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Abstract

Inverse problems for elliptic and parabolic partial di�erential equations

are considered. It is assumed that a solution of the equation is observed in

white Gaussian noise with a small spectral density. The goal is to recover

smooth but unknown boundary or initial conditions based on the noisy data.

It is shown that the second order minimax estimators are linear as the spec-

tral density of the noise goes to zero.

1 Introduction

Ill-posed inverse problems for ordinary and partial di�erential equations are very

popular in modern mathematics. We refer to the books Hadamard (1932), Ivanov

& Vasin & Tanana (1978), Tihonov & Arsenin (1978), Lavrentiev & Romanov

& Shishatskii (1980). Usually these problems are associated with recovering of

an unknown di�erential operator or unknown boundary conditions based on the

observations of a solution of the equation in some domain. There are two important

questions, which arise naturally in this context. In the �rst place one wants to prove

the uniqueness of a solution of the inverse boundary problem if it is known that the

restored boundary functions belong to a certain functional class. If the solution

represents a noisy data, one has to show next that the error in the recovered

functions tends to zero when the noise in the data tends to zero too, Lattes &

Lions (1967).

Statistical approach to inverse problems is based on the assumption that so-

lutions are observed in a white noise with a small spectral density " ! 0. The

goal is to �nd estimators which are at least consistent. The main advantage of the

statistical approach lies in the fact that it helps to compare di�erent approaches to

inverse problems. Thus we have a mathematical basis for choosing solutions, which

are optimal in di�erent senses. Sudakov & Khal�n (1964) and Khal�n (1978) were

among the �rst who propose to use the statistical approach to ill-posed problems.

In Chow & Khasminskii (1997a) and Chow & Ibragimov & Khasminskii (1997b)

this approach was used for estimation of a source based on solutions of ordinary

and partial di�erential equations.

In the present paper we consider from statistical point of view two very popular

inverse problems:

i) recovering of initial conditions for parabolic equations based on the observa-

tions in a �xed time strip,

ii) recovering of boundary conditions for elliptic equations based on the obser-

vations in an internal domain.

Many scientists have paid attention on these problems. For instance, the major

part of the monograph Lattes & Lions (1967) is devoted to the problem i). From

statistical point of view the authors have proposed very interesting estimates and

demonstrated that they are consistent.

We show in this paper how to construct estimates with optimal rates of con-

vergence when the spectral density of the noise goes to zero (" ! 0). Moreover
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we indicate these rates up to constants. Here we follow the well-known paper

Pinsker (1980). Unfortunately these rates are very low and there exist many esti-

mators having the optimal rates. In order to discriminate between the estimators

in this situation we �nd the second order term in the expansion of the minimax

risk and propose second order minimax estimators. In the problem of estimation

initial conditions for parabolic equations we propose also exponentially minimax

estimators.

1.1 Estimation of initial conditions for parabolic equations

To simplify technical details we consider the problem in the simplest setting. Let

u(t; x) be a solution of the heat conductivity equation

@u

@t
=

@
2
u

@x2
(1)

in the domain D = f0 � x � 1g � ft > 0g with the periodic boundary conditions

u(t; 0) = u(t; 1);
@u

@x
(t; 0) =

@u

@x
(t; 1); (2)

and with the initial condition

u(0; x) = �(x): (3)

Identifying points x = 0 and x = 1, one could say that the equation (1) is considered

on the surface of the cylinder C � ft > 0g, where C is the circle of the unit length.

It is also assumed that �(x); x 2 C has Sobolev smoothness �, so

�(x) =
1X

j=�1

�j exp(2�ijx); i =
p
�1; (4)

where �j = �
�

�j and
1X

j=�1

j�jj2j2�jj2� � L: (5)

The set of all function satisfying to (4) and (5) constitutes the Sobolev classW�
2 (L).

Next we consider two models of observations.

