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Abstract

In the present paper we consider the radiosity equation over the boundary of a
polyhedral domain. Similarly to corresponding results on the double layer potential
equation, the solution of the second kind integral equation with non-compact integral
operator is piecewise continuous. The partial derivatives, however, are not bounded.
In the present paper we derive the first term in the asymptotic expansion of the
solution in the vicinity of an edge. Note that, knowing this term, optimal mesh
gradings can be designed for the numerical solution of this equation.

1 Introduction

The radiosity equation for a Lambertian diffuse reflector takes the form (cf. e.g. [5, 2]
and for the numerical treatment cf. also [8, 3])

u(P) — @/Su(@)c;(p,cz)d@s — E(P), PcS, (1.1)

[np - (@ — P)ling - (P — Q)]
P —QJ

where S is the boundary 99 of a bounded domain Q@ C IR® and np is the unit normal
to S pointing into ) at P € S§. The right-hand side E is the known emissivity function,
and the coefficient p is the reflectivity satisfying 0 < p(P) < 1. The visibility function

V(P,Q) is 1 if the straight line segment {P + A PQ: 0 < A < 1} is contained in the

interior of Q and V(P,Q) = 0 otherwise. The unknown function u is the radiosity. We
write (1.1) shortly as (I — Kg)u = E.

G(P7 Q) =

V(P7 Q))

For the edge asymptotics, we need the following assumptions:

(A1) The surface S is the boundary of a polyhedron €2 and O the point at which we seek
the asymptotic expansion of u is an edge point. The tangent cone of S at O is
the union of two half planes H; and H,. The coordinate system with coordinates

(z,vy,2) is chosen such that O = (0,0,0) and

H = {(z,y,0): —0o<y<oo, 0<z< o0},
H, = {(zcosp,y,zsingp): —oco<y<oo, 0<z < o0}

where the angle ¢ between H; and H, satisfies 0 < ¢ < 27.

(As) Let us denote the union of the visibility set {W € S : V(P,W) = 1} with the
two faces containing O by Qp and its boundary 0{2p C S by I'p. For P in a small
neighbourhood of O, we assume that I'p is the union of two parts I' and T'p with
T independent of P and T'p varying with P. Usually I' is the union of edges such
that one of the adjacent faces is visible from O and the other not. The polygonal
curve I'p is the boundary line of the shadows on S thrown by T if a light source is
placed at P (cf. Figure 1). We suppose that T'o contains no vertex and intersects
each edge of S in at most one point. Moreover, we assume that, for any @ € To,
there exists exactly one point between O and @ which belongs to S.



Figure 1: Cross section of  through O.

(A3) Suppose E is bounded and twice continuously differentiable over each face of 5,
i.e. the derivatives exist in the interior of the face and extend continuously to the
boundary.

(A4) Suppose p is twice continuously differentiable over each face of S and equal to the
constant values p; and p; over H; N S and H, N S, respectively.

In the case that O is an interior point of a face of S, i.e., in the case ¢ = 7, the solution
u of (1.1) is twice continuously differentiable (cf. Corollary 3.1 and Remark 3.1). For the
case ¢ # m, we get

Theorem 1.1 If the Assumptions (A1)-(As) are fulfilled, then in a neighbourhood of O

the solution u of (1.1) can be represented as

w(P) = u(zp,yp,0) = %1 (yp) + ¢35 (yp)z} + ¥ (zp, yp), (1.2)
w(Q) = u(zqcosp,yq,zqsing) = Pi2(yq) + %52 (ye)zy + Y32 (2q, ¥q)-

Here P = (zp,yp,0) € Hi, Q = (zgcos ¢,yg,zgsin p) € Hy and zp as well as zg are
just the distances of P and Q) to the edge Hi N Hy. The singularity exponent v, 0 < v < 1
is a constant depending only on /o102, and ¢ (cf. Figure 2, Table 1, (2.11), and the end
of the next section). The functions I and Y2 are twice continuously differentiable, the
singularity coefficients I and Y2 once continuously differentiable and, for a sufficiently
small § > 0, the remainder functions Y= and Y2 are once continuously differentiable if
y € [—6,8] and z € (0,6]. Moreover, for a suitably small € > 0, there holds

‘8’“ o
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Figure 2: Exponent v depending on [91/292/2] and ¢/7.

Note that, the first term in the asymptotics may be helpful to design optimal mesh
gradings for numerical methods to solve (1.1). We believe that, analogously to the case
of the double layer integral operator, in many situations the edge singularities will be
stronger than those of the vertices. In this case, only the edge singularities are important
for the mesh gradings.

