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Wavelet Approximation Methods for
Pseudodifferential Equations II: Matrix Compression
and Fast Solution

Dedicated to Charles A. Micchelli on the occasion of his fiftieth birthday
W. Dahmen, S. Prossdorf and R. Schneider*

Abstract

This is the second part of two papers which are concerned with generalized
Petrov-Galerkin schemes for elliptic periodic pseudodifferential equations in R™.
This setting covers classical Galerkin methods, collocation, and quasiinterpola-
tion. The numerical methods are based on a general framework of multiresolution
analysis, i.e., of sequences of nested spaces which are generated by refinable func-
tions. In this part we analyse compression techniques for the resulting stiffness
madtrices relative to wavelet type bases. We will show that, although these stiff-
ness matrices are generally not sparse, the order of the overall computational
work which is needed to realize a certain accuracy is of the form O(N (log N)b)
where N is the number of unknowns and b > 1 is some real number.

Key Words: Periodic pseudodifferential equations, pre-wavelets, biorthogonal wavelets,
generalized Petrov-Galerkin schemes, wavelet representation, atomic decomposition,
Calderén-Zygmund operators, matrix compression, error analysis.

AMS Subject Classification: 65F35, 65710, 65N30, 65N35, 65R20, 47A20, 47G30,
45P05, 41A25.

1 Introduction

In [17] we have proposed and analysed a rather general setting for the numerical solu-
tion of periodic pseudodifferential equations by means of generalized Petrov-Galerkin
schemes. In particular, collocation and classical Galerkin methods are covered as spe-
cial cases. These schemes are based on sequences of shift-invariant nested spaced
generated by a single refinable function. We were able to characterize stability of these

*The third author has been supported by a grant of Deutsche Forschungsgemeinschaft under grant
number Ko 634/32-1.



methods for the general case of variable symbols in terms of simple conditions on the
Fourier transform of the generating refinable function and to estimate the convergence
of the schemes. An essential ingredient of our analysis was a detailed information
about the local approximation behavior of the various projection operators related to
the numerical schemes. This knowledge will play again an important role in our present
investigation. The objective of this paper is now to explore possibilities of efficiently
solving the systems of linear equations induced by the above mentioned Petrov-Galerkin
schemes. The central problem is that the corresponding stiffness matrices are in general
not sparse but full, a case which is, for instance, typically encountered for the special
situation of boundary element methods.

Our approach is motivated by the recent interesting and intriguing paper [4] (see also
[2]). There the key is to use matrix representations based on wavelet bases. Estimates
for the decay of the corresponding matrix entries lead then to efficient approximate
matrix vector multiplication. The central theme of the present paper is similar in that
we investigate compression of stiffness matrices. It differs, however, in that we con-
sider a much wider class of wavelet-type bases, and a larger class of numerical schemes
covering Galerkin-Petrov and collocation schemes. While [4] treats only operators of
order zero we attempt to cover operators of positive and negative order as well which
will turn up a number of essential differences. More importantly, our goal here is to
go beyond estimating only local truncation errors but to establish for a possibly gen-
eral framework rigorous convergence estimates for the final numerical approximations
resulting from the compressed schemes in comparison with the exact solutions. To
accomplish this one needs the characterization of stability of the respective schemes
established in [17] and stability of the compressed schemes to be established here. Since
the present setting covers also the situation where boundary element methods apply
one should mention schemes like panel clustering [24] developed especially for this case.
One hardly expects that the general schemes discussed here could do better in practice
than such special schemes. But again stability results and hence convergence estimates
are to our knowledge not available yet for panel clustering. The same refers to the
- multigrid approach in [6] which is closely related to the special case of collocation. At
any rate, we will establish for the present setting that fixed prescribed accuracy of ap-
proximate solutions can be obtained at the expense of O(N) operations where N is the
number of unknowns. Moreover, asymptotic error estimates of optimal order will be
shown to hold when allowing an additional logarithmic factor. One should emphasize
that we do not require any explicit knowledge about the structure of the kernels of
the operators under consideration. Instead our approach makes only use of asymptotic
properties determining a rather wide class of operators covered by our analysis.

On the other hand, it is clear that one prize we have to pay for such detailed infor-
mation is to restrict the analysis to a class of model problems with regard to periodic
boundary conditions. However, much of the analysis can be seen to remain valid un-
der much more general assumptions, namely everything based on local approximation
results and therefore essentially the complete stability analysis as well as the estimates
of the stiffness matrices. On the other hand, the periodic setting provides a convenient
framework for establishing rigorous convergence estimates in the present generality,
although for certain things it may occasionally even require a little more effort to work



in the periodic case. Nevertheless, we find it worthwhile to stay on firm grounds and
attempt to give a possibly complete and rigorous analysis of the interplay of the essen-
tial ingredients involved in problems of this type. So we feel that it is justified sticking
with the periodic setting considered in [17].

The paper is organized as follows. In Section 2 we briefly review the general setting
from [17] which we will continue to work in here and collect a few facts on wavelets
that will be frequently needed throughout the remainder of the paper. In particular,
it will be concluded with an essentially known characterization of Sobolev spaces but
suitably extended to the somewhat more general wavelet-type expansions considered
here. This will provide later the basis for preconditioning the stiffness matrices which, |
in turn, will be an essential ingredient for the intended compression.

In Section 3 we describe the class of operator equations we deal with and define the
corresponding generalized Petrov-Galerkin schemes.

Section 4 is devoted to deriving a number of auxiliary basic estimates for entries of
stiffness matrices by combining some properties of Schwartz kernels of the operators
under consideration with approximation properties of the linear projectors associated
with the numerical schemes.

We will continue discussing two different kinds of compression strategies induced
by different decompositions of the finite dimensional operators representing the under-
lying Petrov-Galerkin scheme. The first decomposition corresponds to blocks of the
stiffness matrix relative to wavelet-type bases and will be referred to as wavelet rep-
resentation. The second one is somewhat different and will be referred to as atomic
decomposition because it is closely related to the atomic decomposition of Calderdn-
Zygmund operators studied in [34]. In [4] it is termed non-standard representation. In
Section 5 we deal with the wavelet representation confining the discussion in this case
to classical Petrov-Galerkin schemes, i.e., the test functionals are refinable functions
in L,. After estimating first individual matrix entries we will employ suitable versions
of Schur’s lemma to derive estimates on the norms of the compressed matrices as well
as of their inverses to ensure stability of the compressed schemes. This allows us to
prove then that the solution of the compressed scheme can be made to deviate from the
exact solution of the complete finite dimensional problem by no more than a prescribed
tolerance. Here the compressed matrices involve the same order of nonzero entries as
unknowns. The corresponding constants, of course, depend on the given tolerance but
not on the discretization level. We proceed then modifying the compressions to prove
finally quasioptimal overall asymptotic error estimates for the approximate solutions
allowing for O(N(log N)*) nonvanishing matrix entries where N is the current number
of unknowns and b > 1 is a fixed number.

In Section 6 we analyse compression techniques based on the atomic decomposi-
tion. Here we consider the full class of generalized Petrov-Galerkin schemes covering,
for instance, also collocation. However, we confine ourselves to zero order operators.
In principle, one could extend these results also to operators of different orders but
-this would require even further technical elaboration. In this case it is relatively easy
to realize fixed error tolerances at the expense of O(N) operations when varying the
compression rate depending on the discretization level. The treatment in [4, 5] seems
to suggest though a slightly different type of compression which we will study through-



out the rest of the paper. We will show that in this way any fixed accuracy can be
achieved within linear complexity provided a BMO type condition is satisfied. The
analytical background can be traced back at least to David and Journé [21] establish-
ing a boundedness criterion for generalized Calderén-Zygmund operators, the so called.
T1 Theorem. A wavelet formulation of this modern Calderén-Zygmund theory was
later given by Meyer [32, 34] who told us that he has worked out similar results for
the method proposed in [4]. We hasten to add, however, that the anlysis shows that
too naive compression strategies may fail in this context and substantiate this by an
example.

We conclude in Section 7 with a brief summary of estimates listed in a table and
some remarks on future work.

2 Refinable Functions and Wavelets

In this section we collect some prerequisites concerning the general framework for the
class of numerical schemes to be considered in the sequel. Since we will be interested
in periodic problems we will have to provide appropriate periodic trial spaces. A
convenient way to construct such spaces is via periodization of functions defined on
all of IR*. Thus we start recalling from [17] a few facts about the central notion of
refinable shift-invariant spaces and complement this material with further facts about
wavelet bases which are relevant for our present purposes.

The main ingredient is a refinable function (sometimes called scaling function) ¢ €
L,(IR™). By this we mean that ¢ satisfies a refinement equation -

p(z) = kzz" arp(2¢ —k) , z€ R*, (2.1)

where the mask a = {a;}rezn is some fixed sequence which typically belongs at least
to £,(Z™). To stress the dependence on a, we will sometimes say ¢ is a-refinable. For
our particular purposes here we will always assume that ¢ has compact support and
that a is finitely supported.

It makes then sense to work with the following notion of (algebraic) linear inde-
pendence which will be the second important property we will require. The integer
translates of ¢ are called algebraically linear independent if the mapping

A >0 Aep(-—k) (2.2)
kezn

is injective on the space of all complex-valued sequences A defined on Z™. Tensor
products of cardinal B-splines or, more generally, certain cube splines are known to
have this property (see e.g. [14]).

- It is also known (see e.g. [27]) that algebraic linear independence implies stability
in the sense that

IMlezmy ~ | Do k(- — E)llare), (2.3)
 kezn
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where A ~ B means that there exist two positive constants ¢;, c; such that c;A < B <
c2A holds uniformly with respect to all parameters the quantities A, B may depend on.
Here ||,\||fz(z,.) = Yrezn |Ak|?, and || - ||z, (rn) denotes the usual Ly-norm on IR™.

Let (z,y) := X}, z;7; denote the standard scalar product of z,y € €™ so that
|z| := (z,z)'/? is the Euclidean distance. Defining the Fourier transform of f € L, (IR")
by

i) = [ f@)e s

R
the stability of ¢ is well-known to be equivalent to (cf. [27])
[¢Q)(w) := > |p(w+Ek)*>0 forall wel0,1]" (2.4)
kezn
Here for

(f,9) = [ f@)gle)dz,
Rn
we define in general

[/3)(w) = kEZ" flw+k)gw+F) = kZzn(f, g(- = k)™, (2.5)

which, in particular, is well-defined when f, g have compact support but will be so as
well under weaker assumptions (see Theorem 3.1 in [27]).
Now let

(pY :=span{p(2-—€):£€ 2z}, (2.6)
where the closure is taken with respect to the L;-norm. When ¢ is refinable one clearly
has (@) C (p)i*'. We wish to determine next appropriate updates which complement
() in (p)?**. To this end, let E := {0,1}" denote the standard set of representers of
Z™[2Z™ and let

E, .= E\ {0}.

The following facts are special cases of results established e.g. in [27].

Theorem 2.1 Suppose ¢ € Ly(IR") is a stable refinable function of compact support
with finitely supported mask a = a°. Then there exzist finitely supported masks a®, e €
Eo, such that the functions

Ye(z) := E azp(2z —§€), e € Ey, (2.7)
¢ezn
satisfy the following properties:
(1) (Pe(- — &), ¢e(- — &) =0 fore,e' € E,e # €, €& € Z™, where we have set
Yo := .
- (i) The functions Y(- — €),e € Eo, € Z™ form an unconditional basis of the
orthogonal complement of (p)° in (p)!, i.e.,

(@) = (#)° D (¥e)’-

CEEO



The functions v, e € Ey, are called pre-wavelets. 1t is clear that they have the same
regularity as the generator ¢ and that, under the above circumstances, they are also
compactly supported. Explicit constructions of pre-wavelets can be found in [9, 37].
If in addition the translates (- — £) are also orthonormal the 1, are called wavelets.
Univariate compactly supported wavelets of arbitrary regularity are constructed in [18]
(see also [8, 19]). ' A

It is often not necessary to deal with orthogonal decompositions. An alternative
approach was developed in [10] which may be summarized for our purposes as follows.
Suppose that in addition to a given a-refinable function ¢ € Ly(IR") there exists
another d-refinable function ¢ € L(IR") such that

(@, ¢(- = &)) =bog, € Z™. - (28)
The issue is then to find additional masks a®,d®, e € Ep, such that the functions
"»be = Z 02@(2 : —6)1 Ce = E dZC(Z : —f)a S EO’ (29)
ez Lezn
satisfy
(Yes Cer (- — €)) = b erdoe, e, € €EE, E€Z, (2.10)

where we have again set o = ¢, (o = (. We will refer to the %, (and consequently to
the (;), e € Eo, as biorthogonal wavelets. When dealing with biorthogonal wavelets we
will always make the following

assumption: All the masks a®,d%, e € E, are finitely supported, p,{ and hence
Ye,Cere € E, are compactly supported and { has as many continuous derivatives as

Pp.

For univariate examples satisfying these assumptions see [10] and taking tensor
products would, of course, preserve these properties. Let us record next some facts
which will be important in the sequel. '

Proposition 2.1 Suppose ¢ € C%(IR") is a compactly supported refinable function
with linearly independent integer translates and let .,e € Ey, be pre-wavelets or
biorthogonal wavelets. Then, under the above assumptions, the following facts hold.

(i) The functions 2™/%) (27 - —€),e € E, & € Z™ form a Riesz basis for Ly(IR™), i.e.,
every f € La(IR™) has an ezpansion (o = @)

F=33 2 ciee(£)2V9 (27 - -£),

JEZ e€E tcZn

which converges strongly in Ly(IR™) and

I NLaqrmy ~ D lictl?,  f € La(IRT).

Jek



(it) The following dth order moment conditions hold

[ Pbla)ds =0, ee Bo, fe N, I81 < d.
Rn

Proof: For pre-wavelets (i) follows directly from Theorem 2.1 and orthogonality. For
biorthogonal wavelets the claim is a consequence of the results in [15].

As for (ii), it is shown in [7] that when ¢ satisfies C3 then there exists for every
p € II4(IR™), the space of polynomials of degree at most d on IR", a unique polynomial
q € II4(IR™) such that

p(w) = >, dOp(z—¢), zeR" (2.11)

ez

Thus, for pre-wavelets the assertion follows immediately from (2.11) and orthogonality
(i) in Theorem 2.1. In case of biorthogonal wavelets, by our assumption (2.11) holds
for ¢ replaced by ( so that the assertion follows from (2.10). o

Note that the order d of moment conditions depends only on the degree of polyno-
mials for which (2.11) holds which, in turn, is known to agree with the order d of the
Strang-Fiz conditions:

(0°¢)(k) =0, |of <d, ke Z"\ {0} (2.12)

(see e.g. [7]), and dth order differentiability is only sufficient but not necessary for
(2.12) to hold. This suggests introducing the following class of generators ¢ which we
will work with in the remainder of this paper.

The function ¢ is said to satisfy Cg"d for some d',d € Ny, d' < d, if ¢ satisfies the
following requirements:

e ¢ is refinable, has compact support and belongs to C¥ (IR").
e The integer shifts of ¢ are algebraically linearly independent.
e ¢ satisfies Strang-Fix conditions of order d.

It is also known that for any ¢ satisfying C2*® there exists a constant ¢ < co and some

p = p(p) € (0,1) such that
10°¢(z) — Po(y)| <clz—yl’, zye R, BeNg,|Bl=d.  (2.13)

Here 0% := ;7‘?-; ai:,:‘; and |8] = By + -+ + Ba (cf. [13, 17]).
Finally, we mention that it is shown in [27] that many of the above properties still

hold under much weaker assumptions on ¢. In fact, for many purposes, it suffices to
assume that ¢ belongs to the space

Lo={f € La(R") : ¥ 1f(-— k)| € La([0,1]")}.

keZz™



It is clear that any function ¢ € Lp(IR®) which has compact support or for which

I |e(z)|*dz decays exponentially, as |k| tends to infinity, belongs to C,.
k+[0,1]"
We will now turn to the analogous periodic setting introduced in [17]. Identifying
one-periodic functions, i.e., functions f satisfying

flz+k) = f(z), forall ke Z",
with fﬁnctions on the n-dimensional torus
T = R"|Z",

the periodization operator

@)= X fe+k) (2.14)

keZn
maps Ly(IR™) into Ly(7T™). Likewise we will identify for notational convenience the
cosets [z] := z + Z™, = € IR", with its representer z € [0, 1]". For any function ¢ € £,
we define now )
1:=2%[¢(2-—k)], kez" (2.15)

Thus setting for any two one-periodic functions u,v € Ly(T™)
(u,v)o := / u(z)v(z)dz,
0.1

we note that for any g € £,, u € Ly(T™)

(lgl,w)o = (g, u) (2.16)
so that, for any f,g € L,

(111 [g1)o = (£, [g]) = ([£], 9)- (2.17)

Defining .
Z™ =" (2Z"),
one easily derives from these facts the following observation (cf. [17]).

