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Summary

In the paper, we consider the possibility of the growth of strong discontinuity waves in the two-
component poroelastic materials. We use the model with the hyperbolic set of field equations described in
the paper K. Wilmanski [19961]. It is shown that indeed the critical time (i.e. the maximum time of
existence of classical solutions) is finite and it assumes realistic values for real physical systems, such as
biological tissues.

1.  Introduction

The problem of propagation of waves in porous and granular materials bears
special features which do not appear in other media with microstructure. The most
characteristic one is the presence of additional modes of propagation. For porous
materials, such a mode has been described for the first time by M. A. Biot [1956, 1962],
and it is called the P2-wave in contrast to P1-waves (longitudinal) and S-waves
(transversal) appearing in one-component elastic solids. These additional modes are
usually connected with a very high attenuation and this yields, in turn, certain
difficulties in their experimental observation.

The second characteristic feature is the scattering on microscopic
heterogeneities. Certainly, this phenomenon appears as well, for instance, in
polycrystals. However, in contrast to relatively small grains of polycrystals, the size of
the microstructure of typical granular and porous materials is much larger. It means that
the strong scattering of sound waves appears in granular and porous materials for much
longer waves (waves of much lower frequency) than it is the case for polycrystals. For
instance, in the extreme case of a very coarse gravel (the typical size of particles ∼4.5
mm), the waves of frequencies higher than app. 300 kHz cannot propagate at all,
primarily due to the scattering.

The third feature is connected with the diffusion (relative motion) of
components. The influence of the diffusion is particularly dramatic for the value of the
attenuation coefficient and it has less influence on the speeds of propagation (e.g. see:
K. Wilmanski [1995, 19961,2].

Finally, in contrast to linear elastic models of polycrystals or composites, the
models of porous materials with the linear elastic skeleton admit the growth of shock



waves, i.e. strong discontinuity waves. This is due to the non-linearity of the
contribution of fluid components, which is characteristic for the bulk of such systems
appearing in nature.

The literature of the subject contains a rather extensive batch of work on
propagation conditions, speeds of propagation and attenuation of acoustic waves in
granular and porous materials based on various models (e.g.: T Bourbie, O. Coussy, B.
Zinszner [1987], R. I. Nigmatulin [1990], V. N. Nikolaevskij [1990]). On the other
hand, scattering of acoustic waves in such materials has been investigated to a very
small extent and solely for one-component models. Even less has been done for the
growth and propagation of shock waves.

In this paper, we investigate the possibility of the growth of the strong
discontinuity wave in a porous material, described by the hyperbolic set of field
equations and proposed in my papers K. Wilmanski [19961, 1997]. In the next section,
we present the model. In the third section, we derive the evolution equation for the
amplitude of weak discontinuities. As usual, it appears to be the Bernoulli equation
along each characteristic. The solution of this equation may become infinite after a
finite time. This critical time defines the range of existence of classical solutions of field
equations. For times larger than critical, there exist solely weak solutions which define
the shock waves. The fourth section is devoted to the dynamical compatibility
conditions which describe the propagation of such waves. We show that the present
model yields these conditions in the form reminding, to a certain extent, the classical
Rankine-Hugoniot conditions for gases. The problem which still remains unsolved is
connected with the admissibility (selection) criterion for the shock waves. We shall
return to this problem in a separate forthcoming paper.

2. The model

We consider temperature-independent processes in a two-component porous
medium described by the following six fields
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where ρS
t denotes the current mass density of the skeleton, ρF

t - the current mass density
of the fluid, vS - the velocity field of the skeleton, vF - the velocity field of the fluid, n -
porosity and eS - the symmetric deformation tensor of the skeleton.

The field equations for these fields follow from the balance equations of partial
mass and momentum for both components and from the balance equation for porosity.
In addition, the velocity field vS and the deformation tensor eS must satisfy the
integrability condition. Under the following assumption of small deformation of the
skeleton
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these balance equations have the form presented in the table below. On the left-hand
side, we quote the equations in points x∈�t in which the fields are of the class C1 with
respect to time and space variables. On the left-hand side, we quote the dynamical
compatibility relations in points of a singular surface, on which the fields may have
finite discontinuities.

In addition to the small deformation of the skeleton (2.2), it has been assumed
that the speed of the relative motion vF-vS is much smaller than the partial speeds of
components. This yields the linearity of the diffusive forces in the momentum balance
equations. We assume as well that the deviation of porosity from the equilibrium value
∆=n-nE is much smaller than unity.
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The constitutive relations for poroelastic materials are assumed to have the

form
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where all constitutive parameters λS, µS, ϕ, β, π and τ depend solely on the equilibrium
constant value of the porosity nE. This is the value of porosity, which the material
reaches after the full relaxation under the constant load. In addition, the propagation of
shock waves, considered further in this work, is considered for the following form of the
intrinsic pressure �F:
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where γ is a constant.
Let us notice that the solution of equation (2.3) for small deformations of the

skeleton

( )ρ ρ ρt
S S S≈ − ⋅ ≈1 e 1S , (2.17)

allows to eliminate ρS
t from the list of fields in regular points. It is not any more the

case on the singular surfaces as we see further in this work.