Model 1
a. Assume that a solution of the equation (1) is observed at t = T in a

white Gaussian noise with the spectral density "2. Thus we observe the generalized

random process Y (x); x 2 [0; 1], which has the form

Y (x) = u(T; x) + "n(x); (6)

where n(x) is a white Gaussian noise, t.e. a generalized Gaussian process with the

covariance function En(x)n(y) = �(x � y); here �(�) is the Dirac �-function. It

means that for any '�(�) 2 L2(C) we can observe the family of random variables

Y� =

Z
C

u(T; x)'�(x) dx+ "��; (7)
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where �� are Gaussian random variables with zero mean and the covariance function

E��1��2 =

Z
C

'�1(x)'�2(x) dx:

Thus, our problem is to �nd the minimax risk

r"(W�
2 (L)) = inf

~�
sup

�2W
�
2
(L)

E�

Z
C

�
~�(x; Y )� �(x)

�2
dx;

where the inf is taken over all estimators based on observations (6). We want also

to �nd a minimax estimator i.e. the estimator �� such that

r"(W�
2 (L)) = sup

�2W
�
2
(L)

E�

Z
C

(��(x; Y )� �(x))
2
dx:

The above problem can be easily reduced to the following one. Let u(t; x) be

a solution of (1){(3). Since this function is periodic, it can be expanded into the

Fourier series

u(t; x) =
1X

j=�1

uj(t) exp(2�ijx): (8)

Using the Fourier method (cf. Petrovskii (1950), s. 38) one obtains

uj(t) = �j exp(�4�2j2t); (9)

where �j are the Fourier coe�cients associated with the function �(x) (see (4)).

Since the Fourier basis is a complete orthonormal system in L2(C), the problem
of estimation �(x) is equivalent to estimation of the Fourier coe�cients �j; j =

0;�1;�2; : : : based on the observations

Yj = �j exp(�4�2j2T ) + "�j; (10)

where �j are independent N (0; 1). Or equivalently, we have to estimate �j based

on the data

Zj = �j + "�j�j; (11)

where �j = exp(4�2j2T ) and �j belong to the following set

� =

8<
:�j :

1X
j=�1

j�jj2j2�jj2� � L

9=
; : (12)

Note the minimax risk admits the following representation in the terms of the

Fourier coe�cients

r"(W�
2 (L)) = inf

~�
sup
�2�

E�

1X
j=�1

�
~�j � �j

�2
: (13)

Model 1
b. It is assumed that the solution of (1) is observed into the strip

T � t � T + h in a two-dimensional white Gaussian noise

Y (t; x) = u(t; x) + "n(t; x); t 2 [T; T + h]; x 2 C;
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where n(t; x) is a generalized two-dimensional Gaussian �eld with the covariance

function

En(t1; x1)n(t2; x2) = �(t1 � t2; x1 � x2):

By (8) and (9) we get the equivalent model (see also (7))

~Zj = �j + "~�j�j; (14)

where

~�j =

 Z T+h

T
exp(�8�2j2t) dt

!�1=2

= 2
p
2�jjj exp(4�2j2T )

�
1� exp(�8�2j2h)

�
�1=2

:

Based on the observation from (14) we have to �nd the minimax estimator and to

calculate its risk (cf. (13)). Thus we see that the only di�erence between models

1a and 1b is in the de�nition of �2j and ~�2j .

1.2 Estimation of boundary conditions for elliptic equa-

tions

Consider the simplest case of the Dirichlet problem for the Laplace equation on

the circle of radius 1

�u = 0 (15)

u(cos'; sin') = f('):

It is known (see e.g. Petrovskii (1950), s. 29) that the solution of the above problem

can be rewritten in the polar coordinates as

u(r; ') =
�0p
2�

+
1p
�

1X
k=1

r
k(�k cos(k') + ��k sin(k')); (16)

where �k are the Fourier coe�cients of f('), so that

f(') =
�0p
2�

+
1p
�

1X
k=1

(�k cos(k') + ��k sin(k')):