Remark 2.1 Let f,g € L, satisfy

S (fr9(-—8) =bog, E€Zm

Then o -
(fygl)o=0ky, k€ Z™, j€ IN,.

More generally, let n be any functional of compact support and define
M (v) := 27 2n(v(279(- + K))). (2.18)

If for some g € L,
n(g(- +€) =boe, E€Z7,
then one also has

ni(g) =i, k€ Z™, je N,



Hence the previous orthogonality relations, refinability and Remark 2.1 readily yield
the following facts.

Corollary 2.1 For pre-wavelets 1.,e € Ey, one has
(ﬁ,k? ’)bi',m)o = 0’ .771 € NOa l ?é ja ¢, ¢ € E07k € Zn,j,Tn € Zn’l’ (219)
while biorthogonal wavelets satisfy

(%4 Crm)o = 8iabe,erSim (2.20)
for j,l € INo,e,e' € E,k € Z™ and m € Z™.
For a given refinable function ¢ € £, we define now the spaces
Vi = (o)} := span {¢ : ke Z™}. (2.21)
Since by (2.1) and (2.15)
0l =27 3" am_npi?
mezZn

we conclude - .
VicVic...cVicVvittc...Cc Ly(T™) . (2.22)

One can also show [12] that the stability (2.3) of g € £, is preserved under periodization

in the following sense '
")‘”tg(zmi) ~ || Z _/\kgi”Lg(T"), (2.23)
ke Z™i

uniformly in 7 € IN. Moreover, one easily confirms now from corresponding results on
the non-periodic case [27] that, under the above assumptions,

U Vi=s D @e)i=L(T") (2.24)

JEN, JEN,e€Ep

holds for pre-wavelets and biorthogonal wavelets, which as before form Riesz bases for
Lo(T™).

The decompositions based on pre-wavelets and biorthogonal wavelets may be viewed
as special instances of the following concept which will be important for subsequent
developments. Suppose @); denotes a linear projector that maps for any ! > j the space
()} onto (p)3. It is clear that the spaces

Wi = (Qin — Qi)™
give rise to a direct sum decomposition
(@)™ = (N DW;.

To be a bit more specific about the form of the projectors Q; suppose that v satisfies

Cg"d and 7 is a fixed compactly supported linear functional in the dual of (v)° such
that

[Flw) #0, weT™ (2.25)



Here 7 denotes the Fourier transform of 7 in the distributional sense. As pointed out

in [17] the coeflicients g in the trigonometric series

2mi(€,w)
gee
[ ](w) 55223n

decay exponentially fast. Thus, the Fourier transform of the function

do:= Y gev(-—€) €(7)°

Lezn

is given by

3w)
#o() = Gty

[bofl(w) =1, weT™,

and therefore, as one easily confirms, in view of Remark 2.1,

ni(¢%,m) = Jk,my k,m € Zn'j’

Hence ¢y satisfies

and

Qju = E Ui(“)%,k

kezn:j

defines a projector onto Y7 := ('y){;. Clearly, when v = ¢ and 7(g) =

Bu= Y (uC)ovh,

kez"'j

(2.26)

(2.27)

(2.28)

(2.29)

(2:30)

(2.31)

(6,0), where ¢ is
a biorthogonal refinable function (2.8), one has ¢ = ¢ and Q; takes the form

(2.32)

while for n(g) := (g, <p) and v = ¢ the projector @); becomes the orthogonal projection

Py; onto V7 := (p)}, glven by
Priu= Y (u,4i)od -

kezmi

In this latter case ¢ is given by

oy 9)
M) = TapTay

which, in view of the stability of ¢, is well-defined.
Likewise, we obtain for the differences

(Bit1 — Bj)u = Z (u, ﬁ,k)o«ﬁi,k,

e€Ey ke Z™i

in case of biorthogonal wavelets, while for pre-wavelets

(Pyi+r — Pyi)u = Z (u, g,k)0¢£,k’

e€Eo keZ™I
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“where (, is now given, in view of Theorem 2.1 and Remark 2.1, by

2 ‘;e(w)
(W) = (2.37)
[1#el?](w)
Of course, in the case of orthogonal projections the functions ¢, (., e € Ey, do not have

in general compact support but decay exponentially fast. The following fact established
in [12] holds for the general case. ‘

Theorem 2.2 Let for n as above v satisfy (2.25) and cd'? for some d',d € INy and
let Q; be defined by (2.31). Then there ezist ezponentially fast decaying coefficients
9¢> G5, € € Eo, & € Z™, such that for

e . 1
¢° = Z 957(2 : —E)a ne(f) = z Q.gr](f(é'(' + E))), (238)
EEZL™ I3/ Add
one has . . .
' Mok (P p) = Seerbps, e,€ € Eo, k k' € Z™, (2.39)
and

Qin—Qu= Y Y 7 (w)dl,. (2.40)

e€Ey ke

Thus the operators Q41 — Q; are projectors as well and satisfy therefore

QQ;=Qi, for 1<j]. (2.41)
For s € IR and any domain ! C IR™ we denote by H*() the usual Ly-Sobolev
space of order s relative to  with norm | - ||,(€2). Whenever we will work on the

particular domain 7™ we will drop any reference to the domain.
We will also make use of the following characterization of Sobolev spaces.

Theorem 2.3 Let ¢ be a generator satisfying Cg"d and let ., denote either pre-
wavelets or biorthogonal wavelets satisfying the above assumptions. For any function
u € H(T™) N H¥(T™) with |s'| < d' + p one has a unique ezpansion of the form

u=Y, ¥ S di(ulit D si(u)et.
=0 ke 2zt e€&y keZn0

Moreover, one has the norm equivalence

lleells ~ (f: PR H O DY |32(u)|2) : (2.42)

1=0 kezZmt e€o kez™°

For pre-wavelets and non-negative s the above result is well-known (see e.g. [33]). For
positive s and pre-wavelets as well as biorthogonal wavelets this norm equivalence is a
special case of Besov space characterizations given in [22, 13]). The case of biorthogonal
wavelets and s = 0 is covered by Proposition 2.1. The case s < 0 follows by duality.

11



3 Periodic Pseudodifferential Operators and Gen-
eralized Petrov-Galerkin Methods

We briefly recall the setting considered in [17] and introduce a class of periodic pseu-
dodifferential equations which will be studied throughout the remainder of this paper.
Locally these operators can be described in terms of pseudodifferential operators on
R™ (cf. [3, 30]). We recall the following definition from [26, 28]. A pseudodifferential
operator A € ¥"(IR") is a linear operator of the form ,

Au(z) = /(/ 62*;(6'”_?)a(z, u(y)dy)d¢ , ue Cy°(RY), | (3.1)

R" R"

where the symbol o(z,€) belongs to the symbol class ST(IR® x IR") containing all
o(z,€) € C°(IR™ x IR™) such that for each multi-indices e, B there exists some constant
Ca,B Wlth

|DZDgo(z,€)| < cap(l + €))7, 2,6 € B (3:2)

Viewing 7™ as a compact manifold, the corresponding classes U"(7™) of periodic pseu-
dodifferential operators are then defined via local partitions of unity. Alternatively, the
elements of ¥"(7™) may be represented in terms of Fourier series expansions, namely

o(z, Dyu(z) = Y, &"&o(z,€)u(€) , u € C=(T"),

¢ezn
where .
u(é) = /e'”"“’”h(x)da: , ¢eZ™,
‘Th

and o belongs to a certain symbol class of periodic functions which is described in [17]
(see also [3, 30, 31]).
Recall that a pseudodifferential operator A € ¥"(7™) maps

A:H(T")—-H"(T") , s€e R, (3.3)
boundedly.

Our objective is to solve the pseudodifferential equation
Au=f (3.4)
on 7" for u € H*(T™), where A € ¥"(T") and f € H*"(T™).

We will study a rather general class of numerical schemes for the solution of (3.4)
based on a fixed compactly supported distribution

n€ H(I), (3.5)

where s’ > 0 satisfies AV’ C H '(T™), and where I' C IR" is some fixed ball with center
zero. We will always assume in the sequel that the spaces V7 of ‘Ansatz-functions’ are
of the form

Vi= (e}

12



where ¢ is a fixed function satisfying C " for some d' < d € IN,. As before, we define
for g € H*(IR™)

nig) == 27/*n(g(27(- + K))). (3-6)

The corresponding Petrov-Galerkin scheme is then given by
ni(Av’) = ni(f), ke z™. (3.7)
Specifically, the choice n = §(- — wp), i.e.,

1(g) := g(wo), (3.8)

gives rise to the type of collocation schemes studied in [39] for n = 1 and in [35] for
arbitrary spatial dimension and tensor product spline spaces, while

7(0) = (0:) | (3.9)

corresponds to the standard Galerkin scheme. For further examples covered by this
setting the reader is referred to [17].

Following [17] we rephrase these schemes as projection methods. To describe this,
let 7 be given as above and choose an appropriate compactly supported function «y
satisfying (2.25). We can then define the projectors Q; by (2.31), (2.26) and (2.27). It
is clear that solving (3.7) is equivalent to finding u? € V7 such that

QiAW = Q;f. | (3.10)

We emphasize that for given n we are free to choose v appropriately to satisfy (2.25).
So v could coincide with the generator ¢ of the Ansatz-functions but does not have
to do so necessarily. For instance, when dealing with collocation - could be a tensor
product B-spline for which cardinal interpolation (2.25) is well-understood. However,

in the following we will always assume that v also satisfies Cd 4 and we will set

= (18 = (8}, (3-11)

where ¢ is given by (2.26) and (2.27). The reason is simply to limit the number of
parameters involved and one could easily allow for different degrees of regularity as
well.

The scheme (3.7) is called (s, r)-stable (see Remark 4.3 in [17]) if

1Q; Av||s—r > ¢ ||luf||, forall w? € V7, (3.12)
uniformly in j € IN. (s,r)-stability is characterized in [17] by the ellipticity of the so
called numerical symbol of the scheme (3.7) given by [0,¢7]|(w) (see Theorem 6.2 in

7.

13



4 Some Basic Estimates

In this section we derive a number of basic estimates which will make systematic use of
the approximation properties of the projections ); introduced in the previous section.
For most of these properties we will refer to [17] but recall at this point the following
direct and inverse estimates because they will be used more frequently in the sequel.
We will continue denoting by p = p(¢) € (0,1) the Holder exponent of the d’th order
derivatives of ¢ (cf. (2.13)).

Theorem 4.1 Let —d' -1 <s<d +p, —d —p<t<d+1 and s <t. Then the
Jackson estimate .
llu — Pyiull, < 2709y, (4.1)

holds for all u € H(T™), where c is independent of j and u.
Moreover, when s < t < d' + p there ezists a constant ¢ such that for all W €
Vi, j € INy, the Bernstein estimate

]l < 2|1, | (4.2)
s valid.
Next, let
0w) = (B1(w),--,0.)), Oi(w) =™ —1, weT, (4.3)

and observe that for every fixed a € (0,1) there exist finite posmve constants i, cp
such that

alw| £ 0(w)| € eow|, w € ][0,q]". (4.4)
For given exponentially decaying coefficients ¢¢, § € Z™, let
G = D Coigpre (4.5)
¢ezn

It is not hard to show that there exists then some constant ¢ and some § € (0,1) such
that for all j € IV ) o '
|cl| < ¢ §¥1CTRI e zmi, (4.6)

Moreover, suppose h(t) is any positive strictly increasing function on IR such that for
all 0 < 4 < 1 there exists a constant ¢ = ¢(§) with

h(2710(279k)|) < ¢ 8~ F PR 1027 (k - 1)), ki€ Z™,jeN.  (4.7)

It is then clear from (4.6) and (4.7) that there exists some constant ¢ such that for d
as above

1 d h(2’|0(2"(k D)) S ch@OE@TR))Y, keZ™, jeN.  (48)

lezm™i

It is not ha.rd to verify that h(t) := (1 + |¢|)” satisfies (4.7) which gives

14



Lemma 4.1 Suppose‘ the coefficients c¢, & € Z™, decay ezponentially fast and let T be
any positive number. Then there ezists a constant ¢ < co such that

| 3 o Q+2710@7 (k- D))"| <c L+ 2|0Q27k))™", ke Z™, je IN.
leZns

It will be convenient to work with the Schwartz kernel representation of A € ¥7(7™)
(see [30]). A corresponding further prerequisite is the following lemma which, in princi-
ple, is already known (see [42] p.40). Since it plays an important role for our approach
we will sketch a proof here, following the treatment in [11].

Lemma 4.2 The Schwartz kernel Ky of A € U (T™) satisfies for z # y, z,y € T™,
the estimate

102 Ka(z,y)| + 105 Ka(2,9)| < calb(@ =) "+ +HD S nprtal >0, (49)

Proof: Since 7™ is a compact manifold every A € ¥"(7T™) may be represented via
partitions of unity in terms of elements from ¥"(IR") so that it is sufficient to consider
operators A € U"(IR™) which are technically somewhat easier to work with.

Note first that for an operator A € ¥"(IR") with Schwartz kernel K4 the quanti-
ties 92 Ka(z,y), 9 Ka(z,y) are Schwartz kernels of an operator A’ (respectively the
transpose of such an operator) in ¥"Hl(IR*). Denoting by o, € S™HI?I(IR* x IR") the
symbol of A’; we recall next that for ¢ # y, Ka(z,y) = K(z,z — y) is given by the
oscillatory integral (see e.g. [28] for the precise definition)

K(z,z —y) = /ez”i(f”"y)aa(z, £)d¢ . (4.10)

Now let x € C$°(IR™) be a cut-off function which is identically equal to one on {¢ €
IR* : |¢] < 1} and vanishes outside {£ € R" : [¢] < 2}. We set xr(§) = x(RE), choose
R = |z — y|, and write the oscillatory integral (4.10) as

K(z,z —y) = Ki(z,z — y) + Ka(z,z —y) ,
where
Ki(z,y) = [ iyn(@)oa(s,)d¢
Ka(,y) = [ (1 - xa(©)oa(a, O)de.

Of course, we wish to estimate K; and K; when R becomes small. Thus we will assume
that R < Ry for some fixed constant Ry. The first integral may be estimated by

|Ki(z,z —y)| = |_/62?"'(5""‘”))(3(6)0'0(3:,§)d§| < / 1+ m)r+|a|d€
[¢l<2R~!
< CRTHHAD = g — y|arHeD, (4.11)

provided that n +r + |a| > 0.
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In order to estimate the second kernel we note that

Agem"'(f,z) — (27ri)2p|z|2ﬁez”"(£”’) ”

where A denotes the Laplacian with respect to ¢, and apply partial integration to the
oscillatory integral K. Thus we obtain for sufficiently large 8

|Ka(a,z —y)| = | [ =1 = xg(§))oa(a, E)d¢]
olla —yl) ¥ [ = AL~ xm)ou](z, )]
< o=yl [ |erteoa

IA

[€I>R-1 ~
< efo—ylrHlaD (@12)
where ¢ = ¢(Ry). The assertion follows now from (4.4) o

We remark that, for n + r + |a| < 0, additional logarithmic terms appear in the
estimate (4.9).

