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Abstract

The stationary Schrödinger�Poisson system with a self�consistent e�ective

Kohn�Sham potential is a system of PDEs for the electrostatic potential

and the envelopes of wave functions de�ning the quantum mechanical car-

rier densities in a semiconductor nanostructure. We regard both Poisson's

and Schrödinger's equation with mixed boundary conditions and discontinu-

ous coe�cients. Without an exchange�correlation potential the Schrödinger�

Poisson system is a nonlinear Poisson equation in the dual of a Sobolev space

which is determined by the boundary conditions imposed on the electrostatic

potential. The nonlinear Poisson operator involved is strongly monotone and

boundedly Lipschitz continuous, hence the operator equation has a unique

solution. The proof rests upon the following property: the quantum me-

chanical carrier density operator depending on the potential of the de�n-

ing Schrödinger operator is anti�monotone and boundedly Lipschitz contin-

uous. The solution of the Schrödinger�Poisson system without an exchange�

correlation potential depends boundedly Lipschitz continuous on the refer-

ence potential in Schrödinger's operator. By means of this relation a �xed

point mapping for the vector of quantum mechanical carrier densities is set

up which meets the conditions in Schauder's �xed point theorem. Hence, the

Kohn�Sham system has at least one solution. If the exchange�correlation

potential is su�ciently small, then the solution of the Kohn�Sham system is

unique. Moreover, properties of the solution as bounds for its values and its

oscillation can be expressed in terms of the data of the problem. The one�

dimensional case requires special treatment, because in general the physically

relevant exchange�correlation potentials are not Lipschitz continuous map-

pings from the space L1 into L2, but into L1.
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Introduction

Van Roosbroeck's equations provide a good landscape view on an electronic device, while
the Schrödinger�Poisson system portraits the individual features of a nanostructure within
the device. In a nanostructure electrons and holes can no longer move freely in all space

van Roosbroecks's point of view

electronic device

electrostatic potential

carrier densities

b


nanostructure
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nanostructure


electrostatic potential

envelopes of wave functions

Figure 1. Around the nanostructure and beyond

directions and the model of a three�dimensional electron�hole gas is not adequate any

more. Instead there is a two�, one� or zero�dimensional electron�hole gas and the densi-
ties of electrons and holes have to be computed by quantum mechanical expressions. A
suitable model for such a carrier gas with reduced dimension is the Kohn�Sham system
i.e. the stationary Schrödinger�Poisson system with a self�consistent e�ective Kohn�Sham
potential (cf. e.g. [2, 8, 19]). From the mathematical point of view this is a system of PDEs
for the electrostatic potential and the envelopes of wave functions de�ning the quantum
mechanical carrier densities in the nanostructure. It has to be supplemented by in general
mixed boundary conditions (cf. e.g. [7, 8]). For a two�, one� or zero�dimensional carrier
gas in a quantum well, quantum wire or quantum dot, the dimension d of the (bounded)

spatial domain 
 � b
 � Rd, where we regard the system, is d = 1; 2; 3, respectively.
In this paper we speci�cally treat the one�dimensional case (d = 1), i.e. quantum well

structures, and assume without loss of generality 
 = (0; 1) � (a; b) = b
. The two� and
three�dimensional case will be regarded in a forthcoming paper [13].

The coupling of the nanostructure to its environment is a widely discussed task in mod-
elling and simulation of semiconductor nanostructures (cf. e.g. [7, 19, 20, 21, 3]), but it
is open to mathematical validation [11]. The inclusion of the Schrödinger�Poisson sys-
tem into Van Roosbroeck's equations will be dealt with in this paper only as far as we
treat Poisson's equation on the whole device domain thereby assuming given quasi�Fermi
potentials on the part of the device domain which is not occupied by the nanostructure.
This allows to cope with realistic boundary conditions [8] for the electrostatic potential.

In view of modelling equilibrium situations we regard Schrödinger's operator with mixed
hard�wall and harmonic boundary conditions. This Schrödinger operator is selfadjoint,
has a pure point spectrum, and commutes with the complex conjugation on the under-
lying Hilbert space. In that case one always �nds a complete orthonormal family of real
eigenfunctions. Hence the quantum mechanical current vanishes on the whole nanostruc-
ture. Even more, the normal derivative of the carrier densities vanishes on the boundary,
cf. also �5.b. When leaving equilibrium situations, of course, in general there should
be currents over the boundary of the nanostructure [7, 21, 3]. Proper conditions at the
interface of the nanostructure and its environment are



� the continuity of each carrier density, and
� the continuity of the normal component of each current.

Aiming at the inclusion of the Schrödinger�Poisson system into Van Roosbroeck's equa-
tions one can meet them with a boundary condition for the current continuity equations
involving the quantum mechanical carrier densities in addition with the following bound-

ary condition for the Schrödinger operator

~

m
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where  is a state function, m is the e�ective mass, � the mobility, and � the quasi�
Fermi potential of the carriers under consideration, and � is the outer unit normal at

the boundary @
 of the nanostructure. If the macroscopic carrier density matches the
quantum mechanical carrier density

u =

1X
l=1

Nlj lj2;

(Nl is the occupation number of the state  l), on the boundary of the nanostructure,
then this condition ensures that the normal component of the phenomenological current
��u grad � matches the normal component of the quantum mechanical current

~

m

1X
l=1

Nl= [ �l grad l]

at the interface. However, the proposed boundary condition makes the corresponding
Hamiltonian essentially non�selfadjoint, which leads to the consideration of open quantum
systems (cf. [7, 3, 26]). We will treat the inclusion of the Schrödinger�Poisson system into
Van Roosbroeck's equations and in particular the Schrödinger operator with the boundary
condition (�) in two forthcoming papers [12, 14].

Up to now the mathematical investigation of the Schrödinger�Poisson system has been
concentrated on the special case of only one kind of carriers, homogeneous Dirichlet
boundary conditions imposed on the electrostatic potential as well as the eigenfunctions
of Schrödinger's operator, and without exchange�correlation e�ects (cf. [6, 23, 24, 25, 8,
1, 15, 16]).

Without an exchange�correlation potential the Schrödinger�Poisson system is a nonlinear
Poisson equation in the dual of a Sobolev space which is determined by the boundary con-
ditions imposed on the electrostatic potential. The nonlinear Poisson operator involved is
strongly monotone and boundedly Lipschitz continuous, hence the operator equation has

a unique solution, and one can establish various methods of descent for its approximative
determination [6, 24, 19, 15, 16]. For the method of steepest descent the electrostatic
potentials converge uniformly on the device domain which leads to convergence results
for the eigenvalues of the corresponding Schrödinger operators [15, 16]. The proof of the
stated results on the Schrödinger�Poisson system rests on the following property: the
carrier density operator depending on the potential of the de�ning Schrödinger operator
is anti�monotone and boundedly Lipschitz continuous. In establishing this property we
rely on form bounds of the Schrödinger operators and on the calculus of double Stieltjes

operator integrals [4, 5].

The analytical properties of the Schrödinger�Poisson system pass to the discretized system
(cf. [6, 24, 1]), thus allowing proper implementation of the above mentioned iterations,
e.g. based on a �nite box method as in [9].



If there is an exchange�correlation potential, then the Schrödinger�Poisson system cannot
be written anymore as a monotone operator equation neither for the electrostatic poten-
tial nor the densities. However, our calculus for the Schrödinger�Poisson system with
certain exchange�correlation potentials is based upon the results for the system with-

out exchange�correlation potential inasmuch we freeze the exchange�correlation potential
and regard it as a reference potential of a Schrödinger�Poisson systems without exchange�
correlation potential. First one can prove that the solution of the Schrödinger�Poisson
system without exchange�correlation potential depends boundedly Lipschitz continuous
on the reference potential in Schrödinger's operator. By means of this relation a �xed
point mapping for the vector of quantummechanical carrier densities is set up which meets
the conditions in Schauder's �xed point theorem. Hence, the Kohn�Sham system has at
least one solution. To that end the exchange�correlation potential should be a bounded
and continuous mapping of the carrier densities from the space L1 on a potential from

L1. If the exchange�correlation potential is boundedly Lipschitz continuous and the local
Lipschitz constant is su�ciently small, then the solution of the Kohn�Sham system is
unique.

In contrast to the cases d = 2; 3 in the one�dimensional case (d = 1) the physically relevant
exchange�correlation potentials in general are not Lipschitz continuous mappings from the
space L1 into L2, but into L1. It is due to this fact that we need a calculus for Schrödinger
operators with potentials from L1, and we get it by exploiting the theory of forms. At
�rst we get non�negative carrier densities from the space L1, which later turn out to be
much more regular.

Our present approach to the Kohn�Sham system rests upon the supposed L1�norm con-
servation for each kind of carriers. This is a reasonable assumption, as we do not take
into account an exchange mechanism of carriers between the nanostructure and the sur-
rounding device within this paper.

In the Schrödinger�Poisson and Kohn�Sham system the electrostatic potential acts via
the e�ective potential in each of the separate scalar Schrödinger equations for electrons
and holes. The densities of electrons and holes only couple in Poisson's equation. This
approach makes sense for the summary treatment of electrons and holes [17, Appendix
A]. For a more detailed investigation of the band structure one has to take into account

further band coupling by introducing matrix Schrödinger operators.

