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Abstract

Essential features of two-section DFB semiconductor lasers can be described by

a boundary value problem for the so-called coupled wave equations, a linear hy-

perbolic system of �rst order partial di�erential equations with piecewise constant

coe�cients. In this paper we investigate spectral properties of an operator H de�ned

by this boundary value problem. We prove that H generates a C0-group of bounded

operators in a suitable Hilbert space U , that all but �nitely many eigenvalues of H

are simple and have negative real parts and that there exists a basis in U consist-

ing of root functions of H, where all but �nitely many of these root functions are

eigenfunctions.

1 Introduction

Distributed feedback (DFB) semiconductor lasers are promising optical devices for tele-

communication. They can be used to obtain selfsustained oscillations with high frequency

[2], to regenerate signals in shape and frequency and to have the properties of a switch [5].

The following mathematical model can be used to explain several pulsation mecha-

nisms of DFB-lasers, such as dispersive self Q-switching, mode beating [7] and spatial hole

burning [6]. It consists of a boundary value problem for a linear hyperbolic system of �rst

order complex-valued partial di�erential equations with piecewise constant coe�cients,

the so-called coupled wave equations, see [1] - [8]. For the special case of two section

lasers these equations can be rewritten in the form

@tu1(t; x) = vg
�
�@xu1(t; x) + c(x)u1(t; x) + d1u2(t; x)

�
@tu2(t; x) = vg

�
@xu2(t; x) + d2u1(t; x) + c(x)u2(t; x)

�
9=
;� l1 < x < l2; t > 0; (1.1)

where u1(t; x) and u2(t; x) describe the slowly varying complex amplitudes of the forward

and backward traveling waves (after averaging over the transverse plane and separating

terms varying rapidly in space and time) of the electric �eld, l1 > 0 and l2 > 0 are the

lengths of the two laser sections, d1 and d2 are complex coupling coe�cients, vg is the

group velocity (cf. [7]), and c is a propagation coe�cient which is assumed to be constant

in the laser sections, i.e.

c(x) =

(
c1 for �l1 < x < 0;
c2 for 0 < x < l2

(1.2)

is a given piecewise constant function, where the complex coe�cients c1 and c2 are the

so-called propagation coe�cients in the left and the right laser section, respectively.

The re�ection properties at the facets of the laser are described by the boundary

conditions

u1(t;�l1) = r1 u2(t;�l1);
u2(t; l2) = r2 u1(t; l2);

(1.3)
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where r1 and r2 are given complex coe�cients satisfying

0 < jrjj < 1 for j = 1; 2: (1.4)

The boundary value problem (1.1), (1.3) can be formulated as an abstract linear

evolution equation
du

dt
= vgHu

in a suitable Hilbert space. For d1 = d2 = 0, (1.1) describes the so-called Fabry-Perot

laser, in that case the operator H is denoted by H0.

Recently (cf.[8]), certain spectral properties of the unbounded linear operator H have

been determined. In the present paper we continue these investigations. Especially, we

will study the dependence of the spectrum of H on the coupling coe�cients d1 and d2 and

on the re�ection coe�cients r1 and r2. The obtained results are useful for establishing the

existence of integral manifolds for some nonlinear evolution system which appears if the

system (1.1), (1.3) is nonlinearly coupled with balance equations for the carrier densities

in the laser, and for the description of rotating and modulated wave solutions and of

forced frequency locking properties of such systems (cf. [9]).

2 Preliminaries. Results

Let U be the complex Hilbert space L2((�l1; l2);C2), i.e the elements of U are pairs of

complex valued L2-functions on the interval (�l1; l2). The space U is equipped with the

usual scalar product

hu; vi :=
Z l2

�l1

(u1(x)v1(x) + u2(x)v2(x))dx:

Let H and H0 be the unbounded linear operators mapping D � U into U , where D is

given by

D := fu 2 W 1;2((�l1; l2);C2) : u1(�l1) = r1u2(�l1); u2(l2) = r2u1(l2)g (2.1)

and which are de�ned by

Hu := (�u01 + c(x)u1 + d1u2; u
0

2 + d2u1 + c(x)u2);
H0u := (�u01 + c(x)u1; u

0

2 + c(x)u2):
(2.2)

