standard arguments. (For details, we refer the reader to the proof of

Theorem 6.3 in [DPS] or to the proof of Theorem 13.14 in [PSi].)

Theorem 4.10 Let the assumption of Theorem 4.8 be satis�ed. Further suppose that the

method f�; �g is stable for L : Hs(T) ! Hs�r(T) and, in addition, s is restricted by

�d0 � 1 � s < ~d + ~�. Suppose that f 2 H t�r(T) for some t � s with ~d0 + 1 � t� r � s0

where s0 is de�ned by the test functionals (cf. (28)). Let u denote the the exact solution

of (27) and let um denote the unique solution of (29) whose existence is guaranteed by

Theorem 4.9. Then

ku� umks � c 2�m(t�s)kukt (37)

is valid. If, in addition s0 � s� r, then

ku� umkt0 � c 2�m(t�t
0)kukt ; maxf�d0 � 1; rg � t0 � s : (38)

In the case of the Galerkin method, (38) holds for maxf�d0 � 1;�d0 � 1� rg � t0 � s.

Acknowledgment: We are greatly indebted to A. Rathsfeld, J. Elschner, and G. Schmidt

for helpful discussions and hints.
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