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Abstract

Phase-�eld systems as mathematical models to forecast the evolution of

processes involving phase transitions have drawn a considerable interest in

recent years. However, while they are capable of capturing many of the exper-

imentally observed phenomena, they are only of restricted value in modelling

hysteresis e�ects occuring during phase transition processes. To overcome this

shortcoming, a new approach to phase-�eld models is proposed in this paper

which is based on the mathematical theory of hysteresis operators developed

in the past �fteen years. The approach taken here leads to highly nonlinearly

coupled systems of di�erential equations containing hysteretic nonlinearities

at di�erent places. For such a system, well-posedness and thermodynamic

consistency are proved. Due to the lack of smoothness (hysteresis operators

are, as a rule, non-di�erentiable) in the system, the method of proof has to be

di�erent from those usually employed for classical phase-�eld systems.

1 Introduction

The theory of hysteresis operators developed in the past �fteen years (let us at least

refer to the monographs [13], [18], [24], [4], [14] devoted to this subject) has proved

to be a powerful tool for solving mathematical problems in various branches of appli-

cations such as solid mechanics, material fatigue, ferromagnetism, phase transitions,

and many others. In this paper we propose an approach using hysteresis operators

to classical phase-�eld models for phase transitions and their generalizations.

The motivation for such an approach is quite obvious: in nature, many phase

transitions are accompanied by hysteresis e�ects (rather they are driving mech-

anisms behind their occurence). On the other hand, the nonconvex free energy

functionals (typically, double-well potentials) usually considered in phase-�eld mod-

els may induce hysteresis e�ects by themselves (cf., for instance, Chapter 4 in [4]);

however, they are by far too simplistic to give a correct account of the complicated

loopings due to the storage and deletion of internal memory that are observed in

thermoplastic materials or ferromagnets. Therefore, there is certainly a de�ciency

in present phase-�eld theories and a need for a theory involving hysteresis operators

(incidentally, the ancient Greek word �hysteresis� just means �de�ciency� or �need�!).

An additional motivation comes from the fact that hysteresis operators also arise

quite naturally already in simple classical phase-�eld models. To demonstrate this,

let us consider the well-known model for melting and solidi�cation which is usually

referred to as the relaxed Stefan problem with undercooling and overheating (see [9],

[22], [23], for instance).

To �x things, suppose that the phase transition takes place in some open and

bounded container 
 � IRN during the time period [0; T ] , where T > 0 is some

�nal time. Then the mathematical problem consists in �nding real-valued functions

� = �(x; t) (absolute temperature) and � = �(x; t) (phase fraction, the order

parameter of the phase transition) in 
� ]0; T [ . The function � is allowed to take

values only in the interval [0; 1] , where � = 1 corresponds to the liquid phase,

� = 0 to the solid phase and � 2 ]0; 1[ to the mushy region. The evolution of the
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system is governed by the balance of internal energy

Ut = �div q +  ; (1.1)

where U = U(�; �) is the internal energy, q is the heat �ux which we assume here

to obey Fourier's law

q = � �r� (1.2)

with a constant heat conduction coe�cient � > 0 , and  is the heat source density,

and by the melting/solidi�cation law

��t 2 � @� F (�; �) ; (1.3)

where F = F (�; �) is the free energy, @� is the partial subdi�erential with respect

to � and � > 0 is a �xed relaxation coe�cient. In order to ensure the thermody-

namical consistency of the model, we have to require that

�(x; t) > 0 a.e. in 
� ]0; T [ ; (1.4)

and that the Clausius-Duhem inequality St � �div
�
q

�

�
+
 

�

holds, which in view

of (1.1), (1.2) and (1.4) is certainly the case if only

Ut � � St a.e. ; (1.5)

where S :=
1

�

(U � F ) denotes the entropy.

A standard choice [9] for F is given by

F := F0(�) + �(�) + � I(�) �
L

�c

(� � �c)� ; (1.6)

U := cV � + �(�) + L� ; (1.7)

where

F0(�) := cV �(1 � log �) ; (1.8)

�(�) := ��(1 � �) : (1.9)

Here I is the indicator function of the interval [0; 1] and L (latent heat), �c (melt-

ing temperature), cV (speci�c heat) and � < L (limit of undercooling/overheating)

are positive constants (see Fig. 1). Note that the graph ��(�) := �

�
I(�)�L�=�c

�
+

L� + ��(1 � �) is just the �double-obstacle potential� considered in a number of

recent papers. We refer the reader to [2], [3], [8], [12].
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Figure 1: Free energy F at di�erent temperatures �.

The di�erential inclusion (1.3) then reads

��t + �
0(�) �

L

�c

(� � �c) 2 �@� I(�) ; (1.10)

or, equivalently (see Fig. 2),

� 2 [0; 1] ;
�
��t + �

0(�) �
L

�c

(� � �c)
�
(z � �) � 0 8 z 2 [0; 1] : (1.11)

onononon
0 �

�

�c

�
1� �

L

�
�c �c

�
1 + �

L

�

�t > 0

�t < 0

1

�

Figure 2: A � � � diagram corresponding to (1.11).