In addition we need the following facts from [17] (cf. Lemma 2.1 in [17]). Under
the above assumptions on the function v there exists some bounded domain Q C R*
and a linear functional F on L,(IR"™) supported on § such that

Fi(vi) = 6w, kleZ™,
IFi@)l < cllvllo(Rd), (4.13)

where for any domain Q C R® we set Q := 279(k + Q). Hence
Gi(v):= Y Fi(vyi

kezZ™Ii

is a projector onto Y7,

The following notational convention will be convenient in the subsequent considera-
tions. Given a domain ) with center of gravity y, say, we will denote by Q, a set of the
type ¢(2 — y) +y where c is some constant which will always remain bounded indepen-
dently of any other parameters involved. Thus (2, represents an expanded version of ().
Since the expanding factors ¢ will not matter we will denote any repeated expansion of
() again by £, as long as the number of expansions remains uniformly bounded. Thus
2, may actually denote a different domain on each occurrence. However, under the
above assumption, there will always exist a constant ¢ such that diam ), < ¢ diam (2.
Also we will set

0f = u{o, : 0} N (supp i) # 03,
~where O := [0, 1]". 7
- It is shown in [17] that when v satisfies C3 " and 0 < s <t < d+1, s < d' +p(v),
then
1G5 — ulls() < e 270 ull (D), we HY(T™). (4.14)

We will use these facts to derive the following estimates for the functionals 73.
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Lemma 4.3 For any w’ € Y7 one has
)] < e lwllo(Th), (4.15)

where c is some constant independent of j € IN and w? € Y? and T is the domain in

(3.5).

Proof: According to Lemma 5.2 in [17] one has for any s > s’ and v € H*(T™")
() < ¢ (Jlul3TD) + 27 lul3(TD)) - (4.16)
Now let u = u? = 2okeZmi ck'yi so that

(T = 1| 35 envills(TL),

meti,

where
[}, ={m e Z™ :supp (v},) N T} # 0}

Thus the inverse estimate (4.2) yields

Nwlls(T8) < e 2 3 lemlllvhllo,

meri:"
whence we conclude that

W |2(TD) < 257 Y Jom|® (4.17)

mEF{ﬂ
On the other hand, by (4.13),
leml® = |Fa(u')] < e [ ]I3(R%),

s0 that the assertion follows upon summing over m € Z™ and using the stability of
the ~j. o

We are now in a position to prove the first estimate which will be used for our
compression strategies.

Theorem 4.2 Let r]i,k,e € Ey, be the functionals defined in Theorem 2.2, let ¢ satisfy

Co"® with s' < d' +p(p) —r and let A € U(T™). Then there ezists a positive constant
c independent of j € IN,k,k' € Z™ and e € Ey such that

)'"“H" . (4.18)

ik (Apd) < ¢ 27 (1 +27|0(27 (k — m))|
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Proof: Let u? := (Q;41 — Q;)(Ayl) € Yi+! so that, by (2.40), nz,k(A(p{n) = Ui,k(uj)'

As in (4.5), let )
@G’ =) Gieyrr €€ Fo,
(ezn

where the gf are given in Theorem 2.2. One easily confirms that

] edHl _j+1
ﬂi,k(”) = 2n/? E Z ; qz;{ktk'nit}-2(k'+k) (v).
e'€E ke ZnI

Thus Theorem 2.2 and Lemma 4.3 provide we obtain therefore

mix(Api) <e 3 3 1aEhllQin — Q) APo(Ti i) (419)
¢€E k'eZ™i )

< e 3 1@ 1 (1@ = D(APE)o((Thr)e) + (T = Qi=1)(Aei)llo((Fie)s))

kKezni

where § = Yuer lgs b |- We will estimate in detail only the terms

1(Q; — D(Api)|o((T, +k)+)- The other ones can be treated in essentially the same
way. To this end, let as before

(T4 :={v € Z™ : supp (7}) N (T}u). # 0},
and define

AR D DU ' R § (4.20)

Ve(fi_._k,)‘,-y

where g¢ are the coefficients from (2.26). The same arguments as in the proof of Lemma
5.5 in [17] yield now '

1(@; = D(AEo((Thiw)) < (G5 = D(Api)lo((Fhw)e) (4.21)
+ ¢ Y doprm (1G5 = D(ARR)I0((T0).) +279(G5 = D(A@i) . (F0).)) -
m!'eZ™I

Since the cardinality of (f‘i +k')+y Temains bounded independently of &k € Z™ and
J € IN, we infer from (4.20) and (4.6) that there exists some constant ¢ and some
§ € (0,1) such that

G < o GBI EH—m)] (4.22)

Now let us abbreviate for any function f

S(f) = supp f,

and suppose first that

S(pi) 0 (). =0. (4.23)
In this case one has, in view of (4.14), for every t € [0, s']
I(G; = D(ALi(Th) < € 277D AT |0 (D)), (4.24)
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where [v]7(2) = ¥joj=¢l|0°ul|3(2) denotes the usual Sobolev semi-norm of order £.
Note now that Lemma 4.2 yields for || =d +1

oz / Ka(>9)29%p(@y — m)dylo((Ff).)

< al [ 200~ )y o ().)
273 (m+5())
S 2™ |07 (m — K[+,

so that

) —(n+r+d+1)

279)(G; = D(Apd)I((Ff)) < ¢ 27 (1 + 2710279 (" — m)))| »  (4.25)

whenever (4.23) holds. If (4.23) is not sa.txsﬁed we consider first the case r < 0 and use
(4.14) to conclude that

(G -1 )(Ago;';)llt((f‘{,.)*) < c 2’: (t+')||A90’;,.II ((Tfn)s)
< ¢ 20| Al |-, (4.26)
< e 26916 o
< o (142107 (m—k))) T a2

When r > 0 we define O, , = {m” € Z™ : ([,). Nsupp (v2.,) # 0} and observe that

IG;(APIM(TL)) < 32 1Fau(Ah)] funlle

mnegi"
< 2 Y A lo(,0) (4.28)
’“”Eﬂf..',»,
< ¢ 29 Agillo < e 24|¢ |-

.. . . —(n+4r+4d
< ¢ otigir (1 + 2J|0(271(m _ ku))l) (n4r+d+1)

b

where we have also used in the last step the inverse estimate (4.2) and the fact that,
since (4.23) is not satisfied, there exists some constant R such that 27|0(277(m—k"))| <
R. Similarly one gets

| A2 |l ((Fkn) ) < cll@dllir < e 2 gl o (4:29)
.. . . —(n+r d
< ¢ Qtiori (1 + 2]'0(2—-](m _ k”))l) (nt+r+1+d) )

Thus summarizing (4.25), (4.26), (4.28), and (4.29), yields that for ¢ € [0, s']

—(n4r+d+1)

279/(G; = (AR ((T)) < e 277 (14 27]6(27 (K" — m))]) (4.30)
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holds in all the above cases for some constant ¢ independent of j € IN and m, k" € Z™.
Thus substituting (4.30) in (4.21) and inserting this bound into (4.19), provides

) —(n+r+1+d)

maAei)l < o2 X g {(1+ 210 ((k + k) — m)) (431)

k'e VA

m'eZnI

| ‘ j j —(ntr+1+d
+ Y i (12102 (m = m))) T >}.

A twofold application of Lemma 4.1 to (4.31) proves now the assertion. o

A similar result holds for the dual situation.

Theorem 4.3 Let ¢‘;k denote either pre-wavelets or biorthogonal wavelets satisfying
the assumptions listed in Section 2. Then there ezists a constant ¢ such that

Ini(AY )| < 277 (14271927 (k = D)) (4.32)
uniformly in j € INp and I,k € Z™.

Proof: Suppose first that ) ) .
dist (S(9?,), %) > R2™ (4.33)

for some constant R > 0. Then, using Taylor’s expansion, the moment conditions in
Proposition 2.1, and Lemma 5.2 in [17], we get

l’?i(A'ﬁZ,z)'

l/ ( > (L_Tj:l)ias(nilf,;(-ﬂ(y)))) 2724 (2y — 1)dy]

|a|=d+1
< e (llullo(Th) + 27 [l (D) ,
where s :=min{w € INo: w > s}, 7(y) € 273 (1 4+ S(¢b.)) and
v(z) := / ( > Ltai,—ﬂa;’m(z,f(y)))) 27 (2y — 1)dy.
Rr \la|=d+1 T . -

Thus we infer from Lemma 4.2 that for || = s
0@ < o [ ly =20 - o)) |- iy, iy — Dldy
< e gfﬂmz-ﬂdﬂ)w(z — g7ip)|~lrbrdetdt), (4.34)
Therefore

loulloT) + 275 ol (1)
¢ 297 (1 + 2710279 (k — )]) "+ 444D 4 (1 4 29]9(277 (k — 1)) [)~(rHr+é+i+)
c(1+270027%(k — [))D“(n+r+d+l)’
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which establishes our claim in the case (4.33).
Now suppose (4.33) does not hold and assume first r < 0. Lemma 5.2 in [17] gives
for any s > &'

li(A¥i )P < e (IlAwL3 +27%|| Ay, |1?)
< e (Il2 + 27 gl )12, (4.35)
< el

where we have used (4.2) in the last step. When the ¢v£,, are pre-wavelets we have
Y21 = (Pyi+r — Py; )., so that the direct estimate (4.1) yields

12ll- < e 27167 llo- (4.36)

When dealing with biorthogonal wavelets one obtains 1,bi, = (Bj41— B_,-)z/)i’,, where the
operators B; are defined by (2.32). Since the B; are uniformly bounded projectors on

Ly(T™) one could either argue directly or invoke Theorem 5.2 in [17] to confirm that
(4.36) remains valid in this case as well. Thus

Ini(A%)] < ¢ 2% llo. (437)
If r > 0 (4.37) follows directly from (4.35) and (4.2), whence the assertion follows. O

We will proceed now listing a few consequences of the above estimates.

Corollary 4.1 Suppose that ¢ € Ly(IR™) is any function of compact support. Under
the previous assumptions on the (pre-wavelets or biorthogonal wavelets) ], one has

for any A€ UT(T")
|(A%%4, #)ol < ca2i"(1+21|0(27 (k= D))=+ +4D - K lez™,  (4.38)
where the constant cq is independent of 3,1, k. '

Proof: Taking (g) := (g, ¢) the claim follows from Theorem 4.3. O

Corollary 4.2 Suppose ¢ has the form (2.34), where ¢ has compact support and has
stable integer translates. Then, under the remaining assumptions of Corollary 4.1 the
estimate (4.38) remains valid.

Proof: The assertion follows from Corollary 4.1, Theorem 2.2 and Lemma 4.1. a

Corollary 4.3 Let A € V' (T") and r+n+d+1 > 0. Under the assumptions of
Corollary 4.1 one has

) —(n+r+d+1)

b

(4.39)

(A%, %34 ol + (A% ph)ol+ (A, i)l < 27 (1 + 21027 (k — D))

where c is independent of e, €', k,l and j.
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An estimate of the type (4.39) can a.lso be found in [4] for the case r = 0 and for
Daubechies wavelets.

Remark 4.1 The above reasoning reveals that the analysis is essentially based on two
assumptions on the operators, namely local properties of the Schwartz kernels and
boundedness properties of the pseudodifferential operators. Hence, for r = 0 the above
results remain valid for the wider class of Calderon-Zygmund operators, which was
already pointed out in [4].

We will make use of these prerequisites in subsequent sections to approximate the
finite dimensional operators Q;APy; corresponding to the numerical scheme (3.7) by
an appropriate operator which has a sparse matrix representation relative to a suitable
basis. These approximations will be based on the following decompositions of Q;A Py ;:

Q;APy; = Z (Qi — Qi-1)A(Pyv — Pyu_y) (4.40)

1,I'=0

where ()1 = Py-1 = 0 and

QiAPyi = 3" (QiAPy: — QrrAPyics). (4.41)

=0
Decomposition (4.40) corresponds to stiffness matrices relative to wavelet bases, while
(4.41) will be referred to as atomic decomposition.

5 The Wavelet Representation

In this section we will employ the decomposition (4.40) for approximating Q;AP;,
where in the following P; := Py;. However, in this case we confine the discussion to
classical Petrov-Galerkin schemes, i.e., the functional n will be assumed to be a regular
distribution represented by a functlon again denoted by n which, to avoid further
technicalities, will be assumed to satisfy also Cd Moreover, throughout the first two
- parts of this section we will fix
s=r/2.

For simplicity we use here the same exponents d',d as for ¢. Likewise r)g,k will denote
pre-wavelets or biorthogonal wavelets satisfying the assumptions stated in Section 2.
Under these assumptions on 7 we may choose y =17 (see Section 2) so that ); becomes
in this case the orthogonal projector onto the spaces Y7 := (n)J. We recall from (2.41)
that under all these circumstances the corresponding projectors Q; satisfy

QI'QI Ql' for l, <. (51)

This fact will facilitate exploiting the estimates from the previous section for estimating
now quantities of the type (A ;,nl )0 for I # j. Using approriate versions of Schur’s
lemma these results will be used then to estimate the norms of the compressed matrices
and their inverses as well as to relate these facts, by means of the norm equivalences
from the end of Section 2, to the stability concept developed in [17]. This, in turn, will
allow us to establish error bounds for a fixed required accuracy as well as asymptotic
error bounds suggested by the convergence rates derived in [17].
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5.1 Estimates for Different Levels

For notational convience, we introduce the following short hand index notation:
Ji={I:1=(,ek) ke Z™ ec E}, le N,
J-1 = {(""1,01 0)} ’

and )
i
J=U &
I=-1

Setting
|I]| := 27! whenever I € J,

we abbreviate at times

{ — e 0,
¢'1={ ar [ =(lek), L€ IV (5.2)

¢S, I=(-1,0,0).
Thus the stiffness matrix relative to the above wavelet type bases has the form

A7 = (n1(As))1t, (5.3)

and will be referred to as wavelet representation. For the special case that the iy are
orthonormal wavelets it is called standard representation in [4].

Our first step is to precondition the matrix A7 which, on account of Theorem 2.3,
requires for s = r/2 only the block diagonal scaling

bry = [I|75|J|"Eni(Ad) (5.4)
to guarantee, as will be detailed later in Corollary 5.3, that the matrix

B’ := (br,1)1,7e75

has uniformly bounded spectral condition numbers, provided the Petrov-Galerkin scheme
is stable (cf. [17]).

In addition to the estimates in Theorem 4.2 and Theorem 4.3 we have to consider
now also entries of the form b7 ; where I, J stem from different scales.

Lemma 5.1 Let 2(d'+p) >r, n+d+1+r >0 and that for some positive constant
R
027K — 27'k)| > R 2~ mintd} (5.5)

Then there ezists a constant ¢ depending only on R,r,n,d such that the coefficients of
the matrices B, j € IN, defined by (5.4) satisfy

9-l=VI(2F"+d+1)

_ -z L
IbJ,Ii = 1(2 1AYL,2 ”N)OI <c (1 + 2min{l,l'}|9(2-zk - 2—l’kl)l)n+d+1+r ’

(5.6)
uniformly inI € Ji, J € Ju, and k € Z™, K € z.
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Proof : The case | = l' has already been esta.bhshed in Theorem 4.2. Therefore
suppose first that I’ < l. We expand the function Q;(272" 3 =AYl &) as

gk = QT AYL) = Y c(m)d,, (5.7)

me Zn,l

(see 2.31) where for fixed I = (I, ¢,k)

e(m) = 25 7}, (A1) (5.8)

and ¢ is given by (2.28) or (?7?).
Now Theorem 4.3 yields the estimate

le(m)] < ¢ 25(1 + 21027 (k — m))|)™™%'" for k,me Z™ . (5.9)

In order to estimate (2.38) we recall that ¢!, decays exponentially and is continuous.
Thus combining Lemma 4.1 with (5.9) yields

lge(z)] < c 2528 (1 + 2|0(z — 27'k)|) ™% for -2k €T,  (5.10)
Next note that, in view of (5.1),

Quir — Qu=(Quyr — Qu)Qi, for I' <.

