
Institut fiir Angewandte Analysis 
und Stochastik 
im Forschungsverbund Berlin e.V. 

Wavelet approximation methods for pseudodifferential 
equations II: matrix compression and fast solution 

W. Dahmen1 , S. Prossdorf2 , R. Schneider3 

submitted: 3rd February 1993 

1 Institut fiir Geometrie 
und Praktische Mathematik 
RWTH Aachen 
Templergraben 55 
D - W 5100 Aachen 
Germany 

2 Institut fiir Angewandte Analysis 
und Stochastik 
Hausvogteiplatz 5-7 
D - 0 1086 Berlin 
Germany 

3 Fachbereich Mathematik 
Technische Hochschule Darmstadt 
Schlofigartenstrafie 7 
D - W 6100 Darmstadt 
Germany 

Preprint No. 37 
Berlin 1993 

1991 Mathematics Subject Classification. 65 F 35, 65 J 10, 65 N 30, 65 N 35, 65 R 20, 47 A 20, 
47 G 30, 45 P 05, 41 A 25. 
Key words and phrases. Periodic pseudodifferential equations, pre-wavelets, biorthogonal 
wavelets, generalized Petrov-Galerkin schemes, wavelet representation, atomic decomposition, 
Calder6n-Zygmund operators, matrix compression, error analysis. 



Herausgegeben vom 
Institut fi.ir Angewandte Analysis und Stochastik 
Hausvogteiplatz 5-7 
D - 0 1086 Berlin 

Fax: + 49 30 2004975 
e-Mail (X.400): c=de; a=dbp;p=iaas-berlin;s=preprint 
e-Mail (Internet): preprint@iaas-berlin.dbp.de 



Wavelet Approximation Methods for 
Pseudodifferential Equations II: Matrix Compression 

and Fast Solution 

Dedicated to Charles A. Micchelli on the occasion of his fiftieth birthday 

W. Dahmen, S. Prossdorf and R. Schneider* 

Abstract 

This is the second part of two papers which are concerned with generalized 
Petrov-Galerkin schemes for elliptic periodic pseudodifferential equations in R". 
This setting covers classical Galerkin methods, collocation, and quasiinterpola-
tion. The numerical methods are based on a general framework of multiresolution 
analysis, i.e., of sequences of nested spaces which are generated by refina.ble func-
tions. In this part we analyse compression techniques for the resulting stiffness 
ma.trices relative to wavelet type bases. We will show that, although these stiff-
ness ma.trices are generally not sparse, the order of the overall computational 
work which is needed to realize a certain accuracy is of the form O(N(logN)b) 
where N is the number of unknowns and b ~ 1 is some real number. 

Key Words: Periodic pseudodifferential equations, pre-wavelets, biorthogonal wavelets, 
generalized Petrov-Galerkin schemes, wavelet representation, atomic decomposition, 
Calder6n-Zygrnund operators, matrix compression, error analysis. 

AMS Subject Classification: 65F35, 65J10, 65N30, 65N35, 65R20, 47 A20, 47G30, 
45P05, 41A25. 

1 Introduction 
In [17] we have proposed and analysed a rather general setting for the numerical solu-
tion of periodic pseudodifferential equations by means of generalized Petrov-Galerkin 
schemes. In particular, collocation and classical Galer kin methods are covered as spe-
cial cases. These schemes are based on sequences of shift-invariant nested spaced 
generated by a single refinable function. We were able to characterize stability of these 

*The third author has been supported by a grant of Deutsche Forschungsgemeinschaft under grant 
number Ko 634/32-1. 
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methods for the general case of variable symbols in terms of simple conditions on the 
Fourier transform of the generating refinable function and to estimate the convergence 
of the schemes. An essential ingredient of our analysis was a detailed information 
about the local approximation behavior of the various projection operators related to 
the numerical schemes. This knowledge will play again an important role in our present 
investigation. The objective of this paper is now to explore possibilities of efficiently 
solving the systems of linear equations induced by the above mentioned Petrov-Galerkin 
schemes. The central problem is that the corresponding stiffness ma.trices a.re in general 
not sparse but full, a. case which is, for instance, typically encountered for the special 
situation of boundary element methods. 

Our approach is motivated by the recent interesting and intriguing paper [4] (see also 
[2]). There the key is to use matrix representations based on wavelet bases. Estimates 
for the decay of the corresponding matrix entries lead then to efficient approximate 
matrix vector multiplication. The central theme of the present paper is similar in that 
we investigate compression of stiffness matrices. It differs, however, in that we con-
sider a much wider class of wavelet-type bases, and a larger class of numerical schemes 
covering Galerkin-Petrov and collocation schemes. While [4] treats only operators of 
order zero we attempt to cover operators of positive and negative order as well which 
will turn up a number of essential differences. More importantly, our goal here is to 
go beyond estimating only local truncation errors but to establish for a possibly gen-
eral framework rigorous convergence estimates for the final numerical approximations 
resulting from the compressed schemes in comparison with the exact solutions. To 
accomplish this one needs the characterization of stability of the respective schemes 
established in [17] and stability of the compressed schemes to be established here. Since 
the present setting covers also the situation where boundary element methods apply 
one should mention schemes like panel clustering (24] developed especially for this case. 
One hardly expects that the general schemes discussed here could do better in practice 
than such special schemes. But again stability results a.nd hence convergence estimates 
are to our knowledge not available yet for panel clustering. The same refers to the 
multigrid approach in [6] which is closely related to the special case of collocation. At 
any rate, we will establish for the present setting that fixed prescribed accuracy of ap-
proximate solutions can be obtained at the expense of O(N) operations where N is the 
number of unknowns. Moreover, asymptotic error estimates of optimal order will be 
shown to hold when allowing an additional logarithmic factor. One should emphasize 
that we do not require any explicit knowledge about the structure of the kernels of 
the operators under consideration. Instead our approach makes only use of asymptotic 
properties determining a rather wide class of operators covered by our analysis. 

On the other hand, it is clear that one prize we have to pay for such detailed infor-
mation is to restrict the analysis to a class of model problems with regard to periodic 
boundary conditions. However, much of the analysis can be seen to remain valid un-
der much more general assumptions, namely everything based on local approximation 
results and therefore essentially the complete stability analysis as well as the estimates 
of the stiffness matrices. On the other hand, the periodic setting provides a convenient 
framework for establishing rigorous convergence estimates in the present generality, 
although for certain things it may occasionally even require a. little more effort to work 
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in the periodic case. Nevertheless, we find it worthwhile to stay on firm grounds and 
attempt to give a possibly complete and rigorous analysis of the interplay of the essen-
tial ingredients involved in problems of this type. So we feel that it is justified sticking 
with the periodic setting considered in [17]. 

The paper is organized as follows. In Section 2 we briefly review the general setting 
from [17] which we will continue to work in here and collect a few facts on wavelets 
that will be frequently needed throughout the remainder of the paper. In particular, 
it will be concluded with an essentially known characterization of Sobolev spaces but 
suitably extended to the somewhat more general wavelet-type expansions considered 
here. This will provide later the basis for preconditioning the stiffness matrices which, 
in turn, will be an essential ingredient for the intended compression. 

In Section 3 we describe the class of operator equations we deal with and define the 
corresponding generalized Petrov-Galerkin schemes. 

Section 4 is devoted to deriving a number of auxiliary basic estimates for entries of 
stiffness matrices by combining some properties of Schwartz kernels of the operators 
under consideration with approximation properties of the linear projectors associated 
with the numerical schemes. 

We will continue discussing two different kinds of compression strategies induced 
by different decompositions of the finite dimensional operators representing the under-
lying Petrov-Galerkin scheme. The first decomposition corresponds to blocks of the 
stiffness matrix relative to wavelet-type bases and will be referred to as wavelet rep-
resentation. The second one is somewhat different and will be referred to as atomic 
decomposition because it is closely related to the atomic decomposition of Calder6n-
Zygmund operators studied in [34]. In [4] it is termed non-standard representation. In 
Section 5 we deal with the wavelet representation confining the discussion in this case 
to classical Petrov-Galerkin schemes, i.e., the test functionals are refinable functions 
in £ 2 • After estimating first individual matrix entries we will employ suitable versions 
of Schur's lemma to derive estimates on the norms of the compressed matrices as well 
as of their inverses to ensure stability of the compressed schemes. This allows us to 
prove then that the solution of the compressed scheme can be made to deviate from the 
exact solution of the complete finite dimensional problem by no more than a prescribed 
tolerance. Here the compressed matrices involve the same order of nonzero entries as 
unknowns. The corresponding constants, of course, depend on the given tolerance but 
not on the discretization level. We proceed then modifying the compressions to prove 
finally quasioptimal overall asymptotic error estimates for the approximate solutions 
allowing for O(N(log N)b) nonvanishing matrix entries where N is the current number 
of unknowns and b 2:: 1 is a fixed number. 

In Section 6 we analyse compression techniques based on the atomic decomposi-
tion. Here we consider the full class of generalized Petrov-Galerkin schemes covering, 
for instance, also collocation. However, we confine ourselves to zero order operators. 
In principle, one could extend these results also to operators of different orders but 
·this would require even further technical elaboration. In this case it is relatively easy 
to realize fixed error tolerances at the expense of 0( N) operations when varying the 
compression rate depending on the discretization level. The treatment in [4, 5] seems 
to suggest though a slightly different type of compression which we will study through-
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out the rest of the paper. We will show that in this way any fixed accuracy can be 
achieved within linear complexity provided a BMO type condition is satisfied. The 
analytical background can be traced back at least to David and Journe [21] establish-
ing a boundedness criterion for generalized Calder6n-Zygmund operators, the so called 
Tl Theorem. A wavelet formulation of this modern Calder6n-Zygmund theory was 
later given by Meyer [32, 34] who told us. that he has worked out similar results for 
the method proposed in (4]. We hasten to add, however, that the anlysis shows that 
too naive compression strategies may fail in this context and substantiate this by an 
example. 

We conclude in Section 7 with a brief summary of estimates listed in a table and 
some remarks on future work. 

2 Refinable Functions and Wavelets 
In this section we collect some prerequisites concerning the general framework for the 
class of numerical schemes to be considered in the sequel. Since we will be interested 
in periodic problems we will have to provide appropriate periodic trial spaces. A 
convenient way to construct such spaces is via periodization of functions defined on 
all of JRn. Thus we start recalling from [17] a few facts about the central notion of 
refinable shift-invariant spaces and complement this material with further facts about 
wavelet bases which are relevant for our present purposes. 

The main ingredient is a refinab/e function (sometimes called scaling function) cp E 
L2(F). By this we mean that cp satisfies a refinement equation 

cp(x) = L a1.:cp(2x - k) , x E IRn , (2.1) 
kEZn 

where the mask a = { ak}kE;z-n is some fixed sequence which typically belongs at least 
to £1 ( ;zn ). To stress the dependence on a, we will sometimes say cp is a-refinable. For 
our particular purposes here we will always assume that cp has compact support and 
that a is finitely supported. 

It makes then sense to work with the following notion of (algebraic) linear inde-
pendence which will be the second important property we will require. The integer 
translates of cp are called algebraically linear independent if the mapping 

AH- L Akcp(·-k) (2.2) 
kEJZ'n 

is injective on the space of all complex-valued sequences .X defined on ;zn. Tensor 
products of cardinal B-splines or, more generally, ct:rtain cube splines are known to 
have this property (see e.g. (14]) . 

. It is also known (see e.g. [27]) that algebraic linear independence implies stability 
in the sense that 

(2.3) 
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where A,...., B means that there exist two positive constants c1, c2 such that c1A ~ B ~ 
c2A holds uniformly with respect to all parameters the quantities A, B may depend on. 
Here ll-Alli2 czn) = Ekezn l.Akl2 , and II · ll~(Rn) denotes the usual Lrnorm on IRn. 

Let (x, y) := EJ=1 x;'Y; denote the standard scalar product of x, y E a:n so that 
lxl := (x, x) 1l 2 is the Euclidean distance. Defining the Fourier transform off E L1(1Rn) 
by 

j(y) = j f(x)e-2?ri(x,y)dx 
Rn 

the stability of c.p is well-known to be equivalent to (cf. [27]) 

[cp~(w) := L l<P(w + k)l 2 > 0 for all w E (0, l]n. (2.4) 
kezn 

Here for 
(f,g) := j f(x)g(x)dx, 

Rn 
we define in general 

[!'g](w) := L }(w + k)g(w + k) = L (f,g(· - k))e27ri(w,k>, (2.5) 

which, in particular, is well-defined when f, g have compact support but will be so as 
well under weaker assumptions (see Theorem 3.1 in (27]). 

Now let 
(2.6) 

where the closure is taken with respect to the Lrnorm. When c.p is refinable one clearly 
has (c.p)i C (c.p)i+l. We wish to d~termine next appropriate updates which complement 
(c.p)i in (c.p)i+l. To this end, let E := {O, 1 }n denote the standard set of representers of 
.?Zn /27Zn and let 

Eo := E \ {O}. 
The following facts are special cases of results established e.g. in (27]. 

Theorem 2.1 Suppose c.p E L2(1Rn) is a stable refinable function of compact support 
with finitely supported mask a= a 0 • Then there exist finitely supported masks ae, e E 
E0 , such that the functions 

tPe( x) := I: aec.p(2x - e), e E Eo, (2.7) 
eezn 

satisfy the following properties: 

{i} (,,Pe(· - e),1/Je,(· - e')) = 0 for e,e' E E,e =/= e', e,e' E .?Zn, where we have set 
'I/Jo := c.p. 

(ii} The functions 1/Je(· - e), e E E0, e E .?Zn form an unconditional basis of the 
orthogonal complement of (c.p)0 in (c.p)1, i.e., 

(c.p)l = (c.p)o E9 (1/Je)o. 
eEEo 
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The functions 1/Je, e E E0 , are called pre-wavelets. It is clear that they have the same 
regularity as the generator cp and that, under the above circumstances, they are also 
compactly supported. Explicit constructions of pre-wavelets can be found in [9, 37). 
If in addition the translates 1/Je(. - e) are also orthonormal the tPe are called wavelets. 
Univariate compactly supported wavelets of arbitrary regularity are constructed in [18] 
(see also [8, 19]). 

It is often not necessary to deal with orthogonal decompositions. An alternative 
approach was developed in [10) which may be summarized for our purposes as follows. 
Suppose that in addition to a given a-refinahle function cp E L2(18!1) there exists 
another d-refinable function ( E L2(1Rn) such that 

(2.8) 

The issue is then to find additional masks ae, de, e E E0 , such that the functions 

(2.9) 

satisfy 
(2.10) 

where we have again set ¢0 = cp, (0 = (. We will refer to the 1/Je (and consequently to 
the (e), e E E0 , as biorthogonal wavelets. When dealing with biorthogonal wavelets we 
will always make the following 

assumption: All the masks ae, de, e E E, are finitely supported, cp, ( and hence 
1/Je, (e, e E E, are compactly supported and ( has as many continuous derivatives as 
cp. 

For univariate examples satisfying these assumptions see [10) and taking tensor 
products would, of course, preserve these properties. Let us record next some facts 
which will be important in the sequel. 

Proposition 2.1 Suppose cp E Cd(JRn) is a compactly supported refinable function 
with linearly independent integer translates and let 1/Je, e E E0 , be pre-wavelets or 
biorthogonal wavelets. Then, under the above assumptions, the fallowing facts hold. 

{i) The functions 2nil2¢e(2i · -e), e E E, e E ~n form a Riesz basis for L2 (1Rn), i.e., 
every f E L2(18!1) has an expansion {'I/Jo= cp) 

f = L L L c;,e,e(/)2nil2¢e(2; · -e), 
jEIE eEE eeJEn 

which converges strongly in L2 ( JRn) and 

llJlli2 (Rn)'"'"' L lci,e,el2, J E L2(1Rn). 
i,e,e 
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{ii) The following dth order moment conditions hold 

j x/31/Je(x)dx = O, e E Eo, f3 E JN.;, lfJI ~ d. 
R" 

Proof: For pre-wavelets (i) follows directly from Theorem 2.1 and orthogonality. For 
biorthogonal wavelets the claim is a consequence of the results in [15]. 

As for (ii), it is shown in [7] that when <p satisfies cg then there exists for every 
p E Ild( F ), the space of polynomials of degree at most d on F, a unique polynomial 
q E Ild( F) such that 

p(x) = L q(e)cp(x - e), x EE. (2.11) 
eezn 

Thus, for pre-wavelets the assertion follows immediately from (2.11) and orthogonality 
(ii) in Theorem 2.1. In case of biorthogonal wavelets, by our assumption (2.11) holds 
for <p replaced by ( so that the assertion follows from (2.10). D 

Note that the order d of moment conditions depends only on the degree of polyno-
mials for which (2.11) holds which, in turn, is known to agree with the order d of the 
Strang-Fix conditions: 

(8acp)(k) = 0, !al < d, k E 7£n \ {O} (2.12) 

(see e.g. [7]), and dth order differentiability is only sufficient but not necessary for 
(2.12) to hold. This suggests introducing the following class of generators <p which we 
will work with in the remainder of this paper. 

The function <p is said to satisfy cg'•d for some d', d E JN0 , d' ~ d, if <p satisfies the 
following requirements: 

• <p is refinable, has compact support and belongs to Cd' ( F). 

• The integer shifts of <p are algebraically linearly independent. 

• <p satisfies Strang-Fix conditions of order d. 

It is also known that foi any <p satisfying cg'·d there exists a constant c < oo and some 
p = p(cp) E (0, 1) such that 

(2.13) 

Here 8/3 := a.BJ1 • • • 88k and lf31 = {31 + · · · + f3n (cf. [13, 17]). 
axl n 

Finally, we mention that it is shown in [27] that many of the above properties still 
hold under much weaker assumptions on cp. In fact, for many purposes, it suffices to 
assume that r.p belongs to the space 

£2 := {f E L2(JRn) : L If(· - k)I E L2([0, l]n)}. 
kEZ" 
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It is clear that any function cp E L2 ( F) which has compact support or for which 
f lcp(x)l2dx decays exponentially, as lkl tends to infinity, belongs to £ 2 • 

k+(0,1]" 
We will now turn to the analogous periodic setting introduced in [17]. Identifying 

one-periodic functions, i.e., functions f satisfying 

f(x + k) = f(x), for all k E ;zn, 

with functions on then-dimensional torus 

the periodization operator 
[f](x) := l: f(x + k) (2.14) 

maps L2(F) into L 2(7n). Likewise we will identify for notational convenience the 
cosets [x] := x + 7Zn, x E F, with its representer x E [O, 1 ]n. For any function </> E £ 2 

we define now . i!!. . 
</>1 := 2 l [</>(23 • -k )] ' 

Thus setting for any two one-periodic functions u, v E L 2(7n) 

(u,v)0 := j u(x)v(x)dx, 
(0,1]" 

we note that for any g E £2, u E L2(7n) 

([g], u)o = (g, u) 

so that, for any f, g E £2 

([f], [g])o = (!, [g]) = ([f],g). 