It is easy to see that every solution (�; �) of (1.1), (1.2), (1.6)�(1.9), (1.11) for

which (1.4) holds, satis�es formally the Clausius-Duhem inequality. Indeed, we have

for � 2 [0; 1] ; I(�) � 0 and S = cV log � +
L

�c

� , hence

Ut � � St =
�
�
0(�) �

L

�c

(� � �c)
�
�t � 0 ; (1.12)

according to (1.11).
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We now introduce an auxiliary variable

w(x; t) :=
1

�

Z t

0

 
L

�c

(� � �c) � �
0(�)

!
(x; �) d� : (1.13)

Then inequality (1.11) takes the form

� 2 [0; 1] ; (�t � wt)(z � �) � 0 8 z 2 [0; 1] : (1.14)

At this point, the notion of hysteresis operators comes into play. Variational in-

equality (1.14) is known to have a unique solution � 2 W
1;1(0; T ) for every w 2

W
1;1(0; T ) and initial condition �(0) = �

0 2 [0; 1] . According to [13], [24], [4],

[14], it is convenient to introduce the solution operator sZ of (1.14) called stop,

where the subscript Z stands for the convex constraint Z = [0; 1] , that is,

� = sZ [�
0
; w] : (1.15)

The hysteretic input-output behaviour of the stop operator is illustrated in Fig. 3.

Along the upper (lower) threshold line � = 1 , (� = 0 ), the process is irreversible

and can only move to the right (to the left, respectively), while in between, motions

in both directions are admissible. This is similar to Prandtl's model of perfect

elastoplasticity, where the horizontal parts of the diagram correspond to plastic

yielding and the intermediate lines can be interpreted as linearly elastic trajectories.

ononononon
0 w

�

1

�

Figure 3: A diagram of the stop operator (1.15).

Identity (1.15) enables us to eliminate � from (1.13) and rewrite the system

(1.1) � (1.3) in the form

�wt =
L

�c

(� � �c) � �
0
�
sZ[�

0
; w]
�
; (1.16)

�
cV � + � (sZ[�

0
; w]) + L sZ [�

0
; w]
�
t
� ��� =  : (1.17)

We thus obtain in a natural way a system of equations for an order parameter w

and the absolute temperature � involving hysteresis operators. In the next section

we state precisely the problem for a more general class of systems.
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2 Statement of the problem

We consider the system of equations in 
� ]0; T [

�wt + f1[w] + f2[w] � = 0 ; (2.1)

(� + F1[w])t � �� =  (x; t; �) ; (2.2)

coupled with the initial conditions

w(x; 0) = w
0(x) ; �(x; 0) = �

0(x) ; for x 2 
 ; (2.3)

and with the Neumann boundary condition

r�(x; t) ; n(x)

�
= 0 for (x; t) 2 @
� ]0; T [ ; (2.4)

where n(x) is the unit outward normal to @
 at the point x 2 @
 . This simple

boundary condition has been chosen in order to make the method of hysteresis

operators more transparent, which is our main goal here. We assume that T >

0 ; � > 0 are given numbers and that 
 � IRN is a given bounded domain with a

lipschitzian boundary.

At the �rst glance, the system (2.1) � (2.4) does not seem to be very di�cult from

the mathematical point of view. In fact, if f1 ; f2 ; F1 were real-valued functions

having suitable properties (smoothness, monotonicity, and the like), then this would

be true. However, in our case, f1 ; f2 ; F1 will be hysteresis operators and thus, in

particular, non-smooth. Also, when dealing with these operators, we will always

have to account for the full history of the inputs which makes the theory less obvious.

We now formulate precisely the assumptions on the mappings f1 ; f2 ; F1 ;  .

Hypothesis 2.1. We assume that f1; f2 : C[0; T ] ! C[0; T ] are causal and

Lipschitz continuous operators, and that f2 is bounded. In other words, there exists

a constant K1 such that the inequalities��
fi[w1](t) � fi[w2](t)

�� � K1 max
0� s� t

jw1(s) � w2(s)j ; i = 1; 2 ; (2.5)

��
f2[w](t)

�� � K1 ; (2.6)

hold for every w1; w2; w 2 C[0; T ] and t 2 [0; T ] .

Hypothesis 2.2. The mapping F1 : W
1;2(0; T )!W

1;2(0; T ) is causal, and there

exist a constant K2 > 0 and a function ' : IR+
! IR+

such that��� d
dt

F1[w](t)
��� � K2j _w(t)j a.e. in ]0; T [ ; 8w 2 W

1;2(0; T ) ; (2.7)

��
F1[w1](t) � F1[w2](t)

�� � '(R) kw1 � w2kW 1;2(0;t) (2.8)

8R > 0; 8w1; w2 2 W
1;2(0; T ) : max

�
kwikW 1;2(0;T ); i = 1; 2

	
� R;
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where we denote

kwkW 1;p(0;t) := jw(0)j+
�Z t

0

j _w(s)jp ds
�1=p

8 t 2 ]0; T ] ; 1 � p < 1 : (2.9)

We moreover assume that the function  satis�es the condition

 0 :=  ( � ; � ; 0) 2 L
q(
� ]0; T [) ; j �(x; t; �)j � K2 a.e.; (2.10)

for some q >

r
2
N

rN � 1
, where rN := max

n
2; 1 + N

2

o
.

Hypothesis 2.3. It holds

 0(x; t) � 0 a.e. in 
�]0; T [ ; (2.11)

F1[w](t) � 0 8 w 2 W
1;2(0; T ) ; 8 t 2 [0; T ] ; (2.12)

and there exist operators F2; g : W 1;2(0; T ) ! W
1;2(0; T ) and a constant K3 > 0

such that the inequalities

0 � g[w]twt � K3w
2
t ; (2.13)

Fi[w]t � fi[w] g[w]t � 0 ; (2.14)

hold for each w 2 W 1;2(0; T ) and a.e. t 2 ]0; T [ ; i = 1; 2 .