1. The one-dimensional Kohn�Sham system

The Kohn�Sham system is a system of equations governing the electrostatic potential '
and the vector u = (u&)&2f1;::: ;�g of carrier densities under consideration. Here and in the

following the indices & 2 f1; : : : ; �g indicate the particle species (electrons and/or holes).
The electrostatic potential and the carrier densities have to obey Poisson's equation

� d

dx

�
"
d

dx
'
�
= q
�
NA �ND +

X
&2f1;::: ;�g

e&u&

�
(1.1)

in the device domain b
 = (a; b). e& is +1 for holes and �1 for electrons, q is the magnitude
of the elementary charge, and " = "(x) denotes the dielectric permittivity. The right�
hand side of (1.1) is a charge distribution and consists of a �xed density NA � ND of
ionized dopants and the carrier densities which are de�ned by the state equations (1.2)



and (1.5). Outside the nanostructure there are the state equations

u&(x) = F&
�
�e&

�
'(x)� �&(x)

��
x 2 [a; b] n [0; 1];(1.2)

where we assume that the electrochemical (quasi�Fermi) potentials �& are given functions
which are �xed throughout this paper. F& are statistical distribution functions. In general
there is Fermi�Dirac statistics (cf. e.g. [8]), i.e.

F&(�) = c&F 1
2
(�);(1.3)

where F�(�) denotes Fermi's integral of order �

F�(�) =
1

�(� + 1)

Z
1

0

��

1 + exp(� � �)
d� � > �1; � 2 R:(1.4)

Inside the nanostructure the carrier densities have to be computed by the quantum me-
chanical expressions

u&(V&)(x) =

1X
l=1

Nl;&(V&) j l;&(V&)(x)j2 ; x 2 
 = (0; 1); & 2 f1; : : : ; �g :(1.5)

The Nl;& are the occupation factors

Nl;&(V&) = f& (El;&(V&)� EF;&(V&)) ; & 2 f1; : : : ; �g ;(1.6)

where EF;& denotes the Fermi level, and f& the thermodynamic equilibrium distribution
function of the &�type carriers.

El;& = El;&(V&) are the eigenvalues (counting multiplicity) and  l;& =  l;&(V&) the corre-
sponding orthonormal eigenfunctions of the one�electron Schrödinger operator in e�ective�
mass approximation (Ben�Daniel�Duke form) with the e�ective Kohn�Sham potentialV&�

�~
2

2

d

dx

�
m�1
&

d

dx

�
+V&

�
 l;& = El;& l;& in 
 = (0; 1)(1.7)

where m& = m&(x) is the the position dependent e�ective�mass of &�type carriers. The ef-

fective Kohn�Sham potentials depend on the carrier densities, and split up in the following
way

V&(u) = �e&�E& + Vxc;&(u) + e&q'(u)j[0;1];(1.8)

where '(u)j[0;1], denotes the restriction of the electrostatic potential '(u) to the domain


 = (0; 1) of the nanostructure. The band�edge o�sets �E& are given external poten-
tials representing the electronic characteristics of the material. Vxc;& are the exchange�
correlation potentials, which depend on the particle densities. Generic expressions for
Vxc;& are

Vxc;&(u) = ��& u�&& ; �& > 0; 0 < �& � 1:(1.9)

The Fermi level EF;& = EF;&(V&) of the &�type carriers is de�ned by the conservation law

N& =

Z 1

0

u&(V&)(x)dx =

1X
l=1

f&
�
El;&(V&)� EF;&(V&)

�
;(1.10)

N& being the �xed total number of &�type carriers in the nanostructure domain 
 = (0; 1)
under consideration. The distribution functions f = f& , & 2 f1; : : : ; �g depend on the
reduced dimension of the carrier gas. In the one�dimensional case (d = 1) there is

f(s) = cF0
�
� s
�

�
= c ln

�
1 + exp

�
� s
�

��
;(1.11)



with positive constants c and �. The corresponding primitive is

F (t) = �
Z

1

t

f(s)ds = �c� F1
�
� t

�

�
= �c� diln

�
1 + exp

�
� s
�

��
;(1.12)

and the derivative is

f 0(s) = � c
�

�
1 + exp

� s
�

���1
:(1.13)

1.1. Remark. The expressions (1.5) and (1.6) apply to electrons as well as to holes, i.e.
the energies (and the Fermi level) of quantum mechanical electrons are scaled in the usual
way, whereas energies (and the Fermi level) of quantum mechanical holes are counted on
a negative energy axis. However, classical electrons and holes both have been treated on
the usual energy axis (cf. (1.2)).

In semiconductor device modeling one has to cope in general with rather complex, mixed

boundary conditions [8]. As far as the electrostatic potential ' is concerned, we regard
the following ones

'(x) = '�̂(x) if x 2 b�,
�" d

dx
'(x) = k ('(x)� '�̂(x)) if x 2 fa; bg n b�,(1.14)

where the function '�̂, de�ned on the closure [a; b] of b
, represents the boundary values

given on b� and the inhomogeneous boundary condition of third kind on fa; bg n b�. Points
from b� model Ohmic contacts, while points from fa; bg n b� model interfaces between the
semiconductor device and an insulator (with capacity k � 0) or homogeneous Neumann
boundary conditions (k = 0) (cf. [8]).

It is is a widely discussed question, how to supplement the Schrödinger operators (1.7)
by suitable boundary conditions (cf. e.g. [7, 19, 20]. We take into account the following
mixed boundary conditions

 (x) = 0 if x 2 �,
d 

dx
(x) = 0 if x 2 f0; 1g n �(1.15)

for all  in the domain of the Schrödinger operator from (1.7). If we assume a device
structure which con�nes the charge carriers, then the carrier densities vanish on the
boundary of 
 = (0; 1) and there should be a depletion zone around the nanostructure
(cf. [19]). We will prove in �5.b that the boundary conditions (1.15) are compatible with
this assumption. We admit mixed boundary conditions in view of modeling cuts through

rotational symmetric nanostructures with homogeneous Dirichlet boundary conditions for
the eigenfunctions on the physical boundary.

2. Mathematical formulation of the problem

In view of typical applications [8, 9], our mathematical model must necessarily cover semi-
conductor heterostructures, i.e. the coe�cients of Schrödinger's and Poisson's operator
are in general discontinuous. This forecloses in particular the domain of the Schrödinger

operator lying in W 2;2, what is commonly used elsewhere, [24, 25, 15]. Fortunately, in the
one�dimensional case the W 1;2�calculus already leads to satisfactory results. In order to
represent the homogeneous Dirichlet boundary conditions we have to introduce adequate

subspaces of the spaces[W 1;2 =W 1;2(a; b) and W 1;2 = W 1;2(0; 1).



2.1. De�nition. Let b� � fa; bg and � � f0; 1g be the (possibly empty) sets of Dirichlet

boundary points of the spatial domains b
 = (a; b), and 
 = (0; 1), respectively. We de�ne

[W 1;2
b�

= [W 1;2 \
�
v : v(b�) � f0g

	
;(2.1)

W
1;2
� = W 1;2 \

�
v : v(�) � f0g

	
;(2.2)

and denote the corresponding dual spaces by\W
�1;2
b�

and W
�1;2
� , respectively.

2.2. Remark. In the following we will generally index function spaces which refer to the

spatial domain b
 = (a; b) with a hat, while the symbols without a hat are reserved for

spaces which refer to the spatial domain 
 = (0; 1).

Next we introduce a precise notion of the Schrödinger operator.

2.3. De�nition. For any & 2 f1; : : : ; �g suppose m = m& to be in L1 with positive
values such that m�1 is also from L1. If V is any real valued function from L1, then the

Schrödinger operator HV : W 1;2
� 7�! W�1;2

� corresponding to the potential V is de�ned
by

hHV v;wi =
~
2

2

Z 1

0

m(x)�1 v0(x)w0(x)dx+

Z 1

0

V (x)v(x)w(x)dx; v; w 2 W 1;2
�

The de�nition is justi�ed, because W
1;2
� continuously embeds into L1. Thus, the second

term on the right hand side of (2.3) is always �nite and de�nes a continuous bilinear form

on W 1;2
� . In particular, we denote the operator with zero potential by H0. The restriction

of the operators just introduced to other range spaces, in particular L2, we also denote
by HV .

We notice some properties of the operators HV which are essentially used in the formula-
tion of the problem and will later be deduced from the results stated in Proposition 3.3.

2.4. Theorem. For any real valued V from L1 the restriction of HV to the range space
L2 is selfadjoint, has a complete orthonormal system of eigenfunctions and all eigenvalues
are real.

About the quasi Fermi potentials, the statistical distribution functions, and the thermo-
dynamic equilibrium distribution functions we assume:

2.5. Assumption. The functions �&, which represent the quasi Fermi potentials in (1.2),

are from[W
1;2
b�
.