The remainder of the present paper is devoted to the verification of Theorem 1.1. Using
localization techniques, we reduce the derivation of the asymptotics to the analysis of
a one-dimensional Mellin convolution equation. A sketch of this localization and the
computation of the exponent v from the zeros of the Mellin symbol is provided in Section
2. Details follow in Section 3. In Section 4 we present the results of a numerical test in
which we have tried to compute the exponents v of the edge asymptotics approximately.
Finally, we remark that the Mellin techniques applied in this paper are well known. A
complete overview over the historical development, however, would be longer than the
present article. Therefore we only mention the two quite recent works [6, 7], where the
asymptotic behaviour of solutions to partial differential equations and to one-dimensional
integral equations is analyzed.

2 The Exponents of the Asymptotics

Now we reduce the computation of the asymptotics to the solution of a Mellin convolution
equation over a one-dimensional curve. As we shall see in the next section, the asymptotics
depends on local properties only. Thus, without loss of generality, we may suppose:



Angle /7 | Reflectivity /o1, 02 | Exponent v
0.100 0.200 0.983
0.100 0.467 0.954
0.100 0.733 0.859
0.100 1.000 0.208
0.367 0.200 0.910
0.367 0.467 0.771
0.367 0.733 0.610
0.367 1.000 0.419
0.633 0.200 0.921
0.633 0.467 0.830
0.633 0.733 0.747
0.633 1.000 0.670
0.900 0.200 0.985
0.900 0.467 0.974
0.900 0.733 0.964
0.900 1.000 0.954

Table 1: Some values of exponent ~.

e The influence of remote boundary parts of S can be neglected. We suppose that S
coincides with the tangent cone T' := H; U Hs.

o We observe that V(P, @) is different from 1 only if at least one argument P or @ is
not close to 0. Hence, for the localized situation, we may suppose that the visibility
function V is identically equal to 1.

e The right-hand side function E and the solution V depend smoothly on the variable
y in edge direction. Therefore we can freeze the dependence on y and suppose

E(z,y,z) = E(z,0,2) and u(z,y, z) = u(z,0, z). We introduce

Ei(z) := E(z,0,0),

Ex(z) := E(zcos p,0,zsin p),

ui(z) = u(z,0,0),

us(z) = u(zcos ¢,0,zsin @). (2.1)

For P = (zp,yp,0) € Hy and @ = (zg cos ¢, yg, zg sinp) € H,y, we get np = (0,0,1) and
ng = (sinp, 0, — cos ). The kernel kr of the integral operator Kr (cf. (1.1) and replace
S by T') over T takes the form

ifU,W e Hy
0 orif U,W € H,
. 2
P181N" Y TpILQ i = =
) ; fU=P,W=Q.
kr(U,W) = T [a:f; T a:zQ —2cospzprg + (yp — yQ)z] 22
p25in® p zpzq ; HW=PU=Q
T [az?; + 2 —2cos pzprqg + (yp — ?/Q)z]



Using (2.1) and the fact that u is independent of y, we arrive at

KT’U, / / kT P Q)dde:IJQ (23)
02 sin? P / uz(fEQ)fIJPIEQ /oo dyq dzg
= = - 2
T 0 —o0 [m%_|_a;2Q—2cosgDmP$Q—|-(yP—yQ)2]
<92 oo
W/O uy(zg) il sdzg

a:f; + a:zQ —2cospzpxg
o 1
= / 2 (m—P> —u(zq)dzg ,
0 :IJQ :IJQ

_ pasin’g 3
ko(€) = RNz el (2.4)

Similarly, we obtain

Kru(Q / / P)kr(Q, P)dypdzp = /Ooo k1 (m—Q) iul(ar:p)da:p , (2.5)

Ip/ Tp

_ prsin®o £
k(6 = T VETT —2cosp

Consequently, Kru is independent of the edge variable y. Equation (1.1) over T is equiv-
alent to the one-dimensional system of equations

(Z:>_<K? 5{2><Z:>:<§:> (2.7)
Kiu(z) = [~k (g) Fu(E)dt,

where K; is a Mellin convolution operator. To analyze a Mellin convolution operator we
need the Mellin transform. Using this, we shall derive a representation for the Mellin

(2.6)

transform of the solution functions u; and u,. From this representation we shall obtain
the asymptotics.

For a function f over the half axis, we introduce its Mellin transform M f = f by

f(z) = /Ooof(a:)azz_lda:.

If | f(z)| < Cz7P for z — o0, if |f(z)] < Cz~*forz — 0, and if <ﬁ,thenf( ) exists
and is analytic for @ < Re z < 8. Knowing f and the decay property |f( ) < C(1+4]z])72
the function f can be reconstructed by the inverse M~ of M.

1 A
) = — 2)z *dz, a < 2z )
f(a) o JG) @<z <

27

In particular, the estimate |f(z)| < C(1+12])7%, a < z < B implies that, for sufficiently
small positive €,

C{ z7* ¢ forz — 0 (2.8)

z Bt for z — o0



Now the Mellin convolution operator is transformed into multiplication by
(Kiw)" (2) = ki(2)i(2).