Defining 
;zn,j := ;zn/(2; ;zn), 

one easily derives from these facts the following observation (cf. [17]). 

Remark 2.1 Let f,g E £ 2 satisfy 

(f,g(· - en= oo,e, e E ;zn. 

Then 
(fl,!lf)o = ok,1, k,l E ;znJ, j E INo. 

More generally, let TJ be any functional of compact support and define 

TJ~(v) := 2-ni/2 7J(v(2-i(· + k)n. 

If for some g E £ 2 

TJ(g(· +en= oo,e, e E ;zn, 
then one also has 

TJi(gf) = ok,1, k, l E ;zn,;, j E INo. 
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Hence the previous orthogonality relations, refinability and Remark 2.1 readily yield 
the following facts. 

Corollary 2.1 For pre-wavelets t/Je, e E E0 , one has 
. l 

( tP~,k' tPe',m)o = 0, j, l E INo, l -=J j, e, e' E Eo, k E ;zn,j, m E ;zn,l, 

while biorthogonal wavelets satisfy 
. I 

(t/J~,k' (e',m)o = dj,lde,e'dk,m 

for j, l E INo, e, e' EE, k E ;zn,j and m E ;zn,l. 

For a given refinable function r.p E .C2 we define now the spaces 

Vi= (r.p)i :=span {r.p{ : k E ;znJ}. 

Since by (2.1) and (2.15) 

r.pj = 2-n/2 """ a ,,J+l k L...J m-2k't'm 
mE~n 

we conclude 

(2.19) 

(2.20) 

(2.21) 

(2.22) 
One can also show [12] that the stability (2.3) of g E .C2 is preserved under periodization 
in the following sense 

(2.23) 

uniformly in j E JN. Moreover, one easily confirms now from corresponding results on 
the non-periodic case [27] that, under the above assumptions, 

LJ Vi = (r.p)g E9 (t/Je)i = L2(/n) (2.24) 
jENo jENo,eEEo 

holds for pre-wavelets and biorthogonal wavelets, which as before form Riesz bases for 
L2(/n). 

The decompositions based on pre-wavelets and biorthogonal wavelets may be viewed 
as special instances of the following concept which will be important for subsequent 
developments. Suppose Qi denotes a linear projector that maps for any l ~ j the space 
(r.p)& onto (r.p)i. It is clear that the spaces 

Q ·+1 wi == (Qi+i - Qj){r.p)f, 

give rise. to a direct sum decomposition 

To be a bit more specific about the form of the projectors Q; suppose that / satisfies 
cg',d and 'T/ is a fixed compactly supported linear functional in the dual of (1)0 such 
that 

(2.25) 
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Here r, denotes the Fourier transform of 77 in the distributional sense. As pointed out 
in [17] the coefficients ge in the trigonometric series 

1 = I: g: e211"i(e,w) 
[i'i/]( w) eeztn e 

(2.26) 

decay exponentially fast. Thus, the Fourier transform of the function 

</>o := I: gn(· - e) E ('Y)0 (2.27) 
eeztn 

is given by 
A i'(w) 

</>o(w) = [i'i/](w). (2.28) 

Hence <Po satisfies 
[~o7J](w) = 1, w ET', (2.29) 

and therefore, as one easily confirms, in view of Remark 2.1, 

11t(<P~,m) = Ok,m, km E 7Zn,j 
' ' (2.30) 

and 
Qiu:= I: 11t(u)<flo,k (2.31) 

keztn,; 
defines a projector onto yi := ('Y)~. Clearly, when 'Y = cp and 77(g) = (g, (), where (is 
a biorthogonal refinable function (2.8), one has </>o = cp and Qi takes the form 

Bju = I: (u, Cl)ocp{, (2.32) 
keztn,; 

while for 17(g) := (g, cp) and 'Y = cp the projector Qi becomes the orthogonal projection 
Pvi onto Vi := (cp)~ given by 

Pv;u = I: ( u, cp{)o<P{ . (2.33) 
keztn,; 

In this latter case <P is given by 

A cp(w) 
<P(w) = [l<Pl2](w)' (2.34) 

which, in view of the stability of cp, is well-defined. 
Likewise, we obtain for the differences 

(2.35) 
eEEo,keztn,; 

in· case of biorthogonal wavelets, while for pre-wavelets 

( Pv;+1 - Pv; )u = (2.36) 
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where (e is now given, in view of Theorem 2.1 and Remark 2.1, by 

(2.37) 

Of course, in the case of orthogonal projections the functions</>, (e, e E E0 , do not have 
in general compact support but decay exponentially fast. The following fact established 
in [12] holds for the general case. 

d' d Theorem 2.2 Let for Tf as above/ satisfy {2.25) and C 0 ' for some d', d E JN0 and 
let Q; be defined by {2.91). Then there exist exponentially fast decaying coefficients 
g(, q(, e E Eo, e E Ll", such that for 

<Pe == L gh(2 · -e), (2.38) 
eezn 

one has 
e e' E E k k' E 177"•; ' o, ' ~ ' (2.39) 

and 
(Q;+i - Q;)u = L L rfe,1:(u)</>!,1:· (2.40) 

eEEo J:ezn,; 

Thus the operators Q;+i - Q; are projectors as well and satisfy therefore 

(2.41) 

For s E JR, and any domain f! ~ JR," we denote by Hs(n) the usual LrSobolev 
space of order s relative to n with norm II · lls(f!). Whenever we will work on the 
particular domain 7" we will drop any reference to the domain. 

We will also make use of the following characterization of Sobolev spaces. 

Theorem 2.3 Let cp be a generator satisfying cf·d and let 1/J~.1: denote either pre-
wavelets or biorthogonal wavelets satisfying the above assumptions. For any function 
u E H 6 (T") n Hlsl(T") with js'I < d' + p one has a unique expansion of the form 

00 

u = L L L d~(u)l/J~,k + L si(u)cpi. 
l=O J:ezn,1 eE£o kezn,o 

Moreover, one has the norm equivalence 
1 

!lulls"' (f L L 2216 ldie(u)l2 + L lsi(u)l2) 
2 

l=O 1:ezn,1 eE£o J:ezn,o 
(2.42) 

For pre-wavelets and non-negative s the above result is well-known (see e.g. (33]). For 
positive s and pre-wavelets as well as biorthogonal wavelets this norm equivalence is a 
special case of Besov space characterizations given in (22, 13]). The case of biorthogonal 
wavelets ands= 0 is covered by Proposition 2.1. The cases < 0 follows by duality. 
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3 Periodic Pseudodifferential Operators and Gen-
eralized Petrov-Galerkin Methods 

We briefly recall the setting considered in [17] and introduce a class of periodic pseu-
dodifferential equations which will be studied throughout the remainder of this paper. 

Locally these operators can be described in terms of pseudodifferential operators on 
IRn (cf. [3, 30]). We recall the following definition from [26, 28]. A pseudodifferential 
operator A E wr (JR") is a linear operator of the form 

Au(x) = j (j e2wi{e,:i:-y)u(x,e)u(y)dy)cie , u E c;:(JRn), (3.1) 
R" R" 

where the symbol u( x' e) belongs to the symbol class sr (JR" x JR") containing all 
u(x, e) E C00(1Rn x JR") such that for each multi-indices a,{3 there exists some constant 
Ca,(J with 

(3.2) 
Viewing 7n as a compact manifold, the corresponding classes wr(Tn) of periodic pseu-
dodifferential operators are then defined via local partitions of unity. Alternatively, the 
elements of wr(Tn) may be represented in terms of Fourier series expansions, namely 

where 

u(x, D)u(x) = L e27ri{e,x>u(x, e)u(e) ' u E C00(P) ' 
ee~n 

u(e) = j e-27ri{€,:i:)u(x)dx , e E 7ln , 
'T" 

and u belongs to a certain symbol class of periodic functions which is described in [17] 
(see also [3, 30, 31]). 

Recall that a pseudodifferential operator A E wr(/n) maps 

(3.3) 
boundedly. 

Our objective is to solve the pseudodifferential equation 

Au=J (3.4) 

on 7n for u E H"(/n), where A E wr(/n) and J E H"-r(Tn). 
We will study a rather general class of numerical schemes for the solution of (3.4) 

based on a fixed compactly supported distribution 

(3.5) 

wheres' > 0 satisfies AVj C H" 1 (In), and where r C JR" is some fixed ball with center 
zero. We will always assume in the sequel that the spaces Vi of 'Ansatz-functions' are 
of the form 

yi = (rp)~ 
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where cp is a fixed function satisfying c~',d for some <I< d E JN0 • As before, we define 
for g E H 81 (JR") 

(3.6) 

The corresponding Petrov-Galerkin scheme is then given by 

(3.7) 

Specifically, the choice T/ = <5(· - w0 ), i.e., 

TJ(g) := g(Wo), (3.8) 

gives rise to the type of collocation schemes studied in [39] for n = 1 and in [35] for 
arbitrary spatial dimension and tensor product spline spaces, while 

TJ(g) = (g, cp) (3.9) 

corresponds to the standard Galerkin scheme. For further examples covered by this 
setting the reader is referred to [17]. 

Following [17] we rephrase these schemes as projection methods. To describe this, 
let TJ be given as above and choose an appropriate compactly supported function 'Y 
satisfying (2.25). We can then define the projectors Q; by (2.31), (2.26) and (2.27). It 
is clear that solving (3. 7) is equivalent to finding ui E Vi such that 

Q;Aui = Q;f. (3.10) 

We emphasize that for given T/ we are free to choose 'Y appropriately to satisfy (2.25). 
So 'Y could coincide with the generator cp of the Ansatz-functions but does not have 
to do so necessarily. For instance, when dealing with collocation 'Y could be a tensor 
product B-spline for which cardinal interpolation (2.25) is well-understood. However, 
in the following we will always assume that 'Y also satisfies cg',d and we will set 

yi := ('Y)~ = (</>)~, (3.11) 

where </> is given by (2.26) and (2.27). The reason is simply to limit the number of 
parameters involved and one could easily allow for different degrees of regularity as 
well. 

The scheme (3.7) is called (s, r)-stable (see Remark 4.3 in [17]) if 

(3.12) 

uniformly in j E JN. ( s, r )-stability is characterized in [17] by the ellipticity of the so 
called numerical symbol of the scheme (3.7) given by [u1',cp1]](w) (see Theorem 6.2 in 
[17]). 
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4 Some Basic Estimates 
In this section we derive a number of basic estimates which will make systematic use of 
the approximation properties of the projections Q; introduced in the previous section. 
For most of these properties we will refer to [17] but recall at this point the following 
direct and inverse estimates because they will be used more frequently in the sequel. 
We will continue denoting by p = p(cp) E {O, 1) the Holder exponent of the d'th order 
derivatives of cp (cf. (2.13)). 

Theorem 4.1 Let -d' - 1 < s < <! + p, -d' - p < t < d + 1 ands < t. Then the 
Jackson estimate 

{4.1) 

holds for all u E Ht('Tn), where c is independent of j and u. 
Moreover, when s ~ t < d' + p there exists a constant c such that for all ui E 

Vi, j E JN0 , the Bernstein estimate 

(4.2) 

is valid. 

Next, let 

O(w) = (01(w), ... , On(w)), 01(w) := e2triwi - 1, w E 7'1, (4.3) 

and observe that for every fixed a E (0, 1) there exist finite positive constants Ci, c2 

such that 
c1lwl ~ IO(w)I ~ c2lwl, w E [O,a]n. (4.4) 

For given exponentially decaying coefficients ce, e E ~n, let 

(4.5) 

It is not hard to show that there exists then some constant c and some o E (0, 1) such 
that for all j E IN 

141 < c o2'10(2-i k)I, k E ~n,;. ( 4.6) 

Moreover, suppose h(t) is any positive strictly increasing function on JR such that for 
all 0 < 0 < 1 there exists a constant c = c( o) with 

It is then clear from ( 4.6) and ( 4. 7) that there exists some constant c such that for <{ 
as above 

I I: cf h(2i1oc2-i(k - l))lt1I ~ c h(2;1oc2-;k)l)-1, k e ~n,;, j e JN. (4.8) 
lezn,i 

It is not hard to verify that h(t) := {1 + ltl),. satisfies (4.7) which gives 
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Lemma 4.1 Suppose the coefficients ce, e E ~n' decay exponentially fast and let T be 
any positive number. Then there exists a constant c < oo such that 

I 2: cf (1+2i1oc2-;(k - l))l)-'TI ~ c (1 + ~1oc2-;k)l)-_7 , k e ~n,;, j e JN. 
lezn.; 

It will be convenient to work with the Schwartz kernel representation of A E wr(T") 
(see [30]). A corresponding further prerequisite is the following lemma which, in princi-
ple, is already known (see [42] p.40). Since it plays an important role for our approach 
we will sketch a proof here, following the treatment in [11}. 

Lemma 4.2 The Schwartz kernel KA of A E wr(T") satisfies for x -:/= y, x, y E Tn, 
the estimate 

Proof: Since/" is a compact manifold every A E wr(/") may be represented via 
partitions of unity in terms of elements from wr(F) so that it is sufficient to consider 
operators A E wr(F) which are technically somewhat easier to work with. 

Note first that for an operator A E wr(F) with Schwartz kernel KA the quanti-
ties a:KA(x,y), a;KA(x,y) are Schwartz kernels of an operator A' (respectively the 
transpose of such an operator) in wr+lal(F). Denoting by ua E sr+lal(F x F) the 
symbol of A', we recall next that for x -:/= y, KA1(x, y) = K(x, x - y) is given by the 
oscillatory integral (see e.g. [28] for the precise definition) 

(4.10) 

Now let x E C[{'(F) be a cut-off function which is identically equal to one on {e E 
F : lel ~ 1} and vanishes outside {e E /Rn : lel < 2}. We set XR(e) = x(Re), choose 
R =Ix - YI, and write the oscillatory integral (4.10) as 

K(x, x - y) = Ki(x, x - y) + K2(x, x - y) , 

where 

Ki(x, y) - j e27ri(e.x-y}XR(e)ua(x, e)de 

K2(x, y) - j e27ri(e.x-y}(l - XR(e))ua(x, e)de. 

Of course, we wish to estimate K 1 and K 2 when R becomes small. Thus we will assume 
that R < Ro for some fixed constant Ro. The first integral may be estimated by 

IK1(x, x - Y)I I J e2~i(e,x-y}XR(e)ua(x, e)del ~ J (1+1ew+1a 1de 
lel<2R-1 

< cR-(n+r+lal) = clx - Yl-(n+r+laD, (4.11) 

provided that n + r + lal > 0. 
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In order to estimate the second kernel we note that 

Ll: e21ri(e,x} = (27ri)2.olxl2.o e21ri(e.x} , 

where Lle denotes the Laplacian with respect toe, and apply partial integration to the 
oscillatory integral K 2 • Thus we obtain for sufficiently large /3 

IK2(x,x -y)I - I j e21ri(e,x-y}{l - XR(e))ua(x,e)del 

< c{lx-yl)-2.01.j e21ri(e.:c-Y}Ll:[{l - XR)ua](x,e)del 

< clx - Yl-2.B j ler+lal-2.B de 
lel>R-1 

< clx - Yl-(n+r+lal) ' (4.12) 

where c = c(Ro). The assertion follows now from {4.4) D 
We remark that, for n + r + lal ::; 0, additional logarithmic terms appear in the 

estimate ( 4.9). 
In addition we need the following facts from [17] (cf. Lemma 2.1 in [17]). Under 

the above assumptions on the function I there exists some bounded domain n C F 
and a linear functional Fon L2 {JR:1) supported on n such that 

Ft ( ,/) tSk,1, k, l E ~n,;, 

IFl(v)I < c llvllo(n{), {4.13) 

where for any domain n ~ F we set n{ := 2-i(k + !1). Hence 

G;(v) := I: F1(v)-J 
ke7£n,; 

is a projector onto y;. 
The following notational convention will be convenient in the subsequent considera-

tions. Given a domain n with center of gravity y, say, we will denote by n,. a ~et of the 
type c(fl-y) + y where c is some constant which will always remain bounded indepen-
dently of any other parameters involved. Thus n,. represents an expanded version of !l. 
Since the expanding factors c will not matter we will denote any repeated expansion of 
f2 again by !l,. as long as the number of expansions remains uniformly bounded. Thus 
n,. may actually denote a different domain on each occurrence. However, under the 
above assumption, there will always exist a constant c such that diam n. < c diam n. 
Also we will set 

n{ := u{o!n : n{ n {supp/~) I- 0}, 
. where 0 := [O, l]n. 

· It is shown in [17] that when/ satisfies Cf·d and 0::; s < t::; d + 1, s < d' + p('Y), 
then 

(4.14) 
We will use these facts to derive the following estimates for the functionals TJi. 
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Lemma 4.3 For any ui E yi one has 

(4.15) 

where c is some constant independent of j E JN and ui E yi and r is the domain in 
(3.5). 

Proof: According to Lemma 5.2 in [17] one has for any s ~ s' and u E H"(/n) 

(4.16) 

Now let u = ui = Ekezn,; ck~ so that 

where 
r{,'Y := {m E mn,i : supp (-fm) n f{ -:f 0}. 

Thus the inverse estimate ( 4.2) yields 

whence we conclude that 

(4.17) 

On the other hand, by (4.13), 

so that the assertion follows upon summing over m E mn,j and using the stability of 
the 1{ D 

We are now in a position to prove the first estimate which will be used for our 
compression strategies. 