2.6. Assumption. The statistical distribution functions F& : R 7�! [0;1[ in (1.2) are

monotone and locally Lipschitz continuous. Hence, the mappings F& :
[W

1;2
b�

7�!\W�1;2
b�

which are given by

F&(v); w

�
= q

Z
(a;b)n(0;1)

e&F&
�
e&
�
�&(x)� v(x)

��
w(x) dx; v; w 2[W 1;2

b�
:(2.3)

are monotone and locally Lipschitz continuous. Indeed, the Fermi�Dirac distribution
function (1.3), which we have mainly in mind, is monotone and locally Lipschitz contin-
uous.



2.7. Assumption. The thermodynamic equilibrium distribution functions f = f&, & 2
f1; : : : ; �g from (1.5) are positive, di�erentiable, strictly monotonously decreasing func-
tions on R. For any � 2 R the quantities

sup
s2[ 12 ;1[

f(s+ �)s3 and sup
s2[12 ;1[

f 0(s+ �)s4(2.4)

are �nite. This assumption covers the distribution functions (1.11).

In applications of the Birman�Solomjak theoremwe will frequently encounter the following
functions g, which are closely related to the distribution function f .

2.8. De�nition. Let f be in accordance with Assumption 2.7, k be one of the numbers
1 or 2, and � be an arbitrary real number. We introduce the functions

gk;� : [0; 2] 7�! R; gk;�(t) =

(
f
�
t�1 + �

�
t�k for s > 0

0 for s = 0
(2.5)

and denote by

Lk;� = sup
t2[0;2]

���g0k;�(t)���(2.6)

the corresponding Lipschitz constants which are �nite by Assumption 2.7, and can easily
be expressed in terms of the distribution function f .

2.9. De�nition. Let & be in f1; : : : ; �g, f = f& be a distribution function ful�lling
Assumption 2.7, and m = m& as in De�nition 2.3. We de�ne the pseudo carrier density
operator corresponding to f and m by

eN (V )(x) =

1X
l=1

f
�
El(V )

��� l(V )(x)
��2; V 2 L1; x 2 [0; 1]:(2.7)

Here the El(V ) and  l(V ) are the eigenvalues and L2�normalized eigenfunctions, respec-
tively, of the Schrödinger operator HV fromDe�nition 2.3. Further we de�ne the &�particle
density operator N = N& by

N (V ) = eN �V � EF (V )
�
;(2.8)

where EF (V ) = EF;&(V ) is the Fermi level de�ned byZ 1

0

N (V ) dx =
X
l

f(El(V )� EF (V )) = N;(2.9)

N = N& being the �xed number of &�type carriers. We avoid whenever possible the
indexing with &, as in this de�nition.

2.10. Remark. A priori it is evident only for potentials V 2 L1 that the Fermi level is
well de�ned, because the spectrum of HV is then at worst that of H0, shifted by �kV kL1 .
From this, the eigenvalue asymptotics for H0, the monotonicity and decay properties of
the distribution function f follows that EF (V ) is well de�ned. This directly implies that

the series on the right hand side of (2.7) (there V substituted by V �EF (V )), which de�nes
the particle density operator N&, is absolutely converging in L1. In Proposition 5.3 we
will prove that the particle density operators N are well de�ned even as operators from
L1 into spaces of much more regular functions.

2.11. Assumption. The exchange�correlation term in its dependence on the particle
densities, i.e. the mapping u 7�! Vxc;&(u) is a continuous and bounded mapping from�
L1
��

into L1 for any & 2 f1; : : : ; �g. This assumption covers the generic exchange�
correlation potentials (1.9).



2.12. Assumption. The function '�̂, which represents the boundary values given on b�
and the inhomogeneous boundary condition of third kind on fa; bgnb� (cf. (1.14)), is from

the space[W 1;2. Let e'�̂ denote the linear form on[W
1;2
b�
, which is given by

h 7�!
Z b

a

"(x)'0
�̂
(x)h0(x)dx; h 2[W 1;2

b�
:(2.10)

2.13. De�nition. Let the function ln "(�) be from cL1, and let for any non�Dirichlet

boundary point x 2 fa; bg n b� a positive number k(x) be given. We suppose that eitherb� is not empty or at least one of the numbers k(x) is strictly positive. The operator

A :[W
1;2
b�

7�!\W�1;2
b�

is de�ned by

hAv;wi =
Z b

a

"(x)v0(x)w0(x)dx+
X

x2fa;bgnb�

k(x)v(x)w(x); v; w 2[W 1;2
b�
:

The de�nition is correct, because[W
1;2
b�

embeds continuously into bC. We denote by ck a

constant such that

kuk2
[

W
1;2

b�

� ck

�
ku0k2

cL2
+

X
x2fa;bgnb�

k(x)ju(x)j2
�

for all u 2[W 1;2
b�
:(2.11)

The constant ck depends on (a; b), b� and k. Indeed, it is �nite, as the case of purely
homogeneous Neumann conditions is excluded [10].

2.14. De�nition. Suppose there is

NA �ND 2\W�1;2
b�

; �E& 2 L1; & 2 f1; : : : ; �g(2.12)

and a tuple (Z1; : : : ; Z�) of linear, continuous identi�cation operators

Z& :[W 1;2 7�! L1; & 2 f1; : : : ; �g :(2.13)

Further, let ", m1, : : : , m�, f1, : : : , f�, and '�̂ be given and the preceding assumptions
be satis�ed. We de�ne the external potentials V& and the e�ective doping D by

V& = Z&'�̂ � e&�E&; & 2 f1; : : : ; �g ;(2.14)

D = q(NA �ND)� e'�̂:(2.15)

We say that
�
V; u1; :::; u�

�
2 [W 1;2

b�
�
�
L1
��

is a solution of the Kohn�Sham system

(Schrödinger�Poisson system with exchange�correlation potential) if

AV = D +
X

&2f1;::: ;�g

Z�

& u& + F&(V );(2.16)

u& = N&

�
V& + Vxc;&(u) + Z&V

�
; & 2 f1; : : : ; �g :(2.17)

2.15. Remark. Here and in the sequel we do not formally distinguish between Z& and

its restriction to the subspace[W
1;2
b�
. In the same sense Z�

& is simultaneously viewed as

an operator once into\W�1;2 and on the other hand, by restriction of the corresponding

functionals to[W
1;2
b�
, into\W

�1;2
b�

. With respect to the formulation of the problem in �1, the



mapping Z& is simply the operator, which restricts functions over [a; b] to [0; 1], multiplied
by e&q:

(Z&v) (x) = e&qv(x) if x 2 [0; 1];
�
Z�

& w
�
(x) =

(
e&qw(x) if x 2 [0; 1],

0 if x 2 [a; b] n [0; 1]:
However, the authors believe that it can serve well later purpose, to introduce an ad-
ditional degree of freedom at this point, because the coupling between the macroscopic
and the microscopically described part of the device, which expresses here, is by far not
completely understood. It turns out that a `macroscopically extended particle density
operator' of the structure described above possesses highly satisfactory functional ana-
lytic properties. Even more, as the reader will see in Remark 6.6, the class of admissible
operators may be widened by small perturbations.

2.16. Remark. The natural space for the quantum mechanical particle densities u&,
(2.8), to ly in is L1, because the conservation laws (2.9) refer to this space. But the
functional analytic context, in which we will regard the system, is mainly determined by

the monotonicity properties of the nonlinear Poisson operator, acting between[W
1;2
b�

and

\W
�1;2
b�

. Thus, we have decided to associate with the notion of a solution that the particle

densities are also from L1. In fact, it turns out (cf. Remark 6.16) that the structure of
the system itself assures that the particle densities are much more regular over 
 = (0; 1),
even when at �rst only u& 2 L1 is supposed. It should be noted, however, that on the
boundary of of 
 = (0; 1) discontinuities of the carrier densities may occur. This is due
to the fact that in the present concept the densities u& within the quantum mechanically
described region (0; 1) and in the macroscopically described one are related only via the
nonlinear Poisson equation, i.e. the electrostatic potential. A completely self consistent

approach would have to include equations for the � macroscopic and microscopic �
Fermi potential, a program which we will carry out in later papers [12, 14].

Our approach to the Schrödinger�Poisson system is based upon the following fundamental

2.17. Theorem. (Cf. e.g. [10].) Let A be a strongly monotone and boundedly Lipschitz
continuous operator between the Hilbert space H and its dual H�. The equation

A(u) = f(2.18)

admits for any f 2 H� exactly one solution. This solution u satis�es

kukH � 1

mA

kA(0) � fkH�;(2.19)

where mA denotes the monotonicity constant of A. Let J : H 7�! H� be the duality
mapping. If MA is the local Lipschitz constant of A belonging to a centered ball K in H
with radius not smaller than

2

mA

kA(0)� fkH�;(2.20)

then the operator

u 7�! u� mA

M2
A

J�1
�
A(u)� f

�
(2.21)

maps the ball K strictly contractive into itself and its contractivity constant does not exceeds
1� m2

A

M2
A

:(2.22)



The �xed point of (2.21) is identical with the solution of (2.18).

Now we recall some properties of the norm in the spaces of q�summable operators.