Let us mention that property (2.13) is called piecewise ([24]) or local ([14]) mono-

tonicity .

Remark 2.4. The domains of de�nition of the operators fi ; Fi ; g can be extended

in a natural way to functions which depend on both x and t and appear in (2.1),

(2.2). It su�ces to keep the same symbols and to put

fi[w](x; t) := fi[w(x; � )](t) for x 2 
 ; t 2 ]0; T [ ; (2.15)

and similarly for Fi and g , for every function w such that w(x ; � ) belongs to the

original domain of de�nition for a.e. x 2 
 .

Remark 2.5. System (1.16), (1.17) is a special case of (2.1), (2.2) (up to

the constants cV ; � , indeed); we simply have to put g[w] := sZ [�
0
; w] ; f1[w] :=

�
0(g[w]) + L ; F1[w] := �(g[w]) + Lg[w] ; f2[w] := �L=�c ; F2[w] := �Lg[w]=�c .

Obviously, Hypotheses 2.1 � 2.3 are ful�lled with these choices.

Remark 2.6. Equations (2.1), (2.2) may be regarded as a phase-�eld system for

the free energy functional F = F [w; �] := �(1� log �)+F1[w]+F2[w] �. In the clas-

sical case, the relaxation law (1.3) with � replaced by w is combined with identities

of the form fi[w] = �w Fi[w] , i = 1; 2 , where �w denotes the variation with respect

to w , in order to make the model comply with the Second Principle of Thermo-

dynamics. However, since hysteresis operators are, as a rule, non-di�erentiable, we
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cannot hope to have these identities, as the variation �w Fi[w] of Fi with respect

to w does not exist. In this regard, the situation is entirely di�erent from classi-

cal phase-�eld models. On the other hand, inequality (2.14) is a typical condition

which guarantees the thermodynamical consistency of hysteresis operators also in

other areas of applications. It is ful�lled, in particular, for operators of the form

fi[w] := Pi
�
g[w]

�
; Fi[w] := Ui

�
g[w]

�
; (2.16)

where Pi is a hysteresis operator with a clockwise admissible hysteresis potential

Ui in the sense of Section 2.5 in [4]. Note that in this case the �dissipation� over

a closed cycle (i.e. u(t1) = u(t2) , Pi[u](t1) = Pi[u](t2) , Ui[u](t1) = Ui[u](t2) ) is

positive and equal to the integralZ t2

t1

Pi[u](t)
du(t)

dt

dt

or, in geometrical terms, to the area of the corresponding hysteresis loop, see Fig. 4.

A classical example is the Prandtl-Ishlinskii operator

Pi[u] :=

Z 1

0

hi(r) sZr[u] dr; Ui[u] :=
1

2

Z 1

0

hi(r) s
2
Zr
[u] dr; (2.17)

where sZr is the stop operator with characteristic Zr = [�r; r] and hi are given

nonnegative density functions.

onononononon

u

p

�
Figure 4: Clockwise admissibility for p = Pi[u]

Also here, the condition (1.5) follows from (2.14) provided � is positive. Indeed,

if we de�ne the internal energy U = U [w; �] := � + F1[w] and the entropy S =

S[w; �] := log � � F2[w] , then we obtain formally

Ut � � St = F1[w]t + � F2[w]t � ��wt g[w]t � 0 ; (2.18)

so that (1.5) is satis�ed. We shall see later (cf. Theorem 2.10) that Hypothesis 2.3

ensures also the positivity of � . In conclusion, inequality (2.14), which re�ects the

fundamental energy dissipation properties of hysteresis operators fi , takes over the

role of the identity fi[w] = �w Fi[w] which is meaningless here. We should recall

that for constant temperature, (2.18) just means that F decreases in time.
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Remark 2.7. Thinking in terms of classical models, the system (2.1), (2.2) can be

regarded as a phase-�eld model of Caginalp type, see [5], [4] and the references cited

there. One can also consider a hysteresis counterpart of the Penrose-Fife model of

phase transitions (cf. [19], [4], [6], [7], [11], [10], [16], [17], [21]), in which (2.1) has

to be replaced by

�wt + f1[w] + f2[w]=� = 0 . (2.1)'

We shall study the Penrose-Fife-type model with (2.1)' in a forthcoming paper.

The next three sections are devoted to the proof of the following theorems.

Theorem 2.8 (Existence). Let 
 � IRN
be a bounded domain with a lipschitzian

boundary, and let Hypotheses 2.1, 2.2 hold. Then for every �
0 2 W

1;2(
) \ L1(
)

and w
0 2 L

1(
) problem (2.1)�(2.4) has a solution (w; �) 2 (L1(
�]0; T [))
2

such that �t ; �� 2 L
2(
�]0; T [) ; wt 2 L

1(
�]0; T [) and such that (2.1), (2.2) are

satis�ed almost everywhere.

