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Abstract

We study the e�ect of the Maximum Entropy Principle (MEP) on the

thermodynamic behaviour of gases. The MEP relies on the kinetic theory of

gases and yields the local constitutive equations of Extended Thermodynamics.

There are two extreme cases on the scale of the kinetic theory: Dominance

of particle interactions and free �ight. In its current form the MEP gives the

phase density that maximizes the entropy at each instant of time. This is

appropriate in case of dominant particle interaction but it is not adequate for

free �ight. Here we introduce a modi�ed MEP that is capable to link both

extreme cases.

To illustrate the way the modi�ed MEP works, we consider an example

which leads in the case of dominant particle interactions to the Euler equa-

tions. In addition there results a representation theorem that contains the

global solutions of the Euler equations with all shock interactions for arbi-

trary large variations of the initial data.

1 Extended Thermodynamics Versus Kinetic

Theory

1.0 Introduction

Extended Thermodynamics was established in 1966 by I. Müller in order to remove

the paradoxes of heat conduction and shear pulses in viscous materials [8]. The

theory was brought into its present form by I. Müller and I Shi Liu [6] in 1983. In

the same year T. Ruggeri showed that the equations of Extended Thermodynamics

(ET) constitute a quasilinear symmetric hyperbolic system with a convex extension

[10].

Up to now the closure problem of ET was solved by means of the phenomenological

entropy principle. However, it turned out that the MEP may serve to link the

closure problem to the underlying kinetic or microscopic theory. The fact that the

MEP implies the phenomenological entropy principle was �rst shown by W. Dreyer

in 1987 [4].

In 1996 G. Boillat and T Ruggeri generalized and improved Dreyer's reasonings [2].

The strategy of ET in cases of high Mach numbers and/or high frequencies of dis-

turbances was studied by W. Weiss in 1990 [11] and [16].
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The same subject was investigated by C.D. Levermore in 1995 who relies also on

the MEP. However, he suggested to consider the nonlinear closure also with respect

to those variables which vanish in equilibrium. This was not considered before [5].

Some other modern kinetic schemes bear a resemblance to the current study. These

were studied independently of ET by B.Pertame in [12], [13],[14] mainly for the Euler

system and, relying on ET, by C.D. Levermore [5] and by P. Le Tallec , J.P. Perlat

[15] for higher order moment systems. Regarding the MEP up to now the kinetic

schemes as well as ET only consider the limit �ME ! 0, where �ME is the free-�ight

time interval.

1.1 A Survey on Extended Thermodynamics

Extended Thermodynamics (ET) is a �eld theory for the description of thermody-

namic processes. The scheme of ET consists of the following postulates (i) - (v):

(i) The state of a body at any time t is completely determined by M volume den-

sities uA (with M multiindices A) which are given at every point x of the

body.

The functions uA(t;x) are the basic variables of ET. Among them there are the mass

density �, the momentum density �vk, the energy density �e and so on. Sometimes it

is useful to replace some of these by other variables which are not volume densities,

like the velocity or the temperature.

(ii) The �eld equations for the variables uA rely on equations of balance which read

@uA

@t
+
@FAk

@xk
= PA in regular points, (1.1)

�Vs[[uA]] + [[FAk]]Nk = 0 on singular surfaces: (1.2)

Nk denote the components of the normal vector and Vs is the normal speed of the

singular surface. The double brackets denote the jumps across the singular surface.

The equations (1.1), (1.2) become �eld equations for the variables after they are

supplemented by constitutive equations for the �uxes FAk and the productions PA.

The constitutive equations relate FAk and PA to the variables in a material dependent

manner.

(iii)1 In ET it is assumed that the constitutive equations are local in the variables:

FAk = ~FAk(uB); PA = ~PA(uB): (1.3)

A solution of (1.1), (1.2) and (1.3) is called thermodynamic process.

(iii)2 A solution of (1.1), (1.2) and (1.3) with PA = 0 is an equilibrium process.
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(iv) The �eld equations must be independent of an observer in the following sense:

(iv)1 The combinations
@uA

@t
+
@FAk

@xk
� PA

must form tensors with respect to Galileian transformations.

(iv)2 Those parts of ~FAk and ~PA that are tensors with respect to Galileian

transformations must have the same form in every Galileian system.

A discussion and evaluation of this principle can be found in [7], [9].

A further restriction of the constitutive functions arises from the entropy principle

(v)1 There exist an entropy density h, an entropy �ux �k and an entropy production

� which are given by local constitutive functions

h = ~h(uB); �k = ~�k(uB); � = ~�(uB) (1.4)

so that for thermodynamic processes

@h

@t
+
@�k

@xk
= � � 0; �Vs[[h]] + [[�k]]Nk := �s � 0 (1.5)

holds in regular points and on singular surfaces, respectively.

The equality sign of (1.5)1 holds in an equilibrium process, while the equality sign in

(1.5)2 de�nes the property of ideal walls, that are, for example, realized in contact

surfaces of thermometers.

(v)2 The equations (1.5) form scalars with respect to Galileian transformation.

The entropy density and the entropy productions are scalars and the �ux �k

contains a contribution 'k that is a vector with respect to Galileian trans-

formation. The functions ~h; ~'k and ~� must have the same form in every

Galileian frame.

(v)3 In case that the energy density �e is among the variables uA, and when �s

denotes the equilibrium part of the entropy density, then the quantity

T :=

�
@�s

@�e

�
�1

(1.6)

is the absolute temperature.

