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Abstract

In this paper, a system of partial di�erential equations modelling the dynamics

of martensitic phase transitions in shape memory alloys is further investigated. In

this system, the free energy is assumed to be in the Landau-Ginzburg form and

nonconvex in the order parameter; the materials are assumed to be viscous. In a

previous paper published in SIAM J. Math. Anal. the global existence of a unique

solution and the compactness of the orbit have been established; in the present

paper the existence of a compact maximal attractor is proved.

1 Introduction

In this paper, we further study a system modelling the thermomechanical developments

in a one-dimensional heat-conducting viscous solid of constant density % (assumed to

be normalized to unity, i.e. % = 1) which is subject to heating and loading. The basic

assumptions on the system under investigation are the following ones: we think of metallic

solids that not only respond to a change of the strain " by an elastic (possibly nonlinear)

stress � = �("), but also to a change of the curvature of their metallic lattices by a couple

stress � = �("x). We assume that the Helmholtz free energy density F is a potential of

Landau-Ginzburg form, that is,

F = F ("; "x; �) ; (1.1)

where � denotes the absolute temperature. To cover systems modelling �rst-order stress-

induced and temperature-induced solid-solid phase transitions accompanied by hysteresis

phenomena, we do not assume that F is a convex function of the order parameter ".

A particular class of materials, where both stress-induced and temperature-induced �rst-

order phase transitions occur that lead to a rather spectacular hysteretic behavior, are the

so-called shape memory alloys (for details, we refer to the monograph [4] by Brokate and

Sprekels). In these materials the metallic lattice is deformed by shear and the assumption

of a constant density is justi�ed. The shape memory e�ect itself is due to martensitic

phase transitions between di�erent con�gurations of the crystal lattice, namely austenite

and martensitic twins. For an account of the physical properties of shape memory alloys,

we refer the reader to the papers by Falk [8], [9]. In [8], [9] Falk has proposed a Laudau-

Ginzburg theory, using the strain " as order parameter, to explain the occurrence of the

martensitic transitions in shape memory alloys. In this connection, we also refer to the

works of M�uller et al. (cf. [1], [14]).

The simplest form for the free energy density F , which accounts quite well for the exper-

imentally observed behavior and takes couple stresses into account, is given by (see Falk

[8], [9])

F ("; "x; �) = F0(�) + F1(") � +
�

2
"
2

x
; (1.2)

where

F1(") = �1"
2
; F2(") = �"

4 � �1�1"
2
; (1.3)

F0(�) = �CV � log

 
�

�2

!
+ CV � + ~C ; (1.4)

with �1 ; � ; �i (i=1,2,3), �2 ; CV ;
~C being positive constants. The positive constant CV

denotes the speci�c heat. Observe that in the interesting range of temperature, for � close
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to �1, F is not a convex function of the shear strain ". In fact, F (�; "x; �) may have up to

three minima which correspond to the austenitic and the two martensitic phases.

We want to forecast the dynamics of the phase transitions in the one-dimensional situation.

To this end, let 
 = (0; 1), and, for t > 0;
t = 
 � (0; t). Then the balance laws of

momentum and internal energy read

utt � �x + �xx = 0; in 

1
; (1.5)

Ut + qx � �"t � �"xt = 0; in 

1
: (1.6)

The second law of thermodynamics is expressed by the Clausius-Duhem inequality

St +

�
q

�

�
x

� 0; in 
t : (1.7)

Here u; �; �; U; q; "; S and � denote displacement, stress, couple stress, internal energy

density, heat ux, shear strain, entropy density and absolute temperature, respectively.

For one-dimensional, homogeneous, thermoviscoelastic materials, we have the following

constitutive relations:

" = ux ; � =
@F

@"
+ "t ; � =

@F

@"x

; S = �
@F

@�
; U = F + �S : (1.8)

Here,  > 0 denotes the viscosity.

For the heat ux q , we assume Fourier's law

q = � k �x ; (1.9)

where k > 0 is the heat conductivity (assumed constant). Obviously, this assumption

implies the validity of (1.7) so that the second law of thermodynamics is satis�ed auto-

matically.