Theorem 2.9 (Uniqueness and continuous dependence). Let the hypothe-

ses of Theorem 2.8 hold. Let w
0
i 2 L

1(
) ; �0i 2 W
1;2(
) \ L

1(
) and  i :


�]0; T [�IR ! IR ; i = 1; 2 , be given functions. Let each of the functions  =

 1 ;  =  2 satisfy (2.10), and let there exist a function d 2 L
2(
�]0; T [) such

that for a.e. (x; t; #i) 2 
�]0; T [�IR ; i = 1; 2 , we have��
 1(x; t; #

1) �  2(x; t; #
2)
�� � d (x; t) + K2j#

1
� #

2
j : (2.19)

Let (w1; �1) ; (w2; �2) be solutions to (2.1)�(2.4) corresponding to the data w
0
1 , �

0
1 ,

 1 and w
0
2 ; �

0
2 ;  2 , respectively. Then there exists a constant C > 0 such that, for

all t 2 [0; T ] ,Z t

0

Z



��
�1 � �2

��2(x; �) dx d� � C

h
t

�
kw

0
1 � w

0
2k

2
L2(
) (2.20)

+ k�
0
1 � �

0
2k

2
L2(
)

�
+

Z t

0

Z



d
2
 (x; �) dx d�

i
;

Z



kw1 � w2k
2
W 1;2(0;T )(x) dx � C

h
kw

0
1 � w

0
2k

2
L2(
) (2.21)

+ k�
0
1 � �

0
2k

2
L2(
) +

Z T

0

Z



d
2
 (x; t) dx dt

i
:

Theorem 2.10 (Thermodynamic consistency). Let Hypothesis 2.3 and the

assumptions of Theorem 2.8 be ful�lled. Assume that �
0(x) � � a.e. in 
 for some

constant � > 0. Then there exists ~
K > 0 such that the solution (w; �) to (2.1)�(2.4)

satis�es �(x; t) � �e
� ~K t

a.e. , hence (1.4) and (2.18) hold almost everywhere.
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3 Solution operator of the order parameter equa-

tion

We �rst consider the equation (2.1) with given � and unknown w separately. Ne-

glecting for the moment the space dependence, we write it in the form

� _w + f1[w] + f2[w] � = 0 ; w(0) = w
0
: (3.1)

We have the following result.

Lemma 3.1 (Existence). Let Hypothesis 2.1 hold, and let � 2 L
1(0; T ) and

w
0 2 IR be given. Then there exists a solution w 2 W

1;1(0; T ) of (3.1) such that

(3.1) holds a.e., together with the estimate

j _w(t)j � C1

�
1 + jw

0
j + k�kL1(0;t) + j�(t)j

�
; (3.2)

where C1 > 0 is a constant independent of w
0
and � .

Proof. For each t 2 ]0; T ] put C0[0; t] := fw 2 C[0; t]; w(0) = w
0g , and

H0[w](t) := w
0
�

1

�

Z t

0

�
f1[w] + f2[w] �

�
(s) ds : (3.3)

Then H0 maps C0[0; t] into C0[0; t] for every t 2 ]0; T ] , and whenever w1; w2 2

C0[0; t] and 0 � � � t , then��
H0[w1](�) � H0[w2](�)

�� � K1

�

Z �

0

�
1 + j�(s)j

�
max

0� r� s
jw1(r) � w2(r)j ds : (3.4)

To simplify the notation, put for t 2 [0; T ]

�(t) :=
K1

�

�
1 + j�(t)j

�
; A(t) :=

Z t

0

�(s) ds : (3.5)

We now de�ne the sequence of successive approximations by

w0(t) := w
0
; wk(t) := H0[wk� 1](t) for k � 1 ; t 2 [0; T ] : (3.6)

It is easily proved by induction that there exists a constant C > 0 , independent of

k , such that, for every k � 1 and t 2 [0; T ] ,��
wk(t) � wk� 1(t)

�� � C

(k � 1)!

�
A(t)

�k� 1
: (3.7)

Indeed, it su�ces to put

C :=
1

�

Z T

0

��
f1[w

0] + f2[w
0] �
��(t) dt : (3.8)

Then (3.7) holds for k = 1 , and assuming (3.7) for some k 2 IN , we obtain from

(3.4) that

��
wk+1(t) � wk(t)

�� �
C

(k � 1)!

Z t

0

�(s)
�
A(s)

�k� 1
ds (3.9)

�
C

k!

�
A(t)

�k
;
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and the induction step is complete.

Since the series

1X
k=0

C

k!

�
A(t)

�k
converges uniformly, we easily conclude that�

wk

	1
k=0

is a fundamental sequence in C0[0; T ] . Passing to the limit in (3.6) as

k !1 , we conclude from (2.5) that w = lim
k!1

wk is a solution to (3.1).

It remains to derive the estimate (3.2). To this end, let

f
0(t) := f1[0](t) (3.10)

be the image of the constant function w � 0 under f1 . From the identity

w(t) � w
0 = �

1

�

Z t

0

�
f1[w] � f

0 + f
0 + f2[w] �

�
(s) ds ; (3.11)

and from Hypothesis 2.1, which entails, in particular, that��
f1[w] � f

0
��(t) � K1

�
jw

0
j + max

0� s� t

�
jw(s) � w

0
j
	�

; (3.12)

we infer that

jw(t) � w
0
j �

K1

�

Z t

0

�
max

0� s� �

�
jw(s) � w

0
j
	
+ jw

0
j +

1

K1

��
f
0(�)

�� + ��
�(�)

���
d� :

(3.13)

Thus,

jw(t) � w
0
j �

K1

�

Z t

0

e

K1

�

(t� �)
�
jw

0
j +

1

K1

��
f
0(�)