Here W 1;2((�l1; l2);C2) is the usual Sobolev space, and, hence, D is dense in U , and by

u0j we denote the derivative of uj with respect to the space variable x.
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Concerning the spectrum ofH and ofH0 (denoted by specH and specH0, respectively)

the following result has been proven in [8]:

Theorem 1 (i) The spectrum of H consists of countably many isolated eigenvalues

�j (j = 1; 2; : : :). All these eigenvalues are geometrically simple, i.e. dimker(H��jI) = 1,
and have �nite algebraic multiplicity, i.e.

dim Uj <1 with Uj :=
1[
k=1

ker(H � �jI)
k:

Moreover, in each Uj there exists a basis Bj, consisting of root functions of H, such that

[1j=1Bj is a basis in U (with respect to the L2-norm) and in D (with respect to the W 1;2-

norm).

(ii) It holds

spec H0 =
�
� 2 C : � =

1

l1 + l2

�1
2
ln(r1r2) + c1l1 + c2l2 + k�i

�
; k 2 Z

�
; (2.3)

and all elements of specH0 are simple eigenvalues.

In (2.3) we denote by ln(r1r2) the complex number z0 satisfying ez0 = r1r2 and 0 �
arg z0 � arg z for all z 2 C with ez = r1r2 and 0 � arg z.

In the present paper we will prove the following results:

Theorem 2 For all � 2 spec H it holds

dist(�; spec H0) � max

( �����d1r1
����� ;

�����d2r2
�����
)
:

Here we use the standard notation dist (�; spec H0) := inf fj�� �j : � 2 spec H0g:

Theorem 3 The operator H generates a C0-group of bounded operators in U .

Theorem 4 For all " > 0 and c
�
> 0 there exists a �

�
> 0 such that the following

holds: If jcjj < c
�
and jdjj < c

�
for j = 1; 2 and if � 2 spec H satis�es j�j > �

�
, then

dist (�; spec H0) < ".

Theorem 4 means that all but �nitely many modes of the two section DFB laser, described

by H, are damped, if all modes of the corresponding Fabry-Perot laser are damped.

Theorem 1 and Theorem 4 yield the following corollary which gives a partial answer

to an open problem stated in [8]:

Corollary If � 2 specH and if j�j is su�ciently large, then � is a simple eigenvalue

of the operator H.
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3 Proofs of the Results

3.1 Proof of Theorem 2

Following an idea of J. Rehberg from [8] we introduce an isomorphism T from U onto U
such that TH0T

�1 is normal. From THT�1 = TH0T
�1 + T (H � H0)T

�1 and from the

property that the operator T (H�H0)T
�1 is bounded (cf. (2.2)), we get that THT�1 can

be viewed as a bounded perturbations of a normal operator. According to the spectral

theory of such operators (cf., e.g., [10, Chapter V.3]) we have

spec H � f� 2 C : dist(�; spec H0) � kT (H �H0)T
�1kg: (3.1)

The isomorphism T we are working with is de�ned by

Tu :=
�
r�11 e�(x+l1)u1; e

��(x+l1)u2
�

with � :=
Re ln(r1r2)

2(l1 + l2)
:

It is easy to verify that T maps D (cf. (2.1)) onto

~D := fu 2 W 1;2([�l1; l2];C2) : u1(�l1) = u2(�l1); u1(l2) = u2(l2)g:

Hence, ~D is the domain of de�nition of THT�1 and TH0T
�1. Furthermore, from (2.2) it

follows

TH0T
�1u = (�u01 + (c(x) + �)u1; u

0

2 + (c(x) + �)u2) for u 2 ~D;
T (H �H0)T

�1u = (r�11 d1e
2�(x+l1)u2; r1d2e

�2�(x+l1)u1):
(3.2)

Straightforward calculations show that TH0T
�1 is normal. Furthermore, (1.4) yields that

� < 0. Hence, for all u 2 U we have

kT (H �H0)T
�1uk2 =

Z l2

�l1

(jr�11 d1e
2�(x+l1)u2j2 + jr1d2e�2�(x+l1)u1j2)dx �

�
�����d1r1

�����
2 Z l2

�l1

ju2j2dx+ jr1d2e�2�(l1+l2)j2
Z l2

�l1

ju1j2dx � max

8<
:
�����d1r1

�����
2

;

�����d2r2
�����
2
9=
; kuk2:

Therefore, the validity of Theorem 2 follows from (3.1).