Let us assume that a solution of (15) is observed on the circle C� of the radius � < 1

in a white Gaussian noise. Thus we observe a generalized Gaussian �eld

Y (r; ') = ru(r; ') + "
p
rn(r; '); 0 � r � �; ' 2 [0; 2�]; (17)

where n(r; ') is a white Gaussian noise i.e. a generalized Gaussian �eld with the

covariance function

En(r1; '1)n(r2; '2) = �(r1 � r2; '1 � '2):
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Substituting (16) in (17), multiplying it by 1; cos(k'); sin(k') and integrating by

parts over ', we arrive to the equivalent family of the observations (17)

�k(r) = �kr
jkj+1=2 + "nk(r); k = 0;�1;�2; ::: (18)

where 0 � r � � and nk(r) are one-dimensional independent (for di�erent k) white

Gaussian noises. Thus the problem of estimation �k based on (18) is equivalent to

estimation of �k based on the observations

Yk =

Z �

0
r
jkj+1=2

�k(r) drZ �

0
r
2jkj+1 dr

= �k + "

�Z �

0
r
2jkj+1 dr

��1=2
�k;

where �k are independent N (0; 1). Finally we arrive to the following equivalent

problem: to estimate �k based on the data

Yk = �k + "�k�k; k = 0;�1;�2; :::

where �k are i.i.d. N (0; 1) and

�k =
q
2jkj+ 2��jkj�1:

We see that each problem under consideration is equivalent to the problem of

estimation unknown parameters �k based on the observations (11), while the prior

information is provided by (12). The type of the considered problem is re
ected

only in the de�nition of �k. For parabolic equations �k grow like exp(Ck2). In

the elliptic case we have a growth of the order exp(Ck). This di�erence plays an

essential role only when we prove that second order minimax estimators are linear

for the both models.

2 Linear estimation

2.1 An upper bound for the minimax risk

Consider the following linear estimator

�̂j = hjYj

of the parameters �j based on the observations (11). It is assumed �j are subjected

to restrictions (12). The problem of calculation of the linear minimax risk

r
L

" (W�
2 (L)) = inf

hj
sup
�2�

E�

1X
j=�1

(hjYj � �j)
2

has the well-known solution, Pinsker (1980).
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Proposition 1

r
L

" (W�
2 (L)) = "

2
1X

j=�1

�
2
j

"
1�

���� j
W

����
�
#
+

; (19)

where W is a root of the equation

"
2

1X
j=�1

�
2
j j2�jj2�

2
4
�����Wj

�����
�

� 1

3
5
+

= L: (20)

The estimator

�
�

j =

"
1�

���� j
W

����
�
#
+

Yj (21)

is the minimax linear estimator.

Proof follows directly from the fact that the functional

L[h; �] =
1X

j=�1

(1� hj)
2
�
2
j + "

2
1X

j=�1

�
2
jh

2
j = E�

1X
j=�1

(hjYj � �j)
2

has a saddle point on l2(�1;1)� � (see e.g. Pinsker (1980)). The components

of this saddle point are given by

h
0
j =

"
1�

���� j
W

����
�
#
+

; (22)

�
�
0
j

�2
= "

2
�
2
j

2
4
�����Wj

�����
�

� 1

3
5
+

; (23)

where [x]+ = max(0; x).

2.2 A lower bound for the minimax risk

To show that the linear estimator de�ned by (20), (21) is a �rst order minimax

estimator we will use the following fact.

Proposition 2 Let (�0j )
2 are de�ned by (23). Then

r"(W�
2 (L)) �

X
j 6=0

(�0j )
2 � 4

"2

X
j 6=0

(�0j )
4
�
�2
j : (24)

Proof. Let �j be independent random variables taking values �0j ; ��0j with the

probabilities 1=2. It is clear that

r"(W�
2 (L)) �

X
j 6=0

inf
~�j

EEf(~�j � �j)
2j�jg: (25)
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It is also evident that the inf in the right-hand side of (25) is attained when ~�j is

the Bayesian estimator

~�j = �
0
j th

 
Yj�

0
j

"2�2j

!
;

where

thx =
exp(x)� exp(�x)
exp(x) + exp(�x) :

Then we have

EEf(~�j � �j)
2j�jg = Ef(~�j � �j)

2j�j = �
0
jg (26)

= (�0j )
2E

8<
:
 
1 +

1

2

 
exp

 
2Yj�

0
j

"2�
2
j

!
� 1

!!�2������ �j = �
0
j

9=
;

� (�0j )
2E

8<
:
 
1� 1

2

 
exp

 
2Yj�

0
j

"2�
2
j

!
� 1

!!2
������ �j = �

0
j

9=
;

= (�0j )
2

 
9

4
� 3

2
exp

 
4(�0j )

2

"2�
2
j

!
+
1

4
exp

 
12(�0j )

2

"2�
2
j

!!