In particular, for the identity I, we get (Iu;)"(z) =1 -4,(2). Consequently, (2.7) leads to

(Z: ) ( —ii 1_];2 >_1 ( 2 ) : (2.9)

We observe k; = p; m(z) and (cf. [4], p. 310, formula (22) and change the exponent of
the sine function from the wrong value v — 0.5 to the correct value 0.5 — v)

o0 1.2 z
m(z) = / Sl e sdz
0 2y/z2+1—2zcosp

1 1
= sing B(z—l—l,Z—z)”ﬂ o FY (1—2,2;2;ﬂ),
1 —cosp 2

where B(z,y) = I'(2)I'(y)/T(z + y) is the beta function and 5 F; is the hypergeometric

series

N & T(ar + k) (az + E)T(B) P
Fileneaibiz) = 2 O TG R B

k=0

Note that m(z) is analytic for —1 < Rez < 2.

The asymptotics of a function f can be determined from its Mellin transform. For a
fixed complex number zg, the inverse Mellin transform of the function z — 1/(z — 2q) is
°. Consequently, if f(z) is meromorphic for —1 < Re z < 2¢ and has simple poles

T x

only, then we get

flz) ~ > coz ™ 4+ 0(2'7%), z—0, (2.10)

zo: pole of fin {z: —1<Re z<e}

for any small e > 0. The numbers c,, are constants. Hence, it suffices to determine the
poles of 4 and 4,. The functions E; and E, are smooth by assumption. They satisfy
E; ~ e; + O(z'~°) with constants e;. This means that the functions E’i, 1 = 1,2 are
meromorphic with a simple pole at 0. By (2.9) the functions %;, ¢+ = 1,2 have poles
at 0 too. This corresponds to a constant (i.e. not depending on y) term ; = ’l,bfll in
the asymptotic expansion (1.2). To get further terms, we need the poles of the matrix
function on the right hand side of (2.9), i.e., the zeros of the determinant

det( —/i 1_];2 ) = (1 - 9192m(z)) (1 + 9192m(z)).

We seek the zero z = zo with the smallest absolute real part |Re z|. In view of (2.10), this
leads to u; = 91 + ¥2z” + O(z""°) with v = —2. To determine v, the following lemma
1s useful.

Lemma 2.1 i) For —1 < Rez < 2, we get m(Re z) > |Rem(z)|. Moreover, if Im z #
0, then there holds even m(Rez) > |Rem(z)|.



it) The function (—1,0.5] 5 y — m(y) is strictly monotone decreasing. It takes the
values m(—1+0) = 400 and m(0) = (1 4 cosp)/2.

Proof. i) The first assertion follows from
SiIlz © mRez

24/22 +1 — 2z cos

Rem(z) = /oo cos(Im zlog z)dz
0

3

0 2 Rez
|[Rem(z)] < / Sl sdz = m(Rez).
0 2y/z2+1—2zcosgp

ii) We conclude

(%) ZIIy 1 (%)
| o = [
0 /z2+1—2zcosp 0 1

Substituting z = ¢! for the variable of integration, we arrive at

1 1 ¢v _de o ¢i-v
/0 T /°° \/5_2-|-1—2§_1cos<,03 'S ' /1 \/ﬁz-l-l—2§cosc,03d€7

/Ooo z dez = /100 L {my + azl_y} dz.

\/a:2—|—1—2a:cosc,03 \/a:2—|—1—2a:cosc,03

The last expression is monotone decreasing since y +— z¥ + '™V is decreasing for y < 0.5.
"

Corollary 2.1 The function (1 — \/o10am(2))(1 + \/o102m(2)) has ezactly one real zero
wn the strip —1 < Rez < 0.5. This zero is negative and it is just that zero in the strip
—1 < Rez < 0.5 with the smallest absolute real part |Re z|.

Proof. From Lemma 2.1 ii) we derive that there is exactly one simple real zero of
(1 — /p102m(2)) in the interval (—1,0) and no further real zero in [0,0.5). The function
z — (1 + \/p1p2m(z)) is positive on (—1,0.5). Let the negative real zero be —v and
suppose z is another zero of (1 + ,/p1pam(z)) with Im 2z # 0 and —1 < Rez < 0.5. Then
we get

1
Rem(z) = =+ ,
(=) /0102
1
m(Rez) >

(1 —y/o102m(Rez)) <

Since (1 —4/p102m(0)) > 0 and since y — (1 —/p102m(y)) is strictly monotone increasing
over (-1,0.5), there is a zero of y — (1 — \/p102m(y)) between Rez and 0. Thus Rez <
—vy < 0. "