3. Propagation condition for plane waves, evolution of the amplitude

3.1. Speeds and amplitudes of weak discontinuity waves
In this section we consider a simple case of propagation of plane waves. The

purpose of these considerations is primarily the derivation of the so-called evolution
equation of the amplitude of the weak discontinuity waves. The solution of this equation
gives rise to the time of existence of classical solutions of the field equations. For a
given set of initial conditions, it enables the analysis of the growth of shock waves.

We consider the motion of both components to be described by the single
component of velocities vF and vS in the direction of x-axis. The deformation eS reduces
to the extension in the x-direction eS. Simultaneously, in order to estimate the
magnitude of contribution of various effects, we introduce the dimensionless
description. In the definition of dimensionless quantities, we use the material parameters
US, τ and ρS. Namely

                                                
1 In my previous works the material constant describing the coupling of stresses has been denoted by 0�
It is related to β in the following way: β=ϕ (0 τ)-1.
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Consequently, the set of unknown fields is as follows
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These fields satisfy the field equations following from (2.4)-(2.8), i.e.
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We write this set of equations in the form
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with the following definitions of the matrices A and B
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Hyperbolicity of the set of field equations (3.4) means that the eigenvalues of
the matrix A are real and the eigenvectors of this matrix span the space of solutions. We
proceed to find these eigenvalues and eigenvectors.

We solve the equation for the eigenvalues
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under the assumption
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For the second term λ1 in the perturbation series (3.7), we have
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It can be easily checked that this contribution is of the order of magnitude of the unity.
This means that we can limit the attention to the zeroth approximation (3.8) of the
eigenvalues. Due to the assumption of the small deviation from the thermodynamical
equilibrium, we can hardly distinguish between the contributions of 

�
vF  and 

�
vS  anyway.

Consequently, we use the approximation λ≈λ0.
Let us notice that relations (3.8) reduce to the classical relations for speeds of

propagation of longitudinal waves in the elastic solid and the ideal fluid, respectively, if
the coupling coefficient ϕβ vanishes. The normalized right and left eigenvectors follow
in the form
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Evaluation of the jump of field equations (3.4) yields easily the following
property of the amplitude of the weak discontinuity, i.e. the jump of the gradient of the
field w. We have
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i.e. the speeds of propagation are identical with the eigenvalues of the matrix A and the
amplitude of discontinuity is parallel to the right eigenvector of the matrix A.

3.2. Evolution of the amplitude
We proceed to investigate the time changes of the magnitude a of the

amplitude. In order to simplify the calculations we assume that the medium ahead of the
wave (i.e. on the positive side of the surface which is defined by, in general, the
direction of the normal vector n) is in the static undeformed state. Then the
differentiation of the field equations with respect to x, multiplication by the right
eigenvector and evaluation of the jump on the singular surface yields the following
equation
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and the standard kinematical compatibility conditions have been used. The eigenvectors
and the coefficients Γ1 and Γ2 are known because they are evaluated for the fields in the
static undeformed state ahead of the wave, i.e.
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The evolution equation of the amplitude (3.12) is of the Bernuolli type and it is typical
for the quasilinear hyperbolic systems of equations (e.g. see: M. F. McCarthy [1975]).
Certainly, it can be immediately solved. In the most general case, we have
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Let us mention a few most important properties of the above evolution
equation. First of all, it is obvious that the non-linearity of the field equations is
necessary for the existence of the non-zero coefficient Γ1. If this is not the case, the
evolution of the amplitude has an exponential character. Such an amplitude is a constant
if the sources B are absent and it grows or decays exponentially otherwise.

The situation changes in the case of presence of Γ1. Then it may happen that
the amplitude a grows to the infinity in finite time - say tc. According to the relation
(3.15), it may happen iff
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Consequently, the existence of the critical time tc depends on the initial data, on
the signs of coefficients Γ1, Γ2, as well as on the choice of the characteristic, i.e. on the
choice of the eigenvalue of A and of the corresponding eigenvector. We shall
investigate this problem for the system (3.4).

Bearing in mind the form (3.5) of the matrix A, we obtain after easy
manipulations the following form of the coefficients Γ1, Γ2

( )

( )

Γ

Γ

1
0

2

2

2
2

3

0

2

2

2
0 2

2

2
2

2

2
2

2

0
2

2

1
2

1 1
2

=
⋅

−

−

















+














 + −






























=
⋅

−

−

















+

+ +

+

+ +

+
+

+

+

+
+

+

+

+

+

+

+

λ
ρ

λ

λ
ρ

∂
∂ρ

ρ
ϕβ

λ

λ
λ

λ

π
ρ

λ
λ

F
U
U

F
F

F

S

F F

S

U
U

F

F

S

F

S

U

U

U

Ul r

l r

�
F

,

( )
( )+

+

+
+

+
+

+

+

+

+

+

−

−
+

−
+



















−

≡ +








 + +









 ±







± −








 − +























+ −





















+

+

2

2
2

0

2 2

2

2 1
2

2

0

2

0

2 2

1 1

1 1
1

1 1
1

4 1

λ

π
ρ

λ

ϕβ
λ π

λ
ρ

ϕβ

ρ
ϕβ ϕβ

U
U

F

F

S F

F

S F

F

S

F

S

U

U

U

U

U

U

,










,

(3.17)

where we have skipped the hat for the typographical reasons. The plus sign means that
the quantity should be evaluated in the state w+ given by (3.14).