(v)5 The matrix of second derivatives of ~h with respect to the variables uA must be

negative de�nite.

These restrictions lead to quite explicit constitutive functions. For ideal gases they

are so restrictive that they completely determine the �uxes FAk.

In general, the restrictions guarantee that the resulting system of �eld equations is

of symmetric hyperbolic type with a convex extension, see the excellent textbook

by Müller & Ruggeri [9].
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1.2 Survey on Kinetic Theory

We consider a monatomic gas at �high� temperature and �low� number density of

atoms so that it can be described by the phase density f(t;x; c) which gives the num-

ber density of atoms in the neighbourhood dxdc of the phase space point (x; c) :=

(position, velocity) at time t. The phase density obeys the Boltzmann equation

@f

@t
+ ck

@f

@xk
= S(f): (1.7)

S denotes the collision operator. One of its possible explicit forms will be given in

section 2.1.

We form moments of f that we may identify with the variables uA and the �uxes

FAk as follows:

uA(t;x) = m

Z
cAf(t;x; c)d

3
c; FAk(t;x) = m

Z
cAckf(t;x; c)d

3
c: (1.8)

m denotes the atomic mass and cA abbreviates the tensorial product ci1ci2 : : : ciM
and cA is put equal to 1 for A = 0. The c integrations ranges from �1 to +1.

When we furthermore de�ne the productions PA according to

PA(t;x) = m

Z
cAS(f)d

3
c;

it becomes obvious that the equations of balance (1.1) result from the Boltzmann

equation. In ET these appear as postulates.

The entropy inequality (1.5) may likewise be considered as a consequence of the

Boltzmann equation.

To achieve this we de�ne entropy density, entropy �ux and entropy production as

h(t;x) = �k
Z

f(t;x; c) ln

�
1

y
f(t;x; c)

�
d3c;

�k(t;x) = �k
Z

ckf(t;x; c) ln

�
1

y
f(t;x; c)

�
d3c; (1.9)

�(t;x) = �k
Z

S(f(t;x; c)) ln

�
1

y
f(t;x; c)

�
d3c:

k is Boltzmann's constant and y = m3

h
, where h denotes Planck's constant.

Obviously (1.7) implies (1.5)1. The proof that � � 0 can be found in [9].

We have thus partially derived the laws of ET from a kinetic point of view.

However, the most important feature of ET is still missing, viz. the local constitutive

equations

FAk = ~FAk(uB); SA = ~SA(uB); h = ~h(uB); �k = ~�k(uB): (1.10)
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The kinetic analogue to the assumption (1.10) of ET is a phase density whose

dependence on t and x is implicit through a dependence on uB(t;x):

f(t;x; c) = w(uB(t;x); c):

If w were known we would use the de�nitions (1.9) in order to calculate the consti-

tutive functions (1.10).

1.3 The Maximum Entropy Principle

The Maximum Entropy Principle (MEP) yields a phase density w that implies con-

stitutive functions (1.10) so that the resulting system of �eld equation is of symmetric

hyperbolic type with a convex extension.

According to the MEP the phase density w maximizes the entropy density h under

the constraints of prescribed values of uA = m
R
dccAf .

We take care of these constraints by Lagrange multiplies �A, which are functions

of uA but not of c, so that we can maximize the expression

�k
Z

f ln

�
1

y
f

�
d3c�

MX
A=1

�A

�
m

Z
cAfd

3
c� uA

�

without constraints.

The resulting phase density reads

w(uB; c) = ŵ(�B; c) = y � exp
"
�1� m

k

MX
B=1

�BcB

#
:

Thus we may obtain the equations

uA = ûA(�B); FAk = F̂Ak(�B); SA = ŜA(�B); h = ĥ(�B); �k = �̂k(�B):

The equations uA = ûA(�B) must be inverted to give �A = ~�A(uB), which are used

to eliminate the Lagrange multiplies from all other functions.

It is shown in [4], [9] and [2] that there holds

@uA

@�B

=
@uB

@�A

� neg. def.;
@fAk

@�B

=
@fBk

@�A

;
@2h

@�A@�B

� neg. def.

whereby the symmetric hyperbolic character of the �eld equations is established.

1.4 The Strategy of Extended Thermodynamics

The �rst fourteen moments of the phase density have an easy physical interpretation.

For cA = (1; ci;
1
2
c
2) we obtain uA = (�; �vi; �e); i.e. the mass density, the momentum
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density and the energy density. vi and e denote the velocity and the speci�c energy,

respectively.

The corresponding balance equations for these variables are conservation laws, SA =

0, and they contain the �uxes FAk = (�vk; Pik; Qk). These give the mass �ux,

the momentum �ux and the energy �ux. Momentum �ux and energy �ux can be

decomposed as

Pik = �vivk + pik = �vivk + pÆik + p<ik>;

Qk = �evk + pikvi + qk =
�
�u+ p+

�

2
v2
�
vk + p<ik>vi + qk:

pik is the pressure tensor which can be decomposed further into pressure p and

pressure deviator p<ik>. u denotes the internal energy and q is the heat �ux. If we
would stop here, that is we would describe the thermodynamic state by the �rst �ve

moments as variables, then the resulting phase density that maximizes the entropy

would be the Maxwellian

fM(t;x; c) = wM(uB(t;x); c) =
�

m

r
m

2�kT

3

exp
�
� m

2kT
(c� v)2

�
: (1.11)

Note that the temperature T appears here due to postulate (1.6) which yields u =
3
2
k
m
T .