� (�0j )
2

 
5

2
� 3

2
exp

 
4(�0j )

2

"2�2j

!!
:

Since 5� 3 exp(x) is a convex function, one easily obtains that

5� 3 exp(x) � 2� x= log(5=3) (27)

for x 2 [0; log(5=3)]. Note also that if

4(�0j )
2

"2�
2
j

> log(5=3)

the right-hand side in (26) is negative. Then (27) and (26) yield

EEf(~�j � �j)
2j�jg � (�0j )

2

 
1�

4(�0j )
2

"2�2j

!
; (28)

thus, by virtue of (25), proving the required inequality (24).

2.3 Asymptotic behaviour of the minimax risk

At the �rst glance it seems that the lower bound given by Proposition 2 is not very

good. This observation is true in the case when �j grow not very rapidly. But in

our models we have at least an exponential growth of �j, and this fact plays an

essential role in the proving of the following theorem.
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Theorem 1 Let
j�j+1j
j�jj

� � > 1; j � 1; (29)

then

r"(W�
2 (L)) = r

L

" (W�
2 (L))

�
1 +O

�
1

W

��
; (30)

where the bandwidth W is de�ned by (20).

Proof. Let us simplify the lower bound for the minimax risk (24). First of all

note that

X
j 6=0

(�0j )
2 = "

2
X
j 6=0

�
2
j

"
1�

���� j
W

����
�
#
+

�����Wj
�����
�

(31)

= "
2
X
j 6=0

�
2
j

"
1�

���� j
W

����
�
#
+

 
1 +

���� j
W

����
�

� 1

!�1

� "
2
X
j 6=0

�
2
j

"
1�

���� j
W

����
�
#
+

� "
2
X
j 6=0

�
2
j

"
1�

���� j
W

����
�
#2
+

:

In order to estimate from above the last term in the right-hand side of the above

equation we use (29) and the inequality 1� (1� x)� � max(1; �)x, which is valid

for 0 � x � 1. Then we have

X
j 6=0

�
2
j

"
1�

���� j
W

����
�
#2
+

= 2

bW cX
k=0

�
2
bW c�k

2
41�

 
bW c � k

W

!�
3
5
2

(32)

� 2(1 + �)2W�2
�
2
bW c�1

1X
k=1

�
�2(k�1)

k
2 = C��

2
bW c�1W

�2
:

On the other hand it is evident that

r
L

" (W�
2 (L)) = "

2
1X

j=�1

�
2
j

"
1�

���� j
W

����
�
#
+

(33)

� 2"2�2
bW c�1

0
@1�

 
bW c � 1

W

!�
1
A � O

�
"
2
�
2
bW c�1W

�1
�
:

Therefore from (32) and (31) we see that

X
j 6=0

(�0j )
2 � r

L

" (W�
2 (L))

�
1 +O

�
1

W

��
: (34)

Thus to complete the proof it remains to consider the last term in the right-hand

side of (24). We have

"
�2
X
j 6=0

(�0j )
4
�
�2
j = "

2
X
j 6=0

�
2
j

"
1�

���� j
W

����
�
#2
+

�����Wj
�����
2�

(35)
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= "
2

X
0<jjj�W=2

�
2
j

"
1�

���� j
W

����
�
#2
+

�����Wj
�����
2�

+ "
2
X

jjj>W=2

�
2
j

"
1�

���� j
W

����
�
#2
+

�����Wj
�����
2�

� "
2
W

2�
X

0<jjj�W=2

�
2
j + 22�

X
j 6=0

�
2
j

"
1�

���� j
W

����
�
#2
+

:

From (29) we arrive at

"
2
W

2�
X

0<jjj�W=2

�
2
j � 2(�2 � 1)�1"2�2

bW c�1�
bW c+2

W
2�
:

Hence from (32), (33) and (35) it follows that

"
�2
X
j 6=0

(�0j )
4
�
�2
j � O

�
W

�1
r
L

" (W�
2 (L))

�
:

This inequality together with (34) completes the proof of the theorem.