The actual value of v depending on ,/p1p2 and on ¢ can be computed numerically. Using
Maple, this can be done for an angle of e.g. ¢ = 1.2345 and a reflectivity of e.g. (/o102 =



0.12345 with the following program:

with(inttrans);
readlib( hypergeom);
Sy :=(a,r,y) —> 1 —r*sin(a)* Beta(y + 1,2 — y)x

sqri{ (1 + cos(a))/(1 — cos(a)) ) » hypergeom((L —y,],[2], (1 + cos(a))/2);
Ez :=(a,r) —> —fsolve( Sy(a,r,y)=0,y,—1..0.5);
evalf(Ex(1.2345,0.12345));

Results of such computations are presented in Figure 2 and Table 1. Finally, we note that

m(z) depends only on sin® ¢ and cos ¢ but not on ¢. Hence, the exponent v = (, /o102, ¥)
satisfies

v(Vewer,0) = v(Verez2m — ). (2.11)

3 Details of the Localization

Now we turn to the details of the localization arguments mentioned in the beginning of
Section 2. We introduce cut off functions x and x’ which are smooth and concentrated in
a neighbourhood of O. For these and their supports, we assume x(U) = 1 and x'(U) =1
in a small vicinity of O and

suppx' C{P€S: x(P)=1} Csuppx CTNS.

Moreover, we assume that V(U,W) =1 for any U, W € suppx. To get an equation over
T, we write

(I_ KS)U’ = E7
X(I—-Ks)xu = XE+x'Ks(1—-x)u,
X(I—Kr)xu = XE+xKs(1—x)u,

(I-Kr)[xs] = R := —Ri+ R+ Rs, (3.1)
R, = [Krx — x'Kr]xu,
R, = X'E,
Ry = x'Ks(1—x)u.

Clearly, R, is piecewise twice continuously differentiable by Assumption (A43).

Lemma 3.1 i) The function Rz is continuously differentiable over each face of T.
Suppose additionally that, for any directional deriative Ou of the solution u and for
any point U € S not belonging to a small neighbourhood of the vertices, the estimate

Bu(U)| < Cdists, (3.2)

1s valid, where the erponent q satisfies —1 < q¢ < 0 and where dist stands for
the distance of U to the set of edge points of S. Then Rs is twice continuously
differentiable over each face of T'.



it) The derivatives 85PR1(P) of Ry, taken in edge direction yp over the half plane Hy,
are continuous for k = 0,1,2. The additional derivatives 8zpay 1(P), k=0,11n
the direction perpendicular to the edge are continuous at the points P € Hy which

do not belong to the edge. If C stands for a general positive constant independent

of P, then
\ak Ry(P \ < C, k=0,1,2, (3.3)
log |zp|™! ifzp < 0.5
k g|Zp P = B
Oap O, Ra(P)| < C{l Fons0s 0 F=0L (3.4)

Similar estimates hold over H,.

i) The function [x'u] is continuously differentiable with respect to the edge variable
over each face of T. For P € Hy, we get

‘8’“ x'u( ‘ < C, k=0,1. (3.5)

The function is twice continuously differentiable and (8.5) holds with k = 2 if (3.2)

1s valid. Stmilar estimates hold over H,.

Proof. i) In the case V' = 1 the kernel function of the integral operator x'Kg(1 — x)
and all its derivatives are continuous over each face of S and T' (cf. Assumption (A4)).
Hence, assertion i) follows even without the assumption (3.2). In the case that V # 1
the computation of the derivatives is more sophisticated. To get a formula, we fix a unit
vector d and consider the directional derivative

0p f(P) = lim f(P+ th) — /(P)

at the point P = O. For a Q € I'o, we know from Assumption (As) that there is exactly
one W € S such that OW@Q are collinear. To each point O’ = O + hd with sufficiently
small A there is exactly one point Q' € Lo such that O'W Q' are collinear. The shift

vector QQ is the image of the shift vector OO C T via “reflection” at point W. The
length of this vector satisfies (cf. Figure 3)

Vf/_) sin O_ﬁ/ 65'
i J(h) = pohtolh), = @] sn(OW,00)
| OW | sin(QW,QQ")

By ¢(®), 0 < ¢(Q) < m we denote the angle at @ between T'o and éé' We introduce
the factor

_ Jomsine(@) HV(0,Q)=1
HQ) = {—mn @(Q) i V(0,Q) =0

and the kernel kg

k(U W) = 9(;]) [nw - (U —|g/z][;;1|4' (w-wj




\

OI

\

Figure 3: Neighbourhoods of O and Q.

which is roughly speaking the kernel G of (1.1) without multiplication by the visibility
function V. With this notation and that from the introduction we get

o [x'Ks(1 —x)ul(0) = 9o [X'(0)ks(0, Q)] (1 — x(Q))u(Q@)deS +  (3.6)

Qo

[ 5(0)ks(0,@)(1 — x(@))] (@)u(Q)deT.