Theorem 4.2 Let T/~ k' e E E0 , be the functionals defined in Theorem 2.2, let <p satisfy 
cg'·d withs':::; d' + PC<p)-r and let A E wr(/n). Then there exists a positive constant 
c independent of j E JN, k, k' E ~n,j and e E E0 such that 
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Proof: Let ui := (Q;+i - Q;)(Ar.pim) E yi+i so that, by {2.40), rfe,k(Ar.pim) = rfe,k(ui). 
As in ( 4.5), let 

eJ ""' e -,;t_ qk := L.....t q2ie+k' e E .L:I(), 

ee.zn 

where the q{ are given in Theorem 2.2. One easily confirms that 

i { } 2n/2 ""' ""' . eJ+l j+l { } T/e,k V = L.....t L.....t qe1+2k'T/e1+2(k'+k) V • 
e'EE k'e.zn,; 

Thus Theorem 2.2 and Lemma 4.3 provide we obtain therefore 

j j e,j+I . - j+l l7Je,k(Acpm}I < c L L lqe'+2k'lll{Q;+i - Q;}{Acp'm)llo(I'e'+2(k'+k» (4.19} 
e'EE k'e.zn,; 

< c L ltn~il (ll(Q; - I)(Acpim)llo((f'{,+k)*) +II(! - Q;-1)(Acpim)llo((f'{,+k)*)) , 
k 1e.zn,; 

where ij_~~i := Le'EE lq:;~~~I· We will estimate in detail only the terms 
ll(Q; - J)(Acp~)llo((f'{,+k)*). The other ones can be treated in essentially the same 
way. To this end, let as before 

(f'{,,).,-y := {v E ~nJ: supp ('fv) n (f'{,,). -=J 0}, 

and define 
c{+k1 ,m1 := L llm1+11I, ( 4.20) 

ve(f'~+"').,.., 

where ge are the coefficients from (2.26). The same arguments as in the proof of Lemma 
5.5 in [17] yield now 

ll(Q; - I)(Acp~}llo({f'{+k,)*) < ll{G; - I)(Acpim)llo((f'{+k,)*) (4.21) 
+ C L <{'+k,m' (ll(G; - I)(Acp~)llo((f'~,).) + 2-a'jll(G; - l)(Acpim)lla1 ((f'~,).)) · 

m'e.zn,; 

Since the cardinality of {f'{+k' ).a remains bounded independently of k E ~n,j and 
j E JN, we infer from ( 4.t9) and ( 4.6) that there exists some constant c and some 
J E (0, 1) such that 

_; < c {'2i1ec2-i(k+k'-m'))I 
c-k+k' ,m' - 0 • (4.22) 

Now let us abbreviate for any function f 

S(f) := supp f, 

and suppose first that 
S( cp~) n (f'{). = 0. (4.23) 

In this case one has, in view of ( 4.14), for every t E [O, s'] 
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where lvli(n) = E1c:rl=l ll8c:rull5(!l) denotes the usual Sobolev semi-norm of order i. 
Note now that Lemma 4.2 yields for lal = d + 1 

118'; j KA(·, y)2nj/2cp(2;y - m)dyllo((f{,, ).) 
nn 

< eall J 2nj/2 IB(· - y)l-{n+r+d+l)dyllo((f'{,, ).) 
2-i(m+S(ip)) 

< ea2-nj IB(2-i(m - k"))l-(n+I+r+d), 

so that 

whenever ( 4.23) holds. If ( 4.23) is not satisfied we consider first the case r < 0 and use 
(4.14) to conclude that 

ll(G; - J)(Acp~)llt((f{,,).) < c 2i{t+r)llA~ll-r((f'{,,).) 
< C 2j(t+r)llA~ll-r (4.26) 
< C 2j(t+r)llcpimllo-
< C 2jr (1 + ~10(2-j(m - k"))l)-(n+r+d+I). (4.27) 

When r > 0 we define n{,,,.., = {m" E 7LnJ: (f'{,,). nsupp (-fm,,) =/:- 0} and observe that 

llG;(Acp~) llt((f'{,, ).) < I: IF!,,(Acpim)l ll-fm11llt 
m"enj ,,, ,-, 

< c 2tj I: llAcpimllo(n~,,) (4.28) 
m"enj m',-., 

< c 2tjllAcp~llo ~ c 2tjll~llr 

< C 2tj2jr ( l + ~ 10(2-j (m - k")) 1)-(n+r+d+l) , 

where we have also used in the last step the inverse estimate ( 4.2) and the fact that, 
since (4.23) is not satisfied, there exists some constant R such that 2il0(2-i(m-k"))I ~ 
R. Similarly one gets 

llAcp~llt((f'{,,).) < C llcp~llt+r ~ C ~{t+r)llcpimllo (4.29) 
< c 2ti2ri (1+2;10(2-;(m - k"))l)-(n+r+i+d). 

Thus summarizing ( 4.25), ( 4.26), ( 4.28), and ( 4.29), yields that fort E [O, s'] 
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holds in all the above cases for some constant c independent of j E IN and m, k" E ;zn,i. 
Thus substituting (4.30) in (4.21) and inserting this bound into (4.19), provides 

111~,k(Acp!i)I < c ~r E . ij::! { (1+2il0(2-i((k + k') - m))l)-(n+r+i+d\4.31) 
k 1e:.rzn,, 

+ E . cf:+k',m' (1+2il0(2-i(m- m'))l)-(n+r+i+d)}. 
m 1ezn,, 

A twofold application of Lemma 4.1 to (4.31) proves now the assertion. 0 

A similar result holds for the dual situation. 

Theorem 4.3 Let 1/J~ k denote either pre-wavelets or biorthogonal wavelets satisfying 
the assumptions listea' in Section 2. Then there exists a constant c such that 

(4.32) 

uniformly in j E !No and l, k E ;zn,j. 

Proof: Suppose first that 
dist (S( 1/J~.1 ), r{) > R2-i (4.33) 

for some constant R > 0. Then, using Taylor's expansion, the moment conditions in 
Proposition 2.1, and Lemma 5.2 in [17], we get 

- I J ( E (y - 2,-izr a;(rdKA(·, r(y)))) 2in/21/Je(2iy - l)dyj 
Rn lal==d+l a. 

< c (llvzllo(rt) + 2-isllvzlls(r{)), 

wheres:= min{w E /N0 : w > s'}, r(y) E 2-i(L + S('l/Je)) and 

Thus we infer from Lemma 4.2 that for I.Bl= s 

IB~vz(x)I < c J IY - 2-izld+llO(x - r(y))l-(n+r+s+d+i)l2nil2¢e(2iy - l)ldy 
Rn 

(4.34) 

Therefore 

llvzllo(r{) + 2-isllvdls(r{) 
< c 2ir ((1+2il0(2-i(k - l))l)-(n+r+d+1) + (1+2il0(2-i(k - l))l)-(n+r+d+i+s)) 

< c (1+2i1oc2-i(k - l))lt<n+r+d+i)' 
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which establishes our claim in the case ( 4.33). 
Now suppose ( 4.33) does not hold and assume first r < 0. Lemma 5.2 in [17] gives 

for any s 2:: s' 

lrd(A1/{1)l2 < c (llA1/{1ll~ + 2-2i•llAi/{1ll~) 

< c (llv{,11~ + 2-2;"ll1/J!,1ll~+r) 
< c 111/J!,, 11~, 

(4.35) 

where we have used ( 4.2) in the last step. When the 1/J! 1 are pre-wavelets we have 
1/J!,1 = ( Pv;+1 - Pv; )~,I so that the direct estimate ( 4.1) yields 

(4.36) 

When dealing with biorthogonal wavelets one obtains 1/J!,1 = (B;+i -B;)lfJ!,1, where the 
operators B; are defined by (2.32). Since the B; are uniformly bounded projectors on 
L2 (7n) one could either argue directly or invoke Theorem 5.2 in [17] to confirm that 
( 4.36) remains valid in this case as well. Thus 

(4.37) 

If r > 0 (4.37) follows directly from (4.35) and (4.2), whence the assertion follows. D 

We will proceed now listing a few consequences of the above estimates. 

Corollary 4.1 Suppose that</> E L2(F) is any function of compact support. Under 
the previous assumptions on the {pre-wavelets or biorlhogonal wavelets) 1/J!,1 one has 
for any A E wr(/n) 

k l E ;zn,; 
' ' (4.38) 

where the constant Cd is independent of j, l, k. 

Proof: Taking 77(g) := (g, </>) the claim follows from Theorem 4.3. D 

Corollary 4.2 Suppose</> has the form {2.34), where cp has compact support and has 
stable integer translates. Then, under the remaining assumptions of Corollary 4.1 the 
estimate {4.38} remains valid. 

Proof: The assertion follows from Corollary 4.1, Theorem 2.2 and Lemma 4.1. D 

Corollary 4.3 Let A E wr(Tn) and r + n + d + 1 > 0. Under the assumptions of 
Corollary ,f..1 one has 

l(A1/J~1 ,1' 1/J!,k)ol + l(AlfJ~.1' cpt)ol +I ( Acpf, t/J!,k)ol ~ c 2-1r ( 1 + 2; 10(2-; (k - l)) 1)-(n+r+d+i) , 
(4.39) 

where c is independent of e, e', k, l and j. 
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An estimate of the type { 4.39) can also be found in [4] for the case r = 0 and for 
Daubechies wavelets. 

Remark 4.1 The above reasoning reveals that the analysis is essentially based on two 
assumptions on the operators, namely local properties of the Schwartz kernels and 
boundedness properties of the pseudodifferential operators. Hence, for r = 0 the above 
results remain valid for the wider class of Calderon-Zygmund operators, which was 
already pointed out in [4]. 

We will make use of these prerequisites in subsequent sections to approximate the 
finite dimensional operators Q;APv; corresponding to the numerical scheme (3. 7) by 
an appropriate operator which has a sparse matrix representation relative to a suitable 
basis. These approximations will be based on the following decompositions of Q;APv;: 

; 
Q;APv; = 2: (Q1 - Q1-1)A(Pv1' - Py11-i) (4.40) 

l,11=0 

where Q _1 = Pv-1 = 0 and 
j 

Q;APy; = 2: (Q1APv1 - Q1-1APv1-1). (4.41) 
l=O 

Decomposition (4.40) corresponds to stiffness matrices relative to wavelet bases, while 
( 4.41) will be referred to as atomic decomposition. 

5 The Wavelet Representation 
In this section we will employ the decomposition (4.40) for approximating Q;AP;, 
where in the following P; := Pv;. However, in this case we confine the discussion to 
classical Petrov-Galerkin schemes, i.e., the functional T/ will be assumed to be a regular 
distribution represented by a function again denoted by T/ which, to avoid further 
technicalities, will be assumed to satisfy also c:',d. Moreover, throughout the first two 
parts of this section we will fix 

s = r/2. 
For simplicity we use here the same exponents d', d as for cp. Likewise T/~ k will denote 
pre-wavelets or biorthogonal wavelets satisfying the assumptions stated 'in Section 2. 
Under these assumptions on T/ we may choose 'Y = T/ (see Section 2) so that Q; becomes 
in this case the orthogonal projector onto the spaces yi := (TJ)i. We recall from (2.41) 
that under all these circumstances the corresponding projectors Q; satisfy 

Q11Q1 = Q11 for l' < l. {5.1) 
This fact will facilitate exploiting the estimates from the previous section for estimating 
now quantities of the type ( A,,P~,k' .,,~, ,k' )o for l f:. j. Using approriate versions of Schur's 
lemma these results will be used then to estimate the norms of the compressed matrices 
and their inverses as well as to relate these facts, by means of the norm equivalences 
from the end of Section 2, to the stability concept developed in [17]. This, in turn, will 
allow us to establish error bounds for a fixed required accuracy as well as asymptotic 
error bounds suggested by the convergence rates derived in [17]. 
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5.1 Estimates for Different Levels 
For notational convience, we introduce the following short hand index notation: 

,Ji:= {J: I= (l,e,k),k E ~n·1 ,e E Eo}, l E Mo, 

and 

Setting 

we abbreviate at times 

:l-1 := {(-1, O, O)} , 

J 
:Ji:= u ,Ji. 

l=-1 

III := 2-1 whenever I E ,Ji, 

{ t/J!,,., I= (l, e, k), l E Mo, tPI = rpg, I= {-1, O, 0). 

Thus the stiffness matrix relative to the above wavelet type bases has the form 

(5.2) 

(5.3) 

and will be referred to as wavelet representation. For the special case that the ,,P 1 are 
orthonormal wavelets it is called standard representation in [4]. 

Our first step is to precondition the matrix Ai which, on account of T-heorem 2.3, 
requires for s = r /2 only the block diagonal scaling 

to guarantee, as will be detailed later in Corollary 5.3, that the matrix 

Bi:= (b1,J)I,Je.1; 

(5.4) 

has uniformly bounded spectral condition numbers, provided the Petrov-Galerkin scheme 
is stable (cf. [17]). 

In addition to the estimates in Theorem 4.2 and Theorem 4.3 we have to consider 
now also entries of the form b1,J where I, J stem from different scales. 

Lemma 5.1 Let 2(d' + p) > r, n + d + 1 + r > 0 and that for some positive constant 
R 

(5.5) 
Then there exists a constant c depending only on R, r, n, d such that the coefficients of 
the matrices Bi, j E M, defined by (5.,f} satisfy · 

2-ll-l'IC !tl!.+d+i) 
lbJ,II = l(2-'~A1/J1,2-Z'~77J)ol :5 c {1+2min{l,l'}I0(2-'k"-2-''k')l)n+d+Hr ' (5.6) 

uniformly in I E .Ji, J E ,J,1, and k E ~n,l, k' E ~n,I'. 
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Proof : The case l = l' has already been established in Theorem 4.2. Therefore 
suppose first that l' < l. We expand the function Q1(2-~r A'ljJ~ k) as 

' 

91,k := Q1(2-~r At/J~,k) = l:: c(m)</>!n, 
mE.z'l'n,I 

(see 2.31) where for fixed I= (l, e, k) 

c(m) = 2-~r '7!n(AtfJ1), 

and </> is given by (2.28) or (??). 
Now Theorem 4.3 yields the estimate 

(5.7) 

(5.8) 

lc(m)I < c 21f(l + 21I0(2-1(k - m))l)-n-d-t-r for k, m E .7ln,I . (5.9) 

In order to estimate (2.38) we recall that </>~ decays exponentially and is continuous. 
Thus combining Lemma 4.1 with (5.9) yields 

Next note that, in view of (5.1), 

Since 
r1J(v) = r1J((Q1'+1 - Q11)v), 

we obtain therefore 

so that -r(l+11) -Ir -11r -11r 
12 2 ' ru(At/JI)I = 1(2 2 At/J1,2-2 77J)ol = 12-2 7JJ(91,k)I. (5.11) 

Now suppose l' <land recall that, by (2.38), 

TJJ= e',1'+1 1'+1 
qv-2k' T/v ' 

where q~',l'+I = LµEZ'l'" q~~2''+iµ· Replacing for simplicity l' + 1 by l', we estimate first 
12-I'r/277~ (91,k)I. To this end, note that, on account of the continuity of 0, the fact that 
17 has compact support, (5.5), and the estimate (5.10), we may conclude that 

12-;'r 71~(91,k)I < c 2,.<'-;''>2n~(l + 21I0(2-1'v -2-1k)l)-n-r-d-l j l7J~(x)ldx 
Tn 
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The assertion follows then from Lemma 4.1. When l < l', we replace T/e by tPe and A 
by A* and repeat the above reasoning. D 

As a second step, we extract constants which, due to the nature of the wavelet type 
basis, simply means to replace all those entries by zero which contain a scalar product 
with translates of a scaling function on the coarsest grid. The corresponding matrix is 
therefore 

; • { b1,11, if I, J rj. :1-i, 
T := (t1,Jh,Je.:ri with t1,J = 

0, if otherwise. 
(5.13) 

On account of the compact support of the scaling functions, the subtracted matrix has 
0( N), N = 2;n, nonzero coefficients. The resulting matrix is the stiffness matrix of 
the operator 

An =(I - Qo)A(I - Po). 
Hence the operator AU and also its Lr adjoint annihilate the space V 0 • Furthermore, 
the matrices T; and B; differ only in 0(2;n) entries. In particular, periodization implies 
that yo consists of constant functions, so that 

(5.14) 

This fact will allow us to establish estimates of the above type without requiring con-
dition (5.5). 

Lemma 5.2 Suppose that d' + p, d > r /2, d + 1 + r /2 > 0, n + d + r + 1 > 0 and 
T/ E cg',d. Then there exist constants c and o E (0, 1] such that the coefficients of the 
matrices T;, j E JN, defined by (5.13} and (5.4) satisfy the estimate 

1 r r 2-ll-l'I( ~+c5) 
ltr,JI = 12-l 2T/J(2-l2AUt/Jr)I ~ c (1+2min{l,l'}l0(2-ik - 2-l'k')l)n+d+l+r (5.15) 

uniformly in I E Ji, J E :ft,, and k E 7Zn,l, k' E 7Zn,l'. 
Proof: In view of the definition of AP and (5.13), the estimates in the Theorems 4.2 
and 4.3 remain trivially valid when A is replaced by AU. Since the assertion has been 
already confirmed for any o E (0, d + 1 + r/2] in Lemma 5.1 when (5.5) holds, we may 
assume here that 

(5.16) 

Since, by assumption, 1J and cp have the same regularity d it i~ sufficient to consider 
here only the case l' < l since the proof of the opposite case can be carried out by the 
same arguments replacing 1/ by cp. 

We consider first the case r > 0. We will begin collecting a few preliminary facts. 
It will be convenient to consider the nonperiodic versions of the projectors Qj, defined 
by 

Q;v .- L: 11(v(2-;(· + e)))ef>o(2; · -e) 
ee~n 

L: (v, 2nH211(2; · -e))2ni/2<Po(2; · -e), j E 7Z, (5.17) 
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where as before, </Jo and Q; are given by (2.27) and (2.31), respectively. Note that, due 
to the exponential decay of </Jo, Q; is well defined on the space of all polynomials as 
well as on L2(7n). Now recall that by (2.16) 

7fi(v) = 2-njf211(v(2-i(· + k))) = (v, 11t)o = (v, 2nj/2TJ(2; · -k)), 

for v E Hto (Tn ). One readily infers from these observations that 

Q;v = Q;v, v E W0 (/"'). (5.18) 

We have to estimate now for I= (e,l,k), J = (e',l',k'), l' < l the quantities 

(A"ef.i1,TJJ)o - rJJ(A11f.i1) = T/J((Q1'+i - Q11)A"ef.i1) 
= ((Q11+1 - Q11)A"ef.i1,TJJ)o = ((Q11+i - Q11)Q1A"1/.ir,TJJ)o, 

where we have used (5.1) in the last step. Since (I - P0)1/.i1 = 'I/Jr and, by (5.1), 
(I - Qo)*(Ql'+l - Q11)* = Q;,+1 - Q;,, we conclude from (5.18) that 

(A"ef.i1, T/J )o = ( Q1Aef.i1, ( Q1'+i - Q11 )*T/J )o = (91,k, ( Ql'+l - Q11 )*T/J )o, (5.19) 

where 
91,k := Q1Aef.i1 = L c1(m)<f>~,m' (5.20) 

mezn,l 

I.e., 

Recalling that 
<Po= :L gecp(· - e), 

eezn 

straightforward calculations yield 

</J~,m = 2nl/2 L <f>o(21(· + ,B) - m) = L g~cp~+µ' (5.21) 
pezn µezn,1 

where 

Thus 

L L CJ(m)g~('P~+µ' (Q11+i - Q11)*TJJ)o. 
mezn,I µezn,I 

We consider first an individual summand and use (5.18) and (2.11) to conclude that 

l 1/2 I - -('Pm+µi (Ql'+l - Q11)*TJJ)o - 2n (cp(2 · -(m + µ)), (Ql'H - Q11)*TJJ) (5.23) 
1/2 l - -- 2n (cp(2 · -(m + µ)), (Ql'H - Q11)*(TJJ + p)), 
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where p is any polynomial of degree at most d. Specifically, we choose p to be the best 
polynomial approximation of T/J in some neighborhood of 2-1(m + µ) of diameter 2-1', 

say, and set 
HJ,m+µ. := T/J + p. 