Since -
ns(v) = 15((Qu41 — Qu)v),

we obtain therefore

ns(AYr) = 15(Quir — Qu)(QiAYr) = ni(QiA%1) = ns(gu1k)s

so that
_,-( ! 'y —‘T
1277 s (Avr)| = |27 Avn, 277 10)e| = 1277 na(aie)- (5.11)

Now suppose I’ < [ and recall that, by (2.38),

I ll 1
=Y, @bt
veZ ' +1
where &' = T c zm qs'“,, +1,,~ Replacing for simplicity I' +1 by l'; we estimate first

|27 /29% (gix)|- To this end, note that, on account of the continuity of 8, the fact that
n has compact support, (5.5), and the estimate (5.10), we may conclude that

=i'r 14

2l ()] < 2ot 2"y — 2 k) / 7t ()| do
c2L—”—1(1+2’|0(2-' — 27 g)|) (5.12)

IN A

c 2—(1 1/)(2ﬂ+d+1)(1 + 21110(2_,,1/ _ 2"‘lk)|)—n—d—l—r.
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The assertion follows then from Lemma 4.1. When ! < I’, we replace 7. by 1. and A
by A* and repeat the above reasoning. i

As a second step, we extract constants which, due to the nature of the wavelet type
basis, simply means to replace all those entries by zero which contain a scalar product
with translates of a scaling function on the coarsest grid. The corresponding matrix is
therefore

brp, if I,J ¢ T,

0, if otherwise.

Tj = (tI,J)I,Jer with tI,J = { (5.13)

On account of the compact support of the scaling functions, the subtracted matrix has
O(N), N = 27", nonzero coefficients. The resulting matrix is the stiffness matrix of
the operator

A= (- QO)A(IV— Ry).

Hence the operator A! and also its Ly~ adjoint annihilate the space V°. Furthermore,
the matrices T7 and B’ differ only in O(27") entries. In particular, periodization implies
that V° consists of constant functions, so that

Al =(AY"1=0. (5.14)
This fact will allow us to establish estimates of the above type without requiring con-
dition (5.5). '
Lemma 5.2 Suppose that ' + p,d > r/2, d+1+7/2>0, n+d+7+1> 0 and

n € Cg"d. Then there ezist constants ¢ and & € (0,1] such that the coefficients of the
matrices T, j € IN, defined by (5.13) and (5.4) satisfy the estimate

o-lI=U'|(2-+5)
(1 + 2min{tY[9(2-Tk — 2T k/)[)ntd+isr 2
uniformlyin I € i, J € Ju, and k € Z™, ¥ € Z™".
Proof: In view of the definition of A" and (5.13), the estimates in the Theorems 4.2
and 4.3 remain trivially valid when A is replaced by A!. Since the assertion has been

already confirmed for any & € (0,d 4+ 1 4 r/2] in Lemma 5.1 when (5.5) holds, we may
assume here that ]

2min{l,l'}l2—l'kl _ 2—lk| <z, k’ k' c Z". (516)

ltral = 27" 3y (2712 AMp)| < ¢ (5.15)

Since, by assumption, 7 and ¢ have the same regularity d it is sufficient to consider
here only the case I’ < I since the proof of the opposite case can be carried out by the
same arguments replacing n by ¢.

We consider first the case r > 0. We will begin collecting a few preliminary facts.
It will be convenient to consider the nonperiodic versions of the projectors Q);, defined
by

Qv = > n(v(27(- +€)))o(2 - =¢)

ez

= 3 (0,227 —)2" (2 - ~¢), j€Z, (5.17)
tez™
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where as before, ¢ and @; are given by (2.27) and (2.31), respectively. Note that, due
to the exponential decay of ¢o, @); is well defined on the space of all polynomials as
well as on Ly(7™). Now recall that by (2.16)

7i(v) = 27 n(v(279(- + k) = (v, 1o = (v,2"/*9(27 - —k)),
for v € H*(T™). One readily infers from these observations that
Qv=Q;v, wve H*(T"). (5.18)
We have to estimate now for I = (e,l,k), J = (¢/,l',k"), I! <l the quantities

(A%r,n0)0 = ni(A%r) = ns((Qrar — Qu)A%pr)
= (Quer — Qu)A% 1, n1)o = ((Quar — Qu)QuA™1, n1)o,

where we have used (5.1) in the last step. Since (I — Py)¥r = %r and, by (5.1),
(I = Qo)*(Qu+1 — Qu)* = Q4 — @, we conclude from (5.18) that

(A%r1,10)0 = (QiAYr, (Quar — Qu)*nr)o = (g (Quar — Qr)*11)o, (5.19)

I

where
gk = QAYr= > cri(m)dh s (5.20)
mezn,l
Le.,
ci(m) = n;,(Ar).
Recalling that .
¢0 = Z gﬁ‘P(' - 6)7
¢ezn

straightforward calculations yield

bom =2 3 42 (+B)—m)= 3 gihiu (5.21)
BEZ™ “GZn,l
where
gft = Z Gpt2tv-
veZ™
Thus
(918 (Quar — Q) ns)o = 30 ex(m)(bo,my (Quar — Qu)*na)o (5.22)
meZ™
= Y Y calm)gh(Phiw (Quir — Qu)no.
meZmi #Ezn,l

We consider first an individual summand and use (5.18) and (2.11) to conclude that

(Phgr Quar — QuYnr)o = 2°2(p(2' - —(m + p)), (Qrsr — Qu)* 1) (5.23)
= 2"*(p(2' - —(m+ p)), (Quir — Qu)*(ns + p)),
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where p is any polynomial of degree at most d. Specifically, we choose p to be the best
polynomial approximation of 17 in some neighborhood of 2~!(m + ) of diameter 27,
say, and set .

Hymiu =15 +p.

We will estimate the right hand side of (5.23) by terms of type

($@' - ~(m + 1)), G Hymsn) (5.24)
= Y (Himew2"%0(2" - —v)) (p(2'- —(m + p)), 27 *n(2" - —v))
”Eni;::l—u

where

Qi;f;_“ ={veZ": supp(r)(2" - —v)) Nsupp(p(2' - —(m + p)) # 0}.

Clearly, when !’ < ! one has ,
#Om, <, (5.25)

where c is independent of {,/’,m and u. Hence the quantity in (5.23) can be bounded
as follows

|(ha i (Qur — Qu) 1)l (5.26)
< c 2n1/2 m?’?f I(H‘I'm+”,2nl’/2¢o(2l' : —V))' [(50(2‘ : —(m + /"))’ 21“,/277(21’ : _V))l'
veQ L.

Next note that

|2n72 / @(2'z — (m + p))n(2"z — v)dz| < c 27/%2™, (5.27)
Rn
while
(Homtwr 24 202" - —0))| < ez |9e- (Hrmr 2% (2" - =€) (5.28)
(YAl
Noting that

(Himn, 202" - =) < ¢ 247227 || Hymalloo(supp(0(2” - €))),  (5.29)

recalling from (2.38) that
ne = > qn(-—v),

veZ"

where 7 has compact support, and that n; = 17:',',,, classical Whitney type estimates
for local polynomial approximation yield

| Himulloo(supp(0(2" - —€))) < € 2'/2|gE ], (5.30)

whenever |277¢ —27/(m + )| < ¢ 27", while otherwise the polynomial growth of p can
be bounded, in view of the normalization of 7y, by

[ Hamtulleo(supp(p(2” - €))) < € 272" gg_ 127 (m + ) — 277¢1%. (5.31)
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Thus we infer from (5.30) and (5.31) the bound

1 Hsmtullo(supp(0(2” - =€) < € 2% 2|ge (1 + 27 (m + 1) — €], (5.32)

which holds for all §. Now we conclude from (5.28), (5.29), and (5.32) that

|(Hamn, 2 202" - =) < € 3 lge-ullgel(1 + 1277 (m + ) — €))%, (5.33)
¢ezn

so that (5.26), (5.27) and (5.33) provide

l(‘an-Hn (Ql'ﬂ - Q~l')*77J)o| (5.34)
< 2N max 3 |geo,qfpl(1+ 2" (m + p) — €))7,

’

veQ, , ¢ezn

and therefore, on account of (5.22) and (5.34),

(91,6, (Qu1 — Qu)*na)ol (5.35)
< 22N N (ei(m) gl max 3 |ge-vgiwl(1+ 12 (m + p) — €))%
meZ™ peZnt VGQ,;._“‘ ¢ezn
Recalling that ,
veQn,, iff v-2""m+p)<ec (5.36)

for some constant ¢, the right hand side of (5.35) can be bounded by

c 207072 37 er(m)g, | max 3 |95 (1 + v — €1)°.
myl‘ezn’l v ’;‘+l‘ gezn

Since the coefficients gg,qg' decay exponentially fast a nonperiodic counterpart of
Lemma 4.1 and (5.25) yield a bound of the type

20023 er(m)gy] max (7 FIL+ |y~ ))Y)

m,uEZ"n‘ ve m+p

where a is some positive real number. Applying Lemma 4.1 and using (5.36) again, we
can estimate the latter expression by

¢ 2(1/..1)1;/2 Z ICI(m)le_alpz'..tm_kq(l + I2zl_lm _ kll)d.
mezn,l

Since, by assumption, |k' —2"~'k| < ¢, and estimating the coefficients c;(m) in analogy
to (5.9), we obtain the bound

cz(l'—l)n/2 Z: 2rl(1+lk_m|)—n—l—d—r2d(l'—l)(1+|m_k|)de-—a'|2""m—k'| < c2(l'—1)(§+d)2rl,
: meZ"

where c¢ is independent of I/,l. Thus, in summary, we arrive at the estimate

|27 Alr, 27 F yy)o] < ¢ 200EH-D), (5-37)
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which, in view of Lemma 5.1, confirms the claim for d > r/2 > 0 with § :=d — L.
Suppose now that r < 0 and that (5.16) holds. Similarly as before let

ik = 2—TthAu¢¢l:,k = Y, c(m)éh,

me Zn,l

=Ir

Le., c(m) =27 (A%, 1L, )o. Since Yxezni 1k is constant, due to the refinability of 1,
and since (A")*1 = 0 we conclude that

> c(m) =0, | (5.38)

mezn,l

/ gie(z)dz = 0. (5.39)
Tn

Recalling that 7. is Holder continuous with some Holder coefficient p > 0 and using
(5.39), (5.10), we obtain

L [—FT=.v
27| [ gu@)nd,(c)dal
Tn

< o278 [ Gal@)nl (@) - b (27'R))dal
Th

< ¢t [2@ 10 - 2)ly (1 +210(z — 2 R))
Tn

< ot / or| =g — 2'z|P(1 + |2z — k|) "4 dz
Rn

< ¢ 2D (5.40)

where ¢ does not depend on [/, k,k’. By the same reasoning as used above at the
beginning of the proof of Lemma 5.1, we establish the assertion in the case r < 0 for
6 := p — 5. This completes the proof. 0

For the proof of the next result we need a version of the well-known Schur lemma

(cf. [34]).

Lemma 5.3 Let A = (a;;)i jen be an infinite matriz and y(z) > 0, ¢ € IN. If for some
positive constant ¢ one has

3 laijlv() < ¢ y(§) forall j €N (5.41)
teN
and
_ZN laijlv(s) < ¢ (i) forall i€ IV, (5.42)
JE

then the operator A : I>(IN) — [?(IN) is bounded and has operator norm less than or
equal to c.
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We are now ready for the first step towards compressing the matrix B7.

Lemma 5.4 Letd,d' +p>r/2, n+d+r+1>0andd+1+4+1/2> 0. Furthermore,
let BI be defined as follows

1.J =

E {o if (I,J) € Ru(ar), (5.43)

br.s otherwise,

where

Ri(e) = {(I,J)e T xJ?: I =(lek),J =(,¢,K),
LU >0, 2792k — 270K > ). (5.44)

Then there exists a positive constant ¢ such that
|IB? — Bi||z2(zmiy) < ¢ min{l, et} (5.45)
holds uniformly in j € INy.

Proof : We wish to apply Lemma 5.3 with y(I) = 2-% and arg := bry — by ;. Our
concern is to estimate

> > 2~ Fbry| (5.46)

UeNo {ktezZnV 2M|9(2— k—2-V k') > €1}

where M := min{l,l'}. Let us rewrite this expression as

{Z+ E} ) 9= by | = §+ +3_.

21 U<} (Keznrt 2M|g(2- k-2 k) [>Tt}

Assume first that I’ > I. According to Lemma 5.1 and (4.4), we may estimate the
summands for k, k' € Z",2-'k—2""k' € [-1/2,+1/2]" to conclude that ¥ is bounded
by

{2 |1y 2iri(din)

9-
- . (5.47)
{I';'Z’} {k':[zl—l'kZ_klzcl-l} (1 + |k — k2t I)“+d+1+r
Moreover, we get
' 1
270 _ywhdtier
{k'GZ":Z'IZ—l'EH_Q—lHZCl—I} 1+ |k — k27|
s,
{|$|>crl}
< c min{l, ¢t} | 5.48
1

30



Inserting (5.48) into ( 5.47), we arrive at

%y <cmin{l, et} ST 2713 lIENY) < ¢ 91F min {1,147} L (5.49)
{1}

When I’ < I, we set D = ! — I’ and proceed as before estimating first the interior
sum in ¥_. Noting that '

Z (1 + l2—Dk _ kll)—n-d—l—r
{k":|2=Dk—k'|>e7 1}

c / (1 + |27Pk — z|)"" 41" dz (5.50)
{12 Pk—z[>'}
Y,

IA

. d
< c¢ min{l,€f

we estimate

3 3 2= 614 (5.51)

U<l (et 2V [0(2— k-2 k)| >es 1)

by
min{l,e'li+1+r} Z 2_1:%2_"-”&@)_«: < ¢ min{l, 6¢11+1+r}2_1§ Z o-D(d+1+r)
{rr<iy 50
< ¢ min{l, )27, (5.52)
which completes the proof. . -

To examine the number of remaining nonzero entries in B note that the matrices
A7, B? T have an obvious block structure induced by the different levels —1 < I < j.
By the same arguments as detailed in Section 5.4 below one can show that inside each
block, i.e., for fixed [, !’, after the compression described by Lemma 5.4 there remain
at least O(N), N = 2/, nonzero entries. Adding over j% = (log, N)? different blocks,
we end up with at most O(N(log, N)?) nonzero coeflicients.

Next we want to improve upon this compression in that we will get rid of the
logarithmic terms.

Theorem 5.1 Supposed,d'+p>r/2,d+14+7r/2>0, n+d+r+1>0andletq
satisfy Cg 2. Let Ti = (t5.5)1,0¢7i be defined by

0 i (I,J)€ Ra(e2) URi(er),
L= { tr i; ithezwise, DR (5:53)
where
Ra(er) == {(I,J)eT' xJ: I=(,ek),J=(,e,E)|[I-U|>e'})
Then there ezist positive constants c,é such that for all j € INy and €;,¢3 > 0
IT? — Tl cger(zmiyy < € (min{l, €147} 4 276/), (5.54)
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Letting €;, €; tend to infinity, we readily conclude

Corollary 5.1 Under the assumptions of Theorem 5.1 the operators T7 : £o(Z™7) —
£,(Z™) are uniformly bounded. v

Proof : Since, in contrast to Lemma 5.4, our truncation now effects also levels which
are far apart from each other we have to estimate in addition the sum

Y Y 2Pl (5.55)

{Il:ll_lllzc;l } kezny

Restricting the summation in (5.49) and (5.52) to D > €;* and letting ¢; tend to infin-
ity, yields the bound ¢ 2-"*/22-%/©2 where § is any positive number less than or equal
to d+ 1+ r/2. On account of Lemma 5.4, this proves the assertion. O

It should be mentioned that similar arguments have been used by Y. Meyer for his
wavelet proof of the T1 theorem (see [34]).

Throughout the remainder of this section we will assume that the hypotheses of
Theorem 5.1 are satisfied.

Obviously, the compressed matrices T? have O(N), N = 2*, nonzero entries. Thus,
in principle, Theorem 5.1 provides a criterion for deciding beforehand which entries of
the stiffness matrix B/ must be computed in order to guarantee a required accuracy
without ever computing the full matrix.

Note that the matrix which is relevant for computations has the form

EI,J ) I,Jgj—l)
bry ; I,J € J-1.