r

Indeed, without loss of generality, we assume that To is a straight line and that V(O', @)
is equal to 1. Retaining the notation O' = O + hd and setting af(Q) =QQ" /| QQ' |, we

observe

—

Qo \ Qo ={Q+Ad(Q): Q €To, 0< X< ji(R)}.
Consequently, we obtain

%{[X'Ks(l —x)ul(0") — [xX'Ks(1 — x)ul(0)}

= [ LK(0k5(0',Q) - X(0)ks(0, Q)1 (1 — x(Q))u(@)daS +

00 B
w050, @)1~ x(Q)u(@)eS:

Clearly, the first term tends to the first term on the right-hand side of (3.6). The second
can be written as

Lo i [ {xoms(0n @+ xd@n) (1 - xt@ + xdl)
u(Q + AJ’(Q))} sin ¢(Q)dAdeTo.

Taking into account that the functions @ — ks(O', @), @ — x(Q), and @ — u(Q) are
continuous at non edge points and that Z(k)sin ¢(Q) = u(Q)h + o(h), we conclude that

10



the last expression tends to the second term on the right-hand side of (3.6). Thus (3.6)
is proved.

Now the continuity of Op R3 follows easily from (3.6), the continuity of T'o, and the smooth-
ness of kernel [x'(0)ks(0,Q)(1 — x(@))] with respect to O and Q. To get the second
derivative of Rz, we have to differentiate (3.6) once again. The first term on the right-
hand side can be treated analogously to the first derivative of R3. For the derivative of
the second term, we observe that I'o is a polygonal curve each side of which depends
differentiably on O. The kernel function @ — [x'(0)ks(0,Q)(1 — x(Q))] and p are con-
tinuously differentiable and the derivatives of u remain integrable by assumption (3.2).
Hence, the second integral on the right-hand side of (3.6) is continuously differentiable
too. The function Rj is twice continuously differentiable if (3.2) holds.

ii) Let ke(U, W) = [x'(U) — x'(W)]kr(U, W)x (W) stand for the kernel of the integral
operator [Krx' — x'Kr|x. If diamsupp x denotes the diameter of the support of x, then
it is not hard to see that

U —W|™' if |U| < 2diam supp x

lkc(U,W)| < C<S 0 if U,W both on H; or H, (3.7)
U2 if |U| > 2diam supp x
U —-W|™2 if |U| < 2diam supp x

|Ouke(U, W) < C<q 0 if U,W both on H; or H, . (3.8)
U3 if |U| > 2diam supp x

Hence, for U € H; and |U| < 2diam supp x, we get

6y Ri(U)| < C U — W|2dwT < Clogdist(U, Hy)™

supp xNH>

and, for |U| > 2diam supp x,

By Ri(U) < C U|=*dwT < C|U|™

supp xNHs

This and the corresponding results for U € H, prove the assertions for the first derivative
taken in arbitrary direction.

Now suppose that U = P € H; and that the direction is parallel to the edge, i.e., Op = 0,,.
We can replace (3.7) by

np - (P —Q)||P - Q|7 if |P| < 2diamsuppx
k(PQ) < 010 i Q ¢ I, @39)
|P|~2 if |P| > 2diam supp x

The factor np - (P — @) equals —z¢ sin ¢ and is independent of the variable yp in edge
direction. Consequently, (3.8) can be improved to

Inp - (P — Q)| |P — Q| if |P| <2diamsuppx
B, ke(PQ) < €1 0 i Q ¢ I, - (310)
|P|~3 if |P| > 2diam supp x

We end up with
Inp - (P — Q)|

0,.R{(P)|<C
By Ba(P)| < supp xNHa [P - Q8

doT = C

np- (P —Q)
—— 2 doT| < C.
/uppxﬂHg |P — Q|3 @ -

11



The last estimate is a well-known fact for double layer kernels np - (P — Q)|P — @Q|™5.
Namely, the integral over this kernel is the solid angle under which the surface supp x N H,
is seen from the point P. This angle is smaller than the full solid angle 47. Thus all the
assertions for the first order derivatives are proved.