It follows that p<ik> = 0, qi = 0 and we end up with the Euler equations. Their

explicit form is given in section 3.3.

Next we describe the strategy of ET:

When it turns out that a thermodynamic process which is described by the Euler

equations does not agree with experimental data, the set of variables will be extended.

Instead of uA = (�; �vi; �e) we choose uA = (�; �vi; �e; Pij; Qi) as variables. These

describe a thermodynamic state by thirteen independent1 variables.

The corresponding �uxes and productions are

FAk = (�vk; Pik; Qk;Mijk; Nik); SA(0; 0i; 0; S<ij>; Si):

The resulting phase density that maximizes the entropy is equivalent to Grads

phase density wG(uA(t;x); c) up to terms quadratic in p<ij> and qi, see [9].

wG relates the unknown �uxes Mijk and Nik and productions S<ij> and Si to the

variables uB.

The thirteen �eld equations constitute again a symmetric hyperbolic system which

includes the Navier Stokes Fourier theory in an approximative manner. We

refer again the reader to [9] for the details.

If this system also does not describe a thermodynamic process satisfactory, then

more moments as variables must be taken into account.

1Note that �e = 3

2
Pii holds for ideal gases.
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A careful study by W. Weiss [11] reveals that the number of variables quickly and

dramatically exceeds N = 13.

In the next two chapters we develop a new idea that may eventually be capable to

stay with 13 variables even for high Mach numbers and far from equilibrium.

2 The Maximum Entropy Principle Revisited

2.1 Physical Foundations

Three characteristic lengths control the properties of gases. These are

lC = d; lR =
m

�d2
1

�
; lG =

1

max
�
jgradxf j

f

� t 1

max
�
jgradx�j

�

� : (2.1)

A mean sound speed c0 =
q

k
m
T0 may serve to de�ne the corresponding characteristic

times

�C =
1

c0
lC ; �R =

1

c0
lR; �G =

1

c0
lG: (2.2)

d is the atomic diameter and m denotes the atomic mass. lC ; lR and lG are called

interaction length, relaxation length and gradient length, respectively.

The length lC gives the magnitude of the interaction radius. The relaxation length

lR determines the mean free path, which is the mean distance between two collisions.

The gradient length lG is a measure for the extension of macroscopic inhomogeneities,

and may for example be given by the extension of the gas container or by the

thickness of a shock wave.

For an easy discussion we rewrite the Boltzmann equation (1.7) in space coordi-

nates relative to lG and with an explicit but simpli�ed expression for the production

of collisions that is called Krooks model:

@f

@t
= � 1

�G

c

c0

�
ck

c

@f

@xk

�
� 1

�R
(f � fM) : (2.3)

The evolution of the phase density due to free �ight of the atoms is given by the

�rst term of the rhs of (2.3). The second term takes into account the interaction of

atoms in a very simple manner: It describes the relaxation of a given phase density

to a Maxwellian.

The validity of the Boltzmann equation relies on two inequalities that compare the

collision time �C ; which does not appear in (2.3) explicitely, with the gradient time

�G and the relaxation time �R, viz.

�C � �R and �C � �G: (2.4)
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Next we discuss the relations between �R and �G
c0
c
t �G

�
v
c0
+ 1
�
�1

= �G (Ma + 1)
�1

:

Here v denotes the magnitude of the macroscopic velocity and Ma = v
c0

is a mean

Mach number. There are three ranges that lead to quite di�erent macroscopic be-

haviour of the gas. For a discussion of these ranges we start at a time t where the

�elds uA(t;x) are assumed to be given, so that we can use them to determine the

phase density at time t by maximizing the entropy.

Range I: �R � �G (Ma + 1)
�1

In this range there is initially a fast relaxation. In all points of the gas the phase

density approaches the local Maxwellian wM . Only after f = wM is locally

reached, the gradient term in (2.3) starts to become important and determines the

future development.

Under these conditions the gas can be described by the �rst few moments of the

phase density as macroscopic variables uA. For the extreme case of the inequality

�R � �G (Ma + 1)
�1
we are justi�ed to use f = wM at all times, and the macroscopic

behaviour of the gas is then described by the Euler equations.

Note that here the gas looses very quickly the knowledge of the actual phase density

that was realized at the former time t.

Range II: �R � �G (Ma + 1)
�1

In this range we can �rst of all ignore the relaxation term in (2.3). The gas develops

by free �ight of its atoms and the knowledge on the initial phase density is conserved.

Here many moments of the phase density are needed as variables uA for a proper

description of the macroscopic behaviour of the gas.

Range III: �R comparable with �G (Ma + 1)
�1

Both mechanisms of the rhs of (2.3) act simultanuously. Macroscopically this is

realized by the appearance of heat conduction and viscosity.

If we approach this case starting from range I , then a proper macroscopic description

is given by Extended Thermodynamics with thirteen �elds which include the Navier

Stokes Fourier Therory in an approximative manner. This is carefully described

in [9].

For increasing ratio �G (Ma + 1)
�1 =�R an inreasing number of moments of f as

macroscopic variables uA must be included. On the macroscale the large quasilinear

hyperbolic systems come thus into play.