Our next goal is to specify the asymptotic behaviour of rL" (W�
2 (L)) as "! 0.

Proposition 3 Let (29) is ful�lled, then

r
L

� (W�
2 (L)) =

L

(2�W�)2�
+O

 
1

W
2�+1
�

!
; (36)

where W� is a root of equation

"
2
W

2��1
" �

2
bW"c

= CL; (37)

here bxc means integer part of x and C is an arbitrary positive constant not de-

pending on ".

Proof. A simple algebra easily reveals (see (19), (20)) that

r
L

� (W�
2 (L)) =

L

(2�W )2�
+ "

2
1X

j=�1

�
2
j

"
1�

���� j
W

����
�
#2
+

; (38)

where W is de�ned by (20). At the same time by virtue of (32) and (33)

"
2

1X
j=�1

�
2
j

"
1�

���� j
W

����
�
#2
+

= O

�
W

�1
r
L

� (W
�
2 (L))

�
:

Hence we get by (38)

r
L

� (W�
2 (L)) =

L

(2�W )2�
+O

�
1

W 2�+1

�
: (39)
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Thus it remains to obtain a lower and an upper bound for W de�ned by (20).

By (20)

L = "
2

1X
j=�1

�
2
j

"
1�

���� j
W

����
�
#
+

�����Wj
�����
�

j2�jj2�

= 2(2�)2�W �
"
2
X
j�0

�
2
j j

�

"
1�

���� j
W

����
�
#
+

= 2(2�)2�W �
"
2
bW cX
j=0

�
2
bW c�j(bW c � j)�

0
@1�

�����bW c � j

W

�����
�
1
A :

By Taylor expansion and (29) we get from the above equation that for some con-

stants C1; C2 do not depending on "

2(2�)2�W �
"
2
X
j�0

�
2
j j

�

"
1�

���� j
W

����
�
#
+

� C1"
2
W

2��1
�
2
bW c

;

2(2�)2�W �
"
2
X
j�0

�
2
j j

�

"
1�

���� j
W

����
�
#
+

� C2"
2
W

2��1
�
2
bW c�1:

Therefore W is located between two roots W1 and W2 of the equations

"
2
W

2��1
1 �

2
bW1c

C1 = L; "
2
W

2��1
2 �

2
bW2c�1

C2 = L; (40)

Taking the logarithm in (40) one concludes that jW1 �W2j < C. This inequality

together with (39) completes the proof.

The following theorem easily follows from Proposition 3 and Theorem 1.

Theorem 2 Let (29) is ful�lled and W" is a root of equation (37). Then

r"(W�
2 (L)) =

L

(2�W�)2�
+O

 
1

W
2�+1
�

!
:

Let us look how this theorem works in the case of elliptic equation. Remind

that in this case

�
2
k = 2(jkj+ 1)e�2(jkj+1) log �:

Taking the logarithm of (37) we get

W" = ~W" +O(1); (41)

where

~W" = � 1

2 log �

�
log

L

"2
� 2� log log

L

"2

�
:

Hence

r"(W�
2 (L)) = L

 
� log �

� log(L="2)

!2�

+ 4�2 L

 
� log �

� log(L="2)

!2�
log log(L="2)

log(L="2)
+O

�
log�2��1

L

"2

�
:
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Thus Theorem 2 gives us the expansion of the minimax risk up to the second order

term. The linear estimator

~�j =

2
41�

����� j~W"

�����
�
3
5
+

Yj; (42)

with ~W" given by (41), is the second order minimax estimator.