We will estimate the right hand side of (5.23) by terms of type 

where 

(<p(21 • -(m + µ)), Qi1HJ,m+µ.) (5.24) 

I: (HJ,m+µ., 2nl'/2¢0(211 · -v)) (<p(21 • -(m + µ)), 2nl'/2TJ(2 11 • -v)), 
111 ven..:.+,. 

n!;!~µ. := {v E ytn : supp(TJ(211 · -v)) n supp(<p(21 · -(m + µ)) -:/= 0}. 

Clearly, when l' < l one has 
lf ( ) #f2:n+µ. ~ c, 5.25 

where c is independent of l, l', m and µ. Hence the quantity in (5.23) can be bounded 
as follows 

l - -l('Pm+µ.' (Q1 1+i - Ql')*TJJ)ol (5.26) 
< c 2nI/2 m~(;' l(HJ,m+µ., 2nl'/2¢0(2''. -v))l l(<p(21. -(m + µ)), 2nl'/2TJ(21'. -v))I. 

ven.:.+,. 
Next note that 

l2nl'/2 j <p(21x - (m + µ))TJ(21' x - v)dxl ~ c 2nl'/22-nl, (5.27) 
R" 

while 

(5.28) 

Noting that 

l(HJ,m+µ., 2n1'/2<p(211_ · -e))I ~ c 2n1'/22-n1'11HJ,m+µ.lloo(supp(<p(211 · -e))), (5.29) 

recalling from (2.38) that 

where T/ has compact support, and that T/J = T/~:. 1,, classical Whitney type estimates 
for local polynomial approximation yield 

(5.30) 

whenever 12-1' e- 2-1(m +µ)I ~ c 2-1', while otherwise the polynomial growth of P can 
be bounded, in view of the normalization of T/J, by 
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Thus we infer from (5.30) and (5.31) the bound 

llHJ,m+µlloo(supp(cp(211 · -e))) < c 2ru'/2 lqe~k'l(l + 12''-'(m + µ) - el)d, (5.32) 

which holds for all e. Now we conclude from (5.28), (5.29), and (5.32) that 

l(HJ,m+µ, 2nI'/2<1>o(21'. -v))I ~ c L l9e-vllqt-k'l(I + 121'-1(m + µ) - end, (5.33) 
eezn 

so that (5.26), (5.27) and (5.33) provide 

l - -l('Pm+µ,(Q11+i -Ql')*17J)ol (5.34) 
< c 2n(l'-l)/2 m~;,c L l9e-vqe~k'l(I + 121'-'(m + µ) - end, 

ven,;.+µ eezn 

and therefore, on account of (5.22) and (5.34), 

l(g1,k, (Q11+i - Q11 )*17J)ol (5.35) 
~ c 2n(l'-l)/2 L L ICJ(m)g~I mf?f L l9e-vqe~k,j(I + 12''-'(m + µ) - el)d. 

mezn,I µezn,I vEfl,;.+µ eezn 

Recalling that 
v En~~µ iff Iv - 21'-1(m +µ)I ~ c, (5.36) 

for some constant c, the right hand side of (5.35) can be bounded by 

c 2<1'-l)n/2 L lcr(m)g~I mf?f L l9e-vqe~kil(l +Iv - el)d. 
m,µEZn,I vEfl,;.+µ eezn 

Since the coefficients ge, qe' decay exponentially fast a nonperiodic counterpart of 
Lemma 4.1 and (5.25) yield a bound of the type 

c 2(l'-l)n/2 L lcr(m)g~I mf?f ( e-alv-k'l(l + jv - k'l)d) 
m,µE./Zn,I vEfl,;.+µ 

where a is some positive real number. Applying Lemma 4.1 and using (5.36) again, we 
can estimate the latter expression by 

c 2(1'-l)n/2 L lcr(m)le-a'l2''-'m-k'l(l + 12''-lm - k'l)d. 
mezn,I 

Since, by assumption, lk' -21'-1kl ~ c, and estimating the coefficients cr(m) in analogy 
to (5.9), we obtain the bound 

c 2(1'-l)n/2 L 2r'{I+lk-ml)-n-l-d-r2d(l'-l)(l+lm-kl)de-a'l21'-1m-k'I ~ c 2(l'-l)(~+d)2rl, 
mE.IZ" 

where c is independent of l', l. Thus, in summary, we arrive at the estimate 

(5.37) 
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which, in view of Lemma 5.1, confirms the claim ford> r/2;::: 0 with o := d - ~­
Suppose now that r < 0 and that (5.16) holds. Similarly as before let 

-Ir U l ""' l 91,k = 2"TQ1A tPe,k = Li c(m)</>m, 
mezn,l 

i.e., c(m) = 2-~r (A"tfar, 11!n)o. Since I:1cezn,1 77k is constant, due to the refinability of 'f/, 
and since (AD)*l = 0 we conclude that 

L c(m) = O, (5.38) 
mezn,I 

and 
j 91,1c(x)dx = 0. (5.39) 

T" 
Recalling that T/e is Holder continuous with some Holder coefficient p > 0 and using 
(5.39), (5.10), we obtain 

2-r~I j g1,1c(x)ry!:,k,(x)dxl 
7" 

< c 2-r~I j 91,1c(x)(11!:,k,(x) -11!:,1c,(2-1k))dxl 
T" 

< C 2 n-r f 21r(21 I0(2-1k - x)l)P(l + 21IO(x - 2-1k)l)-n-r-d-ldx ( ) l 1-'-l J I 

T" 

< C 2(n-r)4=1 J 21rl21'-lk - 211xlP(l + l21x - kl)-n-r-d-ldx 
R" 

< C 2-(l-l')(p+";r) 
' (5.40) 

where c does not depend on l, l', k, k'. By the same reasoning as used above at the 
beginning of the proof of Lemma 5.1, we establish the assertion in the case r < 0 for 
o := p- ~- This completes the proof. D 

For the proof of the next result we need a version of the well-known Schur lemma 
(cf. [34]). 

Lemma 5.3 Let A= (aiikieN be an infinite matrix and 1(i) > 0, i E JN. If for some 
positive constant c one has 

and 

L laij h( i) ~ c 1(j) for all j E IN 
iEN 

L laijh(j) ~ c 1(i) for all i E IN , 
jEN 

(5.41) 

(5.42) 

then the operator A : l2(JN) ---+ l2(IN) is bounded and has operator norm less than or 
equal to c. 
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We are now ready for the first step towards compressing the matrix Bi. 

Lemma 5.4 Let d, d' + p > r/2, n + d + r + 1 > 0 and d + 1 + r/2 > 0. Furthermore, 
let B~ be defined as follows 

where 

otherwise, 

'R1(t:1) .- {(I, J) E :Ji x :Ji: I= (l, e, k), J = (l', e', k'), 
l,l'?. o, 2min{1,1'}I0(2-'k-2-''k')I?. t:11}. 

Then there exists a positive constant c such that 

holds uniformly in j E JN0 • 

(5.43) 

(5.44) 

(5.45) 

Proof: We wish to apply Lemma 5.3 with 'Y(I) = 2-'; and ar,J := br,J - bl,J· Our 
concern is to estimate 

(5.46) 

where M := min{l, l'}. Let us rewrite this expression as 

Assume first that l' ?. l. According to Lemma 5.1 and (4.4), we may estimate the 
summands fork, k' E 2Zn, 2-1k-2-1' k' E [-1/2, +1/2]n to conclude that :E+ is bounded 
by 

Moreover, we get 

" 2-n(l'-l)( 1 r+d+Hr 
L,, 1 + lk - k 121-1' I {k1ezn:2112-1' k1-2-1 kl~t:1 1 } 

< c j (1 + lxl)-n-d-1-r dx 
{lxl>t:11} 

< c min {1, t:f+Hr} . 
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Inserting (5.48) into ( 5.47), we arrive at 

E+ ~ c min {1, t:f+l+r} E 2-1-?2-ll-l'l(d+i+r/2) ~ c 2-l~ min {1, t:f+l+r} . (5.49) 
{l1:l 1 ~l} 

When l' < l, we set D = l - l' and proceed as before estimating first the interior 
sum in E_. Noting that 

we estimate 

by 

E (1+12-Dk - k'l)-n-d-1-r 
{k1:12-Dk-k1 l~cl 1 } 

< C J (l + 12-Dk - xl)-n-d-1-r dx 
{12-D k-:cl~cl 1 } 

< c min {1 t:d+l+r} 
' 1 ' 

(5.50) 

(5.51) 

min{l,t:f+l+r} E 2-l'i2-ll-l'ln+2(d;1)+r < 
{l':l'$l} 

C min {1, t:f+l+r}2-l~ E 2-D(d+I+r) 
D~O 

< C min{l t:d+l+r}2-1i 
' 1 ' 

(5.52) 

which completes the proof. D 

To examine the number of remaining nonzero entries in B~ note that the matrices 
Ai, Bi, Ti have an obvious block structure induced by the different levels -1 ~ l < j. 
By the same arguments as detailed in Section 5.4 below one can show that inside each 
block, i.e., for fixed l, l', after the compression described by Lemma 5.4 there remain 
at least 0( N), N = 2in, nonzero entries. Adding over j2 = (log2 N)2 different blocks, 
we end up with at most O(N(log2 N)2 ) nonzero coefficients. 

Next we want to improve upon this compression in that we will get rid of the 
logarithmic terms. 

Theorem 5.1 Suppose d, d' + p > r /2 , d + 1 + r /2 > 0, n + d + r + 1 > 0 and let 77 
satisfy C~' ,d. Let T! = ( t[,J )J,Je:Ti be defined by 

where 

t[,J = { 0 
t1,J if otherwise, 

{(I;J) E .:Ji x .:Ji: I= (l,e,k),J = (l',e',k'), ll-l'I > E21}. 

Then there exist positive constants c, o such that for all j E JN0 and E1, E2 ~ 0 

llTi -T:llc(l2(~n.i)) ~ c (min{l, Ef+l+r} + 2-5/c2). 
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Letting t:1 , t:2 tend to infinity, we readily conclude 

Corollary 5.1 Under the assumptions of Theorem 5.1 the operators Ti : f2 (~n,i) --+ 
f2 ( ~n,i) are uniformly bounded. 

Proof: Since, in contrast to Lemma 5.4, our truncation now effects also levels which 
are far apart from each other we have to estimate in addition the sum 

(5.55) 

Restricting the summation in (5.49) and (5.52) to D ~ t:21 and letting t:1 tend to infin-
ity, yields the bound c 2-ln/22-6/f'J, where J is any positive number less than or equal 
to d + 1 + r /2. On account of Lemma 5.4, this proves the assertion. D 

It should be mentioned that similar arguments have been used by Y. Meyer for his 
wavelet proof of the Tl theorem (see [34]). 

Throughout the remainder of this section we will assume that the hypotheses of 
Theorem 5.1 are satisfied. 

Obviously, the compressed matrices T~ have 0( N), N = 2in, nonzero entries. Thus, 
in principle, Theorem 5.1 provides a criterion for deciding beforehand which entries of 
the stiffness matrix Bi must be computed in order to guarantee a required accuracy 
without ever computing the full matrix. 

Note that the matrix which is relevant for computations has the form 

f ·- { t[,J ; I, J ¢ .J_i, 
bl,J .-

b1,J ; I, J E .1-1· 
(5.56) 

In order to relate the above discrete estimates to our stability concept we will make 
frequent use of the following simple facts. For ui = ( u{)IE..7i let 

ui := L u{'l/JJ E Vi. 
1E..7i 

Then any matrix Ci on f2 (~n,i) induces an operator Ci by 

Ciui := L (Ci1i)J<f>1 
lE..7i 

(5.57) 

where for I= (j, e, k) we set <P1 := <P!,k (cf. (2.40), (2.38)). On account of the stability 
of the wavelet basis we have 

(5.58) 

uniformly in j E JN0 • Moreover, it is convenient to introduce 

(5.59) 
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and let Di be the operator on Vi induced by Ci as in (5.58). Then we infer from 
Theorem 2.3 that 

ll{Dj)-1uilk1(2Z".i)"' llDj1uillo"' llujll~· 
Utilizing Theorem 2.3 again yields also 

z: 11n(ciu;)il2 

Ie.:Ji 

II (Di Ci Di)( (Di)-1ui) 11:2(2Z"·i). 

Thus combining (5.60) and (5.61) we conclude that 

llCill.c(Hi(Tn),H-f(T"))"' llDiCiDill.c(l2(2Z"·i))"' llD;C;D;ll.c(L2(Tn))· 

Specifically, we may write in these terms 

Bi= DiAiDi, 

(5.60) 

(5.61) 

(5.62) 

(5.63) 

where Ai is the stiffness matrix (5.3) relative to the wavelet type basis and Bi was 
defined in (5.4). Of course, the induced operator A; is also given by 

A;= Q;AP;. 

Similarly, the compression of Ai is given, for B~ defined in (5.56), by 

A~ := (Di)-1B~(Di)-1 , 

which, in turn, induces the operator Aj via (5.57). 
Now recall from (3.12) that the scheme (3. 7) is called ( s, r )-stable if 

llA;uilla-r ~ C lluill,, 

for some constant c independent of j [17]. 
As an immediate consequence of (5.62) and (5.63) we may state now 

Corollary 5.2 The scheme {3.1) is (r/2, r)-stable if and only if 

1l(Bit1 1l.cct2 (2Zn,i)) = 0(1), j-+ oo. 

(5.64) 

(5.65) 

(5.66) 

Thus combining Theorem 5.1 for sufficiently small € with a simple perturbation 
argument based on Neumann series leads to the following conclusion. 

Corollary 5.3 Suppose the scheme (3. 7) is ( r /2, r )-stable. Then there exists some 
to > 0 such that for all t $ to 

1l(B~)-1 1l.cct2 (2Z"·;)) = 0(1), j-+ oo, 

with a constant depending only on t 0 • Thus also the compressed matrices B~ have uni-
formly bounded condition numbers. In particular, the compressed schemes are (r/2, r)-
stable as well. 

The above observations also ensure that the compressed schemes can be efficiently 
treated by means of conjugate gradient like methods. 
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5.2 Error Estimates for Fixed Prescribed Accuracy 
We will now apply the above results to estimating the accuracy of the solutions to the 
compressed schemes relative to the solutions to {3.7). 

Let fj = rJI(f) and fi = (fJhe:1;. By Corollary 5.3 we know that the system of 
equations 

A~u~ = fi (5.67) 

has a unique solution u! = { u~ 1 he:1; provided that t < t 1 for some sufficiently small 
t 1 > o.· The corresponding app~oximate solution in Vi has therefore the form 

u~ = L u~,11/J1 · 
IE:!; 

Of course, as said before, the solution ui of (3. 7) reads 

ui = I: u{1/;1 • 
IE:!; 

(5.68) 

By construction, the compressed matrices A~ have only 0(2ni) nonzero entries where 
the constant depends on t but not on j E JN. We are now in a position to compare 
the solution to the compressed schemes (5.67) to those of the exact scheme (3. 7). 

Theorem 5.2 Suppose {3.1} is (~, r)-stab/e. Then there exists some to > O, to ~ ti 
and a function q( t) which tends to zero as t tends to zero such that for every t > 0, 
t < to and for every j E !No 

where u* is the exact solution of {3.4). 

Proof : We infer from (5.62), (5.63), and Theorem 5.1 that 

ll(Aj-Ai)vill-;r < C llBi -B~ll.c(l:z(~nJ))llvjllf 
< c q( t) II vi II f ' vi E Vi' 

(5.69) 

(5.70) 

where q( t) is given on the right hand side of (5.54). Let us further introduce the 
operator 

CJ= Aj1(Ai - Aj) . 
In view of (5.70) and {~,r)-stability, we obtain 

llCJvillf < c ll(Ai -Aj)vill-;r 

< c q( t) II vi II f .. 

(5.71) 

(5. 72) 

For sufficiently small to> 0, to ~ ti and t < to the operator CJ therefore becomes a 
contraction. Since u~ E Vi is easily seen to satisfy the relation 

(I - CJ)u~ = ui , 
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it can be expressed by a Neumann series 

u~ = 'E(Cf)'ui, 
l~O 

provided that 0 < f < fo. Therefore we get 

00 

llu~ - u;llt = ll(CJ 'E(CJ)')uill!r 
l=O 

00 

< c q(t)ll 'E Cju;llf 
l=O 

< c q(t)llu;llf . 

Finally, ( ~, r )-stability ensures the uniform bound II ui 11 f ~ ell u *II~. D 

In view of the estimates for llui - u*ll., established in [17] one can now also estimate 
the deviation of u~ from the exact solution u* of the original equation. 

5.3 Asymptotic Error Bounds 
The limited precision of the computer gives rise to fixed accuracy requirements as 
considered above. On the other hand, such error tolerances should be balanced with 
regard to the convergence behavior of the solutions of the exact discrete problem (3. 7), 
i.e., the error between Bi and B~ should be of the same order as the convergence rate 
of the exact solutions ui of (3.7). We are aware that the following results are at that 
stage still of primarily theoretical nature. But they should indicate the potential of 
multiscale techniques in the present context. 