B! = (47, )r0e7i, b1g= (5.56)

In order to relate the above discrete estimates to our stability concept we will make
~ frequent use of the following simple facts. For u? = (u});czs let

w = Y ujyr € Vi
Iegs

Then any matrix C?/ on £3(Z™7) induces an operator C; by

Cjuj = Z (Cjuj)1¢1 (557)

IeJgs

where for I = (j, e, k) we set ¢y := ‘i,k (cf. (2.40), (2.38)). On account of the stability
of the wavelet basis we have

ICill cqrarmy) ~ ”Cj"/;(tg(zw)) (5.58)

uniformly in j € INg. Moreover, it is convenient to introduce
D’ := (|7 61,0)10e79, (5.59)
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and let D; be the operator on VJ induced by C’ as in (5.58). Then we infer from
Theorem 2 3 that

(D) lley(zmsy ~ 1D llo ~ oI5 (5.60)
Utilizing Theorem 2.3 again yields also

ICwI2e ~ 3 UII(CTw)f?
Iegs ,
(DI C7D?)((D?) )17, (- (5.61)

Thus combining (5.60) and (5.61) we conclude that
ICill ¢ oy =5 7myy ~ 1D C' D ll ey @miyy ~ I1D;C3Diillciary- (562)

Specifically, we may write in these terms
B’ = D'A'D/, (5.63)

where A7 is the stiffness matrix (5.3) relative to the wavelet type basis and B’ was
defined in (5.4). Of course, the induced operator A; is also given by

A; = Q;AP;. (5.64)
Similarly, the compression of A7 is given, for B? defined in (5.56), by
Al = (D) Bi(DA), (5.65)

which, in turn, induces the operator A via (5.57).
Now recall from (3.12) that the scheme (3.7) is called (s,r)-stable 1f

A7 llo=r > € |||l (5.66)

for some constant ¢ independent of j [17].
As an immediate consequence of (5.62) and (5.63) we may state now

Corollary 5.2 The scheme (3.7) is (r/2,r)-stable if and only if
1B lzea(zmiyy = O(1), G = o0.

Thus combining Theorem 5.1 for sufficiently small ¢ with a simple perturbation
argument based on Neumann series leads to the following conclusion.

Corollary 5.3 Suppose the scheme (8.7) is (r/2,r)-stable. Then there erists some
€0 > 0 such that for all e < ¢

B cea(zniy = O(1), § — o0,

with a constant depending only on €. Thus also the compressed matrices B? have uni-
formly bounded condition numbers. In particular, the compressed schemes are (7/2,1)-
stable as well.

The above observations also ensure that the compressed schemes can be efficiently
treated by means of conjugate gradient like methods.
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5.2 Error Estimates for Fixed Prescribed Accuracy

We will now apply the above results to estimating the accuracy of the solutions to the
compressed schemes relative to the solutions to (3.7).

Let f] = n1(f) and f/ = (f]);ezi. By Corollary 5.3 we know that the system of
equations

Adul =i : (5.67)

has a unique solution u = (u{'I) rezi provided that € < € for some sufficiently small
€1 > 0. The corresponding approximate solution in V7 has therefore the form

ul= Y ul . (5.68)

Iegs

Of course, as said before, the solution u? of (3.7) reads

ul = > witr .

IeJgs

By construction, the compressed matrices A7 have only ©(2") nonzero entries where
the constant depends on € but not on j € IN. We are now in a position to compare
the solution to the compressed schemes (5.67) to those of the exact scheme (3.7).

- Theorem 5.2 Suppose (3.7) is (§,r)-stable. Then there ezists some €g > 0, € < &
and a function g(€) which tends to zero as € tends to zero such that for every ¢ > 0,
€ < €9 and for every 7 € Ny

llu — ]|z < q()llwll5, | (5-69)
where u* is the exact solution of (3.4).
Proof : We infer from (5.62), (5.63), and Theorem 5.1 that
(A5 — Aj)”j"—T' < ¢||BY = Billczmipllvillz
< c q(e)“vj"_;. ) v € Vj, (570)

where g(e) is given on the right hand side of (5.54). Let us further introduce the
operator

Cs = A7\ (A — A2 . (5.71)
In view of (5.70) and (%, r)-stability, we obtain

ICslly < e l(A; — Al
< cq(@lvlly - (5.72)

For sufficiently small ¢ > 0, €0 < €; and € < ¢ the operator Cf therefore becomes a
contraction. Since u? € V7 is easily seen to satisfy the relation

(I- C;)uz =,
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it can be expressed by a Neumann series
ul =Y (CH'W,
>0
provided that 0 < € < . Therefore we get

[o o]
i —lly = NG5SO
=0
w .
< cq(IlIY_Civllz
=0
< cq@ll;

Finally, (£, r)-stability ensures the uniform bound llwf]lz < eflu*||s. O

In view of the estimates for ||u’ — u*||, established in [17] one can now also estimate
the deviation of 4l from the exact solution u* of the original equation.

5.3 Asymptotic Error Bounds

The limited precision of the computer gives rise to fixed accuracy requirements as
considered above. On the other hand, such error tolerances should be balanced with
regard to the convergence behavior of the solutions of the exact discrete problem (3.7),
i.e., the error between B? and BJ should be of the same order as the convergence rate
of the exact solutions u? of (3.7). We are aware that the following results are at that
stage still of primarily theoretical nature. But they should indicate the potential of
multiscale techniques in the present context.

We will adhere to the above notation as well as to the various assumptions made
before. In fact, for uw/ = (uz) ez and u’ = uy, we put as before v/ = 3" ;usp;. We
may then rewrite the operator :

B;uf =Y (Bivw)¢r, : (5.73)
IeJi

and recall that multiplying the coefficients of B3 by |I|"/2|J|"/? gives rise to its unpre-
conditioned counterpart

Ad = Y (IITN)A(B)ra(u)str (5.74)
I,JeJs : .

corresponding to (5.65).
The next Lemma identifies the type of estimates needed to establish convergence

‘rates.

Lemma 5.5 Let s < t, —d’—p+§ <t<d+1land —d—1+%<s<d+p, wherep
denotes here the smallest of the Holder ezponents of ¢ and v and where —d—1+ 5 is
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the lower bound for the Sobolev scale in which one has quasi-optimal convergence for
the Petrov-Galerkin scheme, see [17]. If A$ is (s, r)-stable, i.e.,

A5 llar 2 cll|ls for all w¥ € V7

and if additionally

1(A4; = A5) Pyulla=r < ¢ 2D ulle (5.75)
then the solution ul of the equation
A’ = Q;f
satisfies the error estimate
llu* = ]l < e 2767wl (5.76)

where u* denotes the ezact solution of Au* = f.
Proof: Since A; is stable, we estimate in a standard fashion

lut —will, < flu* — Pl + el APy — ) ler
< Jlu = Pl + e(IQsf — flecr + I ASP" — Au*lr)
< llwt = Pl + (5.77)

+e(l1Qif = flls=r + | Aju" — Au||s—r + || A5 P — Aju]ls—) -

The first three terms in (5.78), except the last one, have been already estimated in [17]
(see (6.35) - (6.38) in the proof of Theorem 6.3). It is shown there that they yield the
desired optimal order of convergence. Condition (5.75) implies the same order for the
remaining term whence the assertion follows. _ o

As mentioned before the stiffness matrix in wavelet representation has an obvious
block structure. It splits into blocks BY = (br2)i1j=t,151=r- Each block gives rise to a
block-operator

Buruj(m) = Z bI,J‘u,]¢[ . . (5.78)
=)=t
In order to establish asymptotic estimates we will again have to modify previous types
of compression so as to ensure that accuracy improves with decreasing meshsize. Our
next concern is then to estimate the effect of such a modified compression in each of
the block matrices, respectively in the block operators (5.78). '

Lemma 5.6 Letr > 0,¢t <d+1. Set

t+r/2
) 5.79
d+1+3 (5-79)
and
@ e if M =1,
— ¢ ¥ (5.80)
€ if O<M<1
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as well as

Re = {(ILJ)eTI xTi: I=(le,k),J=(l€,K),
2mi"{l'l'}|0(2-lk _ 2_1rk/)| 2 2M(j—max{l,l’})€i-l} . (5.81)

Let T = (1§ ;)1.e75 be defined by

LJ= (5.82)

] _{ 0 if (I,J)ER.,

try otherwise ,

Furthermore, let the operators Ty be defined in analogy to (5.78) by (5.57) relative to
the matriz T?. Then for 0 < § <min{d+1—t,d+1+5—s} and0 <s<d+1+%
there erists a constant ¢ independent of I,l' and j such that

2(ll“l)s"Tl€,I’uE(Lz(T")) <c 2(1'—j)(t+r/2)2—-|l—-l'|56§+1+r . (583)
Proof: Let 6 :=d +1—t. In view of (5.58), the norms of the operators
2(ll_l)a2—ll(t+r/2)TIfll — 2(1'_1)32—1’(d+1+r/2—6)(Ql _ QI—I)TIE,II(PI’ _ Pl’—-l) (584)

in Ly(7™) can be bounded by estimating the norm of the corresponding matrices in
12(Z™"), which, in turn, will be accomplished by following the lines of Lemma 5.4.

Let us first assume that ' <l and set D = || —I'| =1 —I". Assume first § > 0, i.e.,
M < 1. Upon applying Lemma 5.1 we obtain

) 2-—'—’2-'12—1’(d+1+r/2-—8)2(1’——l)sltI |
{KezZ™V 2V |02~ k—2-Y k') |>eT 1 2MU-D}
< ¢ Z 2—111/22—l(d+l+r/2—5)2(l'—l)5(1 + |2_Dk _ kll)—n—d—l—r
{K":|2=Pk—K'|2(2M (=9 e1)~1}
< ¢ 2—ll—l'|5 2—ln/22~l(d+l+r/2—5)I2—Dk _ xl_"_d—l"’da:
{I12-Pk—z|22MG-Der )
< o 6¢11+1+r2(1;:’)(t+"/2)ﬁ%“#s2(1’—l)¢52—1(t+"/2)
S ¢ 2—111/2ezli+1+r2—j(t+r/2)2(l-j)(t+1'/2);ﬁ%ﬁz(!'—l)& .
(5.85)
We note that [ < j and apply Lemma 5.3 to conclude that
2D I T pairmy S e 27HPefFirmitia o (5.86)

When M =1, we have § = 0 and obtain the bound

2(1'-1)32-1’(d+1+r/2)”Tfl, z11+1+r2—j(d+1+§) )

llczaemy < ce
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When I’ > I, we assume again first that M < 1 and estimate (5.84) by

>

{k'eZnV 29(2—V k' —2-1k) | > 1 2M -1}

z(a—n)(l'—1)2—1’(t+r/2)2(l—l’)(d+l+r/2)
(1 + Ik —_ klzl—l'l)n+d+l+r
1

< 2_—n(l'—l)2—1’(d+1+r/2-5)2(1-—l')5 ntd+1+4r -
= ¢ E_l . - Sy =)

{k" |2 VR —k[> e T 2M -1}
S ¢ 2—1’(d+l+r/2—6)2(l—l’)5 le—n—d—l-—-rdx ,

{lz|>er 2M =10}
since 0 < s <d+1+ Z. Arguing in a similar fashion as before we obtain again

o —Deg=t 4/ T, orli-tiBeitierg=i(ite/2) (5.87)

le@a(rey < ¢
When M = 1, we estimate the difference (5.84) by

9(I'=N)sg—1'(d+14r/2) “Tlcl' g+1+r2—j(d+1+ £ ,

oy < ce

and note that the exponentially decaying term 27%-*l is missing in this case. a

In order to patch all the different blocks together, the following block variant of
Schur’s lemma will be helpful.

Lemma 5.7 Suppose Tip are given bounded linear operators on Lo(T™) with operator
norms ITI,I’I = "TI,I'"L'.(L’(T")) < 00. Deﬁning
Jj
Ti) == X (Qu— Qu-1)Tiy(Pr — Pu_y)
L'=1

one has for every function v € VI and for any s € R

ITywllo < ¢ (sup 3220 T0g])5 (sup 3 2 DTy )5 lwlo - (5.88)
<5 <3
Proof: We can write u? as v/ = Pyu’ + Zji:l(f’l — Py)ui = Y4 w'. Likewise,

noting that T(_,-)uj has, by definition, no component in Y, we can rewrite f7 := T(_,-)uj

as f/ = T4 (Qi— Q1) ff = L, b ,
One easily checks that h! = 3, (Qi — Q1) Tipw". Thus Holder’s inequality and the
boundedness of the projectors @); assumed in the present setting yields, for any s € IR,

B0 < ¢ SS(ITu|2"/%27 /2w o
ll
< o (X ITwl2") i 27" Tl llw”|12)7
i 14

Y . _l's 7] 1
¢ (27 3 Tul2" )} (2 3o 27 Tl |13)F -
7 "

IA
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Squaring and summing over l = 1,...,7 gives

SN < e (sup 3= 20 Tiu(aup 320~ Tiel) 3 a3
l 371 v

<5 p 14

Recalling that the ¥7 and ¢; both form Riesz bases for Ly(7™), the assertion follows. O

To arrive at estimates for Sobolev norms we will invoke Theorem 2.3 and recall

from [17] that for s< d'+p

I3 ~ 1P I3 + 3 1I2"*(P — Pi-a)e? |l - (5.89)
0<i<i

It will also be useful to recall certain Besov norms already used in [17] which are
equivalent to the Sobolev norms for a slightly larger range of s. To this end, define for
h € IR" the ¢th order forward differences of u by

L ¢ .
@) = 3 () (-0sute + 1)
=0 \J
The corresponding £th order L;-modulus of continuity is then given as

we(u, ) := sup || Aullo. (5.90)
[hl<t

We are now ready to introduce the Besov-norm
lllly, = llulls + ulo, (5.91)

where for any fixed £ € IN, £ > t,
ulfy := = 2% we(u, 279)3. (5.92)
=0

It is known that for 0 < ¢ < £, the set of all functions in Lz(7™) for which the above
expression is finite, agrees with H*(7™") and that

-lle~ - llsg,, 0<t<4, (5.93)

(see e.g. [17], Section 5).
In a similar fashion as earlier in this section we may now proceed to prove the
following result.

Theorem 5.3 Letr >0, 5- <s <t < d+1, and let s, ¥ < d'+p. Furthermore, let
T! = (t5;)1.7e7: be defined by Lemma 5.6. Finally, suppose that the operators A5 are
defined by (5.74) relative to Ti. Then there ezist some € > 0 and a positive constant c
such that

(A — A9 Pyully—r < ¢ 12560, (5.99)

holds uniformly in j € INyg and €5 > € > 0.
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Proof: Expanding P;, Q; in telescopic sums, we may write

Qi(A; = AP = Y 2By,
1<LI<
We will apply Lemma 5.6 and Lemma 5.7, for s = r, to u/ = {,=1 2" (Py—Py_;)u. The
norm equivalence asserted by Theorem 2.3, the fact that the operators @); are uniformly
bounded in L3(7™), the stability of the wavelet basis, and taking the definition of T
into account, yields

j
1Q:(4; — A Piulltse < ¢ 32 I(@— Quua)@s(A; — APyl
=1
j j
< e Yl S T2 APy — Pocy)ul (5.95)
=1 I'=1 :
where we have used that

T, = (@p— Qp—l)T;’q = T’f,q(Pq —P,_,).