Inserting the constitutive relations into the balance laws (1.5){(1.6), we obtain the system

of partial di�erential equations

utt � (f1� + f2)x � "xt + �uxxxx = 0 ; in 

1
; (1.10)

CV �t � k�xx � f1�"t � "
2

t
= 0 ; in 


1
; (1.11)

" = ux ; in 

1
; (1.12)

where

f1 = f1(") = F
0

1(") ; f2 = f2(") = F
0

2(") : (1.13)

In addition, we prescribe the initial and boundary conditions

ujx=0 = "xjx=0 = 0 ; "jx=1 = (uxt � �uxxx + �1)jx=1 = 0 ; (1.14)

where

�1 = f1� + f2 ; (1.15)

as well as

�xjx=0; 1 = 0 ; (1.16)
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and

u(x; 0) = u0(x) ; ut(x; 0) = u1(x) ; �(x; 0) = �0(x) > 0 ; x 2 
 : (1.17)

The mechanical meaning of the boundary conditions is clear. For instance, the second

one at x = 1 simply means stress-free.

We now employ the idea of Andrews [2] and Pego [17] to simplify the problem by intro-

ducing the velocity potential

p(x; t) =

Z
x

1

ut(y; t)dy : (1.18)

Then

"t = pxx ; in 

1
; (1.19)

and (1.10){(1.11) turn out to be

pt � pxx + �"xx � �1 = 0 ; in 

1
; (1.20)

CV �t � k�xx � f1�pxx � p
2

xx
= 0 ; in 


1
: (1.21)

Accordingly, the initial and boundary conditions (1.14), (1.16), (1.17) become

pxjx=0 = "xjx=0 = 0 ; (1.22)

pjx=1 = pxxjx=1 = "jx=1 = 0 ; (1.23)

"(x; 0) = "0(x) := u0x(x) ; p(x; 0) = p0(x) :=

Z
x

1

u1(y)dy ; �(x; 0) = �0(x) : (1.24)

It is easy to see that if (u; v; �) is a smooth solution to (1.10){(1.17), then ("; p; �) is a

smooth solution to (1.19){(1.24) and vice versa. Therefore, it su�ces to consider the

problem (1.19){(1.24). In the sequel, we assume without loss of generality that CV = 1.

In the previous paper [22] it has been proved that for any given initial data ("0; p0; �0) 2
H

3 � H
3 � H

1 satisfying the compatibility conditions, that is, p0xjx=0 = "0xjx=0 =

0; p0jx=1 = p0xxjx=1 = "0xjx=1 = 0 , the problem (1.19){(1.24) admits a unique global

solution. Moreover, the orbit de�ned by the solution is compact in H
3 � H

3 � H
1. In

the present paper, we further investigate the dynamics de�ned by the system, namely, we

want to prove the existence of a compact maximal attractor.

Before stating and proving our results, let us �rst recall the related results in the litera-

ture. When � = 0, Dafermos [6], Dafermos & Hsiao [7], Chen & Ho�mann [5], Jiang [11],

proved the global existence of classical solution to the system (1.10){(1.12) with various

boundary conditions for a class of solid-like materials. However, the asymptotic behavior

was not considered in these papers. Recently, on the basis of Dafermos [6] and of Dafermos

& Hsiao [7], T. Luo [13] further investigated the asymptotic behavior of smooth solution as

time tends to in�nity for a special class of solid-like materials in which e = CV � , F2 = 0

and � = 0. Racke and Zheng [18], and Shen, Zheng & Zhu [20], respectively, obtained

global existence, uniqueness and asymptotic behavior of weak solutions to (1.10){ (1.12)

for � = 0 in the case when both ends of the rod are thermally insulated and when at least

one end is stress-free (or both ends are clamped, respectively).

Concerning the case � > 0 , we refer to Sprekels & Zheng [21] for the case � > 0 ,  = 0 ,

and to Ho�mann & Zochowski [10] for the case � > 0 ,  > 0 , for global existence and
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uniqueness results for the model of shape memory alloys with the Helmholtz free energy

density being a potential of Landau-Ginzburg form. However, the a priori estimates of the

solutions obtained in these papers depend on T . Consequently, the asymptotic behavior

of the solutions as time tends to in�nity could not be discussed there.