�� + j�(�)j
�
d� ; (3.14)

and (3.2) follows from (3.1), (3.12) and (3.14). 2

Lemma 3.2 (Uniqueness and continuous dependence). Let Hypothesis 2.1

hold. Then to every M > 0 there exists a constant CM > 0 such that for every

�1; �2 2 L
1(0; T ) ; k�ikL1(0;T ) � M ; i = 1; 2 , the corresponding solutions w1; w2 of

(3.1) with initial conditions w
0
1; w

0
2 , respectively, satisfy the estimates

jw1(t) � w2(t)j � CM

�
jw

0
1 � w

0
2j +

Z t

0

j�1 � �2j(s) ds
�
; (3.15)

j _w1(t) � _w2(t)j � CM

�
jw

0
1 � w

0
2j +

Z t

0

j�1 � �2j(s) ds
�

(3.16)

�
�
1 + j�1(t)j

�
+
K1

�

��
�1(t) � �2(t)

��
for a.e. t 2 ]0; T [ .

Proof. For t 2 [0; T ] we have, by virtue of (2.5) and (2.6),

jw1(t) � w2(t)j � jw
0
1 � w

0
2j (3.17)

+
K1

�

Z t

0

�
(1 + j�1(�)j) max

0� s� �
jw1(s) � w2(s)j + j�1(�) � �2(�)j

�
d� ;
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whence, using Gronwall's lemma,

jw1(t) � w2(t)j � e

K1

�

R
t

0
(1 + j�1(�)j) d� � jw

0
1 � w

0
2j (3.18)

+
K1

�

Z t

0

e

K1

�

R
t

�

(1+ j�1(s)j) dsj�1(�) � �2(�)j d�

� e

K1

�

(T +M)
�
jw

0
1 � w

0
2j +

K1

�

Z t

0

j�1(�) � �2(�)j d�
�
;

i.e. (3.15) holds. Inequality (3.16) then follows immediately from (3.1), (3.15) and

Hypothesis 2.1. 2

Lemmas 3.1 and 3.2 enable us to introduce the solution operator Pp : IR �

L
p(0; T )!W

1;p(0; T ) of equation (3.1) for every 1 � p � 1 through the formula

w = Pp[w
0
; �] : (3.19)

Pp is obviously causal, and it satis�es according to Lemmas 3.1, 3.2 for every

t 2 [0; T ] the following estimates.

Proposition 3.3 Let Hypothesis 2:1 hold. Then there exist a constant C2 > 0 and

a function  : IR+
! IR+

such that for every R > 0 and every (w0
; �), (w0

1; �1),

(w0
2; �2) 2 IR � L

p(0; T ) and t 2 [0; T ] satisfying max
�
k�ikLp(0;t); i = 1; 2

	
� R,

we have Pp[w0
; �]

W 1;p(0;t)

� C2

�
1 + jw

0
j + k�kLp(0;t)

�
; (3.20)

kPp[w
0
1; �1] � Pp[w

0
2; �2]kW 1;p(0;t) � (R)

�
jw

0
1 � w

0
2j + k�1 � �2kLp(0;t)

�
: (3.21)

4 Existence, uniqueness and stability

This section is devoted to the proof of Theorems 2.8 and 2.9. Using the operator

Pp introduced in (3.19), we can formally rewrite the problem (2.1)�(2.4) as a single

equation �
� + Vp[w

0
; �]
�
t
� �� =  (x; t; �) ; (4.1)

coupled with initial and boundary conditions (2.3), (2.4), where we have put

Vp[w
0
; �](x; t) := F1

h
Pp[w

0(x); �(x; � )]
i
(t) ; (4.2)

for x 2 
 ; t 2 [0; T ] and p 2 [1;1] . The natural domains of de�nition of Vp
are the spaces Dt

p := L
p(
) � L

p(
� ]0; t[) for p 2 [1;1] and t 2 ]0; T ] . From

Proposition 3.3 and Hypothesis 2.2 we see that Vp maps Dt
p into L

p(
;W 1;p(0; t)) .

Moreover, since for every p > r it holds Vr
��
Dt

p

= Vp , we may simply write V in

place of Vp , with an implicitly given domain of de�nition. The operator V has the

following properties.
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Proposition 4.1 Let Hypotheses 2:1; 2:2 hold. Then there exist a constant C3 > 0

and a function ~
 : IR+

! IR+
such that for every R > 0, p 2 [1;1], (w0

; �) 2 DT
p ,

(w0
i ; �i) 2 DT

1 ; i = 1; 2 satisfying max
�
kw0

i kL1(
) ; k�ikL1(
� ]0;T [) : i = 1; 2
	
�

R, and every t 2 ]0; T ] , it holds

kV[w0
; �]tkLp(
� ]0;t[) � C3

�
1 + kw

0
kLp(
) + k�kLp(
� ]0;t[)

�
; (4.3)

V[w0
1 ; �1] � V[w0

2 ; �2]

L2(
;L1(0;t))

(4.4)

� ~
 (R)

�
kw

0
1 � w

0
2kL2(
) + k�1 � �2kL2(
� ]0;t[)

�
:

Proof. It su�ces to use Lemma 3.1, Proposition 3.3, Hypothesis 2.2 and to integrate

over 
 . 2

According to the above considerations, we reformulate Theorem 2.8 in the fol-

lowing way.