Using Lemma 5.7 and the norm equivalence again, the right hand side of (5.95) can be
estimated by

C" Z 2(1’—l)rTle'llz-l'(i+r/2)2l't(Pp___PII_I)u”g (596)
o<l I'<j
< e ((sup Y 20Org R AT )(sup 3 2U0raml AT, ) ) .
0<I<i o<i’<j T 0l<G i<

When t =d+1, i.e., M =1, Lemma 5.6 yields
1Qs(A; — A5) Pyu||zze
< (eeftttryomilran/Dy: 37 @ED|(R ~ Pa)ullo)”

0<I<j
< (oefttmjgmitin/ay S QU (1~ B)ul+ (1 — Pioy)ulf?)
: oIy
< (el jgrit /Oy S QU |y
0<I<j
< (et Dy ) “ (5.97)

where we have used the Jackson estimate (4.1) and the definition of €; in the last two
steps. To treat the case M < 1, or ¢ < d + 1, we recall the Whitney type estimate
llu — Piullo < € wayr(u,279), (5.98)

from (5.10) in [17]. We can. then repeat the above reasoning in (5.97) where now the
application of Lemma 5.6 involves also the term 2-81-"l_ Thus we obtain, by (5.98),
1Qi(A; = A Prulltse < (cef™*ramitH /D)2 57 (2%(Pi = Pra)ullo)’

0<I<;j

(ced+iro=ilt+r/Dy2 z’: 92ty 1 (u,271)2
=0

< (eettiFromitH Ay, )? - (5.99)
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where we have used the norm equivalence (5.93) in the last step. Employing the inverse
estimate (4.2), we finally get

1Qi(A; — A5) Pull;

8—r

< ¢ 2590+D|1Q;(A; — A5) Pyl o,
whence the assertion follows now from (5.99). o

We may now resort to Lemma 5.5 to estimate u* — uJ.

Theorem 5.4 Let A€ ¥'(T"), 0 < ¥ <d'+p, F <s<t<d+1,s<d +p,
and f € H*"(T™). Suppose that the Petrov-Galerkzn scheme (8.7) is (s,r)-stable (see
(3.12). Then there ezists € > 0 such that for 0 < € < € the compressed scheme
A‘uJ Q; f has a unique solution u? whose deviation from the ezact solution u* of the
equatzon Au* = f may be estimated by

Ju* = will, < ¢ eI 7|, (5.100)
u'm'fonnly inj>Ny, 0<e<e.
Proof: Setting ¢ = s, Theorem 5.3 provides

1(4; — A5) Puls—r < c €1 Jul, . (5.101)

If the Petrov-Galerkin scheme A; = Q;AP; is (s,r)-stable in the sense of (3.12), then
(5.101) insures that there exists ¢o > 0 such that Ae is also (s,r)-stable for 0 < € < .
Combining [17] (Theorem 6.3) with Theorem 5.3 verifies the assumptions of Lemma
5.5 which, in turn, yields the desired result. o

Next we consider the case r < 0. Unfortunately, we can then not find s € IR such
that the compressed scheme is (s, r)-stable and, in addition, gives rise to approximate
solutions exhibiting optimal convergence rates in H*(7™). Nevertheless, one can still
establish suboptimal rates which will be demonstrated next for the case s = 0. Again
one has to modify slightly the compression strategy (5.82) and (5.81) by changing the
constant M while leaving €; = €;(7) unchanged.

Lemma 5.8 Letr < 0,0 <t <d+1. Selting

t+r

= e 5.102
d+1+r7 ( )

@ if M =1,
a=1" c ¥ (5.103)
€ if O<M<1,
and
Re == {(I,J)€ T xJ: I= (l,e,k),J = (l',€,K'),
2min{l,l'}lo(2—lk _ 2—I'kl)| > 2M(j—max{l,l'})61—1}, (5.104)
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we define T? = (85 ;)1,7¢75 by

0 i (I,J)eER
o= f L) e R, (5.105)
trg otherwise .
Then the corresponding operators Ty, defined in analogy to (5.78), satisfy
2_l't2(l’-l)r/2|T'fl:| <ec 2—j(t+r)2—|l—l’|5€¢li+l+r , (5106)

where § =d+1—1% > 0 and the constant c is independent of 7,1,l' and ¢,.

Proof: As before let § = d + 1 —¢t. We will estimate the norm of the operators
2—Ilt2(l'_l)r/2T'IfI' — 2_1't2—lr2(1'+1)r/2(Q1 _ Ql—l)ﬂf{l(ljl’ - H’—l) (5107)

in Lo(T™).

In view of the fact that the underlying bases are Riesz bases, we may switch from
the norm of the operators in L%(7™) to the norm of the corresponding matrices. In
order to applying Lemma 5.3 we wish to estimate

2 2 R L ltr.J] (5.108)
e€Ey {k'eZ"J':2"|a(2'-‘k—2—"k')|251‘1 2M(j—l)}

and proceed as in the proof of Lemma 5.6. Considering first the case I’ < [, (5.108)
can be bounded by

c Z 2—In/22—1't2—lr2I'r2(l'—l)(d+1)(1 + |2_Dk _ kll)—n—d—l—r
k2D kK[> (209 M )=1)
< ¢ - 2—In/22—l(t+r)2(1’—1)52l'r|2—Dk _ xl—n-—d—-l—rdm
{12=Pk—z|>2M(-DT 1}
< c2—-ln/2 €¢1i+1+r2(l—j)M(d+1+r)2—-l(t+r)2(1’—1)5
S cz—ln/26¢li+1+r2—j(t+r)2—|l—-l'|5 .

In case I’ > I, we estimate (5.108) by

2—n(l’—-l)2—l't2—lr21r2(l-—l')(d+l)
¢ Z (1+ [k — K2V |)rtdiiir

{k'ezZnV 21|0(2—V k' —2—1k) | > e 1 2M -1}

’ ! 1 ].
< —n(l'=)g-1l'te(1-1')§ n+d+1+4r
Se o2 T )
{k":|2 YV k! =k > 2MG -1}
< coigl-ni |o|"~4"1 " dz

{lz|>e; t2M=1}
c 6tli-lv-l-i-r 2l'r2-—j(t+r) 2—|I——l'|6

. 6,11+1+r2—j(t+r)2—|1—l’|5 ' (5.109)
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We may now appeal again to Lemma 5.3 with 4(I) = 27*/% to prove the assertion
(5.106). o

In order to assemble the block estimates we will apply Lemma 5.7.

Lemma 5.9 Letr <0,0<t<d+1, —r < d +p, and TS = (t5 ;)1 7c7i be given
by (5.105) in Lemma 5.8. Finally, let A5 be defined accordingly by (5.56) and (5.74).
Then there ezists a positive constant ¢ such that

1(A; = A5)Pyull-r < ¢ 14727 |u], (5.110)

holds uniformly in j € INo, u € H*(T™) and € > € > 0.

Proof: We assume again first that I’ < ! and set D = |l = I'| = | — . Employing
analogous arguments as in the proof of Theorem 5.3 such as telescoping expansions as
well as Theorem 2.3 yields

1Qi(A; = AP, < e > |27 20T (Py — Pu_y)ulf3
0<Ii’<j
< ¢ " Z 2—I't2fIr2(l+l’)r/2T‘f1121't(Pp _ PI'—-l)u”g .
o<l i<

Now Lemma 5.8 and Lemma 5.7 enable us to argue exactly as in the proof of Theorem
5.3. Thus the exponentially decaying term appearing in case t < d + 1 yields, in view
of (5.93) and (5.98), the estimate

1Q(A; = ADPulZ, < (e et¥ramitn)? 57 (2%)(P— Poy)ullo)?® (5.111)

o<i<)
< (c Cd+l+r2—j(t+r)“u”t)2 ,

while, in the case t = d + 1, we use (4.1) to derive the corresponding bound

1Qi(A; — A5 Pul2, < (c eftt*rjeilititny? 5= (H)|(P — P )ullo)’
0<I<;j

< (e et y)lyy,)?

This proves the desired result. a

We are now in a position to prove asymptotic convergence rates for r < 0.

Theorem 5.5 Letr <0, A€ U (T"), —r < d'+p,0 <t < d+1+4r and f € H™"(T™").
Suppose that the Petrov-Galerkin scheme is (s,r)-stable for s = %, cf. [17] (Theorem
6.3). Then there ezists ¢ > 0 such that, for 0 < € < €, the compressed scheme
Aguj = Q;f has a unique solution uJ which differs from the ezact solution of the
equation Au* = f in the Ly(T™) norm by '

lu* —wi)lo < c 2_jted+%+'||u*|[t . (5.112)

where the constant ¢ does not depend on j.

43



Proof: Choosing t = 0, Lemma 5.9 yields the bound
1(4; = A Pjullr < ¢ 45 fully . (5.113)

Thus if the Petrov-Galerkin scheme A; = Q;AP; is (—r,r)-stable in the sense of (3.12)
(cf. [17]), then there exists e such that A$ is also (—r,r)-stable for 0 < € < €p. More-
over, (5.113) implies condition (5.75) in Lemma 5.5 for s = 0. The assertion follows
now from [17] (Theorem 6.3) and Lemma 5.5. o

5.4 Computational Costs

We will briefly point out next to what extent the stiffness matrices are being compressed
by the above strategies.

Proposition 5.1 The number of nonzero entries in the matrices T?, defined in Lemma
5.6 and Lemma 5.8, is of the order

0(j2+2(di’1.+'5 27") when t=d+1;
O(32™) when t<d+1.

Proof : Due to the symmetry of the compression it is sufficient to consider the case
>0,

Let us first discuss the extreme case t = d + 1, i.e. M = 1. We claim that all
block matrices T* contain at most O((jmﬁjr_'mj)”) nonzero entries. To see this,
note first that the dimension of W7 = (P; — P;_;)V7 is (2* — 1)20~1", Thus T%4
has £=127" different rows. The truncation criteria (5.81) or (5.104) insure that each
row conta.ms at most (c € ) = (c (e~ ])T’m)" nonzero entries so that T4 has at
most O(j mﬁ%ﬂ?") nontrivial coefficients. This proves the above claim for [ =1 = j.
Decreasing the number !, each block matrix T has the same number of rows. We
infer from the truncations (5.81), resp. (5.104), that each row contains asymptotically
the same number of nonzero entries, namely O((j W)"). This confirms our claim
for I = 3.

By the same reasoning the diagonal block T41¥~! contains £5120~1" rows. But
now we have, in view of the truncations (5.81), resp. (5.104), O((2j 7(3%?3)") nonzero
coefficients per row. This gives, for TZ~19~1, a total of at most O((;j ™7 27)") nonzero
coefficients. By the same arguments as above we verify the above claim for all block
matrices TS~ I' < j — 1.

By lnductlon we see that each block T” contains at most O( ]WW") NONZero
coefficients. Since we have j? different blocks, summation over all blocks gives O(j 2 qarie 0 ™)
as -an overall bound for the nonvanishing coefﬁcxents

So far we have examined the extreme, but most important case, that the exact so-
lution is sufficiently regular, i.e., w € H?*!(T™). If this it not the case, say u € H'(T™),
where ¢ < d + 1, or a lower convergence rate is provided, fewer coeflicients are needed.
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Starting with I = I’ = j, we see that T/ contains O(2’") nonzero entries. Furthermore
we infer from the truncations (5.81) or (5.104) that T% contains O(2'2M(-1)" nonzero
coefficients, where M < 1. The total number of entries in each block T, I’ < I, is
constant with respect to I/, if [ is fixed. Therefore the total number of nonvanishing
entries is O(2720-)M-10))_ Consequently, summing over all blocks T%"' shows that in
total at most O(j2/") = O(N log N) nonzero entries are required. o

Note that, for [ + I’ < j, the full matrix T have only the order of 2™ entries.
Thus, from an asymptotic point of view, it is not necessary to compress those blocks
for which [ + 1’ < j.

The above results are not quite satisfactory since, in some cases, the error bounds
do not match the corresponding optimal convergence rates. One source of complication
is the role of the parameter d which both the decay estimates, e.g. (5.6) as well as the
convergence estimates depend on, even though in rather different ways. For instance,
for a fixed numerical method, the convergence rate decreases with increasing order
of the operator. But on the other hand, the decay in the coefficients, described by
Theorem 4.2, decreases with decreasing order of the operators. This fact becomes
particularly important for operators with negative order.

Finally, we mention that it is also possible to obtain accuracy bounds of order
O@*),fors<d +p+L(s<d+p+r),r>0(r<0), at the expense of O(N)
nonvanishing coefficients. Thus this convergence rate can also be achieved with linear
complexity, as in the case of fixed error bounds. We dispense here with a proof which
essentially consists only in repeating previous arguments.

As we mentioned above, the gap between optimal convergence rates and the rates
achieved after compression stems from the fact that the decay estimates of the coefli-
cients (4.18) and (4.32) and the limit for the Jackson estimates depends of the same
parameter, namely d.

6 Atomic Decomposition

We now turn to the second approach for compressing stiffness matrices based on the
decomposition (4.41). As mentioned before, it is closely related to the atomic decom-
positions of Calderén-Zygmund operators studied by Y. Meyer [34]. An analogous
compression scheme for Galerkin schemes was proposed in [4, 5] where the correspond-
ing matrices were called nonstandard representation. However, we will demonstrate
here that the atomic decomposition may be applied as well to the much wider class
of generalized Petrov-Galerkin methods, as described in the first part [17]. In partic-
ular, it applies also to collocation methods. The latter example is closely related to a
multigrid approach proposed by [6].

In this section we treat only the case of zero order operators, i.e., r = 0. In principle,
‘our techniques would still apply to the more general case of arbitrary order. But this
would require still further technical elaboration which should be left to a separate
study. We will show that any fixed prescribed accuracy can be achieved by linear
complexity provided a BMO type condition (see Theorem 6.2) for a certain paraproduct
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is satisfied. Moreover, we will point out that this type of condition can generally not
be avoided which indicates that too naive compression strategies may fail to produce
acceptable results in this case. The corresponding analytical background was developed
by David and Journé [21] establishing a boundedness criterion for generalized Calderdn-
Zygmund operators, the so called celebrated T1 Theorem. Later Y. Meyer gave a
wavelet formulation of this modern Calderén-Zygmund theory [32, 34]. Our present
investigation also builds upon this theory. Recently, we were told by Y. Meyer that he
has also obtained similar results for the method proposed in [4].

The atomic decomposition of the finite dimensional operator A; = Q;AP;, sug-
gested in [4], is given by the following telescoping sum

J
A;=Q;AP; = QoAPR + Z(QIAPI — Qi-1AP-)

=1

QoAPs + 3 ((Q1 = Quur) A(Pi — Piy) +

=1

(Q1 — Qi-1)AP iy + Qi1 A(P — Pi)) - (6.1)

Here the operators @; are defined by (2.31), (2.27), and, when dealing with pre-
wavelets, P; denotes the orthogonal projector onto V7, while, in case of biorthogonal
wavelets, P; has the form (2.32). But for simplicity we will continue using the same
notation P; in both cases. In particular, the differences Q;41 — Qj, Pj+1 — P; have the
representations (2.40), (2.35) or (2.36), respectively.

For a given vector u' = (u)reznt We introduce the notation

= 3w

kezn,l
In view of (6.1), we may write
i-1
A; =Y (Hi+Gi+ D), (6.2)
=0

where the operators Hi_; := (Qi — Qi—1)A(P — Pi-1), Gi-1 := (Q1 — Qi-1)AP_1, and
D1 := Qi—1A(P; — P_;), have the following Schwartz kernels
Hy(z,y) = Y, H..* (¢u(z) ®(©®))

e,e’€Ey

= ¥ 3 hE @), (6.3)

e,e'€Eg kk'e Zm}

Gi(z,y) = Y Gu*° (du(z)®4'(¥)

e'eEo‘
= Y Y gudbu@)d), (6.4)
e'€Eg kk'e€Z™t
Di(z,y) = Y D'+ (¢o(z) ® {(y)
e€Ey
= Y Y d%dbp@Ei0), (6.5)
e€Ey k,k'eZ™*
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and where ¢, @, (., ¥, are the functions from (2.34), (2.7), (2.38) and (2.37). Setting

M = (v,
le
%% = nuwu(Adl), (6.6)

. d;c',ck' = ’I;;'(A'pi,k) ) b.
the corresponding matrices are denoted by

'
cel == (h;‘ek:e )k,k'GZ"»‘7 Gi; = (g]lg"ek’)k,k'EZ"v') Di = (dk,ek')k,k’EZ"v" (6.7)

6.1 Algorithmic Realization

We proceed commenting briefly on the algorithmic realization of atomic decompo-
sitions. Omne can employ the techniques described in [16] to compute the values
fi = (f,¢bo, k € Z™. For given fi = (f,¢l)o, k € Z™, the computation of
the coefficients w}, = (f, ek)o, ke ZY, ec E, 0<Il<j,is ba.sed on the two scale
relations (2.1), (2 7) or (2.9) ([16]), see a.lso [4]. This yields

w-;,_’;l = Z az’fz’—ﬂc »€ € EO) k € Zﬂ'j_l ’ (68)
KeZ™i
and ' . _
= Y awflw, kezZ™ . (6.9)
KeZm™i

Repeating this scheme gives rise to the well-known pyramid algorithm

fof > f7 B » fR
N\ h N
wly' wll o wl, -
It is easy to see that this algorithm, (e.g. [4, 29]), requires O(2™) operations
provided that the masks a and a® are finite. This scheme generates the coefficients of
the corresponding matrix in the wavelet representation

(1 (A%1)) 1 se75 | (6.10)

from the atomic representation requiring O(2™) operations.