In this direction, we would also like to refer to Andrews [2], Andrews & Ball [3], and Pego

[17], for the isothermal and purely viscoelastic case.

To study the existence of a compact attractor, we �rst multiply (1.20) by �pxx , add the

result to (1.21) and integrate with repect to x over 
 to obtain that

d

dt

Z
1

0

 
� + F2(") +

1

2
p
2

x
+

�

2
"
2

x

!
(t) dx = 0: (1.25)

Thus,

E1(t) :=

Z
1

0

 
� + F2(") +

1

2
p
2

x
+

�

2
"
2

x

!
(t) dx = E1(0) ; (1.26)

where E1(0) is a constant depending on the initial data. Obviously, this energy conser-

vation indicates that there can be no absorbing ball for initial data varying in the whole

space. Instead, we should rather consider the dynamics in a restricted set which is invari-

ant for the orbit. In this regard the situation is quite similar to that encountered for the

Cahn{Hilliard equation (cf., for instance, [23]).

Now let us consider the space

H :=
n
("; p; �) 2 H

3[0; 1]�H
3[0; 1]�H

1[0; 1] : pxjx=0 = "xjx=0 = 0 ;

pjx=1 = pxxjx=1 = "xjx=1 = 0
o
; (1.27)

which becomes a Hilbert space when equipped with the usual inner product and norm of

H
3 �H

3 �H
1.

Next, let �1 > 0 ; �2 2 IR , be arbitrary given constants, and let

H�1; �2
:=

�
("; p; �) 2 H : � > 0 ;

Z
1

0

�
log � � F1(")

�
dx > �2 ;

Z
1

0

�
� + F2(") +

1

2
p
2

x
+

�

2
"
2

x

�
dx < �1

)
: (1.28)

Apparently H�1; �2
is an open subset of H .

We are now in the position to state our main theorem.

Theorem 1.1 For every �1 > 0 ; �2 < 0 , the semigroup S(t) de�ned by (1.19){(1.24)

maps H�1; �2
into itself. In addition, it possesses in H�1; �2

a maximal attractor A�1; �2

which is compact.

The notation in this paper will be as follows: L
p , 1 � p � 1 , W

m;1 , m 2 IN ,

H
1 � W

1;2 , H1
0 = W

1;2

0 , denote the usual (Sobolev) spaces on (0,1). In addition, (�; �)
stands for the inner product in L

2, and k � kB denotes the norm in the space B; we also

put k � k := k � kL2
. We denote by C

k(I; B) , k 2 IN0 , the space of k-times continuously

di�erentiable functions from I � IR into a Banach space B , and, likewise, by L
p(I; B) ,

1 � p � 1 , the corresponding Lebesgue-spaces. Finally, @t or d

dt
or a subscript t and

@x or a subscript x denote the (partial) derivatives with respect to t and x , respectively.
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2 Proof of Theorem 1.1

Since we have proved in the previous paper [22] that for any initial data ("0; p0; �0) 2 H

with �0 > 0 the problem (1.19){(1.24) admits a unique global solution and that the orbit

de�ned by the problem is compact in H
3 � H

3 � H
1, by Theorem I.1.1 in the book by

R. Temam [23] it su�ces to prove that the semigroup S(t) de�ned by the problem maps

H�1; �2
into itself and that there is a bounded subset B of H�1; �2

such that B is absorbing

in H�1; �2
. Although for any given initial data the convergence of solution of the problem

as time tends to in�nity has been considered in the previous paper [22], the proof of the

existence of an absorbing set is signi�cantly di�erent from the line of argumentation in

that paper. What we need now are uniform estimates of solutions with respect to initial

data varying in a bounded subset of H�1; �2
.

In the sequel, we always assume that the initial data for the problem (1.19){(1.24) belong

to H�1; �2
. We denote by C a positive constant, which may vary from place to place, that

may depend on �1 ; �2, but not on the initial data.

The proof of the existence of an absorbing set consists of the following lemmas.