2.18. Theorem. Let � be a positive number, S = [0; � ], and g a real valued, Lipschitz
continuous function on S with g(0) = 0. For any selfadjoint, q�summable operator B,
having its spectrum in S there is

kg(B)kq � LipS(g) kB kq;(2.23)

where LipS(g) is the Lipschitz constant of g on S. Moreover, if B is a q�summable
selfadjoint operator, then B� is q

�
�summable and

kB�k q

�

= kBk�q ; 1 � q <1; 0 < � � q:(2.24)

2.19. Theorem. (Birman and Solomjak [4, 5].) Let A and B be two selfadjoint operators,
whose di�erence is Hilbert�Schmidt and whose spectral measures are concentrated on a
�nite interval S � R. If g : S 7�! R is Lipschitz continuous on S with the Lipschitz
constant LipS(g), then

kg(A)� g(B)k2 � LipS(g) kA�B k2:(2.25)

3. The Schrödinger operator

In this section we present properties of the Schrödinger operator which are afterwards an
essential tool for verifying the existence and uniqueness statements for the Schrödinger�
Poisson system. In this section and the two following ones all the function spaces refer to
the interval (0; 1). m has to be regarded as any of the e�ective masses m&, & 2 f1; : : : ; �g.
In the following propositions, certain Gagliardo�Nirenberg constants and the L1�bound
of m play an essential role.

3.1. De�nition. We de�ne 
p as the Gagliardo�Nirenberg constant (cf. e.g. [22])


1 = sup
06= 2W 1;2

�

k kL1q
k k

W
1;2
�
k kL2

; 
p = sup
06= 2W 1;2

�

k k
L

2p
p�1

k k
1
2p

W
1;2

�

k k1�
1
2p

L2

if p > 1.(3.1)

For any m = m&, & 2 f1; : : : ; �g, we denote

m = max

�
1;

2 kmkL1
~2

�
:(3.2)

3.2. Remark. m has been de�ned such that 1=m is the monotonicity constant of the

operator (H0 + 1) : W 1;2
� 7! W

�1;2
� ; (cf. De�nition 2.3), hence, the norm of the inverse

operator is not greater than m :

k k2
W

1;2

�

� mh(H0 + 1) ; i;  2 W 1;2
� ;



(H0 + 1)�1



B(W�1;2

�
;W

1;2

�
)
= m:(3.3)

Further, estimating the eigenvalues of H0, it is not hard to see that the resolvent of H0 is
nuclear.

Now we regard the Schrödinger operator H = HV = H0 + V from De�nition 2.3 in the
Hilbert space L2. First, it is standard (cf. Kato [18]) that HV may also be viewed as the
operator, which is induced on L2 by the form de�ned in De�nition 2.3 if one can show that
this form is semibounded and closed. The proof of this is part of the next proposition,
which also allows to deduce the statements of Theorem 2.4.

3.3. Proposition. Let V be real valued and from Lp, p 2 [1;1].



i) If t is the quadratic form

W 1;2
� 3  7�!

D
(H0 + 1) ; � 

E
=

Z 1

0

1

m
 0 � 0 +  � dx;(3.4)

and tV is the quadratic form

W
1;2
� 3  7�!



V  ; � 

�
=

Z 1

0

V  � dx;(3.5)

then for any � > 0 there is the following form estimate

(3.6)
��tV [ ]�� � tjV j[ ] � t[ ]

1
2p kV kLp 
2p m

1
2p



 

2� 1
p

L2

� �

2p
t[ ] + �1�2p

�
1� 1

2p

� 

V 

 2p

2p�1

Lp



4p

2p�1
p m

1
2p�1 k k2L2;  2 W 1;2

� :

ii) The operator H0 + V may be estimated as follows in the sense of forms:

1� 1

2p
+ �V �

�
1� 1

2p

�
(H0 + 1) + �V � H0 + V �

�
1 +

1

2p

�
(H0 + 1)� �V � 2;(3.7)

where

�V = �
�
1� 1

2p

�
kV k

2p

2p�1

Lp 

4p

2p�1
p m

1
2p�1 � 1:(3.8)

iii) If � � �V , then the spectrum of (HV � �)�1 is contained in [0; 2] and


(HV � �)�
1
2 (H0 + 1)

1
2




 =



(H0 + 1)

1
2 (HV � �)�

1
2




 � �1� 1

2p

�� 1
2 :(3.9)

iv) If V 2 L1 and q � 1, then the resolvent of HV is a q�summable operator and

(HV � �)�1



q
�
�
1 � 1

2p

��1

(H0 + 1)�1



q
<1; � � �V :(3.10)

3.4. Remark. (Cf. Kato [18]). The �rst assertion of Proposition 3.3 says that the form
tV is relatively bounded with relative bound zero with respect to the form t. Hence, the
form t + tV�1 is closed and semibounded, thus de�ning a selfadjoint operator HV over
L2. The resolvent of this operator is compact, because the resolvent of H0 is compact.
From this the existence of a complete orthonormal system of eigenfunctions follows.

3.5. Remark. The lower form bound of H0 + V in (3.7) can be improved by using the
negative part V � of V instead of jV j to construct the lower bound, i.e. one can replace

�V by �V � on the left hand side of (3.7).

Proof of i). We estimate the form tjV j by means of Hölder's and the Gagliardo�Nirenberg
inequality D

jV j ; 
E
� kV kLpk k2

L
2p
p�1

� kV kLp 
2p
�
k k2

W
1;2

�

� 1
2p k k2�

1
p

L2

and then use (3.3)

�
D
(H0 + 1) ; 

E 1
2p kV kLp 
2p m

1
2p k k2�

1
p

L2 :

Finally we apply Young's inequality.



Proof of ii). In the sense of forms there is

H0 � jV j � H0 + V � H0 + jV j:

Combining this with the �rst assertion of Proposition 3.3 one obtains (3.7).

Proof of iii). It su�ces to prove the statements for � = �V , because for � � �V one has

(HV � �V )
1
2 (HV � �)�

1
2



 � 1

(cf. [18]). From (3.7) and the de�nition of �V follows

1

2

�
H0 + 1

�
�
�
1� 1

2p

��
H0 + 1

�
� HV � �V(3.11)

in the sense of forms. Consequently, the spectrum of HV � �V has to ly above 1
2
, and, by

the spectral mapping theorem, the spectrum of (HV � �V )
�1 is localized in the interval

[0; 2]. � For � = �V (3.9) follows from (3.11), [18, ch. VI, �2], and the fact that the

operators (HV � �)�
1
2 (H0 + 1)

1
2 and (H0 + 1)

1
2 (HV � �)�

1
2 are adjoint to each other.

Proof of iv). (3.10) is trivially implied by (3.9) and the nuclearity of (H0 + 1)�1.

3.6. Corollary. From (3.7) and the minimax principle (cf. e.g. Reed/Simon [27]) one
gets the following estimate for the eigenvalues El(V ) of the operator HV = H0 + V :�

1� 1

2p

�
(�l + 1) + �V � El(V ) �

�
1 +

1

2p

�
(�l + 1)� �V � 2; l = 1; 2; : : : ;(3.12)

where the �l are the eigenvalues of the operator H0, and �V is according to (3.8).

We conclude this section with one more property of the Schrödinger operators from Def-
inition 2.3 with potentials V ranging in a L1�bounded set M.

3.7. Lemma. If M� L1 is bounded and

� � �M = sup
V2M

�V jp=1 = �1

2

41 m sup

V 2M

kV k2L1 � 1;(3.13)

where �V jp=1 is (3.8) with p = 1, and 
1, m are according to De�nition 3.1, then the

mapping V 7�! (HV ��)�1 is Lipschitz continuous onM into the class of Hilbert�Schmidt
operators. As a Lipschitz constant one may take

4 k1k2
B(W 1;2

�
;L1)

m


(H0 + 1)�1




2
;(3.14)

where k1k
B(W 1;2

�
;L1) is the embedding constant of W 1;2

� into L1.

Proof. Obviously there is

(HU � �)�1 � (HV � �)�1 = (HV � �)�1(U � V )(HU � �)�1:(3.15)

Taking into account (2.24) and (3.9), one may estimate the Hilbert�Schmidt norm

(HV � �)�1(U � V )(HU � �)�1



2
�


(H0 + 1)�

1
2




4



(H0 + 1)
1
2 (HV � �)�

1
2




�


(HV � �)�

1
2 (U � V )(HU � �)�

1
2





(HU � �)�
1
2 (H0 + 1)

1
2





(H0 + 1)�
1
2




4

� 2


(H0 + 1)�1




2



(HV � �)�
1
2 (U � V )(HU � �)�

1
2



:



Further, the last factor on the right hand side of this inequality can be estimated by
means of (3.9):

(HV � �)�

1
2 (U � V )(HV � �)�

1
2



 �


(HV � �)�

1
2 (H0 + 1)

1
2




�


(H0 + 1)�

1
2 (U � V )(H0 + 1)�

1
2





(H0 + 1)
1
2 (HU � �)�

1
2




� 2



(H0 + 1)�
1
2




B(L1;L2)



U � V



L1



(H0 + 1)�
1
2




B(L2;L1)

� 2


(H0 + 1)�

1
2



2
B(L2;L1)



U � V



L1 � 2 k1k2

B(W 1;2

�
;L1)

m kU � V kL1:

(3.16)

The last step in the estimate (3.16) follows from

(H0 + 1)�
1
2




B(L2;W

1;2

�
)
=


(H0 + 1)�1



1
2

B(W
�1;2

�
;W

1;2

�
)
� m

1
2(3.17)

(cf. Remark 3.2).