For the zero value of λ both coefficients vanish. Consequently, the amplitude
of discontinuity a does not change in time along this characteristic.

It remains to establish the initial conditions. We have in general
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Let us consider the case of a given initial acceleration of the fluid component.
For a given aF

0, we have
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Bearing in mind the relation (3.10) for the eigenvector, we get finally
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This choice of the initial conditions has no essential bearing on the qualitative properties
of the amplitude a. This is due to the fact that the initial disturbance of any quantity
appearing in (3.18) yields the disturbances of all remaining gradients. Consequently, it
is solely the problem of proper normalization of initial conditions.

It is seen that the coefficients Γ1, Γ2 and the eigenvectors r+, l+ are constant in
this example. Hence we can easily integrate in (3.16). It follows
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Then the existence of positive critical times requires that the initial amplitude
must be bigger than the critical value given by the relation
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If this is the case the classical solution of field equations ceases to exist and the
shock wave is created. It shall happen on the characteristic with the shortest critical
time. Consequently, in order to find it, we have to check four characteristic critical
times for the present example.

We illustrate these conditions by a numerical example. We choose the
following data of material parameters
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They describe a rather soft skeleton (the relatively small value of the speed US)
with the coefficient of permeability π smaller than the typical values for, say, rocks.
These data have the order of magnitude typical for, for instance, biological tissues.

Figure 1: Critical time in [s] vs. initial amplitude in [m/s2] for the data (3.23)

For these data, the critical initial acceleration, defined by the relation (3.22),
has the value aF

0=11.43 m/s2.Consequently, one can expect the growth of the shock
wave in this two-component system provided the initial acceleration is big enough.

In Figure 1, we present the critical time as the function of the initial amplitude.
As expected, this time becomes shorter for larger amplitudes. Also its order of
magnitude seems to be realistic even though I am not aware of experimental data, from
which this time could be estimated.

4. On strong discontinuity waves

As pointed out in the analysis of the critical time for the weak discontinuity
waves, the nonlinearity of the constitutive relation for the intrinsic part of the pressure
in the fluid �F(ρF

t; nE) indicates the possibility of the growth of shock waves, i.e. the
waves carrying the strong discontinuities. They are not described by the local field
equations (2.3)-(2.8) any more. We have to construct weak solutions of those equations.
Very little has been done in this respect for multicomponent continua. In this work, we
show solely some basic properties of shock waves for the simple model under



considerations which follow from the jump conditions (2.9)-(2.14). As before, we
assume the body to be undisturbed ahead of the shock wave, i.e. its state is supposed to
be w+ given by (3.14). Bearing in mind the relations
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which follow from the jump condition (2.14), the remaining jump conditions yield the
following relations
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These relations should be read in the following way. The formulae (4.1)
together with (4.2)1-4 determine the jumps of ρS

t, e
S⋅1, vS⋅n, vF⋅n and ∆ in terms of the

jumps of the mass density of the fluid ρF
t and of the intrinsic pressure �F which are, in

turn, connected by the barotropic constitutive relation (2.16). According to (4.2)5, the
admissible discontinuity of the fluid velocity vF reduces to the component in the
direction of propagation n. The tangential component must be continuous. On the other
hand, according to (4.2)6, the tangential component of velocity of the skeleton vS can be
discontinuous but its discontinuity propagates with velocity of the transversal sound



wave equal to 
µ
ρ

S

S . Hence, it can be solely due to initial conditions and does not grow

during the motion of the body.
The last relation (4.2)7 determines the speed of propagation of such waves if

the jump of the mass density ρF
t is given. This relation is identical with the classical

Rankine-Hugoniot condition for shock waves in gases.
The investigation of the one-dimensional problem of construction of weak

solutions accounting for these relations and the analogy to the theory of shock waves in
gases is in progress and it shall be presented in the forthcoming paper.

5. Concluding remark

In spite of the practical - in particular, medical - applications of shock waves in
porous materials, the theoretical research in this field does not make much progress
since many years. This is due to the two main reasons. First of all, it is very difficult to
extend the methods of solutions of one-dimensional hyperbolic problems to more space
dimensions. Unfortunately, such an extension is necessary in practical applications of
shock waves in porous materials (e.g. in lithotripsy). Secondly, in the case of more than
two fields, very little is known about the criteria of choice of a weak solution. It is
known that the usual entropy criterion does not yield uniqueness and an alternative is
not yet known. This problem was only indicated in the present work.
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