Remark 1. The estimator (42) is robust with respect to the constant L in the

de�nition of the class W�(L): if the true value of L is unknown, but it is known

that 0 < L1 � L � L2 <1 then we can use the new bandwidth

~W" = � 1

2 log �

 
log

~L

"2
� 2� log log

~L

"2

!
;

with an arbitrary ~L 2 [L1; L2], and the estimator (42) is again a second order

minimax estimator.

In the problem of estimation of the initial condition for the parabolic equation

�
2
j have the following form (c.f. (11))

�
2
j = exp(8�2j2T ):

Therefore taking the logarithm of (37), we get

W
2
" =

1

8�2T

 
log

L

"2
� (2� � 1)

2
log log

L

"2

!
+O(1): (43)

Hence, by Theorem 2

r"(W�
2 (L)) = L

 
2T

log(L="2)

!�

+O

�
log���1=2

L

"2

�
:

Thus the estimator from (42) with the bandwidth W" from (43) is a �rst order

minimax estimator. It is not very di�cult to check that the projection estimator

�̂j =

(
Zj; jjj � Ŵ";

0; jjj > Ŵ";

with

Ŵ
2
" =

1

8�2T
log

L

"2
� 


8�2T
log log

L

"2
;

where 
 > � is also the �rst order minimax estimator.

Remark 2. It is easy to see that the estimator (42) with the bandwidth de�ned

by (43) and the projection estimator �̂j are also robust w.r.t. L in the sense of

Remark 1.

Unfortunately Theorem 2 gives us only the �rst term in the expansion of the

minimax risk. This situation is quite di�erent from the elliptic case, where this

theorem provides us with the second order term. Therefore, we consider in the

next section the parabolic case in more detail.
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3 Estimation of initial conditions for parabolic

equations

In this section we assume that �2j = �
2
�j and

log �2j+1 � log�2j = C�j + o(j); j !1; (44)

where C� > 0 is some constant. De�ne the integer W" as follows

W" = argmin
j

����2j (2�j)2� � L"
�2
��� : (45)

Denote for brevity by bold letters two dimensional vectors, that is x = (x1; x2)
T ,

and kxk2 = x
2
1+x

2
2. The asymptotic behaviour of the minimax risk is given by the

following theorem.

Proposition 4 Let W" be given by (45) and condition (44) be ful�lled. Then, as

"! 0

r"(W�
2 (L)) =

L

(2�W")2�
inf
	

sup
kyk�1

n
Ek	(Y)� yk2 (46)

+

�
W"

W" + 1

�2�
(1� kyk2)

)
+ O (exp(�CW")) ;

where

Y = y + s"�; � � N (0; E); s" =
"�W"

(2�W")
�

p
L

;

here C > 0 is a certain constant and E is the identity matrix.

Proof. Let us obtain �rst a lower bound. Assume that only ��W"
= (�W"

; ��W"
)T

and ��W"+1 = (�W"+1; ��W"�1)
T are unknown. The others �j are assumed to be 0.

Then the observations have the form

ZW"
= ��W"

+ "�W"
�W"

; (47)

ZW"+1 = ��W"+1 + "�W"+1�W"+1:

Based on these observations we have to estimate ��W"
and ��W"+1 provided that

k��W"
k2(2�W")

2� + k��W"+1k2(2�(W" + 1))2� � L: (48)

Introduce the new variables

y = ��W"
(2�W")

�
L
�1=2

; y1 = ��W"+1(2�(W" + 1))�L�1=2
:

Then equation (48) can be rewritten as

kyk2 + ky1k2 � 1

12



and the observations (47) are equivalent to the following ones

Y = y + s"� (49)

Y1 = y1 + s"�W"+1�
�1
W"
(W" + 1)�W��

" �1;

where � and �1 are two-dimensional independent N (0; E). Thus assuming that

y1 = z
q
1� kyk2, where z1; z2 are independent random variables taking values

�1=
p
2; 1=

p
2 with the probabilities 1=2, we have

r"(W�
2 (L)) � inf

	;	1

sup
kyk2+ky1k2�1

(
L

(2�W")2�
E k	(Y;Y1)� yk2 (50)