4. The Fermi level

In this section and the following one we develop some tools which we need for the existence
proof. Partly, these results have already been proved in the case of pure Dirichlet boundary
conditions. Here we present proofs, however, which are quite di�erent in character. They
completely avoid the Dunford calculus employed in [15] and use the embedding of the
eigenvalues of H0+ V , given by Corollary 3.6, or the Birman�Solomjak theorem instead.
Thus, we get a priori bounds for the Fermi level and for the solutions in terms of the data
of the problem.

First we state a lemma, the proof of which exempli�es the way we estimate functions of
the Schrödinger operator.

4.1. Lemma. LetM� L1 be bounded, f be a distribution function as in Assumption 2.7,
and HV be the Schrödinger operator from De�nition 2.3. The mapping V 7�! f(HV ) is
Lipschitz continuous on M into the class of nuclear operators, more precisely, for any
two elements U; V of M, there is

f(HU )� f(HV )




1
� 16L1;�M k1k2B(W 1;2

�
;L1)

m


(H0 + 1)�1



2
2
kU � V kL1 ;

where L1;�M is the Lipschitz constant from De�nition 2.8, and �M is the number (3.13).

Proof. We abbreviate � = �M. First we observe

f(HU )� f(HV )



1
�


f(HU )(HU � �)




2



(HU � �)�1 � (HV � �)�1



2

+


f(HU )(HU � �)� f(HV )(HV � �)




2



(HV � �)�1



2
:

(4.1)

In order to estimate the terms

f(HU )(HU � �)



2

and


f(HU )(HU � �)� f(HV )(HV � �)




2

by means of Theorem 2.18 and the Birman�Solomjak Theorem 2.19 we rewrite forW 2 M
f(HW )(HW � �) = g

�
(HW � �)�1

�
;

where g = g1;� is the function (2.5). Indeed, this is justi�ed by Proposition 3.3, which
states that the spectrum of (HW ��)�1 is contained in [0; 2] for allW 2 M. Consequently
Theorem 2.18 yields

f(HU )(HU � �)




2
=


g�(HU � �

��1
)



2
� L1;�



(HU � �)�1



2
:



Correspondingly we get with Theorem 2.19

f(HU )(HU � �)� f(HV )(HV � �)



2

=


g((HU � �)�1)� g((HV � �)�1)




2
� L1;�



(HU � �)�1 � (HV � �)�1



2
:

Hence (4.1) may be majorized by

L1;�

�

(HU � �)�1



2
+


(HV � �)�1




2

�


(HU � �)�1 � (HV � �)�1




2
:

Now one can estimate


(HU � �)�1




2
and



(HV � �)�1



2
by means of (3.10), and the

term


(HU � �)�1 � (HV � �)�1




2
by means of Lemma 3.7 using the Lipschitz constant

(3.14).

4.2. Proposition. Let & 2 f1; : : : ; �g be arbitrary, HV be the Schrödinger operator from
De�nition 2.3 and EF = EF;& be the Fermi level from De�nition 2.9.

i) If V 2 L1 and U 2 L1, then��EF (V + U) � EF (V )
�� � kUkL1 :(4.2)

ii) Let f�lg be the sequence of eigenvalues of the free Hamiltonian H0. We de�ne for
any p � 1 the numbers �p and ��p by

1X
l=1

f
��

1 � 1

2p

�
�l � �p

�
=

1X
l=1

f
��

1 +
1

2p

�
�l � ��p

�
= N;(4.3)

where N is as in (2.9). If p � 1 and V 2 Lp, then one has the following bounds for
the Fermi level EF (V ):

�p + �V +
�
1 � 1

2p

�
� EF (V ) � ��p � �V �

�
1� 1

2p

�
;(4.4)

where �V is as in (3.8).
iii) V 7�! EF (V ) is a locally Lipschitz continuous mapping EF : L1 7�! R, more pre-

cisely, if M is a bounded subset of L1, and � = �M+EF (M)�[0;1] is the number (3.13)

corresponding to the set M+ EF (M)�[0;1]; where �[0;1] is the characteristic function
of the interval 
 = (0; 1), then

LipM

�
EF
�
= 16 �ML1;� k1k2

B(W
1;2

�
;L1)

m


(H0 + 1)�1



2
2

(4.5)

is a Lipschitz constant of EF on M. L1;� is from De�nition 2.8.

Proof of i). (4.2) follows from the strict decay of f (cf. Assumption 2.7) and the form
inequality

HV � HV+U + kUkL1 ;
which implies a corresponding inequality for the eigenvalues.

Proof of ii). We prove the left part of (4.4), the other part runs along the same lines.
Assume the opposite, namely

�p + �V +
�
1� 1

2p

�
> EF (V ):

This implies in connection with the left part of the eigenvalue inequality (3.12) and the
strict decay of the distribution function f

f
��

1� 1

2p

�
�l � �p

�
< f

�
El(V )� EF (V )

�



which contradicts the de�nitions (4.3) and (1.10) of �p and EF (V ), respectively.

Proof of iii). If U; V are two elements of M, then we may estimate

(4.6)
��EF (U)� EF (V )

�� � �M

���f�E1(V )� EF (V )
�
� f

�
E1(V )� EF (U)

����;
where �M =

sup
U;V2M

sup

�
1

jf 0(s)j : minfEF (V ); EF (U)g � E1(V )� s � maxfEF (V ); EF (U)g
�
:

�M can be estimated using the bounds for E1(V ) established in Corollary 3.6 and the
bounds (4.4) for the Fermi levels EF (U); EF (V ). From this and the supposed properties

of the distribution function f (cf. Assumption 2.7) follows that �M is �nite.

Observing that according to (2.9)

N = tr
�
f(HV � EF (V ))

�
= tr

�
f(HU � EF (U))

�
;

we continue (4.6) by further enlarging the right hand side��EF (U) � EF (V )
�� � �M ���f�E1(V )� EF (V )

�
� f

�
E1(V )� EF (U)

����
� �M

��� trhf�HV � EF (V )
�
� f

�
HV � EF (U)

�i���
� �M




f�HU�EF (U)

�
� f

�
HV�EF (U)

�



1

� 16 �ML1;� k1k2
B(W

1;2

� ;L1)
m


(H0 + 1)�1



2
2
kU � V kL1;

where the last estimate follows from Lemma 4.1. N.B. the setM+EF (M)�[0;1]; is bounded
due to (4.4).

5. The particle density operator

This section deals with a priori estimates, Lipschitz properties and the boundary be-
haviour of the particle density operators N& . We will use these results in the existence
proof.

5.a. A priori estimates and Lipschitz continuity. In this subsection we will derive
estimates of the carrier density operators and corresponding Lipschitz constants. One
cornerstone is a representation formula, which expresses the duality between a value of
the particle density operator and a L1�function. It has been introduced into the theory
of the Schrödinger�Poisson system by F. Nier in his pioneering papers [23, 25].

5.1. Theorem. If U 2 L1 and W 2 L1, then the duality between eN (U) 2 L1 (cf.
De�nition 2.9) and W can be written as
 eN (U);W

�
=

Z 1

0

eN (U)(x)W (x) dx = tr
�
f(HU )W

�
:(5.1)

5.2. Remark. Formula (5.1) extends canonically to potentials U from L1, because the
mapping U 7�! f(HU ) is a continuous mapping from L1 into the class of nuclear operators
(cf. Lemma 4.1). In particular, if U = V � EF (V ), where EF (V ) is again the Fermi level
corresponding to the potential V (cf. De�nition 2.9), then


N (V );W
�
=

Z 1

0

eN �V � EF (V )
�
(x)W (x) dx = tr

h
f
�
HV�EF (V )

�
W
i
:(5.2)



This formula allows to de�ne particle density operators also in contexts, where the Fermi
level is given otherwise (e.g. externally) and needs not be a constant.

5.3. Proposition. Let N be the carrier density operator from De�nition 2.9. The oper-

ator V 7�! N (V ) = eN �V � EF (V )
�
is not only well de�ned as an operator from L1 into

itself, but takes its values in W
1;2
� . If M is a bounded subset of L1, and � � �M is as in

(3.13), then

N (V )



W

1;2
�

� 8 k1k
B(W

1;2

�
;L1)m



(H0 + 1)�1



1
sup
s� 1

2

f
�
s� ��1 + 2� +

1

2

�
s2;(5.3)

where k1k
B(W

1;2

�
;L1) again denotes the embedding constant from W

1;2
� into L1.

The pseudo particle density operator eN : L1 7�! W
1;2
� from De�nition 2.9 is locally

Lipschitz continuous, more precisely

 eN (U)� eN (V )



W

1;2

�

� 96m2
L2;� k1k3

B(W
1;2

�
;L1)



(H0 + 1)�1


2
2
kU � V kL1;(5.4)

where L2;� is the Lipschitz constant (2.6).