However, if we approach range III starting from range II, then a proper description

of macroscopic processes within the framework of Extended Thermodynamics is not

possible anymore.

We shall now introduce a modi�cation of the Maximum Entropy Principle that

allows in all three ranges the description of macroscopic processes with only a few

moments as variables.

As before we start at a time t, where the macrostate of the gas is given by a
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�nite number of moments as variables uA(A = 1; 2; :::; N). We are looking for a

solution of the Boltzmann equation (2.3) at time t + � which is given at time t

by f(t;x; c) = w(uA(t;x); c): w is obtained by maximizing the entropy under the

constraints of given uA(t;x).

This task is already partially solved by the representation

f(t+ �;x; c) = w(uA(t;x� c�); c) + (2.5)

1

�R

t+�Z
t

[wM(uA(#;x� c(t+ � � #)); c)� f(#;x� c(t+ � � #); c)] d#

The �rst term of the rhs is due to free �ight, while the second term takes care of

the collisions. As a �rst approximation we replace the actual phase density under

the time integral by that function that was obtained by maximization of entropy at

time t. The resulting representation is thus evolutionary and reads

f(t+ �;x; c) = w(uA(t;x� c�); c) +
1

�R

t+�Z
t

(wM � w) (uA(#;x� c(t+ � � #)); c)d#:

(2.6)

Now the crucial argument will be given:

We follow the course of time by using (2.6) only up to the time t+ �ME; i.e. within

the range 0 � � � �ME. We call �ME the time of maximizing entropy. At time

�ME we calculate uA(t + �ME;x) according to

uA(t+ �ME;x) =

Z
cAf(t+ �ME;x; c)d

3
c: (2.7)

and maximize the entropy again, however now for given uA(t+ �ME;x).

This procedure annihilates the knowledge on the former initial condition at time

t: Thus entropy is created and the procedure of maximizing entropy has the same

e�ect as the collision integral of the Boltzmann equation has.

By the appropriate choice of �ME, i.e. the appropriate sequence of subsequent

maximizations of entropy, we are able to control for a �xed number of moments

as variables whether we describe range I, II or III.

If we choose, for example, the �rst thirteen moments as variables, then the limit

�ME ! 0 yields the classical version of Extended Thermodynamics with 13 variables.

Note that the limit �ME ! 0 means that a �nite time interval contains in�nitely

many maximizations.

On the other hand, if one realizes within the classical Extended Thermodynamics

that 13 variables are not su�cient for a given process, the number of variables will be

increased. Here the same e�ect is obtained by reducing the number of maximizations

which leads from the collision controlled region to the region where the free �ight

becomes more and more important.
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Next we shall illustrate these ideas for the simple case where the thermodynamic

state is described by the �rst 5 moments of the phase density. The phase density

that follows from the Maximum Entropy Principle is simply the Maxwellian wM ,

and in the limit �ME ! 0 there results the Euler equations. This case may serve

to exhibit the subtle details of the whole procedure and gives as a most important

result in addition a global explicit weak solution of the Euler equations for arbitrary

initial data of bounded variation.

2.2 A new representation theorem for the initial value prob-

lem of the Euler system

According to the above presented reasonings we shall now formulate the iterated

scheme for the mass density �, the velocity v and temperature T . To initialize the

scheme we start with

� Bounded and integrable initial data for x 2 R3 :

�(0;x) = �0(x) � � > 0, v(0;x) = v0(x), T (0;x) = T0(x) � Æ > 0.

� A �xed time �ME > 0 of free �ight, so that at equidistant times

tn = n � �ME , (n = 0; 1; 2; :::), the maximization of entropy takes place.

For simplicity we shall later on set the particle mass m, Boltzmann`s constant k

and y equal to 1. The iterated scheme for the variables density �, velocity v and

temperature T reads within the time interval 0 < � � �ME :

�(tn + �;x) =

Z
1

�1

fn(x� �c; c) d3c

(�vi)(tn + �;x) =

Z
1

�1

cifn(x� �c; c) d3c (2.8)

(
1

2
�v2 +

3

2
�T )(tn + �;x) =

Z
1

�1

1

2
c2fn(x� �c; c) d3c

Here fn(y; c) = wM(uB(tn;y); c) is the three-dimensional MAXWELLIAN phase

density :

fn(y; c) =
�(tn;y)

(2�T (tn;y))3=2
� exp(� (c� v)2

2T (tn;y)
) (2.9)

This scheme can be brought into compact generic form, if we recall the abbreviations

cA =

8<
:

1 ; A = 0

ci ; A = i = 1; 2; 3
1
2
c2 ; A = 4

(2.10)
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Then the variables uA and �uxes FAk read

uA(tn + �;x) =

Z
1

�1

cAfn(x� �c; c) d3c

(2.11)

FAk(tn + �;x) =

Z
1

�1

cAckfn(x� �c; c) d3c

Note that u0 = �, ui = �vi (i = 1; 2; 3) and u4 =
1
2
�v2 + 3

2
T .

The entropy density h and entropy �ux �k are

h(tn + �;x) = �
Z
1

�1

(fnlnfn)(x� �c; c) d3c

(2.12)

�k(tn + �;x) = �
Z
1

�1

ck(fnlnfn)(x� �c; c) d3c :

For � = 0, wM is the phase density that was obtained by maximizing the entropy at

time tn for given constraints uA(tn;x). When the time tn+1 = tn + �ME is reached

there will be the next maximization of entropy under the new constraints uA(tn+1;x).