We will adhere to the above notation as well as to the various assumptions made 
before. In fact, for ui = (uJ)Je:Ji and u~ = UJ, we put as before ui = LJUJ'IPJ· We 
may then rewrite the operator 

Bjui = :L (B~ui)r</>1 , (5.73) 
IE:Ji 

and recall that multiplying the coefficients of B~ by IJlr/2IJlr/2 gives rise to its unpre-
conditioned counterpart 

Ajui = L (IIllJl)rl2(B~)I,J(ui)J¥iI (5.74) 
I,Je:Ji 

corresponding to (5.65). 
The next Lemma identifies the type of estimates needed to establish convergence 

·rates. 

Lemma 5.5 Lets< t, -d' -p + ~ < t ~ d + 1 and -d-1 + i < s < d' + p, where p 
denotes here the smallest of the Holder exponents of cp and 'Y and where -d - 1 + i is 
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the lower bound for the Sobolev scale in which one has quasi-optimal convergence for 
the Petrov-Galerkin scheme, see {17}. If Aj is (s, r)-stable, i.e., 

llAj1.iilla-r ;?: cllujlla for all 1i E Vi 

and if additionally 
ll(A; -Aj)P;ulla-r < C 2j(a-t)llullt , 

then the solution u~ of the equation 

satisfies the error estimate 

where u* denotes the exact solution of Au* = f. 

Proof: Since Aj is stable, we estimate in a standard fashion 

llu* - u!lla < llu* - P;u*ll., + cllAj(P;u* - u~)lla-r 
< llu* - P;u*ll., + c(llQ;f - flla-r + llAjP;u* - Au*lla-r) 

(5.75) 

(5. 76) 

< llu* - P;u*ll., + (5. 77) 
+ c(llQ;f - flla-r + llA;u* - Au*lla-r + llAjP;u* - Aju*lla-r) . 

The first three terms in (5. 78), except the last one, have been already estimated in [17] 
(see (6.35) - {6.38) in the proof of Theorem 6.3). It is shown there that they yield the 
desired optimal order of convergence. Condition (5.75) implies the same order for the 
remaining term whence the assertion follows. D 

As mentioned before the stiffness matrix in wavelet representation has an obvious 
block structure. It splits into blocks B 1•1' = (b1,J )IIl=l,IJl=l'· Each block gives rise to a 
block-operator 

B1,11ui(x) = L b1,JUJ</>1. (5.78) 
IIl=l,IJl=l' 

In order to establish asymptotic estimates we will again have to modify previous types 
of compression so as to ensure that accuracy improves with decreasing meshsize. Our 
next concern is then to estimate the effect of such a modified compression in each of 
the block matrices, respectively in the block operators {5.78). 

Lemma 5.6 Let r > 0, t :=:; d + 1. Set 

and 

M= t+r/2 
d+l+fr 

if M = 1, 

if O<M<l 
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as well as 

'RE .- {(I, J) E .:Ji x .:Ji : I= (l, e, k), J. (l', e', k'), 
2min{l,l'}liJ(2-lk-2-l'k')I ~ 2M(;-max{l,l'})t:ll} • 

Let T~ = (t[,J)I,Je:Ti be defined by 

E -{ 0 t1,J-
t1,J 

if (I, J) E ~, 

otherwise , 

(5.81) 

(5.82) 

Furthermore, let the operators T{1, be defined in analogy to (5.18} by (5.51} relative to 
the matrix Ti. Then for 0 < J <. min{ d + 1 - t, d + 1 + ~ - s} and 0 < s < d + 1 + ~ 
there exists a constant c independent of l, l' and j such that 

2 (1'-l).slll'flf II < C 2(1'-j)(t+r/2)2-11-1'15 cd+l+r 
.1. 1,11 .C(L.2(Tn)) - '-1 • (5.83) 

Proof: Let J := d + 1 - t. In view of (5.58), the norms of the operators 

2(l'-l).s2-l'(t+r/2)T,E _ 2(l1-l)s2-l'(d+t+r/2-5)(Q Q )T,f (R p, ) l,l' - l - l-1 l,l' l' - l'-1 (5.84) 

in L 2 ('Tn) can be bounded by estimating the norm of the corresponding matrices in 
l2 (~n,I), which, in turn, will be accomplished by following the lines of Lemma 5.4. 

Let us first assume that l' ~ l and set D = ll - l'I = l - l'. Assume first J > 0, i.e., 
M < 1. Upon applying Lemma 5.1 we obtain 

~ 2-l~n 2-l'(d+l+r/2-5)2(l'-l).s lt1,JI 

{k'e~n,I' :2''IB(2-11c-2-I' k')l~f1l 2M(j-I)} 

< C ~ 2-ln/22-l(d+t+r/2-5)2(l'-l)5(i + 12-Dk _ k'l)-n-d-1-r 

{k':12-Dk-k'l~(2M(l-i)q)-l} 

< c 2-11-1'15 J 2-ln/22-l(d+t+r/2-5)12-Dk _ xi-n-d-1-r dx 

{12-D /c-zl~2M(j-I) fll} 

< C 2-ln/2t:d+t+r2(l..:..j)(t+r/2)d!1~t/2 2(11-1)52-l(t+r/2) 
1 

< C 2-ln/2 t:f+i+r2-j(t+r/2)2(l-j)(t+r/2} d+~!2r/2 2(1'-1)5 . 

We note that l ~ j and apply Lemma 5.3 to conclude that 

2 (l'-l).s2-l'(t+r/2) lll'flf II < 2-11-1'15 cd+l+r2-j(t+r/2) 
.1. 1,11 .C(L2(Tn)) - c '-1 • 

When M = 1, we have J = 0 and obtain the bound 

2(l'-l}.s2-l'(d+l+r/2)11Tif II < C fd+l+r2-j(d+l+~) 
1,11 .C(L.2(Tn)) - 1 · 
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When l' > l, we assume again first that M < 1 and estimate (5.84) by 

{k'E~n,I' :2116(2-1' k'-2-lk)l;::c112M(j-I')} 

2<•-n)( l' -l)2-l' (t+r /2)2(1-l')( d+t+r /2) 

{1 + lk _ k'2l-l' l)n+dH+r 

< c L 2:--n(l'-l)2-l'(dH+r/2-cS)2(l-l')c5( 1 r+d+i+r 
{k':l21-1'k'-kl;::c1l2M(j-I')} . 1 + lk - k'2l-l' I 

< c 2-l'(d+I+r/2-c5)2(l-l')c5 j lxi-n-d-1-r dx , 
{lxl>ci'"12M(j-1')} 

since 0 < s < d + 1 + ~· Argill.ng in a similar fashion as before we obtain again 

2 (l'-l).s2-l'(t+r/2) llrpf: II < C 2-ll-1115 .cd+I+r2-j(Hr/2) 
1 l,l' .C(L2(Tn)) - '-1 • 

When M = 1, we estimate the difference (5.84) by 

2<t'-1),,2-t'(d+t+r/2)llT1~1'll.cc~crn)) < ct:f+I+r2-i(d+I+i) ' 

(5.87) 

and note that the exponentially decaying term 2-.Sll-l'I is missing in this case. 0 

In order to patch all the different blocks together, the following block variant of 
Schur's lemma will be helpful. 

Lemma 5.7 Suppose Tt,l' are given bounded linear operators on L2(/n) with operator 
norms IT1,11I := llT1,l'll.ccvcrn)) < oo. Defining 

j 

T(j) := L (Q1 - Q1-1)T1,11(P11 - P,1_1) ' 
l,11=1 

one has for every function ui E Vi and for any s E IR 

(5.88) 

Proof: We can write uf as ui = P0ui + Ef=1(P1 - P1-1)ui =: Ef=o w1. Likewise, 
noting that Tc;)ui has, by definition, no component in Yo, we can rewrite Ji := T(j)ui 
as Ji= Ef=1(Q1 - Q1-1)Ji = Ef=1 h'. 

One easily checks that h1 = Lt' ( Q1 - Q1-1)1i,11w11 . Thus Holder's inequality and the 
boundedness of the projectors Q1 assumed in the present setting yields, for any s E JR, 

l' 

l' l' 

l' l' 
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Squaring and summing over l = 1, ... ,j gives 

Recalling that the 1/J1 and <P1 both form Rlesz bases for L 2(/n), the assertion follows. D 

To arrive a.t estimates for Sobolev norms we will invoke Theorem 2.3 a.nd recall 
from [17] that for s < d' + p 

ll1ill!"' llPouill~ + E 1121"(.P, - P1-1)uill~ . (5.89) 
O<l~j 

It will also be useful to recall certain Besov norms already used in [17] which a.re 
equivalent to the Sobolev norms for a slightly larger range of s. To this end, define for 
h E F the £th order forward differences of u by 

(~iu)(x) = t (~) (-ll-iu(x + jh). 
j=O J 

The corresponding £th order Lrmodulus of continuity is then given as 

(5.90) 

We are now ready to introduce the Besov-norm 

(5.91) 

where for any fixed i E JN, i > t, 
00 

I 12 ~ 22jt ( 2-j)2 U (t) := L.J Wt U, 2· (5.92) 
j=O 

It is known that for 0 < t <£,the set of all functions in L2(/n) for which the above 
expression is finite, agrees with Ht(Tn) and that 

II· llt,.., II . llBt ' 0 < t < £, 2,2 
(5.93) 

(see e.g. [17], Section 5). 
In a similar fashion as earlier in this section we may now proceed to prove the 

following result. 

Theorem 5.3 Let r 2:'.: 0, -.; ~ s ~ t ~ d + 1, and lets, 3; < d' + p. Furthermore, let 
T~ = (t[Jh,Je:J; be defined by Lemma 5.6. Finally, suppose that the operators Aj are 
defined by (5. 14} relative to T~. Then there exist some t > 0 and a positive constant c 
such that 

ll(A; - Aj)P;ulla-r ~ C fd+l+r2-j(t-a)llu1lt 

holds uniformly in j E N 0 and to~ t ~ 0. 
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Proof: Expanding P;, Q; in telescopic sums, we may write 
Q ·(A· - A(';)P· - '°' 2<1+1')r/2rp" J J j J - L.J .1.1,11 • 

19,l'$j 

We will apply Lemma5.6 and Lemma5.7, for s = r, to ui = E{,=1 21't(P11-P11_1)u. The 
norm equivalence asserted by Theorem 2.3, the fact that the operators Q; are uniformly 
bounded in L 2(Tn ), the stability of the wavelet basis, and taking the definition of Ji~1 , 
into account, yields 

j 

llQ;(A; - Aj)P;ull~ar ~ c L2_3,.1ll(Qr - Q1-1)Q;(A; -Aj)P;ull5 
2 l=l 

j j 

< c L 112-lr L r,:,,21'r/2(P11 - P11_i)ull~ (5.95) 
l=l 11=1 

where we have used that 

r;,q = (Qp - Qp-1)T;,q = r;,q(Pq - Pq-1). 
Using Lemma 5.7 and the norm equivalence again, the right hand side of (5.95) can be 
estimated by 

c II L 2<1'-l)rTr:r12-l'(t+r/2)2l't(P11 - P11-1)ul15 (5.96) 
O<l,11$j 

< c (c sup L 2(l'-l)r2-l'(t+r/2)IT{z11)( sup E 2<1'-l)r2-l'(t+r/2)IT{11D) lluill5-
o<l$j O<l'$j ' O<l'$j O<l$j ' 

When t = d + 1, i.e., M = 1, Lemma 5.6 yields 

llQ;(A; - Aj)P;ull~ar 
2 

< (ct:f+Hrj2-j(dH+r/2))2 E (2/(dH)ll(Pr- Pr-i)ullo)2 
O<l$j 

< (ct:f+Hr j2-j(dH+r/2))2 E 22/(dH)(ll(I - Pr)ull~ +II(! - P1-1)ul15) 
O<l$j 

< ( c£f+l+r j 2-j(dH+r/2))2 E 22l(d+l) llull~H 
O<l$j 

< ( ct:dH+r2-j(dH+r/2) llulld+t)2 , (5.97) 

where we have used the Jackson estimate (4.1) and the definition of £1 in the last two 
steps. To treat the case M < 1, or t < d + 1, we recall the Whitney type estimate 

llu - P;ullo ~ c Wd+i ( u, 2-ih (5.98) 

from (5.10) in [17]. We can then repeat the above reasoning in (5.97) where now the 
application of Lemma 5.6 involves also the term 2-cSll-l'I. Thus we obtain, by (5.98), 

llQ;(A; -Aj)P;ull~ar ~ (cff+Hr2-j(t+r/2})2 E (2ltll(P1 - P1-1)ul10) 2 

2 O<l$j 
j 

< ( cff+Hr2-j(t+r/2))2 E 22ltWd+i ( u, 2-l)~ 
[:::;;:0 

< (cfdH+r2-j(t+r/2)llullt)2 ' (5.99) 
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where we have used the norm equivalence {5.93) in the last step. Employing the inverse 
estimate ( 4.2), we finally get 

llQ;(A; - Aj)P;ull:-r ~ c 22i(s+f>llQ;(A; -Aj)P;ull~21:, 
2 

whence the assertion follows now from (5.99). 0 

We may now resort to Lemma 5.5 to estimate u• - u{. 

Theorem 5.4 Let A E wr('Tn), 0 ~ 3; < <f + p,. -;_r < s < t ~ d + 1, s ~ d' + p, 
and f E Ht-r('Tn). Suppose that the Petrov-Galerkin scheme (3. 7) is (s, r)-stable (see 
(3.12). Then there exists fo > 0 such that for 0 < f < fo the compressed scheme 
Aju~ = Q;f has a unique solution u~ whose deviation from the exact solution u* of the 
equation Au* = f may be estimated by 

(5.100) 

uniformly in j > N0 , 0 < f < fo. 

Proof: Setting t = s, Theorem 5.3 provides 

(5.101) 

If the Petrov-Galerkin scheme A; = Q;AP; is (s, r)-stable in the sense of (3.12), then 
(5.101) insures that there exists t:0 > 0 such that Aj is also (s, r)-stable for 0 < t: < t:o. 
Combining [17] (Theorem 6.3) with Theorem 5.3 verifies the assumptions of Lemma 
5.5 which, in turn, yields the desired result. D 

Next we consider the case r < 0. Unfortunately, we can then not find s E JR such 
that the compressed scheme is (s, r)-stable and, in addition, gives rise to approximate 
solutions exhibiting optimal convergence rates in H 8 (/n). Nevertheless, one can still 
establish suboptimal rates which will be demonstrated next for the cases = 0. Again 
one has to modify slightly the compression strategy (5.82) and (5.81) by changing the 
constant M while leaving t:1 = t:1 (j) unchanged. 

Lemma 5.8 Let r < O, 0 ~ t ~ d + 1. Setting 

and 

M= t+r 
d + 1 + r' 

if M = 1, 

if O < M < 1 , 

R~ .- {(I, J) E :Ji x :Ji : I= (l, e, k), J = (l', e', k'), 
2min{l,l'} 10(2-/ k _ 2-l' k')I ;::: 2M(j-max{l,l'})t:ll }, 
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we define T~ = (t],J)r,Je.7i by 

if (I, J) E 'Rf , 

otherwise. 

Then the corresponding operators T1~1,, defined in analogy to (5. 78}, satisfy 

2-l't2(l'-l)r/2jT'if ,j < c 2-i(t+r)2-ll-l'lotd+l+r 
l,l - 1 ' 

(5.105) 

(5.106) 

where 8 = d + 1 - t > 0 and the constant c is independent of j, l, l' and t 1 . 

Proof: As before let 8 = d + 1 - t. We will estimate the norm of the operators 

2-l't2(l'-l)r/2rpf _ 2-l't2-lr2(l'+l)r/2(Q Q )TJ"lf ( n n ) -'- l,l' - l - l-1 -'- l,l' r11 - .r11-1 (5.107) 

in L2(Tn). 
In view of the fact that the underlying bases are Riesz bases, we may switch from 

the norm of the operators in L2(7n) to the norm of the corresponding matrices. In 
order to applying Lemma 5.3 we wish to estimate 

(5.108) 

and proceed as in the proof of Lemma 5.6. Considering first the case l' ::::; l, (5.108) 
can be bounded by 

C L 2-ln/22-l't2-lr2t'r2(l'-l)(d+l)(l + 12-D k _ k'l)-n-d-1-r 
{k':12-D k-k'l~(2(l-j)Mq )-1} 

< c I 2-ln/22-l(t+r) 2 (11-l)o2l'r12-D k _ xi-n-d-1-r dx 

{12-D k-x1~2M(j-l)fll} 

< c2-ln/2 fd+i+r2(l-j)M(d+l+r)2-l(t+r) 2(11-l)o 
1 

< c2-tn/2 Ef+Hr2-i(t+r)2-lt-l'IS . 

In case l' > l, we estimate (5.108) by 

2-n(l' -l) 2-t' t2-lr2lr2( l-11) ( d+ 1) 

C L (1 + jk - k'2l-l' l)n+d+l+r 
{k'E~n,I' :2'19(2-1' k1-2-lk)l~~ll 2M(j-l'J} 

< c "'""""' 2-n(l'-l)2-l't2(l-l')o( 1 )n+d+l+r 
L.J . 1 + lk - k'2l-I' I 

< c 2-l't2(l-l')S · j lxl-n-d-1-r dx 

{lxl>Ei°12M(j-I')} 

< C fd+l+r2l'r2-i(t+r}2-ll-l'IS 
1 

< c Ef+Hr2-i(t+r)2-ll-l'IS . (5.109) 
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We may now appeal again to Lemma 5.3 with 1( I) = 2-ln/2 to prove the assertion 
(5.106). D 

In order to assemble the block estimates we will apply Lemma 5. 7. 

Lemma 5.9 Let r < 0, 0 S t < d + 1, -r < d' + p, and T~ . (tl,J )r,JE.7i be given 
by (5.105} in Lemma 5.8. Finally, let Aj be defined accordingly by (5.56} and (5. 14). 
Then there exists a positive constant c such that 

ll(A; - Aj)P;ull-r < c fd+I+r2-jtl1ul1t 

holds uniformly in j E IN0 , u E Ht('Tn) and t:o ~ f ~ 0. 