Proof of (5.3). We introduce the set

K =
�
W 2 L1 : kWk

W
�1;2

�
= 1
	
:(5.5)

From the density of L1 in W�1;2
� easily follows for all V from L1

N (V )




W

1;2

�

= sup
kWk

W
�1;2
�

=1

���
N (V );W
���� = sup

W2K

���
N (V );W
����(5.6)

and by Theorem 5.1

(5.7)


N (V )
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W2K
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�
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f�HV � EF (V )

�
(HV � �)2






(HV � �)�1



1



(HV � �)�
1
2W (HV � �)�

1
2



:
Taking into account the estimate (4.4) for the Fermi levels, one obtains


f�HV � EF (V )

�
(HV � �)2




 � sup
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2

f
�
s� ��1 + 2� +

1

2

�
s2:

According to Corollary 3.6 and (3.13) there is

(HV � �)�1



1
� 2



(H0 + 1)�1



1
:

It remains to estimate the last factor in (5.7):

sup
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1
2W (HV � �)�
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1
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k k
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L2
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���
(H0 + 1)�
1
2W (H0 + 1)�

1
2 ; ~ 

���� :
LetW be fromK, and  , ~ from the unit sphere of L2. The selfadjointness of H0 provides���
(H0 + 1)�

1
2W (H0 + 1)�

1
2 ; ~ 

���� = ���
W (H0 + 1)�
1
2 ; (H0 + 1)�

1
2 ~ 
���� :



The duality betweenW
1;2
� and W

�1;2
� coincides with the

�
L1; L1

�
�duality on the common

intersection of the dual pairs, hence, we may continue

� kWk
W
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1
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1
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W
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1
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(H0 + 1)�

1
2 



W
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(H0 + 1)�
1
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L1

� 2 k(H0 + 1)�
1
2kB(L2;L1)k(H0 + 1)�

1
2k

B(L2;W
1;2

�
) � 2 k1k

B(W 1;2
�

;L1)m:

The assertion that N : L1 7! L1 is well de�ned follows from (5.3) and the embedding

W
1;2
� ,! L1.

Proof of (5.4). According to Theorem 5.1 there is

 eN (U) � eN (V )



W

1;2
�

= sup
W2K

���tr��f(HU )� f(HV )
�
W
����

which we can estimate as follows

� sup
W2K

���� trh�f(HU )(HU � �)2 � f(HV )(HV � �)2
�
(HU � �)�1W (HU � �)�1

i����
+ sup

W2K

���� trhf(HV )(HV � �)2
�
(HU � �)�1W (HU � �)�1 � (HV � �)�1W (HV � �)�1

�i����
�


f(HU )(HU � �)2 � f(HV )(HV � �)2




2
sup
W2K



(HU � �)�1W (HU � �)�1



2

+


f(HV )(HV � �)2




2
sup
W2K



(HU � �)�1W (HU � �)�1 � (HV � �)�1W (HV � �)�1



2
:

Observing the De�nition 2.8 of L2;�, Theorem 2.18 and (3.10) one obtains

f(HV )(HV � �)2



2
� L2;�



(HV � �)�1



2
� 2L2;�



(H0 + 1)�1



2
;

while the Birman�Solomjak Theorem 2.19 and Lemma 3.7 yield

f(HU )(HU � �)2 � f(HV )(HV � �)2



2
� L2;�



(HU � �)�1 � (HV � �)�1



2

� 4L2;� k1k2
B(W 1;2

�
;L1)

m


(H0 + 1)�1




2
kU � V kL1:

Now we will treat the terms with (HU � �)�1W (HU � �)�1:


(HU � �)�1W (HU � �)�1 � (HV � �)�1W (HV � �)�1
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�



�(HV � �)�1(V � U)(HU � �)�1

�
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2
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�
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2
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1
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1
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1
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1
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1
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1
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1
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1
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1
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1
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:

We continue by enlarging

(HU � �)�
1
2 (H0 + 1)

1
2



 � p
2 and



(HV � �)�
1
2 (H0 + 1)

1
2



 � p
2

(cf. (3.9)) and estimating the term

(HV � �)�
1
2 (V � U)(HU � �)�

1
2







in the same way as in (3.16). Thus, one obtains

(HU � �)�1W (HU � �)�1 � (HV � �)�1W (HV � �)�1
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� 8
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2
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2
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:
Similarly, one proves
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2
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:
Now we assemble our estimates

 eN (U) � eN (V )




W

1;2

�

� 48mL2;� k1k2
B(W

1;2

� ;L1)



(H0 + 1)�1


2
2
kU � V kL1 sup

W2K



(H0 + 1)�
1
2W (H0 + 1)�

1
2



;
and observe that the last factor has already been estimated in the proof of (5.3).

The following two corollaries result directly from De�nition 2.9, Proposition 4.2, and
Proposition 5.3.

5.4. Corollary. The mappings N& : L
1 7�! W

1;2
� , & 2 f1; : : : ; �g, are locally Lipschitz

continuous. If M is a bounded set from L1, then the Lipschitz constant of N& on M is

Lip
M
(N&) �

�
1 + Lip

M
(EF;&)

�
Lip�

M+EF;& (M)�[0;1]

�( eN&);

where LipM(EF;&) is the Lipschitz constant of the Fermi level EF;& on the set M, cf. (4.5),

and Lip�
M+EF;&(M)�[0;1]

�( eN&) is the Lipschitz constant of eN& : L
1 7�!W 1;2

� on the bounded

set M+ EF;&(M)�[0;1] � L1 which has been estimated in Proposition 5.3.

5.5. Corollary. Proposition 5.3 implies L1�estimates for the particle density opera-
tor. Thus, in connection with (2.9), one obtains Lp�bounds for the values of N& , & 2
f1; : : : ; �g:

sup
V 2M



N&(V )



Lp

� N
1
p

& sup
V2M



N&(V )


 p�1

p

L1
� N

1
p

& k1k
p�1

p

B(W 1;2
� ;L1)

sup
V2M



N&(V )


 p�1

p

W
1;2
�

5.b. Boundary behaviour. In the next proposition we will deal with the boundary

behaviour of the values of the pseudo particle density operator eN , which naturally implies

the same behaviour of the values of the operators N& . It is easy to prove that the particle
densities vanish on the Dirichlet boundary part �, as the wave functions  l do so there.

Moreover, the derivative of eN (V ) vanishes on the whole boundary of 
 = (0; 1). In order
to give an adequate formulation of this boundary behaviour, we prove the following

5.6. Lemma. Let a potential V 2 L1 be given and let
�
 l
	
l
denote the system of (or-

thonormalized) eigenfunctions of the Schrödinger operatorHV , El the corresponding eigen-
values and EF (V ) the Fermi level. For every l the function  l

1
m
 0l is continuous over


 = [0; 1] and its values at the interval ends are zero. If f is a distribution function in
accordance with Assumption 2.7, then the series

1X
l=1

f(El) l
1

m
 0l(5.8)

converges absolutely in C.



Proof. According to (3.17) and (3.9) there is

(5.9) k lkL1 � k1k
B(W

1;2

�
;L1)m

1
2



(H0 + 1)
1
2 l




� k1k
B(W

1;2

�
;L1)

p
2m



(HV � �)
1
2 l


 � k1k

B(W
1;2

�
;L1)

p
2m (El � �):

By De�nition 2.3 of the operator HV one has� 1

m
 0l

�0
= �V  l + El  l in the sense of distributions.(5.10)

Because we already know that  l is from L1, it is evident that the right hand side of

(5.10) is from L1 and one can estimate its L1�norm:

(5.11)


� V  l + El  l




L1

� kV kL1 k lkL1 + jElj k lkL1 � kV kL1 k1k
B(W

1;2
�

;L1)

p
2m (El � �) + jElj:

Hence, the function 1
m
 0l is absolutely continuous and in particular continuous on [0; 1].

We will now estimate its L1�norm. First we rewrite the eigenvalue equation as

 l = (H0 + 1)�1
�
� V  l + (El + 1) l

�
;

and estimate

k lkW 1;2

�
�



(H0 + 1)�1
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1;2
� )



� V  l + (El + 1) l
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� m k1k
B(L1;W
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� m k1k
B(L1;W
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�
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�
kV kL1 k1k
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�
;L1)

p
2m (El � �) + jEl + 1j

�
:

Combining this with the trivial inequality


 1

m
 0l





L1
�



 1

m





L1

k 0lkL2 �



 1
m





L1

k lkW 1;2

�

one obtains the estimate

(5.12)



 1

m
 0l





L1

�



 1

m





L1

m k1k
B(L1;W

�1;2

� )

�
kV kL1 k1k

B(W
1;2

� ;L1)

p
2m (El � �) + jEl + 1j

�
:

Next we estimate the supremum norm of 1
m
 0l. If x0 2 [0; 1] is a point, where 1

m

�� 0l(�)��
takes its maximum, then

sup
x2[0;1]

��� 1

m(x)
 0l(x)

��� = ��� 1

m(x0)
 0l(x0)

��� = Z 1

0

��� 1

m(x0)
 0l(x0)

��� dx
�
Z 1

0

���� 1

m(x0)
 0l(x0) �

1

m(x)
 0l(x)

���� dx+ 


 1

m
 0l





L1
:

(5.13)

From (5.10) follows that the integrand on the right hand side of (5.13) is not greater than
the L1�norm of �V  l + El l. Thus, combining (5.13), (5.11) and (5.12) one obtains an
upper bound for the supremum norm of 1

m
 0l.