Within the range 0 < � < �ME the phase density solves the collision free Boltzmann

equation.

Proposition 2.1. Let 0 < � < �ME and n = 0; 1; 2; :::.

The �elds uA(tn + �;x), FAk(tn + �;x) and all of its derivatives in space and time

are smooth, and they satisfy the conservation laws

@uA

@�
(tn + �;x) +

@FAk

@xk
(tn + �;x) = 0:

Remark: Note that these equations do not constitute a local quasilinear hyperbolic

system for the variables uA, because the �uxes FAk at time tn + � and position x

depend on the whole �eld uA(�; t) at time t.

Sketch of the proof: If we substitute c by y = x � �c in (2.11) and regard

fn(y; c) = wM(uB(tn;y); c) we obtain

uA(tn + �;x) =
1

� 3

Z
cAwM

�
uB(tn;y);

x� y

�

�
d3y and

FAk(tn + �;x) =
1

� 3

Z
cA

xk � yk

�
wM

�
uB(tn;y);

x� y

�

�
d3y

with cA =
�
1; xi�yi

�
; (x�y)

2

2�2

�
. In these integrals the uB's do not depend on x and

� . We have thus shown the smoothness of uA, FAk and of all its derivatives with

respect to � and x.
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In order to prove the conservation form for these variables and �uxes we rely again

on the expressions (2.11). There holds due to the chain rule:

@�uA(tn + �;x) =

Z
1

�1

cA@�fn(x� �c; c) d3c

=

Z
1

�1

cA@xkfn(x� �c; c)(�ck) d3c

= �@xk
Z
1

�1

cAckfn(x� �c; c) d3c

= �@xkFAk(tn + �;x):

Proposition 2.2. Let 
 � R
+
0 �R3 be any bounded convex region in space and time.

By d~o we denote a positive oriented boundary element of @
. The representations

(2.11) have the following properties:

(i) In the limit �ME ! 0 the volume densities uA, �uxes FAk, the entropy density

h and entropy �ux �k become local functions of the variables �, vi and T , viz.

uA =

0
@ �

�vi
�v

2

2
+ 3

2
�T

1
A ; FAk =

0
B@

�vk
�vivk + �TÆik

�
�
v2

2
+ 5

2
T
�
vk

1
CA

h = 3
2
� ln

�
T��

2

3

�
; �k = hvk:

(ii) For �ME > 0 as well as in the Eulerian limit �ME ! 0 we obtain the following

weak formulation, which takes discontinuities into account:Z
@


(uA; FAk) d~o = 0: (2.13)

(iii) In regular points the regular form of the Euler equations are satis�ed for

�ME ! 0.

(iv) The following entropy inequality is satis�ed for �ME > 0 as well as in the

Eulerian limit �ME ! 0: Z
@


(h;�k)d~o � 0: (2.14)

The brackets (uA; FAk) and (h;�k) denote four-vectors in time (�rst position) and

space (last three positions).

Remarks

(1) The limit �ME ! 0 means that a thermodynamic process is realized by an

in�nite number of maximizations within a time intervall �t.
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(2) Each maximization increases the entropy, and for this reason the maximization

of entropy simulates the interaction of the microscopic particles of the gas.

(3) In singular points of a shock curve with velocity vs, which may appear in the

limit �ME ! 0, the Rankine-Hugoniot equations

�vs[[uA]] + [[FAk]]Nk = 0

hold. In addition, there is a positiv entropy production according to

�s = �vs[[h]] + [[�k]]Nk � 0:

Sketch of the proof:

(i): In the limit �ME ! 0 the �elds uA = uA(t;x) do not depend on c anymore,

i.e. they are constants regarding the c-integrations. Using this fact, we obtain by a

straightforward calculation the representations given in (i). The convergence can be

proved in the L1-norm. Regarding the proposition (ii) + (iii) it is su�cient to prove

the weak form
R
@

(uA; FAk)d~o = 0 for �ME > 0. The Eulerian limit �ME ! 0 can

be obtained by means of proposition 2.2 (i).

Let be �ME > 0:

In this case the time axis is devided by the maximization times

0 = t0 < t1 < t2 < � � �, so that the convex domain 
 can be decomposed into the

subdomains(

0 =

�
(Æ;x) 2 
j 0 � Æ � t0+t1

2

	
;


n =
�
(Æ;x) 2 
j tn�1+tn

2
� Æ � tn+tn+1

2

	
(n = 1; 2; 3; : : :):

(2.15)

Since
R
@

(uA; FAk)d~o =

P
n�0

R
@
n

(uA; FAk)d~o, it is su�cient to assume without loss

of generality that the time range

�
 =
�
t � 0j 9x 2 R3 : (t;x) 2 


	
of 
 contains at most one maximization time t.

Then for " out of the range 0 < " < 1
2
�ME we de�ne a further decomposition of each


n; n � 1, into three parts:8><
>:


"
n;L = f(Æ;x) 2 
nj Æ � tn � "g ;


"
n;M = f(Æ;x) 2 
nj tn � " � Æ � tn + "g ;


"
n;R = f(Æ;x) 2 
nj Æ � tn + "g :

(2.16)

These decompositions are visualized in the following two graphs:

13



Figure 2.1: The decompositions of 
 and 
n.