Lemma 2.1 For any t > 0, the following estimates hold.

k"(t)k + k"(t)kL6 + kpx(t)k + k"x(t)k + k�(t)kL1 � C ; (2.1)

kp(t)kL1 + k"(t)kL1 � C ; (2.2)

�(x; t) > 0 ; 8 (x; t) 2 [0; 1]� IR
+
; (2.3)

E1(t) = E1(0) < �1 : (2.4)

Proof. First, applying the maximum principle to (1.21), we have

�(x; t) > 0 8 x; t : (2.5)

As derived in the previous section, the energy conservation (2.4) holds for all t � 0.

Using Young's inequality, we �nd that

F2(") � C1"
6 � C2 ; (2.6)

from which (2.1) follows. Inequality (2.2) is then a consequence of the boundary conditions

and of Poincare's inequality, which concludes the proof of the assertion. 2

Lemma 2.2 For any t > 0, the following estimates hold.

Z
t

0

Z
1

0

 
�
2
x

�2
+
p
2
xx

�

!
dxd� � C ; (2.7)

Z
t

0

kpx(�)k2d� �
Z

t

0

kpx(�)k2L1d� � C ;

Z
t

0

kp(�)k2
L1

d� � C ; (2.8)

E2(t) :=

Z
1

0

(log � � F1("))(t) dx � E2(0) > �2 ; (2.9)

Z
t

0

kpx(�)kn+2d� � C ; 8 n � 0 ; (2.10)

Z
1

0

�(t) dx � C > 0 : (2.11)
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Proof. Multiplication of (1.21) by �
�1 and integration with respect to x over 
 yields

d

dt

Z
1

0

(log � � F1("))(t) dx �
Z

1

0

 
k�

2
x

�2
+
p

2
xx

�

!
(t) dx = 0 ; (2.12)

from which (2.9) follows. In addition, since log � � � � 1 for all � > 0 , we have

Z
t

0

Z
1

0

 
k�

2
x

�2
+
p

2
xx

�

!
dxd� � C : (2.13)

Next, observe that it follows from pxjx=0 = 0 that

px(x; t) = px(0; t) +

Z
x

0

pxx(y; t) dy =

Z
x

0

pxx(y; t) dy : (2.14)

Hence,

Z
t

0

kpx(�)k2L1d� �
Z

t

0

�Z 1

0

jpxx(x; �)j dx
�2
d�

�
Z

t

0

�Z 1

0

p
�
jpxxjp
�
dx

�2
d� �

Z
t

0

�Z 1

0

� dx

� Z 1

0

p
2
xx

�
dx d�

� C

Z
t

0

Z
1

0

p
2
xx

�
dxd� � C : (2.15)

Therefore also Z
t

0

kpx(�)k2d� �
Z

t

0

kpxk2L1d� � C : (2.16)

Combining (2.8) with (2.1) yields

Z
t

0

kpx(�)kn+2d� � C 8 n � 0 : (2.17)

Finally, we conclude from (2.12) and Jensen's inequality that

� log
�Z 1

0

�(t) dx
�
� �

Z
1

0

log �(t) dx � C ; (2.18)

from which (2.11) follows. 2

Note that it follows from the Lemmas 2.1 and 2.2 that the semigroup S(t) maps H�1; �2

into itself. Also, we will see in what follows that (2.17) plays a very important role in

deriving uniform a priori estimates.

Lemma 2.3 For any t > 0, the following estimates hold.

d

dt
k�x(t)k2 + k�t(t)k2 � C

�
k�(t)kL1 kpxx(t)k2L1 + kpxx(t)k4L4

�
; (2.19)

d

dt
(kpxt(t)k2 + � k"xt(t)k2) + k"tt(t)k2 � C

Z
1

0

(�2"2
t
+ "

2

t
+ �

2

t
)(t) dx ; (2.20)



2

d

dt
k"xt(t)k2 �

d

dt
(pxt(t); "xt(t)) � kpxxt(t)k2 +

�

2
k"xxt(t)k2 � C

Z
1

0

(�2"2
t
+"