(5.110) 

Proof: We assume again first that l' s l and set D = ll - l'I = l - l'. Employing 
analogous arguments as in the proof of Theorem 5.3 such as telescoping expansions as 
well as Theorem 2.3 yields 

llQ;(A; - Aj)P;ull:_r < c E 112-lr2(l+l')rf2T1~11(P11 - P1•-1)ull~ 
O<l,11$j 

< C II E 2-l't2-lr2(l+l')rf2T,~112l't( P11 - p,,_i)ull~ . 
O<l,l'$j 

Now Lemma 5.8 and Lemma 5. 7 enable us to argue exactly as in the proof of Theorem 
5.3. Thus the exponentially decaying term appearing in case t < d + 1 yields, in view 
of (5.93) and (5.98), the estimate 

llQi(A; - Aj)P;ull:_r < (c fd+I+r2-j(t+r)) 2 L (21tll(P1 - P1-1)ulJ0) 2 (5.111) 
O<l$j 

< ( c fd+I+r2-j(Hr) llullt)2 ' 

while, in the case t = d + 1, we use (4.1) to derive the corresponding bound 

llQi(A; -Aj)P;ull:_r < (c ft+I+rj2-j(d+I+r)) 2 E (21(d+l)ll(P1 - P1-1)ullo)2 

O<l$j 

< (c fd+I+r2-j(d+I+r)llulld+i)2 . 

This proves the desired result. 

We are now in a position to prove asymptotic convergence rates for r < 0. 

D 

Theorem 5.5 Letr < 0, A E wr('Tn), -r < d'+p, 0 St< d+l+r andf E yt-r(ln). 
Suppose that the Petrov-Galerkin scheme is (s, r)-stable for s = ~' cf. {11} {Theorem 
6.3). Then there exists t:o > 0 such that, for 0 .< f < t:o, the compressed scheme 
Ajui = Q;f has a unique solution u~ which differs from the exact solution of the 
equation Au*= f in the L2(Tn) norm by 

(5.112) 

where the constant c does not depend on j. 
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Proof: Choosing t = O, Lemma 5.9 yields the bound 

(5.113) 

Thus if the Petrov-Galerkin scheme Ai= QjAPj is (-r, r)-stable in the sense of (3.12) 
(cf. [17]), then there exists fo such that Aj is also ( -r, r )-stable for 0 < t: < t:o. More-
over, (5.113) implies condition (5.75) in Lemma 5.5 for s = 0. The assertion follows 
now from [17] (Theorem 6.3) and Lemma 5.5. D 

5.4 Computational Costs 
We will briefly point out next to what extent the stiffness matrices are being compressed 
by the above strategies. 

Proposition 5.1 The number of nonzero entries in the matrices T~, defined in Lemma 
5.6 and Lemma 5.8, is of the order 

{ 
O(j2~2(d!7+r) 2in) when t = d + 1; 

O(j23n) when t < d + I. 
Proof : Due to the symmetry of the compression it is sufficient to consider the case 
l ~ l', 

Let us first discuss the extreme case t = d + 1, i.e. M = 1. We claim that all 
block matrices T~1' contain at most O((j 2 ca+31+r) 2i)n) nonzero entries. To see this, 
note first that the dimension of Wi = (Pj - Pj_1)Vi is (2n - 1)2{j-l)n. Thus T~·j 
has 2~:1 2in different rows. The truncation criteria (5.81) or (5.104) insure that each 
row contains at most (c t:11r = (c (c1j) 2 Ca+31+rl r nonzero entries so that T~·i has at 

3n • 
most O(j 2CJ+i+r) 23n) nontrivial coefficients. This proves the above claim for l = l' = j. 
Decreasing the number l', each block matrix TV has the same number of rows. We 
infer from the truncations (5.81), resp. (5.104), that each row contains asymptotically 

3 
the same number of nonzero entries, namely O((j 2<d+i+r) r). This confirms our claim 
for l = j. 

By the same reasoning the diagonal block T~-l,j-l contains 2;:1 2U-t)n rows. But 
3n 

now we have, in view of the truncations (5.81), resp. (5.104), 0((2j 2 (d+l+r) r) nonzero 
• • 3 . 

coefficients per row. This gives, for T~-l,3-1 , a total of at most O((j 2ca+ 1+r) 23r) nonzero 
coefficients. By the same arguments as above we verify the above claim for all block 
matrices T~-l,l', l' < j - I. 

By induction, we see that each block T~·1' contains at most O(j 2ca!7+r) 2in) nonzero 
coefficients. Since we have j2 different blocks, summation over all blocks gives 0(/+ 2{d!7+r) 2in) 
as .an overall bound for the nonvanishing coefficients. 

So far we have examh1ed the extreme, but most important case, that the exact so-
lution is sufficiently regular, i.e., u E Hd+l(/n). If this it not the case, say u E Ht(Tn), 
where t < d + 1, or a lower convergence rate is provided, fewer coefficients are needed. 
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Starting with l = l' = j, we see that T~J contains 0(2i") nonzero entries. Furthermore 
we infer from the truncations (5.81) or (5.104) that T~·' contains 0(212M(j-l))n nonzero 
coefficients, where M < 1. The total number of entries in each block T~·1', l' < l, is 
constant with respect to l', if l is fixed. Therefore the total number of nonvanishing 
entries is 0(2i2(j-l)(M-l))"). Consequently, summing over all blocks T~·1' shows that in 
total at most O(j2in) = 0( N log N) nonzero entries are required. D 

Note that, for l + l' < j, the full matrix T 1•1' have only the order of 2in entries. 
Thus, from an asymptotic point of view, it is not necessary to compress those blocks 
for which l + l' < j. 

The above results are not quite satisfactory since, in some cases, the error bounds 
do not match the corresponding optimal convergence rates. One source of complication 
is the role of the parameter d which both the decay estimates, e.g. (5.6) as well as the 
convergence estimates depend on, even though in rather different ways. For instance, 
for a fixed numerical method, the convergence rate decreases with increasing order 
of the operator. But on the other hand, the decay in the coefficients, described by 
Theorem 4.2, decreases with decreasing order of the operators. This fact becomes 
particularly important for operators with negative order. 

Finally, we mention that it is also possible to obtain accuracy bounds of order 
0(2-ai), for s < d' + p + ~ (s < d' + p + r), r ~ 0 (r < 0), at the expense of O(N) 
nonvanishing coefficients. Thus this convergence rate can also be achieved with linear 
complexity, as in the case of fixed error bounds. We dispense here with a proof which 
essentially consists only in repeating previous arguments. 

As we mentioned above, the gap between optimal convergence rates and the rates 
achieved after compression stems from the fact that the decay estimates of the coeffi-
cients ( 4.18) and ( 4.32) and the limit for the Jackson _estimates depends of the same 
parameter, namely d. 

6 Atomic Decomposition 

We now turn to the second approach for compressing stiffness matrices based on the 
decomposition ( 4.41 ). As mentioned before, it is closely related to the atomic decom-
positions of Calder6n-Zygmund operators studied by Y. Meyer [34]. An analogous 
compression scheme for Galerkin schemes was proposed in [4, 5] where the correspond-
ing matrices were called nonstandard representation. However, we will demonstrate 
here that the atomic decomposition may be applied as well to the much wider class 
of generalized Petrov-Galerkin methods, as described in the first part [17]. In partic-
ular, it applies also to collocation methods. The latter example is closely related to a 
multigrid approach proposed by [6]. 

In this section we treat only the case of zero order operators, i.e., r = 0. In principle, 
our techniques would still apply to the more general case of arbitrary order. But this 
would require still further technical elaboration which should be left to a separate 
study. We will show that any fixed prescribed accuracy can be achieved by linear 
complexity provided a BMO type condition (see Theorem 6.2) for a certain paraproduct 
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is satisfied. Moreover, we will point out that this type of condition can generally not 
be avoided which indicates that too naive compression strategies may fail to produce 
acceptable results in this case. The corresponding analytical background was developed 
by David and Journe [21] establishing a boundedness criterion for generalized Calder6n-
Zygmund operators, the so called celebrated Tl Theorem. Later Y. Meyer gave a 
wavelet formulation of this modern Calderon-Zygmund theory [32, 34). Our present 
investigation also builds upon this theory. Recently, we were told by Y. Meyer that he 
has also obtained similar results for the method proposed in [4]. 

The atomic decomposition of the finite dimensional operator Ai = QiAPi, sug-
gested in [4], is given by the following telescoping sum 

i 
Ai= QiAPi = QoAPo + 'L:(Q1AP1 - Q1-1AP1-1) 

l=l 
i 

- QoAPo + 'L:((Qz - Qz_i)A(Pi - P,_i) + 
l=l 

(Qz - Q1-1)AP1-1 + Q1-1A(P1 - P,_i)) . (6.1) 

Here the operators Qi are defined by (2.31), (2.27), and, when dealing with pre-
wavelets, Pi denotes the orthogonal projector onto Vi, while, in case of biorthogonal 
wavelets, Pi has the form (2.32). But for simplicity we will continue using the same 
notation Pi in both cases. In particular, the differences Qi+i - Qi, Pi+l - Pi have the 
representations (2.40), (2.35) or (2.36), respectively. 

For a given vector u1 = ( ukhe.zn,1 we introduce the notation 

u1 *0 </>1 = L Uk</>~ . 
ke.zn,I 

In view of (6.1), we may write 
i-1 

Ai= 'L:(H1 + G, +Dz), (6.2) 
l=O 

where the operators H,_1 := (Qz - Qz_i)A(Pz - Pi-i), G1-1 := (Q1 - Q1_i)AP1-i, and 
D1_:1 := Q1-iA(P1 - P1-i), have the following Schwartz kernels 

H1(x,y) = L H~,e' *0 (</>~1(x) ® (!(y)) 
e,e'EEo 

" hl,e,e1 ,1,.l { ) ;-l { ) L.J k,k' 'f' e' ,k' X ':.e,k Y ' {6.3) 
e,e'EEo k,k'e.zn,l 

G1(x, y) 
e'EEo 

{6.4) 
e'EEo k,k'ezn,1 

Dz(x,y) - 'L: D 1 *0 (</>~(x) ® C!(y)) 
eEEo 

'L: 'L: d~~k'</>~,k'(x)(!,k(Y) , (6.5) 
eEEo k,k'e.zn,l 
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and where </>, </>e, (e, ..Pe are the functions from (2.34), (2. 7), (2.38) and (2.37). Setting 

hl,e,e1 

k,k' .- fJ~,1;,(Av{k) , 
l,e' fJ!' .k' ( Acpi) , Yk,k' .- (6.6) 

J.•e 'Ii, ( A1/J!,k) , k k' .-
. I 

the corresponding matrices are denoted by 

H l (hl,e,e') G' ( l,e') e,e' = k,k' k,k1ez .. ,1, e' = Yk,k' 1c,1c1ez .. ,1, D! = ( d~~k') k,k' e?Zn,I. (6.7) 

6.1 Algorithmic Realization 
We proceed commenting briefly on the algorithmic realization of atomic decompo-
sitions. One can employ the techniques described in [16] to compute the values 
Ji = (!, 9'{)o, k E ~nJ. For given Ji = (!, 9'{)o, k E ~n,j, the computation of 
the coefficients w~,k = (!, 1/J~,1c)o, k E ~n,l, e E E0 , 0 < l < j, is based on the two scale 
relations (2.1), (2.7) or (2.9) ([16]), see also [4]. This yields 

__ j-1 '°" e ri 
w-e,k = L...J ak'Jk1-2k , e E Eo, k E ~n,j-l , (6.8) 

k'e?Zn,j 

and 
(6.9) 

Repeating this scheme gives rise to the well-known pyramid algorithm 

,;-2 -+ J k ••• J2 

j-1 __ j-2 0 we k w-e k • • • we k • . ' . 
It is easy to see that this algorithm, (e.g. [4, 29]), requires 0(2ni) operations 

provided that the masks a and ae are finite. This scheme generates the coefficients of 
the corresponding matrix in the wavelet representation 

( rlJ( A1/J r) h,Je:r; (6.10) 

from the atomic representation requiring 0(2ni) operations. 

6.2 Estimates for Prescribed Accuracy an Variable Bandwidth 
The basic idea proposed in [4] for compressing A; is to compress each individual com-
ponent appearing in (6.1). 

Here we will consider a slightly more general scheme where we allow the compression 
to depend on the level of discretization. More precisely, 'the desired compression will 
be achieved by setting those entries to zero in all the above matrices for which 

(6.11) 
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where the cut off bandwidth c(l)€-l > 0 may increase in l to provide increasing accuracy 
on higher levels. This gives rise to perturbed operators Aj defined by 

j-1 

Aj :=A; - "f)HI + Gi +Di), (6.12) 
l=O 

where the perturbations are given by 

G;u(x) - E E l,e1 ( l ) <P' ( ) 9k,k1 u, 'Pk 0 e,k' X ' 
e'eEo {k,k':2'I0{2-1{k-k'))l?:c(l)cl} 

Dju(x) - E E ~~k' ( u, C!,k )o<P~,k' ( x) , (6.13) 
eEEo {k,k1:2'IB{2-l(k-k'))l?:c(l)cl} 

Hlu(x) - E E hl,e,e1 
( (' ) <fJ' ( ) k,k' u, e,k 0 e' ,k' X • 

e,e'EEo {k,k1:2'I0(2-1 {k-k1)) l?:c{l)cl} 

On each single level l, 0 < l ::; j, Theorem 4.2 and Theorem 4.3 combined with 
Schur's Lemma will lead to the following bound. 

Proposition 6.1 Let DI, G'i, H{ be defined by (6.13). Then there exists a constant c 
such that for all j E JN 

(6.14) 

Proof: We confine our discussion to one term GI, say, since the other terms can be 
treated in the same way. Invoking the stablity of the scaling functions on a fixed level, 
as well as the stability of the wavelets, we obtain for any u E L2(/n) 

llGlull~ - llGi(P1u)llj}(/") 

< c E E I E n~.~,(u,cpi)al 2 
k1E7Z"•1 e'EEo {kE7Z"•1:21I02-1(k-k')l?:c(l)c1} 

< c ll~~ll~(l2(7Z"·'» E I( u, cp~)ol 2 
ke7Z"·' 

< cl1G~ll~{l2 (7Z"·'))l1.Hul1~ 
< cllG~ll~(l2 (7Z"·')) llull~ · 

The norm llG~llcci2 (7Z"·')) can be estimated with the aid of Schur's lemma. 

( sup L lg~~, I) 
kE7Z"•1 {k'E7Z"·':2'IB(2-l(k-k'))l?:c(l)c-1} ' 

( sup L In~~, 1) 
k' E7Z"•' {kE7Z"·' :21I0(2-1(k-k'))l?:c(l)c1} ' 
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We may now invoke Theorem 4.2 and Theorem 4.3 to estimate the entries g~~' (and 
similarly d~~k'' h~~~'). Ta.king into account the truncation yields ' 

( ) 
(d+l) 

II G~ll.ccz2(~"·1 )) ~ c c~) . ' (6.16) 

which is the desired bound. 0 

After these prerequisites we will show next that one can choose the bandwidth 
control c( l) in such a way that a given error tolerance can be realized by means of 
compressed schemes involving 0(2in) = O(N) operations. 

Theorem 6.1 Suppose that the Petrov-Galerkin scheme Q;AP; = A; is (0, 0)-stable 
in the sense of {3.12} (cf.{17}). For some t' E (0, 1) let 

t' 
M := d + 1' c(l) := 2M(i-Z). (6.17) 

Then the corresponding perturbed operators Aj, defined by {6.12} and (6.13}, satisfy 

(6.18) 

Moreover, there exits fo > 0 such that for any 0 < f < fo the compressed scheme 
Aju~ = Ji has a unique solution u~ E Vi satisfying 

(6.19) 

Proof: We confine our discussion again to one typical component of Aj, namely G/. 
From Proposition 6.1 we infer that 

llG~ullo < c fd+i2-(i-l)M(d+i)llullo 
< c fd+J2-t'(i-l)llullo, (6.20) 

where t' > 0 is the constant from (6.17). Similar estimates hold for the operators 
D/, Ht. Summing over l = 1, ... , j therefore yields 

i 
llA; -Ajll.c(L2 (7")) ~ c fd+i :L2(Z-j)t' (6.21) 

l=O 

proving (6.18). 
. Next, on account of (6.18), fo can be chosen such that the compressed scheme Aj 
becomes also (0,0)-stable uniformly for 0 < f < fo. The rest of the assertion follows 
then from Lemma. 5.5. D 
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6.3 Computational Costs 
One easily verifies that, when t' < 1, this procedure produces on a fixed level l only 
0(2U-l)t'n21n) nonzero coefficients. Summing over all levels one sees that there remain 
a total of 0(2in) = 0( N) nonzero coefficients needed in order to achieve the desired 
accuracy. 

6.4 Estimates for Constant Bandwidth 
Next, we will investigate the extreme case where the bandwidth is almost constant over 
all levels, i.e., c(l) = 1. This kind of truncation has been suggested by [4, 1] and has 
been also used by other authors, e.g. [25]. In order to establish appropriate bounds 
for the perturbation operators in this case, we have to perform an explicit extraction 
of constants. For this reason we introduce the following operators 

K,u(x) .- I: I: d~~k'(u, <I>i)o<P~,k(x) , (6.22) 
eEEo {k,k'ezn,l:21I0(2-1(k-k'))l?;i:-1} 

s;u(x) I: I: g~.~1(u,(!1,k1)o<I>i,(x)' 
e'EEo {k,k'ezn,1:2'l1J(2-l(k-k'))l?;i:-1} 

where <I> denotes the cardinal multi-linear tensor product spline. Note that the above 
operators are defined by diagonal matrices with diagonal entries 

f '·" "\:'""" d''e I (l k) r1 := rek := L...,, k,k'' = ,e, (6.23) 
{k'ezn,1:2'IB(2-l(k-k'))l?;c1} 

and 
S f ·- 8 1,t: ·- "\:'""" gl,e J (/ IJ. 

J .- e,k' .- L...,, k,k' ' == ' e, ,,, . (6.24) 
{kezn,1:2'l1J(2-1(k-k'))l?;c1} 

Using the fact that the translates of a scaling function build a partition of unity, 
i.e. 

I: <i>i - I: 'Pi = I: <Pi = I: 1i = I: <P~,k = 2'n12 , 
kezn,1 kEZ"·' kezn,1 kezn,1 keZ"•' 

so that 
(1, <ppo = (1,-r~' )o = 1 
(1, <I>k)o (1, <I>k,)o 

it is not hard to see that the operators 

c; = Hi + Gi - s; + Di - RI ' 
whose Schwartz kernels Cf(x,y) are defined by 

(Clf)(x) = j Cl(x, y)f(y)dy, 
7n 

satisfy 

Thus the definition in (6.22) may be viewed as an extraction of constants. 