We obtainZ
@
n

(uA; FAk)d~o =

Z
@
"n;L

(uA; FAk)d~o+

Z
@
"n;R

(uA; FAk)d~o+

Z
@
"n;M

(uA; FAk)d~o;

and proceed to show that the �rst two integrals on the right-hand side must vanish:

The �elds uA(t;x) and FAk(t;x) are smooth in the domains 
"
n;L, 


"
n;R. For both

domains we thus can apply the Gaussian Divergence Theorem to the conservation

law @tuA + @xkFAk = 0 resulting from the �rst proposition in order to getZ
@
"n;L

(uA; FAk)d~o =

Z
@
"n;R

(uA; FAk)d~o = 0:

This impliesZ
@
n

(uA; FAk)d~o =

Z
@
"n;M

(uA; FAk)d~o = lim
"!0

Z
@
"n;M

(uA; FAk)d~o

=

Z

�n

�Z
cA [fn(x; c)� fn�1(x� �MEc; c)] d

3
c

�
d3x;

where 
�n = fx 2 R3 j(tn;x) 2 
g. tn�1 is the maximization time that preceeds the

maximization time tn. The Maxwellian fn has to be read o� from (2.9).

The last integral expression vanishes for cA =
�
1; ci;

1
2
c
2
�
due toZ

cAfn(x; c)d
3
c =

Z
cAfn�1(x� �MEc; c)d

3
c (2.17)

which expresses the constraints that were used for the maximization procedure.

We have thus established that the weak form (2.13) for a general convex domain
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 is implied by the representations (2.11). In particular (2.13) holds also in the

Eulerian limit �ME ! 0.

In each regular point (t;x) we can now apply the Gaussian Divergence Theorem to

(2.13) in the Eulerian limit in order to get the proposition (iii).

Regarding the proposition (iv) which states the existence of the entropy inequality

(2.14), we start the proof again with the decompositions (2.15) and (2.16) of 
.

Since
R
@

(h;�k)d~o =

P
n�0

R
@
n

(h;�k)d~o, it is su�cient to prove
R
@
n

(h;�k)d~o � 0

for each n:

We obtainZ
@
n

(h;�k)d~o =

Z
@
"

n;L

(h;�k)d~o+

Z
@
"

n;R

(h;�k)d~o+

Z
@
"

n;M

(h;�k)d~o (2.18)

and shall show that the �rst two integrals on the right hand side vanish:

The entropy-function h(t;x) and the entropy-�ux �k(t;x) are smooth �elds in the

domain 
"
n;R, because according to (2.12) we have for (t;x) 2 
"

n;R

h(t;x) = �
Z
(fn ln fn)(x� (t� tn)c; c)d

3
c;

�k(t;x) = �
Z

ck(fn ln fn)(x� (t� tn)c; c)d
3
c:

In this domain we obtain due to the chain rule:

@th(t;x) = �@xk �k(t;x): (2.19)

This implies
R
@
"n;R

(h;�k)d~o = 0, and
R
@
"n;L

(h;�k)d~o = 0 can likewise be obtained.

For every su�ciently small " > 0 there holdsZ
@
n

(h;�k)d~o = lim
"!0

Z
@
"n;M

(h;�k)d~o (2.20)

=

Z

�n

�Z
[�(fn ln fn)(x; c) + (fn�1 ln fn�1)(x� �MEc; c)] d

3
c

�
d3x;

where 
�n = fx 2 R
3 j(tn;x) 2 
g, and tn�1 < tn is the maximization time that

preceeds tn.

Next we shall show that the integral (2.20) is non-negative. To this we need the

following

Lemma 2.1. For u; v > 0 we have

v ln v � u lnu = [lnu+ 1](v � u) +R(u; v) (2.21)

with the function R(u; v) := v[ln v � lnu]� (v � u) � 0.
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Proof of Lemma 2.1. Due to Taylors formula there is a � > 0 between u; v > 0

such that

v ln v = u lnu+ (lnu+ 1)(v � u) +
1

2�
(v � u)2: (2.22)

We conclude R(u; v) = 1
2�
(v � u)2 � 0.

Now we apply Lemma 2.1. to u = fn(x; c) , v = fn�1(x� �MEc; c):Z
[�(fn ln fn)(x; c) + (fn�1 ln fn�1)(x� �MEc; c)] d

3
c (2.23)

= �
Z

[1 + ln fn(x; c)] [fn(x; c)� fn�1(x� �MEc; c)] d
3
c

+

Z
R(fn(x; c); fn�1(x� �MEc; c))d

3
c:

The second integral is non-negative and the �rst one vanishes for the following

reasons: [1 + ln fn(x; c)] is a quadratic polynomial in c, containing only ci and c
2,

and for cA =
�
1; ci;

1
2
c
2
�
there follows due to (2.17)

0 =

Z
cA [fn(x; c)� fn�1(x� �MEc; c)] d

3
c: (2.24)

For �ME > 0 we have thus established the entropy inequality (2.14). It is due to

proposition 2.2 (i) that this inequality is also valid in the Eulerian limit, where

shocks may appear.