- 6.2 Estimates for Prescribed Accuracy an Variable Bandwidth

The basic idea proposed in [4] for compressing A; is to compress each individual com-
ponent appearing in (6.1).

Here we will consider a slightly more general scheme where we allow the compression
to depend on the level of discretization. More precisely, the desired compression will
be achieved by setting those entries to zero in all the above matrices for which

202~ (k — k)| = (), 01 <7, (6.11)
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where the cut off bandwidth ¢(I)e™ > 0 may increase in { to provide increasing accuracy
on higher levels. This gives rise to perturbed operators A; defined by

i-1
A3 —A - Y (Hf +G; + D), (6.12)

=0

where the perturbations are given by

Giu(z) = Y ) G (v, ) ()

€' €Eo {k,k":2'|0(2~ (k—k')) |>c(l)e1}
1‘“("’) = E ' Z kk’(u Ci k)0¢o k'(z) (6.13)

e€Ey {kk":24(0(2— (k—k")) > c(l)e-1}

Hiu(z) = 3 > R (s € Jodbbo o () -

e,e'€Eo {k,k':2}0(2~1 (k—k'))[>c(l)e=1}

On each single level [, 0 < [ < j, Theorem 4.2 and Theorem 4.3 combined with
Schur’s Lemma will lead to the following bound.

Proposition 6.1 Let Df,GS, Hf be defined by (6.18). Then there ezists a constant c
such that for all j € IN

d+1
€ € € €
|Df + Gi + Hi|| o=y < € (m) . (6.14)

Proof: We confine our discussion to one term Gf, say, since the other terms can be
treated in the same way. Invoking the stablity of the scaling functions on a fixed level,
as well as the stability of the wavelets, we obtain for any u € Ly(7T™)

IG5ullz = IGH (Pl

< ey 2l > gk (s, i )ol”

Kezm €' €Ey {keZ™ 21|02 (k—k')[>c(l)e1}

C"Gc”cu,(zw)) Z |(u,‘Pk)0|2
kEZ""

G2 1, (zzmy) | Prull
C"Ginzc(lg(Zn.'))”“”g .

IA

<
<

The norm ||G!||;1,(zn1y) can be estimated with the aid of Schur’s lemma.

|G Z s zmty < (Sup > ngk’l)

kEZ™ (r1e Znt 20)0(2-} (k—K'))[>c(l)e=1}

( sup > lg¢ k'l) - (6.15)

KEZ™ (rezmi:2l|o@—! (k—K"))[2c(l)e"}
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We may now invoke Theorem 4.2 and Theorem 4.3 to estimate the entries g,, k, (and

similarly dk R Lf,;f ). Taking into account the truncation yields

l p (d+1)
”Gcnc(l,(z»,l)) <c (W)-) K (6.16)
which is the desired bound. 0

After these prerequisites we will show next that one can choose the bandwidth
control ¢(I) in such a way that a given error tolerance can be realized by means of
compressed schemes involving O(2'") = O(N) operations.

Theorem 6.1 Suppose that the Petrov-Galerkin scheme Q;AP; = A; is (0,0)-stable
in the sense of (3.12) (cf.[17]). For somet' € (0,1) let

4 QM(-)
=717 = . 1
T D=2 (6.17)
Then the corresponding perturbed operators A%, defined by (6.12) and (6.13), satisfy
NA; — ASllcza(mmy) < € et (6.18)

Moreover, there ezits ¢ > 0 such that for any 0 < € < € the compressed scheme
Asul = f? has a unique solution u} € V7 satisfying

w” = willo < ¢ e flu”fo - (6.19)

Proof: We confine our discussion again to one typical component of A%, namely Gf.
From Proposition 6.1 we infer that
IGiullo 1 G-OMED u]lo

< ce€
< ¢

196D [, (6.20)

where ' > 0 is the constant from (6.17). Similar estimates hold for the operators
Di, Hf. Summing over [ = 1,..., 7 therefore yields

i
|A; — ASl c(pacry < c €ty 203 (6.21)
=0

proving (6.18).

Next, on account of (6.18), € can be chosen such that the compressed scheme A$
becomes also (0,0)-stable uniformly for 0 < € < €. The rest of the assertion follows
then from Lemma 5.5. o
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6.3 Computational Costs

One easily verifies that, when ¢’ < 1, this procedure produces on a fixed level ! only
O(2U-n2M) nonzero coefficients. Summing over all levels one sees that there remain
a total of O(2/") = O(N) nonzero coefficients needed in order to achieve the desired
accuracy.

6.4 Estimates for Constant Bandwidth

Next, we will investigate the extreme case where the bandwidth is almost constant over
all levels, i.e., ¢(I) = 1. This kind of truncation has been suggested by [4, 1] and has
been also used by other authors, e.g. [25]. In order to establish appropriate bounds
for the perturbation operators in this case, we have to perform an explicit eziraction
of constants. For this reason we introduce the following operators

Riu(z) = }_ > di%e (u, Bh)odl k(<) (6.22)

e€Eo {kk'€Z™1 2102~ (k—k'))[>e-1}
Siu(z) = Y, > gllc';;'(“a Cor )o@ ()
¢'€Eg {k,k'€Z:2}|0(2-(k—K'))|> 1}
where ® denotes the cardinal multi-linear tensor product spline. Note that the above
operators are defined by diagonal matrices with diagonal entries
ryi= ri'fk = > A%, I=(l,e,k) (6.23)
‘ {k'ezZnt:240(2  (k—K")) > 1}

and I
85 = si'fk, = > K> J==(¢&%k. (6.24)
{keZ4:2H0(2~! (k—K")) |2~}

Using the fact that the translates of a scaling function build a partition of unity,

i.e.
Yook= X vh= Y b= Y n= Y =22,

kezZm™ keznt kezZnrt keznt kezmt

so that

(1"14:)0 — (1,7}:')0 =1
(17(1)%)0 (1:(1)5.-')0 ’
it is not hard to see that the operators

Ci=Hi+Gi—5+Di - R , (6.25)
whose Schwartz kernels Cf(z,y) are defined by
(CE)(=) = [ Ci,9) I (w)dy (6.26)
Tn _
satisfy
Cii=0 (CH*'1=0. (6.27)

Thus the definition in (6.22) may be viewed as an extraction of constants.
Theorem 4.2 and Theorem 4.3 yield now for each level the following estimate.
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Proposition 6.2 For every l € IN, e, e’ € Ey, the coefficients ri’fk and sf;fk defined by

(6.23), (6.24) satisfy
IrL'fk[ + Is'e'f,kl <cétt, , (6.28)

for some constant c independent of [.

Similar arguments as those used in the pfoof of Proposition 6.1 provide now the
following result.

Proposition 6.3 Let Cf be defined by (6.25). Then there ezists a constant ¢ such that
forall € IN '

Cilcamy < e 1.

We proceed now analysing the above compression scheme. Since various aspects of
the theory of Calderdn-Zygmund operators will play an important role in this context
we recall the following definition (cf. [34]).

Definition 6.1 Let T be a linear continuous operator T : D(IR*) — D'(IR*). Its
Schwartz kernel K(z,y) is called a Calderén-Zygmund kernel, if it satisfies the follow-
ing conditions:

(i) The Schwartz kernel K(z,y) of T is locally integrable on every open set
Q' C R* x R"\{z # y}. Further, there ezists ¢ > 0 and § € (0,1] such that
K(z,y) can be estimated by

|K(z,y)| < clz —y[* (6.29)
(ii) and
, 1
1K(e',9) = K(z,9)] < e’ —af’lz—y[™ if |’ 2] < 5lz—yl,(6.30)
_ 1
|K(2,y) = K(z,9)| < oy’ ~ollz—y[™" i |y —y| < 5le—yl, (631)

for all (z,y) € Q.

A bounded linear operator T : D(IR™) — D'(IR") is called a Calderén-Zygmund opera-
tor on 7™ if T is a bounded operator in L*(T™) and if its Schwartz kernel is locally
a Calderén-Zygmund kernel. This means that, for a partition of unity ®;, 1 < j < N,
relative to a finite covering of T™, the canonically transported operators of ®;T®;,
1<3,7' <N (cf. e.g [40]), are Calderén-Zygmund operators on IR™.

To tie this concept into the present context we will make use of the following
further auxiliary facts. The subsequent first observation is formulated only for one
typical configuration. The arguments which are being used cover all the other cases as
well since we will only exploit exponential decay.
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Lemma 6.1 Let

I o i 1
P = Z G-k Ve
klezn,l

where the g}, are defined for ezponentially decaying coefficients g; by (4.5) and v sat-
isfies Co'Y'. Then the estimate

l#‘(z) _ ¢L(zl)| < czln/zzlsw(m _ z/)|8(,,_2'|0(z—2“k)| + 7.2‘|9(a:'—-2—’k)|) (6.32)

holds for some T € (0,1), some constant c independent of I,n,z,z’' and any § € (0, p]
where 0 < p < 1 corresponds to the Holder continuity of 7.

Proof : By (4.6) we obtain for some 7 € (0,1)
16k(2) = k(@) < X lghowllth(z) — (=)
kIeZn,l
< e X PRETERL (2) — 4 (a)] - (6.33)
ktezZmt
In case |z —2'| < c2~! we make use of the Holder continuity of 4 and the fact that ~
has compact support to conclude that
6k(2) — di(a)] < 2@z -a)t 33 AHRETER)
{K:2}10(2— k" ~z)|<c}
< ¢ 2ln/2216|0(x - m:)la(Tz'la(z—z—‘kn + 1_2‘]0(::'—2“‘1:)]) )
If |0(z — )| > 27! we take again the compact support of 7 into account to estimate
i (Lt
6k(2) = k(=) < e 3o THPCTEBN( ()] + Iris(2))

klezn,l
< C2In/2 (T2‘|a(z-2-'k)| + T2'|9(z'—2-‘k)|)

< c2ln/2216I0(m _ xl)|8(72'|9(z—2-‘k)[ + T2‘|0(z'—-2"lk)|) . (634)
In the last step we used the assumption 1 < 2%|0(z — z')|, where § € (0, 1]. w

Lemma 6.2 Let ¢,(. be defined by (2.34) and (2.87), respectively. Furthermore, let
M, have the form

Mu(z)= ) > (",C:,k')om;c'fk'#(z),

e€Eg k,k'eZ™t

where for some ¢ > 0

ImiG| <c A+ 210@7 (k= K)) ™, kK € Z™, e€ Ey. (6.35)
Then the Schwartz kernel M (z,y) of M, satisfies the following estimates
|Mi(z,y)| < c 2"(1 +2'|6(z — y) )™, (6.36)
and, if in addition ¢ € C*(IR™), one has ‘
|Mi(',y) — Mi(z,y)] < ¢ 27(2]0(z — 2')|)° (6.37)

(1 +2'10(z — )™ + (1 + 2']0(=" = y))™7) -
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Proof: By our assumptions on ¢ and (. (4.6) ensures that
(BL(a)] < 0 Bl T | ()] < 0 BERTL (635)
holds for some 7 € (0,1). Since

Mi(z,y)= Y > mudi(@)lew(y),

k,k'€eZm! e€Ey

a twofold application of Lemma 4.1 yields (6.36) for = = 2'ky, y = 27'kf. A continuity
argument establishes (6.36) for any z,y € 7.
Replacing ¢k (z) by ¢k(z) — ¢L(z'), we apply Lemma 6.1

IMi(z,9) - Mi(e,y)l = |2 2 Gru)mii(di(e) - (=)l

e€Eo kk'cZ™!

< ol Z Z T2'|0(y—2“k')|lmi,’eklplslo(m _ m/)ls
e€Eq kk'eZ™
(7.2'|9(z—-2-‘k)| + T2’|e(z'—2—'k)|) )

Finally, (6.37) follows from Lemma 4.1 and (6.35). m]
One should note that the operators A; locally have Calderén-Zygmund kernels.

Proposition 6.4 The Schwartz kernels of the operators AJ-,HJ-,G'J-,DJ-,Qj € INy, de-
fined by (6.2), (6.3), (6.4), and (6.5), are locally Calderdn-Zygmund kernels with con-
stants ¢, 6 in (6.29) and (6.30) not depending on j € INy.

This fact can be established with the aid of the previous lemmas. The reasoning
is implicitly contained in the proof of the following lemma which gives more precise
information needed later. '

Lemma 6.3 Let Mf be any of the operators (G§ — Sf), (Hf),(Df — Rjf) defined by
(6.13) and ( 6.22). Then the Schwartz kernels and the transposed Schwartz kernels of
the operators Mf, | € INy, are locally Calderon-Zygmund kernels satisfying

|ME (2, )] < e (@) (1 + 10z — y)l) 4, (6.39)
and, for any e € (0,1),

|Mf(z,y) — M{(z',y)| < e 8(e|0(z ~ o))’ (6.40)
(2 + 20z —y)) ™+ (1+ 20 -y,

where § € (0,p], p <'1 and the constants c in (6.89) and (6.40) do not depend on
l € IN.
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Proof: By Theorem 4.2,’Theorem 4.3 as well as by Corollaries 4.1, 4.2 and 4.3, the
corresponding entries mi’fk, can be bounded as follows

Imp%l < ¢ (1+2'027 (k — F))|)™41 . (6.41)
One easily concludes now from Lemma 6.2 that
|M (2, y)| < et (e2')(e2'|0(z — y) )", (6.42)

which, in turn, yields (6.39), whenever 2'|0(27!(k — k’))| > €. Let us recall that the
operators Rj, Sf are represented by diagonal matrices. In view of the truncation (6.11)
and by invoking Proposition 6.2, we see that the bound

Imifl < ¢ e+ (6.43)

is valid uniformly for all k,k' € Z™. In case |0(z — y)| < (2'¢)~! we observe that, in
view of (6.43) and (4.6), summation provides for z = 27'k,y = 27'k’

|M(z,y)] < 2 elrtat) (6.44)

By the usual continuity argument, this confirms the first inequality (6.39) for all z,y €
™.
For 9., 4 € C%(T™), é € (0,p], Lemma 6.2 applies and one concludes that
|Mi(z,y) — Mi(z,y)] < e 20|0(z — ')’ . ;
(2'16(z —y)) ™ + @10 —y)) ) (6.45)
< ¢ (e2) e el(z — 2')|°
((2'loz — y))™ " + (210(=" - y)) ™).

Thus, if |0(z — y)| > (2'¢)™! and |0(z' — y)| = (2'€)™! are satisfied, (6.40) follows.
If only |0(z' — y)| > (2'¢)" is valid, one uses

|Mi(z,y) — M](:L", y)| < ¢ 2I(n+6)|0(z _ zI)IJ(leH(zI _ y)l)—n—d—l
< e (@) etz — )10 —y)) T (6.46)

In case that both 2/|8(z — y)| < €~! and 2'|0(z' — y)| < €, we apply (6.43) as above
to obtain :
IMi(z,y) — Mi(z',y)] < ¢ 2™|2'0(z — =) P44 . (6.47)

This confirms our claim. O

Lemma 6.4 The Schwartz kernels Nf(z,y) of the operators (R+Sf) are also Calderdn-
Zygmund kernels satisfying the estimates

INf(z,y)| < cett1oln 2100 (6.48)
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and

INi(z,9) - Ni(@9)| < e 1=5(e2l0(z — o')])° (6.49)
gin (72103l 4 721"~

for any € € (0,1), where § € (0,p], p < 1 and constants c in (6.39) and (6.40) not
depending on l € IN,.