2

t
+�

2

t
)(t) dx :

(2.21)
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Proof. For the sake of brevity, we omit the arguments of functions from now on. Mul-

tiplying (1.21) by �t and integrating with repect to x over 
 , we obtain that

k

2

d

dt
k�xk2 + k�tk2 =

Z
1

0

�
f1 � �t pxx +  �t p

2

xx

�
dx

� C

�
k� pxxk k�tk +

�Z 1

0

p
4

xx
dx

� 1

2 k�tk
�

� C

�
k�k

1

2

L1
kpxxkL1

�Z 1

0

� dx

�1

2 k�tk + kpxxk2L4 k�tk
�
; (2.22)

and (2.19) follows from the Cauchy-Schwarz inequality.

Next, we di�erentiate (1.20) with respect to t , multiply the result by �"tt , and integrate

with repect to x over 
 to obtain

0 = (ptt;�pxxt) +  k"ttk2 + (� "xt; "xtt) +

Z
1

0

�1t "tt dx

= (pxtt; pxt) +  k"ttk2 + � ("xt; "xtt) +

Z
1

0

�
f
0

1 "t � + f
0

2 "t + f1 �t

�
"tt dx : (2.23)

Combining this with (2.2) yields

1

2

d

dt

�
kpxtk2 + � k"xtk2

�
+  k"ttk2 �



2
k"ttk2 + C

Z
1

0

�
�
2
"
2

t
+ "

2

t
+ �

2

t

�
dx ; (2.24)

and (2.20) follows.

Finally, we di�erentiate (1.20) with respect to t , multiply the result by "xxt , and integrate

the result with respect to x over 
 to arrive at

0 = (ptt; "xxt) �  ("tt; "xxt) + �k"xxtk2 �
Z

1

0

"xxt �1t dx

= (pxxtt; "t) +  ("xtt; "xt) + �k"xxtk2 �
Z

1

0

"xxt �1t dx

=
d

dt
(pxxt; "t) � kpxxtk2 +



2

d

dt
k"xtk2 + �k"xxtk2 �

Z
1

0

"xxt �1t dx : (2.25)

However, by integration by parts, we have

(pxxt; "t) = �(pxt; "xt) : (2.26)

Observe also that

�1t = f
0

1(") "t � + f1(") �t + f
0

2(") "t : (2.27)

Hence, combining (2.25){(2.27) and applying the Cauchy{Schwarz inequality, we see that

(2.21) holds. The proof of the assertion is complete. 2

Now let � 2 (0; 1) be a small positive constant chosen in such a way that

E(t) := kpxt(t)k2 + �k"xt(t)k2 +
 �

2
k"xt(t)k2 � � (pxt(t); "xt(t)) (2.28)

is positive de�nite, i.e., such that there is a constant C > 0 satisfying

E(t) � C

�
kpxt(t)k2 + k"xt(t)k2

�
: (2.29)

We then have
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Lemma 2.4 For any t > 0 it holds that

d

dt
E(t) +

� �

2
k"xxt(t)k2 + (1� �) k"tt(t)k2 � C

Z
1

0

�
�
2
"
2

t
+ "

2

t
+ �

2

t

�
(t) dx : (2.30)

Proof. Multiplying (2.21) by �, then adding the result up with (2.20), yields (2.30). 2

We now introduce the mean value of temperature,

��(t) :=

Z
1

0

�(x; t) dx : (2.31)

We then obtain the following result.

Lemma 2.5 For any t > 0 it holds

d

dt
k(� � ��)(t)k2 + k k�x(t)k2 � C

�
kpxx(t)k2L1 + kpxx(t)k4

�
: (2.32)

Proof. It follows from the energy equation (1.11) that

��t �
Z

1

0

f1 � "t dx� k"tk2 = 0 : (2.33)

Thus,

(� � ��)t � k �xx �
�
f1 � "t �

Z
1

0

f1 � "t dx

�
�  ("2

t
� k"tk2) = 0 : (2.34)

Multiplication of (2.34) by � � �� and integration with respect to x yields (again the

argument t is omitted)