3 Some Initial Value Problems

The thermodynamic state in the neighbourhood of the Eulerian limit is best suited

to illustrate the mechanism of maximizing the entropy after subsequent non zero

time intervals. To this we use the representations

uA(t+ �;x) = m

Z
cAwM(uB(t;x� c�); c)d3c

(3.1)

FAk(t+ �;x) = m

Z
cAckwM(uB(t;x� c�); c)d3c

and solve some selected macroscopic one-dimensional initial value problems. (3.1)

is only a di�erent notation for (2.11), where fn(y; c) = wM(uB(tn;y); c) is just the

Maxwellian phase-density. Both notations are useful for di�erent purposes.

3.1 Evaluation of the Representations in One Space Dimen-

sion

In order to solve the initial value problem for the Euler equations in one space

dimension we choose a �xed � = �ME > 0 and de�ne the equidistant times tn = n�ME

(n = 0; 1; 2; : : :).

16



For given �elds �n(�) = �(tn; �), vn(�) = v(tn; �), Tn(�) = T (tn; �) at time tn, starting

with the initial data �0; v0; T0 given at time t = 0, these �elds are obtained at time

tn+1 according to the scheme

�n+1(x) =
+1R
�1

fn(x� c�; c)dc

(�v)n+1(x) =
+1R
�1

cfn(x� c�; c)dc

(�(3T + v2))n+1(x) =
+1R
�1

(c2 + 2Tn(x� c�))fn(x� c�; c)dc:

9>>>>>>>=
>>>>>>>;

(3.2)

Here the phase density fn(y; c) is given by

fn(y; c) =
�n(y)p
2�Tn(y)

exp

�
�(c� vn(y))

2

2Tn(y)

�
: (3.3)

This scheme can be obtained from the representations (3.1) by integrating over c2
and c3. For � ! 0 it solves the weak Euler equations as it will be described in

section 3.3.

3.2 From Free Flight to the Eulerian Limit

We consider a density distribution �0(x) at zero velocity and uniform temperature:

�(0; x) = �0(x) =

8<
:

1 jxj > 1

; v(0; x) = v0 = 0; T (0; x) = T0 = 1:
1:1 jxj � 1

We are interested in density distributions within the range x 2 [�5; 5] at time t = 1:5

for di�erent maximizing entropy times �ME.

-4 -2 0 2 4
POSITION

1.01

1.02

1.03

1.04

1.05

1.06

M
A
S
S
D
E
N
S
I
T
Y

Figure 3.1: Density distributions for 1; 10; 100 maximizations
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Figure 3.1 depicts three density distributions at t = 1:5. The di�usion like distribu-

tion results from pure free �ight with only one maximization at the beginning.

The distribution that shows already the formation of moving fronts is obtained when

we choose �ME = 0:15, i.e. there are 10 maximizations within the time interval

[0; 1:5]. When we decrease �ME further, the fronts become steeper, and this is

exhibited by the third distribution that is obtained for �ME = 0; 015. This is almost

the Eulerian limit.

The physical content of the Eulerian limit is the overwhelming importance of

collisions against free �ight. A chosen �ME > 0 thus determines which of both

mechanisms has more in�uence on a thermodynamic process.

Thermodynamic processes with increasing importance of the free �ight phenomena

require within classical ET an increasing number of variables. Here the importance

of free �ight is taken into account by choosing the appropriate �ME for a �xed

number of variables.

According to the indications from the above example we may hope that the modi�ed

Maximum Entropy Principle will eventually lead to a modi�ed ET that need not

to increase the number of variables above 14 for the description of processes far

from equilibrium or with high Mach number, where free �ight phenomena become

important.

3.3 The Eulerian Limit

There is another advantage of the modi�ed Maximum Entropy Principle which relies

on the resulting representations (3.2) � (3.3).

We consider now exclusively the Eulerian limit �ME ! 0 in order to illustrate

the superpriority of the representations (3.2) � (3.3) against the use of di�erence

schemes for the solution of an initial value problem of the Euler equations.

To this we choose as an extreme example discontinuous initial data so that in later

times the interaction of a shock wave and a rarefaction wave will appear.

The determination of the initial data requires some knowledge of the weak form of

the Euler equations. This will be given in the next section.
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3.3.1 The Weak Form of the Euler equations

In one space dimension we are looking for M = 3 �elds uA =
�
�; �v; �(u+ v2

2
)
�T

which satisfy the weak form of the Euler equations:R
@


�dx� (�v)dt = 0R
@


(�v)dx� (�v2 + p)dt = 0R
@


�(u+ v2

2
)dx� �v

�
u+ v2

2
+ p

�

�
dt = 0

9>>>>=
>>>>;

(3.4)

Here 
 � R � R+
0 is a convex set in space-time with piecewise smooth, positive ori-

ented boundary. Note that this weak formulation takes discontinuities into account,

since there are no longer derivatives of these �elds.

In an ideal gas the pressure p, internal energy u and temperature T are related as

follows:

u =
3

2

k

m
T; p =

2

3
�u =

k

m
�T: (3.5)

In the following we set k = 1; m = 1.