Using only the results on first order derivatives, we shall prove in part iii) that 8,,[x"u]
is continuous. If we shift O and the cut off functions a little bit, we get the piecewise
continuous differentiability at all points close to the edge. In other words, even 0y, [xu]
is continuous. On the other hand, the operator K7 has a kernel kr(P, Q) which depends
in edge direction only on the difference yp — yg. Consequently, K7 commutes with
differentiation in edge direction and we arrive at

Opp By = [K1(8ypX") — (Bypx') K] xu + [KrX' — X K1) Oy [XU].
Repeating the arguments from above, we conclude

0up O Ra(P)] < 0{ C log dist(P, Ha) ™" if |P| < 2diamsuppx
zp~yp =

C|P|2 else ’
C if |P| < 2diam supp x
2
10, Ba(P)] < { C|P|® else

iii) In view of the fact that K70, = 0,K7 we get
k _ k _
(I - Kr)9, [xu] = o0,R, k=0,1,2. (3.11)

Note that I — K7 is a bounded and invertible operator in L* (cf. e.g. [2]) mapping L*
into the space of piecewise continuous functions which are continuous over each face of 7.
Hence, I — Kt is bounded and invertible in the space of piecewise continuous functions.
Since the right-hand side in (3.11) is piecewise continuous and continuous over each face of
T for k = 0,1, we conclude that 85 [x'u] is continuous and bounded for £ = 0,1. Moreover,
if (3.2) is valid, then the right-hand side is piecewise continuous for ¥ = 2. Thus under
this assumption 02[x"u] is continuous and bounded over each face of T'. "

Corollary 3.1 If O is a point in the interior of a face, then ¢ = w, T 1s a plane, Kt =0,
and Ry = 0. In this case Lemma 8.1 i) and (8.1) imply that the solution u is continu-
ously differentiable at O. Moreover, if (3.2) holds, then u is even twice continuously

differentiable at O.

Now we set
w(zp) = [xu(zp,0,0),
uz(zq) = [x'ul(zqcosp,0,zqsinp).
We freeze [x'u] over T N{(z,0,2): z,z € IR} by defining
v(zw,yw,2w) = [Xul(zw,0,2w)

and set Ry := Kr([x'u] —v). Thus (3.1) changes into

[xv] - Krv = R4+ R. (3.12)

12



Introducing

ri(zp) = [Ra+ R|(zp,0,0),
r2(z@) = [Ra+ R](zqcose,0,zqsinyp)

and restricting (3.12) to TN {(=,0,2) : z,z € IR} yields (compare (2.7))

() -(a o) (i) - (0)- 539

Lemma 3.2 i) For the matriz operator on the right-hand side of (3.18), we get the

mverse
I —K, - _ I+Ki1 Kip (3.14)
-K; I Kyw I+Kyy )’ '

where the K;; are Mellin convolution operators

Kjif(z) = /Ooo kji (%) %f(ﬁ)dﬁ

with kernels k;; such that
kia(Q) = cjb(C)C + kiu(0), (3.15)

k vhe
‘(c%) fcj,l(o‘ < C{g: BeSt k=0 (3.16)

Here the cj; are constants, v is the exponent mentioned in Sections 1 and 2, and €
is a sufficiently small positive number. The function ( — 6(() is a smooth cut off
function which is equal to 1 for ( < 0.5 and equal to 0 for ( > 1.

it) The functions r;, 1 = 1,2 are continuously differentiable over (0,00) and satisfy

Iri(z)] < C, ‘d—rz(az) < Cloglz|™ if z < 0.5. (3.17)
T

Proof. i) Recall that l;j(z) is analytic for —1 < Rez < 2. Applying the definition of the
Mellin transform we conclude

A

[G%) kj] (z) = (—2)*ki(z), k=0,1,... (3.18)

and we obtain that even the (—z)kicj(z) are analytic and bounded in the strip —1 +¢ <
Rez < 2 — ¢e. Hence, |k;(2)] < C(1 + |z|)7* holds for any positive integer k and any z in

this strip. From
A A Ay =1
( 1+ ]f1,1 ki ) ) _ ( Al —k;, )
ko1 1+ koo —k 1



we obtain that the l;j,l have a simple pole at z = —v and no further poles for —y — ¢ <
Rez < g (cf. Corollary 2.1). On the other hand, the support of (m% —Y)[b(z)z"] =
§'(z)z*! is contained in [0.5,1]. Consequently, the Mellin transform of (mf—m)k(m% —
[0(z)z"], & = 0,1,... is an entire function which is uniformly bounded over the strip
—1 < Re z < 2. In view of (3.18), we conclude that (—2)*(—1)(z + )[0(-)(-)"]"(2) is
entire and uniformly bounded over the strip —1 < Re z < 2. Hence, the Mellin transform
[0(-)(-)]*(2) is meromorphic in —1 < Re z < 2. The only pole is the simple pole at

z = —v and
1) (=) < C+ 2, k=0,1,...

holds for |z 4+ | > ¢ and a constant C' depending on k and the small e. For a suitably
chosen c;; the function kﬁl(z) = kji(2)—c;[0(-)(-)"]*(2) is analytic over the strip —y—¢ <
Re z < ¢ and satisfies

Bz)| < CO+ e, k=0,1,....