1

2

d

dt
k� � ��k2 + k k�xk2

�
Z

1

0

j� � ��j
���f1 � "t �

Z
1

0

f1 � "t dx

��� dx + 

Z
1

0

j� � ��j
���"2
t
� k"tk2

��� dx
� C k� � ��kL1

�
kpxxkL1 + kpxxk2

�

�
k

2
k�xk2 + C

�
kpxxk2L1 + kpxxk4

�
; (2.35)

from which (2.32) follows. 2

Lemma 2.6 There exists some � > 0 , depending only on �1 and �2 , such that for any

t > 0 it holds

d

dt

�
k(� � ��)(t)k2 + k�x(t)k2 + �E(t)

�
+ C

�
k(� � ��)(t)k2 + k�x(t)k2 + �E(t)

�
� C

�
kpx(t)k2 + kpx(t)k6 + kpx(t)k8 + kpx(t)k14

�
: (2.36)
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Proof. We multiply (2.30) by a positive constant � (which is yet to be speci�ed), and

then add the result up with (2.19) and (2.32) to �nd that

d

dt

�
k(� � ��)(t)k2 + k�x(t)k2 + �E(t)

�
+ k�t(t)k2 + k k�x(t)k2

+C�

�
kpxxxx(t)k2 + k"tt(t)k2

�
� C

�
k�(t)kL1 kpxx(t)k2L1 + kpxx(t)k4L4

�
+ C

�
kpxx(t)k2L1 + kpxx(t)k4

�

+C�

Z
1

0

�
�
2
p
2

xx
+ p

2

xx
+ �

2

t

�
(t) dx: (2.37)

Now, we choose � small enough to cancel the term
R
1

0 �
2
t
(t) dx on the right{hand side of

(2.37). Next, we apply Nirenberg's inequality in the following way to the remaining terms

on the right{hand side of (2.37):

kpxx(t)kL4 � C kpxxxx(t)k
5

12 kpx(t)k
7

12 ; (2.38)

kpxx(t)kL1 � C kpxxxx(t)k
1

2 kpx(t)k
1

2 ; (2.39)

kpxx(t)k � C kpxxxx(t)k
1

3 kpx(t)k
2

3 ; (2.40)

k�(t)kL1 � C1 k�x(t)k
2

3 k�(t)k
1

3

L1 + C2 k�kL1 : (2.41)

Therefore, we obtain from Young's inequality that

d

dt

�
k(� � ��)(t)k2 + k�x(t)k2 + �E(t)

�
+ k�t(t)k2 + k k�x(t)k2

+
C�

2

�
kpxxxx(t)k2 + k"tt(t)k2

�
� C

�
kpx(t)k2 + kpx(t)k6 + kpx(t)k8 + kpx(t)k14

�
: (2.42)

Now observe that (1.19), (1.22) and (2.28) imply that

E(t) � C

�
kpxt(t)k2 + k"xt(t)k2

�
� C

�
kpxxt(t)k2 + kpxxxx(t)k2

�
= C

�
k"tt(t)k2 + kpxxxx(t)k2

�
: (2.43)

Also, owing to Poincar�e's inequality,

k(� � ��)(t)k � C k�x(t)k : (2.44)

The assertion now follows from the inequalities (2.42){(2.44). 2

Conclusion of the proof of Theorem 1.1. It follows from (2.36) and (2.10) that,

for any t > 0 ,

k(� � ��)(t)k2 + k�x(t)k2 + �E(t)

� C

�
k�0k2H1 + kp0k2H3 + k"0k2H3

�
e
�Ct + C : (2.45)
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By virtue of the boundary conditions, and owing to (1.18){(1.20), we have that

k�(t)k2
H1 + kp(t)k2

H3 + k"(t)k2
H3 � C

�
k(� � ��)(t)k2 + k�x(t)k2 + �E(t)

�
+ C : (2.46)

Therefore, the existence of an absorbing ball set in H�1; �2
is proved. From Theorem

I.1.1 in R. Temam [23], we can infer that there is a compact maximal attractor A�1; �2
in

H�1; �2
. The proof of Theorem 1.1 is �nally complete. 2
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