Both boundary points, x = 0 and x = 1, are either (homogeneous) Dirichlet ( l(x) = 0)
or Neumann boundary points. For the latter ones follows from the De�nition 2.3 of H0

by partial integration that 1
m
 0l(x) = 0.

The uniform convergence of the series (5.8) follows from (5.10), (5.11), (5.12), (5.13), the
asymptotical distribution of the eigenvalues El, and the decay properties of the distribution
functions f , cf. Assumption 2.7.



5.7. Proposition. For any V 2 L1 the particle density eN (V ) (cf. De�nition 2.9) has
the following trace properties on the boundary of the domain 
 = (0; 1):eN (V )(x) = 0 if x 2 �,(5.14)

1

m(x)

d eN (V )

dx
(x) = 0 if x 2 f0; 1g.(5.15)

Proof. From (5.9) and the decay properties of the distribution functions f , cf. Assump-

tion 2.7 immediately follows that the series (2.7) de�ning eN (V ), converges in the space

C. Hence, the property  lj� = 0 of the eigenfunctions carries over to the density eN (V ).
(5.15) directly follows from Lemma 5.6.

5.8. Remark. If the e�ective mass function m is continuous in the boundary points 0
and 1, then (5.15) may be equivalently formulated as

d eN (V )

dx
(x) = 0 if x 2 f0; 1g.

5.c. Monotonicity.

5.9. Theorem. We refer to the notation of De�nition 2.9. For any & 2 f1; : : : ; �g the
negative particle density operator �N& is a monotone operator from L1 into L1 and a
strictly monotone operator from W

1;2
� into W�1;2

� .

The proof of these monotonicity properties is similar to that given in [6, 23, 25, 1]. It
is based on the Fréchet di�erentiability of the particle density operator N& and explicit

calculation of D�
N&

0(V )
�
W ; W

E
for all W 2 L1; V 2 W 1;2

� :

The resulting expression turns out positive due to the monotonicity properties of the
distribution function f&, cf. Assumption 2.7.

6. Existence of solutions and a priori estimates

In this section we present our central results. We recall the convention from �2 that

symbols with a hat refer to the spatial domain b
 = (a; b), while the symbols without a
hat are reserved for spaces which refer to the spatial domain 
 = (0; 1), cf. Remark 2.2.

6.a. The linear Poisson operator.

6.1. Lemma. The operator A :[W 1;2
b�

7!\W�1;2
b�

from De�nition 2.13 is strongly monotone

and Lipschitz continuous.

1

mA

= ck max
n
1;


"�1



dL1

o
(6.1)

serves as a monotonicity constant and

MA = k"k
L1(
̂) + k1k2

B(
[

W
1;2

b�
; bC)

X
x2fa;bgnb�

k(x)(6.2)

as a Lipschitz constant, where k1k
B(
[

W
1;2

b�
; bC)

denotes the embedding constant from[W 1;2
b�

intobC, which is �nite in one dimension.



Proof. First we observe

ku0k2
cL2
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"� 1

2 "
1
2u0



2
cL2
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"�1



dL1



" 1
2u0


2
cL2 = k"�1k

dL1

Z b

a

"(x)
�
u0(x)

�2
dx:

Now one easily deduces from the de�nition of A and ck, cf. De�nition 2.13,

kuk2
[

W
1;2
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� ck

�
ku0k2

cL2
+

X
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��u(x)��2�
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�
k"�1k

dL1
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X

x2fa;bgnb�

k(x)
��u(x)��2�

� ckmax
�
1; k"�1k

dL1

	 

Au; u

�
:

N.B. k is nonnegative. To prove the second assertion, we estimate the norm of A

MA = kAk
B(
[

W
1;2

b�
;
\

W
�1;2

b�
)
= sup

kuk
\

W
1;2
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=kvk
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W
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=1

��hAu; vi��
by means of��hAu; vi�� =

���Z b

a

"(x)u0(x) v0(x) dx+
X

x2fa;bgnb�

k(x)u(x) v(x)
���

�

0@k"k
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+
X

x2fa;bgnb�
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W
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1A kuk
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W
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kvk
[

W
1;2

b�

:

6.b. The nonlinear Schrödinger�Poisson operator. Up to now we have regarded
the particle density operators as operators from L1 into function spaces over 
 = (0; 1).
From now on we will regard the system as a whole and therefore consider the particle

density operators as operators with values in suitable function spaces over b
 = (a; b)
by means of the identi�cation operators Z�

& from De�nition 2.14. In the following V =
(V1; : : : ; V�) 2 (L1)� is a given ��tuple of external potentials.

The statements of the next proposition follow directly from Theorem 5.9 and the Lipschitz
properties of the operators N& (cf. �5.a).

6.2. Proposition. For any & 2 f1; : : : ; �g the negative extended particle density operator
[W

1;2
b�

3 V 7�! �Z�

&N&

�
V& + Z&V

�
2\W�1;2

b�

is monotone. Moreover, this operator is locally Lipschitz continuous, and its local Lipschitz

constant on a bounded set cM�[W 1;2
b�

is not greater than

kZ&k2
B(
[

W
1;2

b�
;L1)

k1k
B(W 1;2

�
;L1) Lip(V&+Z& cM)(N&);(6.3)

where Lip(V&+Z& cM)(N&) is the local Lipschitz constant of the mapping N& : L
1 7�! W 1;2

� ;

restricted to the set V& + Z& cM, cf. Corollary 5.4.

Proposition 6.2 implies by means of Theorem 2.17 the following



6.3. Proposition. The nonlinear Schrödinger�Poisson operator

PV :[W 1;2
b�

7!\W�1;2
b�

; PVV = AV �
X

&2f1;::: ;�g

Z�

&N&

�
V& + Z&V

�
� F&(V )(6.4)

is strongly monotone with mA as a monotonicity constant. Additionally, this operator is

locally Lipschitz continuous. More precisely, if cM is a bounded set in[W 1;2
b�

, then the local

Lipschitz constant of PV, corresponding to the set cM is

(6.5) Lip
cM
(PV) �MA +

X
&2f1;::: ;�g

Lip
cM
(F&)

+
X

&2f1;::: ;�g

kZ&k2
B(
[

W
1;2

b�
;L1)

k1k
B(W

1;2

�
;L1)

Lip
(V&+Z& cM)

(N&);

where Lip
cM
(F&) is the local Lipschitz constant of the mapping F& de�ned in Assump-

tion 2.6. The nonlinear Poisson equation

PVV = D(6.6)

admits exactly one solution V for every e�ective doping pro�le D 2\W�1;2
b�

(cf. De�ni-

tion 2.14). This solution satis�es the estimate

V 


[

W
1;2

b�

� 1

mA




D +
X

&2f1;::: ;�g

Z�

&N&(V&) + F&(0)




\

W
�1;2

b�

:(6.7)

If J :[W 1;2
b�

7�!\W�1;2
b�

is the duality mapping and MP the local Lipschitz constant (6.5)

of the mapping PV which corresponds to a centered ball in[W 1;2
b�

with radius not smaller

than
2

mA




D +
X

&2f1;::: ;�g

Z�

&N&(V&) + F&(0)




\

W
�1;2

b�

;(6.8)

then the solution V of (6.6) is obtained as the �xed point of the mapping

QV : cM 7�! cM; QV : V 7�! V � mA

M2
P

J �1
�
PVV �D

�
;(6.9)

which is contractive on cM with the contraction constants
1 � m2

A

M2
P

:(6.10)

6.4. Remark. In the standard case, where the operator Z�

& is the extension operator by
zero on [a; b] n [0; 1] (cf. Remark 2.15), the a priori estimate (6.7) may be expressed in
terms of the total charges N& :

(6.11)


Z�

&N&(V&)



\

W
�1;2
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� k1k
B(cL1;
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W
�1;2
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&N&(V&)



cL1

= k1k
B(cL1;
\

W
�1;2

b�
)



N&(V&)



L1 = k1k

B(cL1;
\

W
�1;2

b�
)
N&:

From Proposition 6.3 one easily deduces

6.5. Theorem. The Schrödinger�Poisson system without exchange�correlation potential

(cf. De�nition 2.14) has the unique solution
�
V ; eN1(V1 +V ); :::; eN�(V� + V )

�
, where V is

the �xed point of the operator (6.9).



6.6. Remark. It is not di�cult to see that the main content of this subsection remains
true if the operator Z� is replaced by an operator lying in a suitable neighbourhood of
Z�. In particular, the operator PV, constructed this way, satis�es similar monotonicity
and Lipschitz properties, and the theory of monotone operators still applies.

Next we will have a look on the dependence of the solution of the nonlinear Schrödinger�
Poisson equation (6.6) on the vector V = (V1; : : : ; V�) 2

�
L1
��

of external potentials.