+
L

(2�(W" + 1))2�
E k	1(Y;Y1)� y1k2

)

� inf
	;	1

sup
kyk�1

(
L

(2�W")2�
EE fw (	(Y0

;Y0

1)� y) jzg

+
L

(2�(W" + 1))2�
EE

(



	1(Y
0
;Y0

1)� z
q
1� kyk2






2
����� z
))

;

where the new loss function w(x) = minfkxk2; 4g, and the observations Y0
; Y0

1 are

given by

Y0 = y + s"� (51)

Y0

1 = z
q
1� kyk2 + s"�W"+1�

�1
W"
(W" + 1)�W��

" �1:

To simplify the right-hand side of (50) �rst of all note that by (28) and (44)

EE

(



	1(Y
0
;Y0

1)� z
q
1� kyk2






2
����� z
)

� (1� kyk2)
 
1� 4(1� kyk2)W 2�

" �
2
W"

s2"�
2
W"+1

(W" + 1)2�

!
� 1� kyk2 + O(exp(�CW")):

Hence from (50) we have

r"(W
�
2 (L)) � inf

	
sup
kyk�1

(
L

(2�W")2�
EEfw (	(Y0

;Y0

1)� y) jzg (52)

+
L

(2�(W" + 1))2�

�
1� kyk2

�)
+O(exp(�CW")):

To simplify more the right-hand side of the above equation consider the auxiliary

observations

Y00

1 = s"�W"+1�
�1
W"
(W" + 1)�W��

" �1: (53)

It is easy to see that L1-distance between the corresponding densities of the obser-

vations Y0
;Y0

1 and Y0
;Y00

1 de�ned by (51) and (53), is su�ciently small. Indeed

13



by Cauchy-Schwartz inequality one obtainsZ Z ���pY0;Y0

1
(x1;x2)� pY0;Y00

1
(x1;x2)

��� dx1 dx2
=

Z Z ���pY0(x1)pY0

1
(x2)� pY0(x1)pY00

1
(x2)

��� dx1 dx2
=

Z ���pY0

1
(x2)� pY00

1
(x2)

��� dx2
=

Z ���p1=2
Y

0

1

(x2)� p
1=2

Y
00

1

(x2)
��� �p1=2

Y
0

1

(x2) + p
1=2

Y
00

1

(x2)
�
dx2

� 2

�Z �
p
1=2

Y
0

1

(x2)� p
1=2

Y
00

1

(x2)
�2

dx2

�1=2

= 2
p
2

 
1� exp

 
� (1� kyk2)W 2

" �
2
W"

8s2"(W" + 1)2�2W"+1

!!1=2

� exp(�CW"):

Hence for any estimator 	(�)

EEfw (	(Y0
;Y0

1)� y) j zg = EEfw (	(Y0
;Y00

1)� y) j zg+O (exp(�CW")) :

Since the inf in (52), which is taken over all mesurable functions 	(�), can be

replaced by the inf taken over k	k � 1, then using the above equation and (52)

we arrive at the following lower bound

r"(W�
2 (L)) � L

(2�W")2�
inf
	

sup
kyk�1

(
E k	(Y)� yk2 + (1� kyk2)W 2�

"

(W" + 1)2�

)
(54)

+ O (exp(�CW")) :

In order to prove that this lower bound is attainable consider the following

estimator

�̂k =

8><
>:

Yk; jkj < W";

	k(Yk; Y�k); jkj = W";

0; jkj > W";

where 	k(�; �) is an arbitrary function R
2 ! R

1. Note that by (44) and (45)

L"
�2 � 0:5(2�W")

2�
�
2
W"

= 0:5(2�W")
2�
�
2
W"�1

e(1+o(1))C�W":

Therefore

"
2
W"�1X
j=0

�
2
j � (1 + o(1))"2�2W"�1

= e�(1+o(1))C�W":

Denote for brevity �0 = f�j :
P

jjj=W";W"+1 �
2
j (2�j)

2� � Lg. Then we get

r"(W�
2 (l)) � "

2
X

jjj<W"