Theorem 4.2 Let the hypotheses of Theorem 2:8 hold. Then, for every w
0 2

L
1(
) and �

0 2 L
1(
) \ W

1;2(
) , there exists � 2 L
1(
� ]0; T [) such that

�t;�� 2 L
2(
� ]0; T [) and such that the equation�

� + V[w0
; �]
�
t
� �� =  (x; t; �) (4.5)

is satis�ed almost everywhere, together with the initial and boundary conditions (2.3),

(2.4).

Note that equation (4.5) does not have the general form considered by Visintin [24],

since the operator V is not piecewise monotone (cf. Remark 2.6). We present here

a simple and direct proof of Theorem 4.2 which is based on well-known properties

of linear parabolic equations of the following type

ut � �u + u = g ; (x; t) 2 
� ]0; T [ (4.6)

u(x; 0) = u
0(x) ; x 2 
 (4.7)



ru(x; t) ; n(x)

�
= 0 ; (x; t) 2 @
� ]0; T [ ; (4.8)

where 
 � IRN is a bounded domain with a lipschitzian boundary, g ; u0 are given

functions and n(x) is the outward normal to @
 at the point x .

Lemma 4.3

(i) For every p 2 [1;1[ , g 2 L
p(
� ]0; T [) and u

0 2 L
p(
) the solution u of

(4.6) � (4.8) satis�es for every t 2 [0; T ] the estimate

���u( � ; t)���p
p
�

���u0���p
p
+

Z t

0

���g( � ; �)���p
p
d� ; (4.9)

where j � jp denotes the norm in L
p(
) .
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(ii) Let rN and q be as in Hypothesis 2.2. Then there exists a constant K1 > 0

such that for every u
0 2 L

1(
) and g 2 L
q(
� ]0; T [) the solution u of

(4.6)�(4.8) satis�es the estimate

kuk1 � K1 max
n
ju

0
j1 ;


g


q

o
; (4.10)

where k � kq denotes the norm of L
q(
� ]0; T [) .

Remark on the proof of Lemma 4.3. We do not repeat the detailed proof

which can be found in [15], �7 of Chapter III even in much more general cases of

variable discontinuous coe�cients and anisotropic norms. We just point out that

(i) is obtained by testing equation (4.6) with ujujp�2 for p > 1 and sign(u) for

p = 1 . For p > 1 this yields for instance

1

p

Z



��
u

��p(x; t) dx +

Z t

0

Z



�
2
�
1 �

1

p

����rjujp=2���2 + juj
p
�
(x; �) dx d� (4.11)

�
1

p

���u0���p
p
+

Z t

0

Z



��
g

�� ��
u

��p�1(x; �) dx d�
and it su�ces to use Hölder's and Young's inequalities. The proof of (ii) also relies

on inequality (4.11). We �x some r; s satisfying the inequalities

rN < r < q

rN � 1

rN

;

r

r � 1
< s <

rN

rN � 1
: (4.12)

For p � r and w := jujp=2 Hölder's inequality applied to (4.11) entails

1

p

supess
t2 [0;T ]

��
w( � ; t)

��2
2
+ 2

�
1 �

1

p

�
krwk

2
2 + kwk

2
2 (4.13)

�
1

p

E
p +


g


r


w

2(1� 1=p)

2(
1� 1=p

1� 1=r
)
;

where E := supfju0jp� ; p
� � 1g . The embedding

kwk
2
2s � C

�
supess
t2 [0;T ]

��
w( � ; t)

��2 + krwk
2
2 + kwk

2
2

�
(4.14)

enables us to obtain

kwk
2
2s � C

�
E
p + kgk

p
r + pkwk

2
2r

r� 1

�
(4.15)

with a constant C independent of p and the assertion follows from the Moser

iteration for p = (1+ �)n r ; n = 0; 1; 2; : : : ; � :=
s(r � 1)

r

� 1 > 0 , and Lemma 5.6

of Chapter II of [15].

Proof of Theorem 4.2. We construct the solution by an easy successive approxi-

mation scheme. We de�ne the sequence f�kg1k=1 recursively as solutions of linear

equations

�
k
t � ��k + �

k = 	k(x; t) ; (x; t) 2 
� ]0; T [ ; (4.16)
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r�

k(x; t) ; n(x)
�
= 0 ; (x; t) 2 @
� ]0; T [ ; (4.17)

�
k(x; 0) = �

0(x) ; x 2 
 ; (4.18)

where

	k(x; t) := �
k� 1(x; t) +  (x; t; �k� 1(x; t)) (4.19)

�V[w0
; ; �

k� 1]t(x; t) ; k = 1; 2; : : : ;

with �
0(x; t) � �

0(x) .

It follows directly from Hypothesis 2.2, Lemma 4.3 (i) and Proposition 4.1 by

induction that �
k 2 L

1(0; T ; Lq(
)) . There exists moreover a constant C4 > 0

independent of k such that����k( � ; t)���q
q
� C4

�
1 +

Z t

0

��
�
k� 1( � ; �)

��q
q
d�

�
(4.20)

is satis�ed for all k = 1; 2; : : : and t 2 [0; T ] .

By induction we therefore have��
�
k( � ; t)

��q
q
� C4 e

C4 t
: (4.21)

In particular, the sequence f�kg1k=1 is bounded in L
q(
� [0; T [) . >From Lemma

4.3 (ii) we conclude that f�kg1k=1 is bounded in L
1(
� ]0; T [) , say

k�
k
k1 � C5 : (4.22)

Consequently,

k�
k
t k

2
2 + k��kk22 � C6 (4.23)

for some constant C6 > 0 independent of k .