We consider initial data of bounded variation for �; v and T , which may have jumps:

�(0; x) = �0(x); v(0; x) = v0(x); T (0; x) = T0(x): (3.6)

It is well known that the weak formulation (3.4) implies Eulers di�erential equa-

tions in regular points:

�t + (�v)x = 0

(�v)t + (�v2 + p)x = 0�
�(u+ v2

2
)
�
t
+
�
�v
�
u+ v2

2
+ p

�

��
x
= 0

9>=
>; (3.7)

If x = x(t) is a shock-discontinuity of the weak solution (3.4) with speed vs = _x(t),
u� = (��; v�; T�) the state left to the shock and u+ = (�+; v+; T+) the state to the

right, then (3.4) leads to the Rankine-Hugoniot jump conditions:

vs(�+ � ��) = �+v+ � ��v�;

vs(�+v+ � ��v�) = (�+v
2
+ + p+)� (��v

2
�
+ p�);

vs

h
�+

�
u+ +

v2+
2

�
� ��

�
u� +

v2
�

2

�i
=

�+v+

�
u+ +

v2+
2
+

p+
�+

�
� ��v�

�
u� +

v2
�

2
+

p
�

�
�

�

9>>>>>>=
>>>>>>;

(3.8)

Furthermore we require that the weak solution of (3.4) must satisfy the following

entropy-inequality Z
@


hdx� �dt � 0 (3.9)
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with positive oriented @
, the entropy density h and the entropy �ux �:

h(�; v; u) = 3
2
� ln u

�2=3

�(�; v; u) = v � h(�; v; u)

)
(3.10)

In singular points the local form of (3.9) reads

�vs(h+ � h�) + (�+ � ��) � 0; (3.11)

which must be satis�ed at each shock curve of (3.4).

The solution that satis�es (3.8) and (3.11) is called entropy shock.

Now we give parameter representations for the single entropy shocks. For this pur-

pose we choose the initial data as follows:

Let be (�0; v0; T0) 2 R+ � R � R+ and de�ne p0 := �0T0.

We use the pressure p as a parameter which determines the strength of an entropy

shock. (3.8) and (3.11) is ensolved by

�(p) = �0
4p+ p0

p+ 4p0
(3.12)

v(p) = v0 �
p
3(p� p0)p
(4p+ p0)�0

(3.13)

T (p) =
p

�(p)
(3.14)

vs(p) = v0 +
v(p)� v0

�(p)� �0
�(p): (3.15)

in the following way:

� The �+� sign in (3.13) and p > p0 give the so called 3-shocks with the constant

state (�0; v0; T0) on the right:

(��; v�; T�) = (�(p); v(p); T (p)); (�+; v+; T+) = (�0; v0; T0):

These 3-shocks both satisfy the Rankine-Hugoniot conditions (3.8) as well

as the entropy condition (3.11).

� The �-� sign in (3.13) and p > p0 give the so called 1-shocks with the constant

state (�0; v0; T0) on the left:

(��; v�; T�) = (�0; v0; T0); (�+; v+; T+) = (�(p); v(p); T (p)):

These 1-shocks both satisfy the Rankine-Hugoniot conditions (3.8) as well

as the entropy condition (3.11).
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Now we de�ne the 2-shocks, that turn out to be contact-discontinuities without

entropy-production:

To this alone we choose � > 0 instead of p as a parameter and set

(��; v�; T�) = (�0; v0; T0); (�+; v+; T+) =

�
�; v0;

�0T0

�

�
:

These shocks satisfy the Rankine-Hugoniot- and entropy conditions.

Note that velocity and pressure are constant across a 2-shock. Here the shock-speed

is vs = v0.

Remark. One can prove that the only shocks satisfying (3.8) and (3.11) are 1-, 2-

and 3-shocks.

In addition to shock waves there may appear a pure rarefaction wave with the

following initial data:

Let (�0; v0; T0) 2 R+ � R � R+ be the initial state on one side and p0 = �0T0. Then

we choose the initial state on the other side according to

�0

�
p

p0

� 3

5

= �(p)

v0 �
q

15
�0
� p

3

10

0

h
p
1

5 � p
1

5

0

i
= v(p)

p

�(p)
= T (p)

9>>>=
>>>;

(3.16)

where p > 0 is the free pressure-parameter. The solution of the form uA = gA
�
x
t

�
can be obtained from (3.16) which describes the integral curves of the vector �eld

of right eigenvectors to the system (3.7).

These relations as well as the shock conditions can be found in [1] and [3].

3.3.2 Interaction of a Shock Wave with a Rarefaction Wave

In this section we study the interaction of a shock wave with a rarefaction wave

according to the Eulerian limit. To achieve this we choose Riemannian initial

conditions as follows:

First of all we create a pure rarefaction wave at x = 1. To this we prescribe the state

right to x = 1 as �+ = 1, v+ = 0, T+ = 1, and calculate the state left to x = 1 by

the equations (3.16) with p = 32. This state turned out to be �M = 8, vM = �
p
15,

TM = 4. Now we consider these data as the state right to a 3-shock starting at

x = �1. The Rankine-Hugoniot conditions (3.12)�(3.15) are used to calculate

the state left to x = �1 with p = 88. It comes out �� = 14:222, v� = �2:123,
T� = 6:188. The speed of the 3-shock reads vs = 0:127.

The three graphs on the next page show the �elds of mass density, velocity and

temperature for the time interval [0; 1], and the space coordinate x ranges from �2
to 2. The times of maximization are tn = n

200
, n = 0; 1; : : : ; 200. At time t � 0:3 the
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3-shock encounters the rarefaction wave. The interaction between both leads to a

complicated structure including an acceleration of the original 3-shock.

The extreme values for density, velocity and temerature read �Min = 0:7226, �Max

= 14:6517, vMin = �3:870, vMax = 1:8722, TMin = 1:0 and

TMax = 6:2326.
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remarks and discussions. Without his support we could not �nish this work in such a short

time.
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