�
2
j + inf

	
sup
�

8<
:
X

jjj>W"

�
2
j +

X
jjj=W"

E(	j(Yj; Y�j)� �j)
2

9=
;

= inf
	

sup
�2�0

8<
:
X

jjj=W"

E(	j(Yj; Y�j)� �j)
2 +

X
jjj=W"+1

�
2
j

9=
;+O

�
e�CW"

�

=
L

(2�W")2�
inf
	

sup
kyk�1

(
Ek	(Y)� yk2 + W

2�
" (1� kyk2)
(W" + 1)2�

)
+O

�
e�CW"

�
:
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Together with (54) this inequality completes the proof of the theorem.

At the �rst glance it seems that Proposition 4, which speci�es the minimax risk

expansion up to the exponential term, has very restrictive practical meaning since

we have to solve the su�ciently complicated variational problem to calculate the

vector-valued function 	0(�; �), at which the inf in (46) is attained. Fortunately,

it can be done very easily and second order minimax estimators can be found

explicitly. Moreover we will see that there exists a so-called exponentially e�cient

estimator, whose risk approximates the minimax risk up to terms of the order

exp(�CW").

Theorem 3 Assume that (44) is ful�lled and W" is given by (45), then

r"(W�
2 (L)) =

L

(2�W")2�

0
@� W"

W" + 1

�2�
+ 2s2"

 
1�

�
W"

W" + 1

��!2
1
A (55)

+ exp(�CW"):

and the following linear estimator

�̂k =

8>>>><
>>>>:

Yk; jkj < W"; 
1�

�
W"

W" + 1

��!
Yk; jkj = W";

0; jkj > W"

is exponentially e�cient.

Proof. According to Proposition 4 it su�ces to solve the following problem.

Assume that we are given the noisy data

Y = y + s"�;

where � is N (0; E). Based on Y we have to estimate the unknown vector y. More

precisely, our goal is to calculate the minimax risk inf	 supkyk�1 �"(	;y) up to

terms of the order O(exp(�CW")), where

�"(	; y) = Ek	(Y)� yk2 +
�

W"

W" + 1

�
(1� kyk2):

To get an upper bound consider the linear estimator ŷ = hY with

h = 1�
�

W"

W" + 1

��
:

Then elementary algebra reveals that

inf
	

sup
kyk�1

�"(	;y) � sup
kyk�1

(
(1� h)2kyk2 + 2h2s2" +

�
W"

W" + 1

�2�
(1� kyk2)

)
(56)

=

�
W"

W" + 1

�2�
+ 2s2"

 
1�

�
W"

W" + 1

��!2

:
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To get a lower bound assume that y is the Gaussian two-dimensional vector

N (0; �2E). Then we have

inf
	

sup
kyk�1

�"(	;y) � inf
	

1

Pfkyk � 1gE�"(	;y)1fkyk � 1g (57)

= inf
k	k�1

1

Pfkyk � 1gE�"(	;y)1fkyk � 1g

� inf
	
E�"(	;y)�

5Pfkyk > 1g
Pfkyk � 1g :

Since y is Gaussian the inf	E�"(	;y) is attained when

	(Y) =
�
2

s2" + �2
y:

Let us chose

�
2 = s

2
"

 
1�

�
W"

W" + 1

��!�
W"

W" + 1

���
:

Noting that s2" < 2 we have on the one hand

Pfkyk > 1g � C exp

�
� 1

2�2

�
� C exp

 
� W"

2�s2"

!
� exp(�CW"):

On the other hand noting that under such choice of �2

h =
�
2

s2" + �2
;

and we obtain that (cf. (56))

inf
	
E�"(	;y) =

�
W"

W" + 1

�2�
+ 2s2"

 
1�

�
W"

W" + 1

��!2

:

This inequality together with (56), (57) reveals that

inf
	

sup
kyk�1

�"(	;y) =

�
W"

W" + 1

�2�
+ 2s2"

 
1�

�
W"

W" + 1

��!2

+ exp(�CW"):

The proof of the theorem follows now from Proposition 4.
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