Proof : By (6.22), one has the representation
Ni(z,y) =3 3 (rei®h(v)¢ba() + stixn(v)i(=)) -

e,e’ ke Znt

We infer now from Proposition 6.2 and Lemma 4.1 that

INF(z,0)] < ™3 30 (19W)es(@)] + 16k () Bh(2)])

. ee! keZnt
< cedt1gin Z Tz']o(z-‘k—z)lT2‘|9(2—‘k—y)|
kezmt
< C€d+121n7.2']0(z-7-y)| .

In order to prove (6.49) we employ analogous arguments as in the proof of Lemma 6.2

INi(z,y) = Ni(z',9)| < e e (2']0(z — o))’ -
. 9in Z (T2'|0(2“k—x)| 216" k=y)| + 2182 k-2")| Tz'w(r‘k—y)l)
keZ"*'
< ¢ 2In6d+l—8(€2l|0(z _ xl)|)5(,,.2‘|9(z—y)| + T2‘l9(;c'—y)l) ,

where we have used Proposition 6.2 and Lemma 4.1. ]

Conversely, every Calderén-Zygmund operator A on 7™ can be expanded in a series

A= PAPo+) ((Pi— Pi1)A(Pi— Py )+ (Pi— Py ) APy + Py A(Pi— Piy)). (6.50)

=0

The corresponding finite dimensional operators give rise to matrices satisfying the esti-
mates of Corollary 4.3 where d+1+r is replaced by some é € (0,1). This representation
of Calderén-Zygmund operators in terms of wavelet expansions is the heart of Meyer’s
theory of Calderén-Zygmund operators (see [4, 34]). It also provides the analytical
background for the present investigations.

One should note that our analysis of the matrix compression carried out in the pre-
vious section used properties of pseudodifferential operators which, when considering
‘the case r = 0, do not necessarily hold for Calderén-Zygmund operators. For instance,
for Calder6n-Zygmund operators, an estimate of type (4.32) is not automatically satis-
fied. Here one would have to assume an additional condition, for instance, the so called
weak cancelation property (see [4]) or the weak boundedness property (see e.g. [34, 20]),
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in order to obtain error estimates for compressed stiffnes matrices relative to Galerkin
schemes based on wavelet bases (cf. [4, 34]).

In order to prove again in the present context that the computational complexity,
needed for achieving a certain precision for the compressed operator, remains linear in
the number of unknowns, we will make use of a celebrated lemma due to Cotlar and
Stein [26, 34].

Lemma 6.5 Let Aj,j € Z, be a collection of bounded linear operators on a Hilbert
space H such that for some constant M

* 1 * 1
2l Alz <M, SNAA))F <M (6.51)
lez : 1
holds uniformly in j € IN. Then the series

Tu=YAju , ueH, (6.52)
J

converges in H and ||T||cry < M.
In order to apply Lemma 6.5 we need the following Lemma.

Lemma 6.6 Let Cf, | € INy, be the operators on Ly(T™) defined by (6.25). Then there
ezists a constant ¢ > 0 such that

1Y Crullo < ce™ 2 ||ullo, ue L(T™), (6.53)

1>0
where € and § are the constants appearing in Lemma 6.8 and Lemma 6.4.
- Proof: According to (6.27), the Schwartz kernels Cf(z,y) satisfy the condition
(Cs1)(=) = [ Cu=y)dy = ((CHD)(=) =0, (6.54)
™ . '
We decompose Cf(z,y) = Mf(z,y) + Nf(z,y) where we denote M{(z,y) = Hf(z,y) +

Gi(z,y) + Di(z,y) and Nf(z,y) = —(Rf + Sf)(z,y)- By (6.54), the kernel of the
operator Cf(Cf)* can be expressed as

Cinle,y) = C{(CE)'(2,y) = [ Ci(a, 2)Cily, 2)d= (6.55)
Tn

= / (Ci(z, z) — C¥(z, y))Cily, 2)dz

= T/(Mf(w, 2) = Mi(z,y))Mi(y, 2)dz +  (6.56)
2 [(We(z,2) — Ne(a, ) Miw, 2)dz 4+ (657)
+7(Mf(x, z) = Mi(z,y)) N5y, 2)dz + (6.58)

Tn
+ [ (N(z,2) = Ne(z, ) Nitw, 2z . (6:59)
Tn
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We wish to estimate

[1Ciu@, vy and [ Ctelz,v)lde (6.60)
Tn Tn :

in order to apply the well-known Schur Lemma.
We investigate first the expression (6.56), which will be denoted by MM (z,y).
The remaining terms will be treated in a similar fashion. Assuming now I’ > [, we

employ Lemma 6.3 to obtain, for § € (0,1), and any z,y € 7™ such that z—y € [—3, 3]

IMM(z,y)] < ¢ 2(d+1) / e (elz — y|2‘)5(622(1+1’))n . (6.61)
. R"
(1 + €2z — 2'2)) 7 4 (1 + €2z — 2'y)) )
L+ €2z —2"y|) ™z

We are now in a position to estimate

/|MM,",,(:1:,y)|dy and /lMMf’,,(a:,y)ldx .
Tn Tn

Bounding |M M| by (6.61) and integrating (6.61) with respect to = over IR", while
keeping in mind that the integral

/(621)"(1 + ¢|2(z — 2)|) ™4 ldz

R»

is constant independent of z, it remains to estimate the integral
62(d+1) /(Iz _ y|621)56—6(€2l')n(1 + 6|2l'(y _ z)l)—n—d—ldz
Rﬂ
< o AHNIPN [ (1 4[]y nolt-Dgs
Rn
< ¢ 62(d+1)-526(1—1l) .
By analogous arguments the same result is obtained when integrating with respect to

y.
Repeating the previous reasoning, we obtain likewise

|M N (2, y)] < cez(‘“"l)/e"s(e|z—y|2’)5(e2(l+"))"- (6.62)
Rl‘l

(1 + €2z — 2'2])7" 4 4 (1 + €]2lz — 2ly|) ™)

210G g,
Thus one concludes that the integral | [ M Nf;(z,y)dz| can be bounded by
2(d+1) / (|2 = y|e2)® =St 12" (v=2)] g,
Rn

< c 62(d+1)—525(1-—1') .
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As for | [ MN},(z,y)dy|, we use

' iy,
/2’ np2le y'dy =c,
Rn

to obtain the desired bound. The kernels N My (z,y) and NNf,(z,y) are treated in
much the same way.

Summarizing the previous observations, one finally obtains
1 !
"CIE(CIC')*"Z(Lg(T")) <ec €d+l——8/22—%5|l-—1| ,

and the same type of estimate for the norm of the adjoints ||(Cf)*C§||z. The assertion
follows now from Lemma 6.5. o

In order to estimate the operator norm of A; — A; we have to find uniformly
decreasing bounds for the operators Yoi;(Rf + Sf), 7 > No, as € — 0. To this end, it
will be convenient to use the following notation. Let 2, denote the interior of supp (I>’
and define

r(e)?:= sup 2" > > 2_1'"|r£’,:, , (6.63)

N
leNo keZ™ {k’eZ"-‘:ﬂi',Eﬂi} e€Ey

and

s(e:== sup 2" > > 2_""|sg,’,:,|2 . (6.64)

J
leNy keZn "=l {k:ezn,lﬂi’l gni} e€EEy

The following Theorem in its wavelet version is mainly due to Meyer. It can be
traced back to David Journé [21] and is a consequence of a celebrated lemma due to
Carleson.

Lemma 6.7 There ezists a constant ¢ such that

c'r(e) < || Zien, Bille@eamy) <er(e),
: (6.65)

cls(€) £ || Ziem, Sillcaery < es(e)
holds for 0 < € < €.

Proof: The proof is essentially given, for instance, in [34]. Because the result
is important for our purposes and has to be slightly adapted to the present setting
we sketch the proof for the convenience of the reader. By the stability of the basis
{# 1 }eu e and (6.22), we have

c Z > 2 Irei(w, @l < || 3 Rulf <e Z > X Irei(u, @)l

e€Ey kezZ™} leNy e€Ep kezZ™t
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We verify the right hand inequality first. For I € J7 we set w(I) = 2™|(®4, u)o|2.
Introducing the function

w(z) = sup w(l),
{I€TI:jeNy zell }

one observes that

wi)=  sup 2w, ) < e sup 2" [|uy)ldy)
{leNo ke ZnH:zeql } {LkeQ} 5
k

< o s l0f” / Ju(z)|dz)*. (6.66)

The right hand side of (6.66) is the square of the Hardy-Littlewood maximal func-
tion denoted by (M(u)(z))%. Thus we conclude by the well known maximal function
theorem (see e.g. [41])

[ wl@)ds < c IM@)IE < ¢ 1ull3 (6.67)
Tu

The assertion is now a consequence of a lemma due to Carleson, cf. [34], page 273,
whose periodic variant says that

Y IDle(D) < ¢ s(6) [ w(z)dz, (6.68)
Tn

IeTH >0

provided that p(I), I = (I,e,k) and J = (I, ¢, k') satisfy

sip 273 3 3 Ip(I)l-

ENIET 121 (pegniql,cal) e€Eo

In fact, we may choose here p([) := 2""lrc’fkl2 to combine then (6.67) with (6.68).
Incidentally, we have proved that the adjoint operators Y ;(Sf)* are bounded in
L*(T™) with an operator norm less than or equal to ¢ r(€). This immediately implies
the corresponding result for }°; S}. ‘
To verify the left inequality we choose u = Xqt to be the characteristic function

of supp®:. Thus we have ||ullo = ¢ 272 and |(®},u)|* = [ ®F (z)dz = ¢ 27V'"/2.
T
Therefore, we conclude that for every k € Z™ and [ € IN

0

sup o Y Yol < X Y X i Pi(e, @)l

kezm™t =y {klean Ql' cal Ly e€Ey U1 pezgnt! e€Eo

e |13 Riulls

>l

o
cll Z Rfll%mm»llull%

=0

e 1Y Billz a2~ -

=0

IA

IA

INA
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This completes the proof. O

We can now summarize the above results to prove the following counterpart to
- Theorem 5.1.

Theorem 6.2 Let A§ be defined by (6.12). Then there ezist ¢ > 0 and § € (0,1) such
that for all j € IN

|l A; — ASl|czary) < e (r(e) + s(e) + e¥15/2) (6.69)
holds.

Proof: Recall that )
J
A;— A5 =) (Cf + Bi + 57)

=1
where Cf1 = (Cf)*1 = 0. Thus Lemma (6.6) gives the bound

ECIC S Cﬁd+1_5/2 .
1
The assertion follows now from Lemma 6.7. O
If
li_%xr(e) = li_gr(}s(e) =0, (6.70)

one immediately concludes from (6.69) that the (0,0)-stability of A; implies (0,0)-
stability of A for all 0 < € < ¢ provided ¢ is sufficiently small. In the same way as
before we may apply now Lemma 5.5 to prove the following result.

Theorem 6.3 Suppose u* is the ezact solution of (3.4) and let u? denote the solution
of the compressed scheme A;uj = Q;f, where A; is defined by (6.12). Furthermore,
suppose that A; is (0,0)-stable. Then there ezist some ¢ > 0 and some constant ¢
independent of § € IN and € € (0, ¢), such that for all0 < e < ¢

llu* — willo < ¢ (r(€) + s(€) + e*+1%2)
holds uniformly in 7 € IN.

Computational costs: Note that the application of the operator A$ requires only
O(2™) operations.
Remark : Since

3 J
(4 =AY =SSR, (A= A1 = (S
=1 =1

the relation (6.65) can be reformulated as

Jim (I(A4; — A7)1llro + 1(4; — A5)"1l|ao) ~ r(e) + s(e)-
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Here || - || BMo denotes the norm in the space of functions of bounded mean oscillation
BMO (cf.[34, 20]). Note that an unpractical condition like (6.70) is not needed when
working with the wavelet representation since the operators A considered here are a
priori known to be bounded in L%(7™).

On the other hand, for many interesting cases such a condition is, due to the

structure of A, automatically satisfied or easy to verify. Trivial examples satisfying
s(e)+r(€) = 0 as € — 0 are given whenever ri’je = si‘fk =0, for | > No,k € Z™, e € E,,
or are geometrically decreasing with respect to . Moreover, as we have seen in the
previous subsection, sufficiently small r(€) + s(€) can be easily achieved if one use e.g.
varying cut-off bandwidths on different levels.
Example: We wish to conclude this section by pointing out that too simplistic com-
pression strategies may indeed cause problems in connection with atomic representa-
tions. For the sake of simplicity we will only consider the technically somewhat simpler
Euclidean space IR™, which, however, exhibits already all the essential features. Let S
be a singular integral operator given by

Su(z) = / ( / 2m6e= o(£)u(y)dy)dE ,u € CP(R™) (6.71)

R™ R"

where ¢ — o(€), € # 0, is assumed to be a bounded homogeneous function (of degree
zero). Obviously, the operator S defines a bounded operator in L?(IR"). Asumme that
¢ generates a multiresolution analysis ... C {p)? C (p)*! C ... (cf. (2.6)). Since the
operators are invariant under the action of the affine group, i.e., they commute with
translation and dilation operators, straightforward computation yields

2(Su(2 - —k), (2} - —K)) = s = doeoie - (6.72)

Here the coefficients dz’fk, = d, -k are independent of [,k + k. The corresponding
extraction of constants can be performed by subtracting operators Rf, S; analogously
to the periodic case. Since di’fk, depends only on e € Eg and k— k' € Z™ the operators
R;, Si are induced by diagonal matrices, e.g.,

Riu(z)= Y Y 2"r (2! - —k),u) 0L (2'z — k), (6.73)

e€Ey keZ™

where r = Y, jr de s is independent of k£ and the level I. Let r(¢) be defined in analogy
to (6.63). Therefore r(€) = 0 if and only if r. = 0 whereas r(e) becomes unbounded
otherwise. Indeed, for 7 € IN we have

J
Y ot >0, (6.74)

1 !
I>lol cal

where, as above, (2} = interior (supp®(2'-—k)). Thus (6.74) tends to infinity if j — oo
unless r(€) = 0. As an aside, setting € = 0 reproduces a known result, namely that for
operators of type (6.71) T, , df,;:’k, =Y pder =0as wellas 31 gf;f,:, =Y rgek =0
necessarily hold for any k,k’,e,l. Let us consider now constant compression on each
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level by discarding those entries for which |k — k| > €7! or alternatively discarding
all entries with absolute value below a given fixed threshold (cf. [4]). This seems
to be natural in this case since the coefficients do not depend on the levels I. As a
consequence of Theorem 6.2 and (6.74), our compression gives only small errors if the
remainig coeflicients satisfy the condition Y ricc—1) dek = 0 and T yijxi<e-13 ger,k = 0.
Otherwise the error increases with increasing j. Here the situation becomes even worse
since the norms of the compressed operators A§ themselves tend to infinity as j — co
according to the result of David Journée [21].

7 Summary of Estimates

The previous results are collected in the following table showing the number of nonzero
entries needed in the compressed matrices in order to achieve the desired optimal con-
vergence rate or fixed error bound. Here we set N = 2/" which is the total number
of unknowns and recall that the meshwidth is 277. For r > 0, we have not listed the
best possible convergence rate in case it is not optimal. It is not hard to see that
generally a rate of 277(4+1+r) can be achieved. In case r < 0 we have not found optimal
convergence rates and listed the result of Therorem 5.5.

Error Bound € eN—* eN-* eN~*
r=20 r>0 r<0
Wavelet O(N), O(N), O(N),
s<d+p s<d+p+i% s<d+p+r
Representation | O(N) , O(NlogN) , O(NlogN), O(NlogN) ,
' s<d+1 s<d+1+5 s<d+1+r
O(Nlog*t 7@ N) | | O(N log** 7@ N) , | O(Nlog*t 7@i7a N) |
s=d+1 s=d+1+3% s=d+1+4r
( not quasi optimal )
Atomic O(N)
Representation
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