In order to prove the convergence of f�kg as k !1 , we integrate (4.16) with

respect to t and subtract the resulting identities corresponding to k + 1 and k .

This yields�
�
k+1

� �
k
�
(x; t) ��

Z t

0

�
�
k+1

� �
k
�
(x; �) d� +

Z t

0

�
�
k+1

� �
k)(x; �) d� (4.24)

= �

�
V[w0

; �
k] � V[w0

; �
k� 1]

�
(x; t) +

Z t

0

�
 

�
x; �; �

k(x; �)
�

� 
�
x; �; �

k� 1(x; �)
��
d� +

Z t

0

�
�
k
� �

k� 1
�
(x; �) d� :

Multiplying (4.24) by (�k+1 � �
k)(x; t) and integrating over 
 , we conclude using

(2.10), (4.4) and (4.22) that there exists a constant C7 > 0 such that for all k =

1; 2; : : : and t 2 [0; T ]

��
�
k+1

� �
k
��2(x; t) dx +

d

dt

Z



����r Z t

0

(�k+1
� �

k)(x; �) d�
���2 (4.25)

+
��� Z t

0

(�k+1
� �

k)(x; �) d�
���2� dx

� C7

Z t

0

Z



��
�
k
� �

k� 1
��2(x; �) dx d� :
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Integrating (4.25) from 0 to �
t , we obtain that


�
k+1

� �
k
2
L2(
� ]0;�t[)

� C7

Z �t

0


�
k
� �

k� 1
2
L2(
� ]0;t[)

dt ; (4.26)

holds for every �
t 2 [0; T ] , hence


�
k+1

� �
k
2
L2(
� ]0;t[)

�

�
1
� �

0
2
2

(C7 t)
k

k!
8 k 2 IN 8 t 2 [0; T ] : (4.27)

The series

1X
k=0

�(C7 T )
k

k!

�1=2
is convergent. This means that f�kg1k=1 is a fundamen-

tal sequence in L
2(
� ]0; T [) which, by (4.22), is bounded in L

1(
� ]0; T [) . There

exists therefore � 2 L
1(
� ]0; T [) such that �

k ! � strongly in L
2(
�]0; T [)

and weakly-star in L
1(
�]0; T [) . From (4.23) it follows that �t ; �� belong to

L
2(
� ]0; T [) and that �kt ! �t ; ��

k ! �� , both weakly in L
2(
� ]0; T [) . More-

over, by (4.3), (4.4) V[w0
; �

k]t ! V[w0
; �]t , also weakly in L

2(
�]0; T [) . Passing

to the limit in (4.16)�(4.19) we see that � is a solution of (4.5), (2.3), (2.4). This

completes the proof of Theorem 4.2 (and, consequently, of Theorem 2.8). 2

Proof of Theorem 2.9. We use the same trick as in (4.24)�(4.25). Subtracting

equations (4.5) for �1; �2 and integrating with respect to t , we obtain that

(�1 � �2)(x; t) � �

Z t

0

(�1 � �2)(x; �) d� (4.28)

= (�01 � �
0
2)(x) +

�
F1[w

0
1] � F1[w

0
2]
�
(x; 0) �

�
V[w0

1 ; �1]

�V[w0
2 ; �2]

�
(x; t) +

Z t

0

�
 1

�
x; �; �1(x; �)

�
�  2(x; �; �2(x; �)

��
d� :

Multiplication by (�1 � �2)(x; t) and integration over 
 yieldsZ



��
�1 � �2

��2(x; t) dx +
d

dt

Z



���r Z t

0

(�1 � �2)(x; �) d�
���2 dx (4.29)

�

Z



��
�
0
1 � �

0
2

��2(x) dx + 4T

Z t

0

Z



�
d
2
 + K2

��
�1 � �2

��2�
dx d�

+C8

���
w

0
1 � w

0
2

��2
dx +

Z t

0

Z



��
�1 � �2

��2(x; �) dx d�� ;
where we used the estimates (2.8), (2.19), (4.4) and (4.22).

To obtain the assertion, it remains to integrate (4.29) from 0 to �
t and to apply

a standard Gronwall-type argument. 2
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5 Thermodynamic consistency

Proof of Theorem 2.10. By Theorem 2.9, and Hypotheses 2.2, 2.3, we have, for a.e.

(x; t) 2 
� ]0; T [ ,

�t � �� =  (x; t; �) � F1[w]t (5.1)

�  0(x; t) � K2j�j � f1[w] g[w]t

� �K2j�j +
g[w]t

�wt

� f1[w]
�
f1[w] + f2[w] �

�
� � �

�
� K sign (�) +

g[w]t

�wt

f1[w] f2[w]
�
:

>From hypotheses 2.1, 2.3, we �nd that

0 �
g[w]t

�wt

�
K3

�

a.e. ;
��
f2[w]

�� � K1 ; (5.2)

and from (3.12), (3.14) it follows that

��
f1[w](x; t)

�� � C9

�
1 +

Z t

0

��
�(x; �)

��
d�

�
a.e. ; (5.3)

with some constant C9 which is independent of x .