Applying the inverse Mellin transform and using (2.8), we arrive at (3.16).

ii) In view of Lemma 3.1 i) and ii) it is sufficient to consider the restriction of function
Ry to TN {(z,0,2) : z,2 € IR}. The proof of the continuous differentiability for this
function, however, is completely analogous to the proof of Lemma 3.1 ii). The only
difference is that, for U = P = (zp,0,0) and W = @ = (zq cos ¢,yq,zg sin ¢), the
estimate |x'(U) — x'(W)| < C|U — W| for the factor [x'(U) — x'(W)] is to be replaced by

the estimate (cf. Lemma 3.1 iii))

X'ul(Q) ~ v(Q)

‘[X'U] (zq cos @,yq, zq sin ) — [x'u] (zq cos , 0, zq sin @)
< Cyq < CIP-Q)|.

for the factor [[x"u](@) — v(@)]. n

Corollary 3.2 There exist constant numbers co and cy and a differentiable function g
such that, for x < 0.5 and for sufficiently small € > 0,

u(z) = co+ vz + g(x), (3.19)

< Czvteh (3.20)

9@) < Cam, y—g

Of course, co, ¢y, and g depend on 1.

Proof. Applying (3.14) to (3.13), we observe that it is sufficient to prove the desired
representation (3.19) for K;;r;. We get

(Kjur)(z) = TI(O)(Kj,ll)(m)HKal (r1 —(0))] (z
= k;y(0)r (0)—|-Cjz <—> (%) 2 ) —ri(0)] d¢

I HIGROL
= ¢o+cyz” + g(z), (3.21)

14



where ¢ = g1 + g» and

91(z)

Cjl /Ooo {1 — 0 (%)} (%)7 % [r(€) — mi(0)] ¢,
we) = ["ha(5) O -0
e = e €7 In(e) ~ m(0)]de

Note that the integral defining ¢, is finite by Lemma 3.2 ii). It remains to estimate g.
Now suppose z < 0.5. Then Lemma 3.2 yields

z 2\ °1 . 05 2\ 1 .
n@)l < o[ (2) qergliacro [T(2) feosia
. Y+e
e[ (%) %d{ < Ozt (3.22)

The derivative takes the form

Lo = 4 /0°°;;j,,< )Hn(o—n(o»]de

This can be estimated as in (3.22).

For g; we conclude that, if = is small,

(@) < Co7 [

- (E) ‘ £ In(€) — m(0)] dé

2z
< Cz7 E 7 logédé < Cz'e,
0

@) = fou [TC06 (2] €m0 - n0) e
e [“{1-0(2) e o - no)ag
< € [ ¢ in(e) — (o) + O [ ¢ log e
< Cz°.
This completes the proof of (3.20). "

Remark 3.1 All the constants in Corollary 3.2 are independent of the point O at which
we consider the asymptotic expansion. From this, Lemma 3.1 4ii), and Corollary 3.1, we
conclude (8.2) for any point U not close to a vertex. Hence, the assertions on the second
order derivatives in Lemma 8.1 1) and iii) and in Corollary 3.1 are true.
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Corollary 3.3 There exist constant numbers dy and d, and a differentiable function h
such that, for x < 0.5 and for sufficiently small € > 0,

8,[x'u)(2,0,0) = do + dya” + h(a), (3.23)

d
|h(z)] < Cz"*, ‘ah(m) < Cztet, (3.24)

A similar representation holds for the function z — Oy[x'u](z cos ¢,0,z sin ¢).

Proof. The starting point is

(I — Kr)

o,xul| = O,

From this we can proceed analogously to the derivation of Corollary 3.2 from (3.1). Instead
of the function u; we have

vi(z) = 6y[Xlu](m7070)7
va(z) = Oy[x'u](z cos ¢,0,zsin @).

Setting w(z,y, z) := Oy[x'u/(=,0, z), we get Rs := Kr(0y[x'u] — w) instead of Rs. The
right-hand sides r; in (3.13) are to be replaced by s;1(z) := [Rs+ 0,R](z,0,0) and s3(z) :=
[R5+ 0y R](z cos ¢,0,zsin ¢). Using Lemma 3.1 and the arguments of the proof to Lemma
3.2 ii), we get that, analogously to (3.17),

< Clog |zt if z < 0.5. (3.25)

Instead of the entities in (3.21) we arrive at the corresponding entities

do = ki (0)s(0), (3.26)
dy = o €T [a6) — si(0)]de, (3.27)
h = hy+ hs, (3.28)
ha(z) = cj,,/om{1—e<§>}<§> %[s,(g)—s,(ondg, (3.29)

ba(a) = [ (%) 7 lo©) - 0 . (3.30)

With this notation the estimate for A is analogous to that for g. "

Now let us consider the y dependence of the coeflicients co, do, ¢y, d,, and of the function
h and g in Corollaries 3.2 and 3.3. To this end let the point O and the coordinate system
with coordinates (z,v,z) be fixed. Let O := (0,95,0) be another edge point and denote
the coordinates corresponding to this point by (Z, 9, 2). Obviously, (2,7, 2) = (z,y—yg, 2)-
If we apply Corollary 3.3 to O, we get