6.7. Lemma. Let

L :
�
L1
�� 7�![W 1;2

b�
; L(V) = V(6.12)

be the operator, which assigns to the ��tuple V = (V1; : : : ; V�) 2
�
L1
��

of external poten-

tials the solution V of the equation (6.6). If M is a bounded set in L1, then
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V2M�



L(V)
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W
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The mapping L is boundedly Lipschitz continuous from
�
L1
��

into [W 1;2
b�

, and its local

Lipschitz constant corresponding to M� is not greater than

2

mA

k1k
B(W 1;2

�
;L1) sup

&2f1;::: ;�g

kZ&k
B(
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W
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X
&2f1;::: ;�g

Lip(M+Z&L(M�))(N&);(6.14)

where Lip(M+Z&L(M�))(N&) is the local Lipschitz constant of the mapping N& : L
1 7! W 1;2

� ,

cf. Corollary 5.4, restricted to the set M+ Z&L(M�).

Proof. By de�nition of L, V = L(V) is a solution of (6.6) and, hence, satis�es the estimate
(6.7). Taking into account (2.15), and the inequality

e'�̂




\

W
�1;2

b�

� k"k
dL1
k'�̂k[W 1;2

this implies the �rst assertion.

For the proof of the local Lipschitz continuity, let U = (U1; : : : ; U�) and V = (V1; : : : ; V�)
from M� be given. L(V) is the �xed point of the strict contraction QV de�ned in (6.9),

and L(U) is the �xed point of QU. Hence,
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:

Taking into account the Lipschitz constant (6.10) of QU, one easily deduces
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:

Now using the de�nition of QU and QV and the inequality
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one arrives at
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and �nally at the Lipschitz constant (6.14).

6.c. The Kohn�Sham system. We will now introduce an adequate subset of
�
L1
��

and a suitable mapping � from this set into itself the �xed points of which will pro-
vide solutions for the Kohn�Sham system i.e. the Schrödinger�Poisson system with an
exchange�correlation potential.

6.8. De�nition. Let V = (V1; : : : ; V�) 2 (L1)� be a given ��tuple of external potentials
and N1, : : : , N�, the �xed numbers of carriers, cf. De�nition 2.9. We de�ne

L1
N =

n
u = (u1; : : : ; u�) : u& � 0;

Z 1

0

u&(x)dx = N& ; & 2 f1; : : : ; �g
o

(6.15)

and � : L1
N 7�! L1

N as the mapping whose &�component is given by

�&(u) = N&

�
V& + Vxc;&(u) + Z&L

�
V1 + Vxc;1(u); : : : ; V� + Vxc;�(u)

��
:(6.16)

6.9. Lemma. For any & 2 f1; : : : ; �g let Vxc;& be a bounded and continuous mapping
from (L1)� into L1. If

� = sup
&2f1;::: ;�g

sup
u2L1

N
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L1(6.17)

and
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is a common upper bound for the L1�norm of the Schrödinger potentials which are involved
in the de�nition of the carrier densities in (6.16), and

� = �1

2

41 max
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�
1;

2 km&kL1
~2

�
s2 � 1(6.20)

is the corresponding quantity (3.13). Any element from the range of � does not only belong
to L1

N , but satis�es the a priori estimates given in Proposition 5.3, where the s�ball in L1

serves as the set M in �5.a.



Proof. For the proof it su�ces to show that s is an L1�bound for the sets

V& + Vxc;&(L
1
N ) + Z&L

�
V1 + Vxc;1(L

1
N ); : : : ; V� + Vxc;�(L

1
N )
�
; & 2 f1; : : : ; �g

and then to apply Proposition 5.3. (6.17) implies

Vxc;&(u)

L2 � � for all u 2 L1
N , & 2 f1; : : : ; �g :

The right hand side of (6.13) provides a[W
1;2
b�
�bound for all

L
�
V1 + Vxc;1(u); : : : ; V� + Vxc;�(u)

�
; with u 2 L1

N ,

where M is de�ned by (6.18). From this, the required L1-bound of Z&L
�
: : :
�
is easily

deduced.

6.10. Remark. Often the exchange�correlation terms Vxc;& are given by rational expres-
sions as e.g. (1.9) which allow to estimate the quantity � in Lemma 6.9 in terms of the
data of the problem. If �& � 1 (as supposed in (1.9)), then

� � sup
&2f1;::: ;�g

�&N
�&
& :(6.21)

Now we are ready to prove the existence theorem for the Schrödinger�Poisson system
with an exchange�correlation potential.

6.11. Theorem. If Vxc;& is for any & 2 f1; : : : ; �g a bounded and continuous mapping
from (L1)� into L1, then the mapping � from De�nition 6.8 has a �xed point.

Proof. It is evident that � maps L1
N into itself (cf. De�nition 6.8 and De�nition 2.9).

From the continuity properties of the mappings Vxc;& , N& , and L (cf. �5.a and Lemma 6.7)
directly follows that � is continuous. Lemma 6.9 assures that the image of � is bounded

in the space
�
W

1;2
�

��
, hence, it is precompact in (L1)�. Thus, according to Schauder's

�xed point theorem, � has a �xed point in L1
N .

6.12. Remark. The �xed point mapping used in this proof was proposed by Herbert
Gajewski in the seminar of Arno Langenbach.

6.13. Corollary. The particle densities u& of a �xed point u =
�
u1; : : : ; u�

�
of � do not

only belong to L1, but satisfy the estimates given in Proposition 5.3, where � is de�ned by
(6.20).

Proof. Obviously any �xed point is contained in the image of � and, hence, obeys the a
priori estimates stated in Lemma 6.9.

6.14. Theorem. u =
�
u1; : : : ; u�

�
is a �xed point of � if and only if

(V; u1; : : : ; u�) =

�
A�1

�
D +

X
&2f1;::: ;�g

Z�

& u&

�
; u1; : : : ; u�

�
(6.22)

is a solution of the Kohn-Sham system, cf. De�nition 2.14. In particular, this means that
the Kohn-Sham system always admits a solution.

Proof. It follows from De�nition 6.8 and De�nition 2.14 that any solution of the Kohn�
Sham system is a �xed point of the mapping �. Any �xed point u = �u de�nes via (6.22)
a solution of the Kohn�Sham system in the sense of De�nition 2.14. This is a consequence
of the de�nition (6.12) of L and Corollary 6.13.



6.15. Remark. Obviously the (homogenized) electrostatic potential

V = A�1

0@D +
X

&2f1;::: ;�g

Z�

& u&

1A
belongs to the space[W 1;2

b�
. Reiterating this argument, one obtains in smooth situations

� where the coe�cients are smooth and the boundary conditions are not mixed � that
the particle densities and the electrostatic potential of a solution are in�nitely smooth.

6.16. Remark. Corollary 6.13 justi�es to demand in De�nition 2.14 that a solution of
the Schrödinger�Poisson system has carrier densities u& from the space L1.

7. Uniqueness of solutions

In sharp contrast to the situation of a vanishing exchange�correlation term in the potential
of Schrödinger's equation, no general results concerning uniqueness of solutions of the
Kohn�Sham system are known to the authors. However, if the exchange�correlation
terms do not change rapidly, then one can prove that the solution remains unique.

7.1. Remark. A speci�c di�culty is that the generic exchange�correlation potentials
(1.9) are not Lipschitz continuous. However, the expressions (1.9) are not properly justi-
�ed for very low carrier densities u& and the following regularization is possible [28]

Vxc;&(u) = �& �
�&
& � �&

�
u& + �&

��&
; �& > 0; 0 � � � 1(7.1)

This mapping Vxc;& : (L
1)� 7�! L1 is Lipschitz continuous.

7.2. Theorem. If the mappings Vxc;& are boundedly Lipschitz continuous from (L1)� into
L1 on the set L1

N , and the corresponding Lipschitz constants are su�ciently small, then
the solution of the Kohn�Sham system is unique (cf. De�nition 2.14 and De�nition 6.8).

Proof. One again regards the mapping � : L1
N 7�! L1

N from De�nition 6.8. Combining
the results on � from �6.c and the Lipschitz properties of the mappings Vxc;& , L (cf.
Lemma 6.7), Z& (cf. De�nition 2.14), and N& (cf. Corollary 5.4), one obtains that � is a
Lipschitz continuous mapping from L1

N into itself.

LipL1
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= Lip s�ball
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LipL1
N

�
Vxc;&

�
is a Lipschitz constant of the &�component (6.16) of �, where M is the set (6.18), and

s is the number (6.19). Thus, if the Lipschitz constants LipL1
N

�
Vxc;&

�
of the mappings

Vxc;& , & 2 f1; : : : ; �g are su�ciently small, then Banach's �xed point principle provides a

unique solution of the Kohn�Sham system.

7.3. Remark. In the sense of Remark 6.10 one often can estimate the Lipschitz constant
of Vxc;& in terms of the data of the problem. The Lipschitz constants of L and N& also can
be estimated in terms of these data, cf. Lemma 6.7 and Corollary 5.4 respectively. Thus,
in principle one can get ranges of data which assure uniqueness. N.B. for this purpose the

Birman�Solomjak Theorem 2.19 is essential, as it puts the cutting edge to our estimates.
It is not known yet, however, whether the uniqueness assuring ranges of data, which are
determined that way, are pessimistic or really interesting from a physical point of view.
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