Since � belongs to L
1(
� ]0; T [) , we see that (5.1) is an inequality of the form

�t � �� + a(x; t) � � 0 in 
� ]0; T [ (5.4)

with some function a 2 L1(
� ]0; T [) . For the sake of de�niteness, put

~
K := kak1 : (5.5)

Let us test (5.4) with #(x; t) :=
�
� e

� ~Kt � �(x; t)
�+

. This yields

Z t

0

Z



��
� e

� ~K �
� #

�
t
#�

��r#��2 + a

�
� e

� ~K �
� #

�
#

�
dx d� � 0 ; (5.6)

hence Z



��
#(x; t)

��2
dx +

Z t

0

Z



�
jr#j

2 + �( ~K � a(x; �)
�
e
� ~K �

#

�
dx d� (5.7)

�

Z



��
#(x; 0)

��2
dx + ~

K

Z t

0

Z



��
#(x; �)

��2
dx d� :

By hypothesis, we have #(x; 0) � 0 . Gronwall's lemma then implies # � 0 and the

proof is complete. 2

16



References

[1] Besov, O. V., Il'in, V. P., Nikol'skii, S. M. : Integral representation of functions

and embedding theorems (Russian). Moscow, Nauka, 1975.

[2] Blowey, J. F., Elliott, C.M. : Curvature dependent phase boundary motion and

double obstacle problems. In: Degenerate Di�usion. W.M. Ni, L.A. Peletier,

and J.L. Vázquez eds., pp. 19�60, IMA Vol. Math. Appl., 47, Springer, New

York, 1993.

[3] Blowey, J. F., Elliott, C.M. : A phase-�eld model with double obstacle po-

tential. In: Motion by mean curvature and related topics. G. Buttazzo and A.

Visintin eds., pp. 1�22, De Gruyter, Berlin, 1994.

[4] Brokate, M., Sprekels, J. : Hysteresis and phase transitions. Appl. Math. Sci.,

121, Springer-Verlag, New York, 1996.

[5] Caginalp, G. : An analysis of a phase �eld model of a free boundary. Arch.

Rational Mech. Anal., 92 (1986), 205�245.

[6] Colli, P., Sprekels, J. : On a Penrose-Fife model with zero interfacial energy

leading to a phase-�eld system of relaxed Stefan type. Ann. Mat. Pura Appl.

(4), 169 (1995), 269�289.

[7] Colli, P., Sprekels, J. : Stefan problems and the Penrose-Fife phase-�eld model.

Adv. Math. Sci. Appl. 7 (1997), 911�934.

[8] Colli, P., Sprekels, J. : Global solutions to the Penrose-Fife phase-�eld model

with zero interfacial energy and Fourier law. Preprint No. 351, WIAS Berlin,

1997.

[9] Frémond, M., Visintin, A. : Dissipation dans le changement de phase. Sur-

fusion. Changement de phase irréversible. C. R. Acad. Sci. Paris Sér. II Méc.

Phys. Chim. Sci. Univers Sci. Terre, 301 (1985), 1265�1268.

[10] Kenmochi, N., Niezgódka, M. : Systems of nonlinear parabolic equations for

phase change problems. Adv. Math. Sci. Appl., 3 (1993/94), 89�117.

[11] Klein, O. : A semidiscrete scheme for a Penrose-Fife system and some Stefan

problems in IR3
: Adv. Math. Sci. Appl., 7 (1997), 491�523.

[12] Klein, O. : Existence and approximation results for phase-�eld systems of

Penrose-Fife type and some Stefan problems. Ph.D. - thesis, Humboldt Uni-

versity, Berlin, 1997.

[13] Krasnosel'skii, M.A., Pokrovskii, A.V. : Systems with hysteresis. Springer-

Verlag, Heidelberg, 1989 (Russian edition: Nauka, Moscow, 1983).

[14] Krej£í, P. : Hysteresis, convexity and dissipation in hyperbolic equations.

Gakuto Int. Series Math. Sci. & Appl., Vol. 8, Gakk	otosho, Tokyo, 1996.

17



[15] Ladyzhenskaya, O.A., Solonnikov, V.A., Ural'tseva, N.N. : Linear and quasi-

linear equations of parabolic type. American Mathematical Society, 1968. (Rus-

sian edition: Nauka, Moscow, 1967).

[16] Laurençot, Ph. : Solutions to a Penrose-Fife model of phase-�eld type. J.

Math. Anal. Appl., 185 (1994), 262�274.

[17] Laurençot, Ph. : Weak solutions to a Penrose-Fife model for phase transitions.

Adv. Math. Sci. Appl., 5 (1995), 117�138.

[18] Mayergoyz, I. D. : Mathematical models for hysteresis. Springer-Verlag, New

York, 1991.

[19] Penrose, O., Fife, P.C. : Thermodynamically consistent models of phase �eld

type for the kinetics of phase transitions. Physica D , 43 (1990), 44�62.

[20] Protter, M. H., Weinberger, H. F. : Maximum principle in di�erential equations.

Prentice Hall, Englewood Cli�s, 1967.

[21] Sprekels, J., Zheng, S. : Global smooth solutions to a thermodynamically

consistent model of phase-�eld type in higher space dimensions. J. Math. Anal.

Appl., 176 (1993), 200�223.

[22] Visintin, A. : Stefan problem with phase relaxation. IMA J. Appl. Math., 34

(1985), 225�245.

[23] Visintin, A. : Supercooling and superheating e�ects in phase transitions. IMA

J. Appl. Math., 35 (1985), 233�256.

[24] Visintin, A. : Di�erential models of hysteresis. Springer-Verlag, New York,

1994.

18