8,[x'ul(2,y5,0) = do+dy+ h(z) (3.31)

together with the corresponding estimates for h. We write do(yp) = do, dy(ys) == d
and h(z,ys) := h(z) and note that these entities are defined by (3.26)-(3.30) with s
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replaced by s;(z,ys) := &i(z). The function §(z) is the restriction of [Rs + Oy R] to
{(z,y5,2) : =,y € R} and Rs := Kr(d,[x'u] — Oy[x'u](-,yg5,-))- All these functions
depend continuously on ys and even the estimates (3.25) for s; replaced by §; are uni-
form with respect to y5. Consequently, the functions do(ys), dy(ys), and h(z,ys) are
continuous with respect to ys.

Integrating (3.31) with respect to y = ys, we obtain

u(z,,0) = u(2,0,0)+ [ u(z,n,0)dn (3.32)

Yy Yy
= cotoyFg(a +/ do(n dn+m”/ dv(77)01?7+/0 h(z,n)dn

= [c0+/0 dondn] [cﬁ/ dn]az +[ )+/Oyh(w,77)dn]-

Clearly, the function y — u(+0,y,0) = [co+ f do(n)dn] is twice continuously differentiable
by Lemma 3.1 iii) and Remark 3.1. Equation (3.32) and the estimates (3.20) and (3.24)
imply Theorem 1.1.

4 Numerical Test

In order to verify the first term of the edge asymptotics numerically, we consider the
two-piece wedge boundary of two triangles meeting along the x-axis at an angle of ¢, i.e.,

T = {(z,9,0): 0<z<l,0<y<]1—2z},
T, = {(z,ycosp,ysinp): 0<z<1l, 0<y<l-—z}.

Note that this 5 can be considered as a part of a polyhedral boundary S. If pand E
vanish over S\ 5, then the equation (1.1) over S reduces to an equation (1.1) over the
open surface S. We choose

siny
E 0) = —=
(#,3,0) 0.61°
) sin{y sin
E(z,ycosp,ysing) := %,
o(P) = {92 if P €Ty

Note that the special choice of the right-hand side F ensures that the “constant” terms
1/Jfli(y) in (1.2) are close to zero.

Using a program package of Atkinson which is an extended version of the package [1],
we solve (1.1) numerically by piecewise linear collocation. The surface is divided into
2048 uniform triangles of diameter A = 0.0442. The approximate solution is linear over
each of the triangles but not necessarily continuous. In the interior of each triangle three
collocation points are chosen. Thus the number of degrees of freedom is 6144. The
integrals in the coefficients of the arising linear system of equations are computed by a
change of variable followed by Gaussian quadrature if the integral is singular. They are
computed by a suitable subdivision combined with a seven point scheme if the integral

17



g1 | 02 \4 i Tn

0.6 106|057 |0.718 | 0.710
0.310.7 057 |0.782 | 0.814
0.6 106|097 | 0972 0.983

Table 2: Some values of approximate exponent .

is non-singular. The linear system is solved directly by Gaussian elimination. We denote
the approximate solution for u by uy.

To find an approximation for the exponent v, we consider the edge point (zo,0,0), zo =
23/64 which is relatively far from the boundary points of the open surface S. We restrict
the solution us to {(20,¥,0): 0 <y < 1—xo} and try to verify the asymptotic expansion
up(20,y,0) ~ C + Cy” + ... . If this is the real asymptotic behaviour, then

_ 10g[uh($07 4o, 0) - uh(m07 2yo, 0)] — 1Og[uh($07 2o, 0) — uh(moa Yo, 0)]

4.1
log 2 , (41)

’y%’yhi

where the error |y —-4| is small for sufficiently small yo and sufficiently small discretization
errors ||u — ug||ze(s). For our numerical tests, we have chosen yo = 0.01. Note that this
choice guarantees that the points (zo,yo,0), (20, 2y0,0), and (zo,4yo,0) (cf. (4.1)) belong
to three different subdivision triangles. Much smaller values yo would lead to the situation
that all the three points used for (4.1) are contained in one triangle. Then, due to the
linearity of the approximation up, we would get v, = 1. Much larger values y; lead to
larger errors |y — 75| due to the influence of higher order terms in the asymptotics.

In Table 2 we present some approximate values which seem to be in relatively good
agreement with the values predicted by Theorem 1.1. Note, however, that in general the
approximation of v by 7, is not very accurate. For the case g = p2 = 0.6 and ¢ = 7/2,
we compare the solution uy with a lower level solution u; and get the estimate 0.008 for
the discretization error. With this error tolerance applied to (4.1), we can only conclude
that the true v is contained in the interval [0.41,1.01].
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