(6.25) 

(6.26) 

(6.27) 

Theorem 4.2 and Theorem 4.3 yield now for each level the following estimate. 
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Proposition 6.2 For every l E JN, e, e' E E0 , the coefficients r~·.~ ands~.~ defined by 
(6.23}, (6.24} satisfy 

I l,t: I + I l,t: I < d+i re,k se',k - c t: ' (6.28) 

for some constant c independent of l. 

Similar arguments as those used in the proof of Proposition 6.1 provide now the 
following result. 

Proposition 6.3 Let c; be defined by (6.25). Then there exists a constant c such that 
for all j E JN 

We proceed now analysing the above compression scheme. Since various aspects of 
the theory of Calderon-Zygmund operators will play an important role in this context 
we recall the following definition (cf. [34]). 

Definition 6.1 Let T be a linear continuous operator T : 'D(F) -+ V'(F). Its 
Schwartz kernel K(x, y) is called a Calder6n-Zygmund kernel, if it satisfies the follow-
ing conditions: 

(i} The Schwartz kernel K(x, y) of T is locally integrable on every open set 
n C F x F\{x =f. y}. Further, there exists c > 0 and o E (0, 1] such that 
K(x, y) can be estimated by 

IK(x, Y)I S clx - Yin 

(ii} and 

IK(x', y) - K(x, y)I < clx' - xl5lx - Yl-n-5 if 

IK(x, y') - K(x, Y)I < cly' -yl5lx - Yl-n-5 if 

for all (x, y) E !1. 

(6.29) 

1 Ix' - xi S 2lx - YI, (6.30) 
1 IY' - YI S 2lx - YI, (6.31) 

A bounded linear operator T: 'D(JRn)-+ V'(F) is called a Calder6n-Zygmund opera-
tor on 7n if T is a bounded operator in L2 (Tn) and if its Schwartz kernel is locally 
a Calderon-Zygmund kernel. This merins that, for a partition of unity 'Pj, 1 S j S N, 
relative to a finite covering of Tn, the canonically transported operators of 'Pj1T'Pj, 
1 < j,j' S N (cf. e.g {40}), are Calderon-Zygmund operators on F. 

To tie this concept into the present context we will make use of the following 
further auxiliary facts. The subsequent first observation is formulated only for one 
typical configuration. The arguments which are being used cover all the other cases as 
well since we will only exploit exponential decay. 
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Lemma 6.1 Let 
,,1,.1 ·- "" u' "'' 'l'k .- L.J k-k' 1k' 

k'e.:rzn,I 

where the g~ are defined for exponentially decaying coefficients gk by (4.5) and I sat-
isfies cg,d'. Then the estimate 

l</>i(x) - </>i(x')I < c2'n/221slO(x - x')ls(r2'1o(z-2-'k)I + r2'1o(z'-2-'k)I) (6.32) 

holds for some r E (0, 1 ), some constant c independent of l, n, x, x' and any d E (0, p] 
where 0 < p < 1 corresponds to the Holder continuity of 'Y. 
Proof : By ( 4.6) we obtain for some r E (0, 1) 

l</>i(x) - <l>i(x')I < L luLk'lbi,(x) - 'Yi,(x')I 
k'e.:rzn,l 

k'e.:rzn,1 

In case Ix - x'I ~ c2-1 we make use of the Holder continuity of 'Y and the fact that 'Y 
has ·compact support to conclude that 

l</>i(x) - </>i(x')I < c 2ln/2(2'lx - x'l)s E r2'IO(r'(k'-k))I 
{k':21 18(2-1 k'-z)l~c} 

< c 2lnf22lSIO(x _ x')ls(r2'IO(z-r1k)I + r21IO(z'-r1k)I) . 

If IO(x - x')I > 2-1 we take again the compact support of 'Y into account to estimate 

l</>i(x) - </>i(x')I < c ~ r 2'IO(r'(k-k')l(hi1(x)I + hi,(x')I) 
k'E7Z"·' 

< c2ln/2( r21IO(z-r1k)I + r21IO(z'-r1k)I) 
< c21n1221slO(x _ x')ls(r2'IO(z-r1k)I + r2'IO(z1-r1k)I) • (6.34) 

In the last step we used the assumption 1 < 216 IO(x - x')l0 , where d E (0, 1]. D 

Lemma 6.2 Let</>, (e be defined by {2.34} and {2.37), respectively. Furthermore, let 
M1 have the form 

M1u(x) = L L (u, C!,k1)om~~k'</>i(x), 
eEEo k,k'e.:rzn,l 

where for some q > 0 

lm~~k'I ~ c (1+21I0(2-1(k- k'))l)-n-q, k,k' E ~n,l, e E Eo. (6.35) 

Then the Schwartz kernel M1(x, y) of M1 satisfies the following estimates 

IM1(x,y)I ~ C 21n(l + 21IO(x -y)l)"""n-q, (6.36) 

and, if in addition</> E C5(1R"), one has 

IM1(x', y) - M1(x, y)I < c 21n(21IO(x - x')l)6 (6.37) 
((1+21IO(x - y)l)-n-q + (1+21IO(x' - y)l)-n-q) . 
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Proof: By our assumptions on </> and (e ( 4.6) ensures that 

(6.38) 

holds for some TE (0, 1). Since 

M1(x, y) = L L m~~k·<f>i(x)(!,k•(y), 
k,k'E7Z"•' eEEo 

a twofold application of Lemma 4.1 yields (6.36) for x = 21k0, y = 2-1 k~. A continuity 
argument establishes (6.36) for any x, y E /n. 

Replacing <f>Hx) by <f>Hx) - <f>Hx'), we apply Lemma 6.1 

IM1(x, y) - M1(x', Y)I - I L L C!,k•(y)m~~k·(<f>i(x) - <f>i(x'))I 
eEEo k,k'E7Zn,l 

< c21n L L r2'IO(y-z-'k')ljm~~k'l215 IO(x - x')l 5 

eEEo k,k'E7Z"•1 

( T21j9(x-Z-1k)I + T21l9(x'-r1k)I) . 

Finally, (6.37) follows from Lemma 4.1 and (6.35). D 

One should note that the operators A; locally have Calder6n-Zygmund kernels. 

Proposition 6.4 The Schwartz kernels of the operators A;, Hj, G;, D;, ~ j E N 0 , de-
fined by {6.2}, {6.3}, {6.4), and (6.5}, are locally Calder6n-Zygmund kernels with con-
stants c, o in {6.29} and {6.30) not depending on j E JN0 • 

This fact can be established with the aid of the previous lemmas. The reasoning 
is implicitly contained in the proof of the following lemma which gives more precise 
information needed later. 

Lemma 6.3 Let M{ be any of the operators (GI - Sl), (H{), (DI - R'i) defined by 
{6.13} and ( 6.22). Then the Schwartz kernels and the transposed Schwartz kernels of 
the operators M{, l E JN0 , are locally Calder6n-Zygmund kernels satisfying 

and, for any f E (0, 1), 

IM/(x,y)- Mt(x',y)I < c ld+i-5(f21IO(x- x')l)5 • 

·(f21t((l + f21IO(x -y)l)-n-d-l + (1 + f21IO(x' -y)l)-n-d-1 ), 

(6.39) 

(6.40) 

where o E (0, p], p $ 1 and the constants c in (6.39} and {6.40) do not depend on 
l E INo. 
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Proof: By Theorem 4.2, Theorem 4.3 as well as by Corollaries 4.1, 4.2 and 4.3, the 
corresponding entries m ~~' can be bounded as follows 

(6.41) 

One easily concludes now from Lemma 6.2 that 

(6.42) 

which, in turn, yields (6.39), whenever 21I0(2-1(k - k'))I ~ C 1• Let us recall that the 
operators R{, Sf are represented by diagonal matrices. In view of the truncation ( 6.11) 
and by invoking Proposition 6.2, we see that the bound 

lml,e',1 < c fn+d+l 
k,k - (6.43) 

is valid uniformly for all k, k' E ;zn,l. In case IO(x - y)I ::; (21t}-1 we observe that, in 
view of (6.43) and (4.6), summation provides for x - 2-1k,y = 2-1k1 

(6.44) 

By the usual continuity argument, this confirms the first inequality (6.39) for all x, y E 
Jn. 

For 1/J~, k' E C5('Tn), ~ E (0, p], Lemma 6.2 applies and one concludes that 
' 

IM1(x, y) - M1(x', y)I < c 2l(n+5) IO(x - x')l5 . 

((2'IO(x - y)l)-n-d-1 + (2'IO(x' - y)l)-n-d-1) (6.45) 
< c (t21tfd+I-oltO(x - x')l 5 

((t2/IO(x -y)l)-n-d-1 + (l2/IO(x' -y)l)-n-d-1). 

Thus, if IO(x - y)I ~ (21E}-1 and IO(x' - y)I ~ (21E}-1 are satisfied, (6.40) follows. 
If only IO(x' - y)I > (21t)-1 is valid, one uses . 

IM1(x,y)- M1(x1,y)I < c 21<n+5)IO(x - x')l5(21IO(x' -y)l)-n-d-I 
::; c (t21ttd+i-5ltO(x - x')l5(E21IO(x' - y)l)-n-d-l .(6.46) 

In case that both 21IO(x - y)I ::; C 1 and 21IO(x' - y)I ::; C 1 , we apply (6.43) as above 
to obtain 

(6.47) 

This confirms our claim. D 

Lemma 6.4 The Schwartz kernels N{·(x, y) of the operators (R/+Sf) are also Calder6n-
Zygmund kernels satisfyi_ng the estimates 

(6.48) 
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and 

IN{(x,y)- N{(x',y)I < CEd+I-5(E21IB(x - x')l)6 
2ln ( r2'IB(:c-31)I + r2'IB(:c'-31)I) 

(6.49) 

for any f E (0, 1), where J E (O,p], p < 1 and constants c in {6.39} and (6 . .,f.O} not 
depending on l E !No. 

Proof: By (6.22), one has the representation 

N{(x, y) = E E (r~:~'Pi(y)</>~,11:(x) + s~~k(~,k(y)'Pi(x)) . 
e,e' A:ezn,I 

We infer now from Proposition 6.2 and Lemma 4.1 that 

e,e' A:ezn,1 
< cEd+i21n E r211ocr1A:-:c)lr2'1ocr111:-y)I 

kEZ'l'"·' 

< Cfd+121nr2'1o(:c-y)I • 

In order to prove (6.49) we employ analogous arguments as in the proof of Lemma 6.2 

INt(x, y) - Nt(x', y)I ~ c Ed+1(21IB(x - x')l)6 · 
• 2'n E (r2'1ocr111:-:c)lr2'1ocr111:-31)I + r2'1ocr111:-:c')lr2'1ocr111:-31)I) 

kEZ'l'"·' 

< c 2lnEd+t-6(E2'jO(x - x')j)'5(r2'IB(:c-y)I + r2'IB(:c'-y)I) ' 

where we have used Proposition 6.2 and Lemma 4.1. 0 

Conversely, every Calder6n-Zygmund operator A on 7n can be expanded in a series 

00 

A= PoAPo+ l:((P1-P1-1)A(P1-P1-1)+(P1-P1-1)AP1-1 +P1-1A(P1-P1-1)). (6.50) 
l=O 

The corresponding finite dimensional operators give rise to matrices satisfying the esti-
mates of Corollary 4.3 where d+ 1 +r is replaced by some 8 E (0, 1 ). This representation 
of Calder6n-Zygmund operators in terms of wavelet expansions is the heart of Meyer's 
theory of Calderon-Zygmund operators (see [4, 34]). It also provides the analytical 
background for the present investigations. 

One should note that our analysis of the matrix compression carried out in the pre-
vious section used properties of pseudodifferential operators which, when considering 
·the case r = 0, do not necessarily hold for Calder6n-Zygmund operators. For instance, 
for Calder6n-Zygmund operators, an estimate of type {4.32) is not automatically satis-
fied. Here one would have to assume an additional condition, for instance, the so called 
weak cancelation property (see [4]) or the weak boundedness property (see e.g. [34, 20]), 
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in order to obtain error estimates for compressed stiffnes matrices relative to Galerkin 
schemes based on wavelet bases (cf. [4, 34]). 

In order to prove again in the present context that the computational complexity, 
needed for achieving a certain precision for the compressed operator, remains linear in 
the number of unknowns, we will make use of a celebrated lemma due to Cotlar and 
Stein [26, 34]. 

Lemma 6.5 Let A;,j E 76, be a collection of bounded linear operators on a Hilbert 
space H such that for some constant M 

L ll(A;)* Adlt s M , L llA;(A1)*llt < M (6.51) 
IEZ l 

holds uniformly in j E JN. Then the series 

Tu = L A;u , u E H, (6.52) 
j 

converges in H and llTll.c(H) S M. 

In order to apply Lemma 6.5 we need the following Lemma. 

Lemma 6.6 Let C[", l E JN0 , be the operators on L2(Tn) defined by (6.25). Then there 
exists a constant c > 0 such that 

II L Ciullo s ad+i-5/ 2 llullo , u E L2(rn) , (6.53) 
l?:O 

where t: and J are the constants appearing in Lemma 6.S and Lemma 6.4 . 

. Proof: According to (6.27), the Schwartz kernels Cf(x,y) satisfy the condition 

(C{l)(x) = j C1(x,y)dy = ((Ci)*l)(x) = 0, (6.54) 
rn 

We decompose Ct"(x, y) = Mt(x, y) + Nt-(x, y) where we denote M{'(x, y) = H{'(x, y) + 
Gl(x, y) + Dl(x, y) and Nt(x, y) = -(RI + Sf)(x, y). By (6.54), the kernel of the / 
operator Cl( Cf,)* can be expressed as 

C1~1,(x, y) = Ct(C~)*(x, y) = j C{(x, z)C1~(y, z)dz (6.55) 
rn 

- j (Ci(x, z) - Ci(x, y))C/.(y, z)dz 
rn 
j (Mi(x, z) - Mt(x, y))MMy, z)dz + (6.56) 

rn 
+ j (Nt(x, z) - N{·(x, y))M1~(y, z)dz + (6.57) 

rn 
+ j (Mt(x, z) - Mt(x, y))N1~(y, z)dz + (6.58) 

rn 
+ j (Nt(x, z) - Nt(x, y))Nb(y, z)dz . (6.59) 

rn 
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We wish to estimate 

j IC1~11(x, Y)ldy and j IC~1,(x, y)ldx (6.60) 
Tn Tn " 

in order to apply the well-known Schur Lemma. 
We investigate first the expression (6.56), which will be denoted by MM1~1,(x,y). 

The remaining terms will be treated in a similar fashion. Assuming now l' 2: l, we 
employ Lemma 6.3 to obtain, ford E (0, 1), and any x, y E /n such that x-y E [-t, t]n 

IMM~11(x, y)I < c c(d+l) J l-0(t:lz- Yl21) 0(t:22(l+l')r. (6.61) 
Rn 

. ((1 + t:l21x - 21 zn-n-d-l + (1 + tl21x - 21yl)-n-d-l) 
. (1 + t:l2l' z - 21' yl)-n-d-ldz . 

We are now in a position to estimate 

j IMM1~1,(x,y)ldy and j IM M1~1,(x, y)ldx . 
Tn Tn 

Bounding IMM1~1,j by (6.61) and integrating (6.61) with respect to x over F, while 
keeping in mind that the integral 

j (t:21t(l + tl21(x - z)l)-n-d-1dx 
Rn 

is constant independent of z, it remains to estimate the integral 

< c <:2(d+i)-020(1-1') j (1 + lzl)-n-(d+i-o)dz 
Rn 

< c f2(d+i)-.s 2 .sc1-1') . 

By analogous arguments the same result is obtained when integrating with respect to 
y. 

Repeating the previous reasoning, we obtain likewise 

IMN,~,,(x, y)I ~ c <:2(d+i) j t-0(tlz - yl21)0(t:2<1+1'>r · (6.62) 
Rn 

. ((1 + tl21x - 21 zn-n-d-l + (1 + el21x - 21yl)-n-d-l) 

• 7 2'1 IB(z-y)ldz . 

Thus one concludes that the integral I JM N1~1,(x, y)dxl can be bounded by 

f2(d+l) j (lz - Ylt:2l)5t:-52l'nr12''(y-z)ldz 
Rn 

< C f2(d+l)-525(l-l') . 
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As for If MNi~1,(x, y)dyj, we use 

J 2l'nr2''lz-yldy = C' 

Rn 

to obtain the desired bound. The kernels NM1~1,(x,y) and NN1~1,(x,y) are treated in 
much the same way. 

Summarizing the previous observations, one finally obtains 

and the same type of estimate for the norm of the adjoints II ( cn·c,~ II t. The assertion 
follows now from Lemma 6.5. D 

In order to estimate the operator norm of Aj - Aj we have to find uniformly 
decreasing bounds for the operators Eo<l<ARi +Sf), j > N0 , as t.:-+ 0. To this end, it 
will be convenient to use the following notation. Let Oi denote the interior of supp <I>i 
and define 

(6.63) 

and 

(6.64) 

The following Theorem in its wavelet version is mainly due to Meyer. It can be 
traced back to David Journe [21] and is a consequence of a celebrated lemma due to 
Carleson. 

Lemma 6. 7 There exists a constant c such that 

(6.65) 

holds for 0 < t.: < t.:o. 

Proof: The proof is essentially given, for instance, in [34]. Because the result 
is important for our purposes and has to be slightly adapted to the present setting 
we sketch the proof for the convenience of the reader. By the stability of the basis 
{ <P~,k}e,l,k and (6.22), we have 

c-1 L L L lr~~(u, <I>i)ol2 $II L Riull~ $ c L L L lr~',~(u, <I>i)ol2 • 
l eEEo kEztn,1 IENo l eEEo kEztn,I 
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We verify the right hand inequality first. For IE :J; we set w(I) = 21nl(~i,u)0 1 2 . 
Introducing the function 

w(x) = sup w(I) , 
{Ie.7i:;eNo.:enn 

one observes that 

w(x) = sup 21nl(u, ~i)ol2 < c ( sup 21n j lu(y)jdy)2 

{leNo,kezn,1:zenn {l,k:zenn 0 , 
le 

< c ( sup 1n1-1 j lu(x)ldx)2• (6.66) 
{n:xen} 0 

The right hand side of (6.66) is the square of the Hardy-Littlewood maximal func-
tion denoted by (M(u)(x))2 • Thus we conclude by the well known maximal function 
theorem (see e.g. [41]) 

j w(x)dx ~ c llM(u)ll~ ~ c !lull~. (6.67) 
7n 

The assertion is now a consequence of a lemma due to Carleson, cf. [34], page 273, 
whose periodic variant says that 

E IP(I)lw(I) < c s(t) j w(x)dx, 
IE.1"',l~O 7n 

(6.68) 

provided that p(I), I= (l, e, k) and J = (l', e', k') satisfy 

sup 21n L L L IP( J) I· 
lEN,Ie.JI l'~l {k'e.z;:n,1:n~,~nu eEEo 

In fact, we may choose here p(l) := 2-lnlr~1~l 2 to combine then (6.67) with (6.68). 
Incidentally, we have proved that the adjoint operators E 1(Sl)* are bounded in 

L2(Tn) with an operator norm less than or equal to c r(t). This immediately implies 
the corresponding result for 2::1 S/. . 

To verify the left inequality we choose u = Xn' to be the characteristic function 
" of supp~i. Thus we have Hullo= c 2-ln/'2 and l(~f,',u)l2 = f ~f,'(x)dx = d 2-1'n/2. rn 

Therefore, we conclude that for every k E 7.ln,l and l E IN 
00 

Sup ~ ~ ~ 2-l'nlrel',,',12 < ~ ~ ~ lrl',c 121(u .m.1') 12 L...J L...J L...J ,. L...J L...J L...J e,k' ' ':t' k1 0 
kezn,I l'=l {k'ezn,l:n~,~n~} eEEo I l'~l k'ezn,11 eEEo 

< c 11 I:RJ,ull~ 

00 

< C II L R/ll~(L:z(Tn))llull~ 
l=O 
00 

< C II L R/llh~(P))2-ln · 
l=O 
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This completes the proof. 0 

We can now summarize the above results to prove the following counterpart to 
Theorem 5.1. 

Theorem 6.2 Let Aj be defined by {6.12). Then there exist c > 0 and o E (0, 1) such 
that for all j E JN 

llA; -A.ill.c(~(/")) ~ c (r(t) + s(t) + f"+I-6/ 2) (6.69) 

holds. 

Proof: Recall that 
j 

A; - Aj = °E( Ci + RI + Si) 
l=l 

where Gp= (G;)*l = 0. Thus Lemma (6.6) gives the bound 

E c; ~ ad+i-s12. 
l 

The assertion follows now from Lemma 6.7. 0 

If 
limr(t) = lirns(t) = 0, (6.70) 
c-tO c-tO 

one immediately concludes from (6.69) that the (0, 0)-stability of A; implies (0, 0)-
stability of Aj for all 0 < f ~ fo provided to is sufficiently small. In the same way as 
before we may apply now Lemma 5.5 to prove the following result. 

Theorem 6.3 Suppose u* is the exact solution of {3 .. 4) and let u~ denote the solution 
of the compressed scheme Aju; = Q;f, where Aj is defined by (6.12). Furthermore, 
suppose that A; is (0, 0)-stable. Then there exist some fo > 0 and some constant c 
independent of j E JN and f E (0, to), such that for all 0 < f < fo 

llu* - u~llo ~ c (r(t) + s(t) + t:d+i-5/ 2) 

holds uniformly in j E JN. 

Computational costs: Note that the application of the operator Aj requires only 
0(2ni) operations. 
Remark : Since 

j j 

(A; -Aj)l = E Rp, (A; - Aj)*l = 2:::(Si)*l, 
l=l l=l 

the relation (6.65) can be reformulated as 
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Here II · llBMO denotes the norm in the space of functions of bounded mean oscillation 
BMO (cf.[34, 20]). Note that an unpractical condition like (6.70) is not needed when 
working with the wavelet representation since the operators A considered here are a 
priori known to be bounded in L2 (7n). 

On the other hand, for many interesting cases such a condition is, due to the 
structure of A, automatically satisfied or easy to verify. Trivial examples satisfying 
s(t:)+r(t:)-+ 0 as E-+ 0 are given whenever r~k = s~k = O, for l >No, k E ;zn,l, e E E0, 
or are geometrically decreasing with respect' to l. 'Moreover, as we have seen in the 
previous subsection, sufficiently small r(t:) + s(t:) can be easily achieved if one use e.g. 
varying cut-off bandwidths on different levels. 
Example: We wish to conclude this section by pointing out that too simplistic com-
pression strategies may indeed cause problems in connection with atomic representa-
tions. For the sake of simplicity we will only consider the technically somewhat simpler 
Euclidean space !Rn, which, however, exhibits already all the essential features. Let S 
be a singular integral operator given by 

Su(x) = j (j e21ri(e,x-y)u(e)u(y)dy)Je ,u E C(;°(F), (6.71) 
Rn Rn 

where e i--+ u(e), e # o, is assumed to be a bounded homogeneous function (of degree 
zero). Obviously, the operator S defines a bounded operator in L2(F). Asumme that 
<p generates a multiresolution analysis ... C (cp)i C (cp)i+l C ... (cf. (2.6)). Since the 
operators are invariant under the action of the affine group, i.e., they commute with 
translation and dilation operators, straightforward computation yields 

21n(S1/Je(21 • -k), cp(21 • -k')) = d~~k' = de,k-k' • (6.72) 

Here the coefficients d'{k' = de,k-k' are independent of l, k + k'. The corresponding 
extraction of constants can be performed by subtracting operators R1, Sf analogously 
to the periodic case. Since d'k~k' depends only on e E E0 and k - k' E ;zn the operators 
Ri' s; are induced by diagonal matrices, e.g., 

Rju( x) = L L 21nrt( (e(21 • -k ), u )<I>i,(21 x - k ), (6.73) 
eEEo ke££n 

where rf = Ee,k' de,k' is independent of k and the level l. Let r(t:) be defined in analogy 
to (6.63). Therefore r(t:) = 0 if and only if rf = 0 whereas r(t:) becomes unbounded 
otherwise. Indeed, for j E JtV we have 

(6.74) 

where, as above, nL =interior (supp<I>(21 • -k)). Thus (6.74) tends to infinity if j-+ 00 

unless r( t:) = 0. As an aside, setting E = 0 reproduces a known result, namely that for 
operators of type ( 6. 71) Le,k d~~' = Le,k de,k = 0 as well as Le' ,k g~•~' = Le' ,k 9e' ,k = 0 
necessarily hold for any k, k', e, l. Let us consider now constant compression on each 
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level by discarding those entries for which lk - k'I > c 1 or alternatively discarding 
all entries with absolute value below a given fixed threshold (cf. [4]). This seems 
to be natural in this case since the coefficients do not depend on the levels l. As a 
consequence of Theorem 6.2 and (6.74), our compression gives only small errors if the 
remainig coefficients satisfy the condition E{k:lklSt-1} de,k = 0 and E{k:lklSt-1} 9e' ,k = 0. 
Otherwise the error increases with increasingj. Here the situation becomes even worse 
since the norms of the compressed opera.tors Aj themselves tend to infinity as j -+ 6o 
according to the result of David Journee [21]. 

7 Summary of Estimates 

The previous results are collected in the following table showing the number of nonzero 
entries needed in the compressed ma.trices in order to achieve the desired optimal con-
vergence rate or fixed error bound. Here we set N = 2in which is the total number 
of unknowns and recall that the meshwidth is 2-;. For r ~ 0, we have not listed the 
best possible convergence rate in case it is not optimal. It is not hard to see that 
generally a. rate of 2-i(d+i+r) can be achieved. In case r < 0 we have not found optimal 
convergence rates and listed the result of Therorem 5.5. 

Error Bound f EN-a t::N-a t::N-a 

r=O r~O r<O 
Wavelet O(N), O(N), O(N) , 

s < d' + p s<d'+p+~ s < d' + p + r 
Representation O(N), O(Nlog N), O(Nlog N), O(NlogN), 

s<d+l s<d+l+~ s<d'+l+r 
O(Nlog2+2c~+1i N) , 0( N log2+ 2(d!7+r) N) , O(Nlog2+2(a!~+r) N) , 

s=d+l s=d+I+~ s=d+l+r 
( not quasi optimal ) 

Atomic O(N) 

Representation 

References 

(1] B. Alpert, Sparse representation of smooth linear operators. Preprint, PhD 
Thesis, Yale University 1990. 

62 



[2] B. Alpert, G. Beylkin, R. Coifman, V. Rokhlin, Wavelets for the fast solution of 
second-kind integral equations. Preprint, Yale University 1990. 

(3] M.S. Agranovich, On elliptic pseudodifferential operators on a closed curve. 
Trans. Moscow Math. Soc. 47 (1985), 23 - 74. 

(4] G. Beylkin, R. Coifmann, V. Rokhlin, The fast wavelet transform and numerical 
algorithms, Comm. in Pure and Appl. Math., 44 (1991), 141-183. 

[5] G. Beylkin, On the representation of operators in bases of compactly supported 
wavelets, SIAM J. Nu.mer. Anal., 29 (1992), 1716-1740. 

[6] A. Brandt and A.A. Lubrecht, Multilevel matrix multiplication and fast solution 
of integral equations, J. Comp. Phys., 90 (1991), 348-370. 

(7] A.S. Cavaretta, W. Dahmen, C.A. Micchelli, Stationary Subdivision, Memoirs of 
the American Math. Soc., Vol. 93, No. 453, (1991 ). 

(8] C.K. Chui, An Introduction to Wavelets, Volume 1, Academic Press 1992. 

(9] C.K. Chui, J. Stockier, J.D. Ward, Compactly supported box spline wavelets, 
Technical report, Preprint 1990. 

(10] A. Cohen, I. Daubechies and J.-C. Feauveau, Biorthogonal bases of compactly 
supported wavelets, Comm. in Pure and Applied Math., 45 (1992), ~85-560. 

[11] R. Coifman, Y. Meyer, Au-dela des Operateur Pseudo-Differentiels. Asterisque, 
no. 57. Societe Math. de France 1978. 

(12] W. Dahmen, Locally finite decompositions of nested spaces and applications to 
operator equations, to appear in: Algorithms for Approximation, M.G. Cox and 
J.C. Mason edts. 

[13] W. Dahmen, A. Kunoth, Multilevel preconditioning, Numerische Mathematik, 63 
(1992), 315-345. 

[14] W. Dahmen, C.A. Micchelli, Recent progress in multivariate splines, in: Approxi-
mation Theory IV, C.K. Chui, L.L. Schumaker, J.D. Ward edts., Academic Press, 
1983, 27-121. 

[15] W. Dahmen, C.A. Micchelli, Biorthogonal wavelet expansions, in preparation. 

[16] W. Dahmen, C.A. Micchelli, Using the refin~ment equation for the evaluation of 
integrals of wavelets, FU-Preprint, 1991, to appear in SIAM J. Numer. Anal. 

[17] W. Dahmen, S. Prof3dorf, R. Schneider, Wavelet approximation methods for pseu-
dodifferential equations I: Stability and convergence, Preprint Institut fiir Ange-
wandte Analysis und Stochastik No. 7, 1992. 

63 



[18] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. m 
Pure and Appl. Math. 41 (1988), 909-996. 

[19] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series 
in Applied Mathematics 61, 1992. 

[20] G. David, Wavelets and Singular Integrals on Curves and Surfaces, Lecture Notes 
in Mathematics 1465, Springer Verlag 1991. 

[21] G. David and J.-L. Journee, A boundedness criterion for generalized Calder6n-
Zygmund operators, Ann. of Math. , 120 (1984), 371-397. 

[22] R. De Vore, B. Jawerth, V. Popov, Compression of wavelet decompositions, Tech-
nical Report, Preprint 1990. 

[23] R. DeVore, V. Popov, Interpolation of Besov spaces, Trans. Amer. Math. Soc., 
305 (1988), 397-414. 

[24] W. Hackbusch and Z.P. Nowak, On the fast matrix multiplication in the boundary 
element method by panel clustering, Numer. Math., 54 (1989), 463-491. 

[25] A. Harten and I. Yad-Shalom, Fast multiresolution algorithm for matrix-vector 
multiplication !CASE Report No. 92-55, 1992. 

[26] L. Hormander, The Analysis of Linear Partial Differential Operators, vol. 1-4, 
Grundlehren, Springer Verlag, Berlin, Heidelberg, New York, Tokio 19$5. 

[27] R.Q. Jia, C.A. Micchelli, Using the refinement equation for the construction of pre-
wavelets, in: Curves and Surfaces (P. Laurent, A. Le Mehante, L.L. Schumaker, 
eds.), Academic Press, New York, 1991. 

[28] H. Kumano-go, Pseudodifferential Operators. MIT-Press, Boston 1981. 

[29] S. Mallat, Multiresolution approximation and wavelet orthonormal bases of L2 , 

Trans. Amer. Math. Soc., 315 (1989), 69-87. 

[30] W. McLean, Local and global description of periodic pseudodifferential operators, 
Math. Nachr., 150 (1991), 151-161. 

[31] W. McLean, Periodic pseudodifferential operators and periodic function spaces, 
Technical Report, Univ. of New South Wales, Australia 1989. 

[32] Y. Meyer, Wavelets and Operators, Proc. special year in modern analysis, Urbana 
1986/87. 

[33] Y. Meyer, Ondelettes et Operateurs 1 : Ondelettes. Hermann, Paris, 1990. 

[34] Y. Meyer, Ondelettes et Operateurs 2 : Opirateur de Caldiron-Zygmund, Her-
mann, Paris 1990. 

64 



[35] S. Pro:6dorf, R. Schneider, Spline approximation methods for multidimensional 
periodic pseudodifferential equations, Integral Equations and Operator Theory, 15 
(1992), 626-672. 

[36] S. Prossdorf, R. Schneider, Pseudodifference operators - A symbolic calculus for 
approximation methods for periodic pseudodifferential equations, TH-Fb Ma.th. 
Preprint , 1991. 

[37] S. Riemenschneider, Z. Shen, Wavelets and pre-wavelets in low dimensions, 
Technical report, Preprint 1991. 

[38] M.B. Ruskai et al. (eds.), Wavelets and Their Applications, Jones and Bartlett, 
Boston 1992. 

[39] G. Schmidt, On f-collocation for pseudodifferential equations on closed curves, 
Math. Nachr., 126 (1986), 183-196. 

[40] M.A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer Verlag, 
Berlin 1985. 

[41] E.M. Stein, Singular Integrals and Differentiability Properties of Functions , 
Princeton University Press, Princeton, N.J. 1970. 

[42] M. Taylor, Pseudodifferential operators, Princeton University Press, Princeton, 
N.J. 1981. 

65 



Veroffentlichungen des Instituts fiir Angewandte Analysis 
und Stochastik 

Preprints 1992 

1. D.A. Dawson and J. Gartner: Multilevel large deviations. 

2. H. Gajewski: On uniqueness of solutions to the drift-diffusion-model of 
semiconductor devices. 

3. J. Fuhrmann: On the convergence of algebraically defined multigrid meth-
ods. 

4. A. Bovier and J.-M. Ghez: Spectral properties of one-dimensional Schrodin-
ger operators with potentials generated by substitutions. 

5. D.A. Dawson and K. Fleischmann: A super-Brownian motion with a single 
point catalyst. 

6. A. Bovier, V. Gayrard: The thermodynamics of the Curie-Weiss model with 
random couplings. 

7. W. Dahmen, S. ProBdor~ R. Schneider: Wavelet approximation methods for 
pseudodifferential equations I: stability and convergence. 

8. A. Rathsfeld: Piecewise polynomial collocation for the double layer potential 
equation over polyhedral boundaries. Part I: The wedge, Part II: The cube. 

9. G. Schmidt: Boundary element discretization of Poincare-Steklov operators. 

10. K. Fleischmann, F. I. Kaj: Large deviation probability for some rescaled 
superprocesses. 

11. P. Mathe: Random approximation of finite sums. 

12. C.J. van Duijn, P. Knabner: Flow and reactive transport in porous media 
induced by well injection: similarity solution. 

13. G.B. Di Masi, E. Platen, W.J. Runggaldier: Hedging of options under dis-
crete observation on assets with stochastic volatility. 

14. J. Schmeling, R. Siegmund-Schultze: The singularity spectrum of self-affine 
fractals with a Bernoulli measure. 

15. A. Koshelev: About some coercive inequalities for elementary elliptic and 
parabolic operators. 

16. P.E. Kloeden, E. Platen, H. Schurz: Higher order approximate Markov chain 
filters. 



17. H.M. Dietz, Y. Kutoyants: A minimum-distance estimator for diffusion pro-
cesses with ergodic properties. 

18. I. Schmelzer: Quantization and measurability in gauge theory and gravity. 

19. A. Bovier, V. Gayrard: Rigorous results on the thermodynamics of the dilute 
Hopfield model. 

20. K. Greger: Free energy estimates and asymptotic behaviour of reaction-
diffusion processes. 

21. E. Platen (ed.): Proceedings of the pt workshop on stochastic numerics. 

22. S. Profidorf (ed.): International Symposium "Operator Equations and Nu-
merical Analysis" September 28 - October 2, 1992 Gosen (nearby Berlin). 

23. K. Fleischmann, A. Greven: Diffusive clustering in an infinite system of 
hierarchically interacting diffusions. 

24. P. Knabner, I. Kogel-Knabner, K.U. Totsche: The modeling of reactive so-
lute transport with sorption to mobile and immobile sorbents. 

25. S. Seifarth: The discrete spectrum of the Dirac operators on certain sym-
metric spaces. 

26. J. Schmeling: Holder continuity of the holonomy maps for hyperbolic basic 
sets II. 

27. P. Mathe: On optimal random nets. 

28. W. Wagner: Stochastic systems of particles with weights and approximation 
of the Boltzmann equation. The Markov process in the spatially homoge-
neous case. 

29. A. Glitzky, K. Greger, R. Hiinlich: Existence and uniqueness results for 
equations modelling transport of dopants in semiconductors. 

30. J. Elschner: The h-p-version of spline approximation methods for Mellin 
convolution equations. 

31. R. Schlundt: Iterative Verfahren fiir lineare Gleichungssysteme mit schwach 
besetzten Koeffizientenmatrizen. 

32. G. Hebermehl: Zur direkten Losung linearer Gleichungssysteme auf Shared 
und Distributed Memory Systemen. 

33. G.N. Milstein, E. Platen, H. Schurz: Balanced implicit methods for stiff 
stochastic systems: An introduction and numerical experiments. 

34. M.H. Neumann: Pointwise confidence intervals in nonparametric regression 
with heteroscedastic error structure. 



35. M. Nussbaum: Asymptotic ·equivalence of density estimation and white 
noise. 

Preprints 1993 

36. B. Kleemann, A. Rathsfeld: Nystrom's method and iterative solvers for the 
solution of the double layer potential equation over polyhedral boundaries. 