3.2 Proof of Theorem 3

We consider the densely de�ned unbounded linear operator A : ~D � U ! U de�ned by

Au := (�u01; u02): It is easy to see that iA is self-adjoint. Hence, by Stone's Theorem, A

is a generator of a C0-group of unitary operators in U (cf. [11, Theorem 1.10.8]). But

THT�1 � A is a bounded operator on U (cf. (3.2)). Therefore, THT�1 is a generator of

a C0-group in U , too (cf. [11, Theorem 3.1.1]). Hence, H is a generator of a C0-group in

U , q.e.d.
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3.3 Proof of Theorem 4

We introduce the 2� 2-matrices

J :=

"
�� 1 0

0 1

#
and D :=

"
0 d1
d2 0

#
: (3.3)

Let � 2 spec H. Then, according to Theorem 1, (1.2), (2.2) and (3.3), there exists an

u 2 D such that

u0(x) = ((�� c1)J � JD)u(x) for��l1 < x < 0;

u0(x) = ((�� c2)J � JD)u(x) for 0 < x < l2;
(3.4)

u1(�l1) = r1; u2(�l1) = 1; u2(l2) = r2u1(l2): (3.5)

The Sobolev embedding theorem implies D � C([�l1; l2];C): Thus, u is continuous in

x = 0, and we get from (3.4),(3.5)

u(l2) = exp(l2(�� c2)J � l2JD) exp(l1(�� c1)J � l1JD)

"
r1
1

#
;

where exp is the usual exponential map for matrices. By means of the matrices

Bj := exp(lj(�� cj)J � ljJD)� exp lj(�� cj)J; j = 1; 2 (3.6)

we can represent u(l2) in the form

u(l2) = [exp(l1(�� c1) + l2(�� c2))J +B2 exp(l1(�� c1)J) +

+ exp(l2(l � c2)J)B1 +B2B1]

"
r1
1

#
: (3.7)

The matrices Bj depend on c1; c2; d1; d2 and �. In what follows we prove

kBjk ! 0 as Im�!1 locally uniformly with respect to c1; c2; d1; d2 and Re�: (3.8)

This means that for all � > 0 and c
�
> 0 there exists a �

�
> 0 such that kBjk < � if

jIm�j > �
�
and if jc1j; jc2j; jd1j; jd2j; and jRe�j are smaller than c

�
.

Let us prove (3.8). From (3.3) we obtain J2 = I; JD = �DJ; (JD)2 = � � d1d2I,

and (�J +D)2 = (�2� d1d2)I: Therefore, for any complex � such that �2 6= d1d2 we have

exp(�J + JD) =
1X
k=0

1

k!
(�J + JD)k =

1X
k=0

(�2 � d1d2)
k

 
I

(2k)!
+
�J + JD

(2k + 1)!

!

= I
1X
k=0

(
p
�2 � d1d2)

2k

(2k)!
+

�J + JD
p
�2 � d1d2

1X
k=0

(
p
�2 � d1d2)

2k+1

(2k + 1)!

= I cosh
q
�2 � d1d2 + (�J + JD)

sinh
p
�2 � d1d2p

�2 � d1d2
: (3.9)
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Remark that (3.9) is valid for both values of the square root. Moreover, it can be easily

proved that

cosh
q
�2 � d1d2 � cosh�! 0 as Im�!1;

� sinh
p
�2 � d1d2p

�2 � d1d2
� sinh�! 0 as Im�!1;

� sinh
p
�2 � d1d2p

�2 � d1d2
! 0 as Im�!1

locally uniformly with respect to d1; d2 and Re�. By means of these relations we obtain

from (3.6) and (3.9) the validity of (3.8).

Using the notation

(v1(�; c1; c2; d1; d2); v2(�; c1; c2; d1; d2)) :=

:=

 
B2

"
e�l1(��c1) 0

0 el1(��c1)

#
+

"
e�l2(��c2) 0

0 el2(��c2)

#
B1 +B2B1

!"
r1
1

#
;

(3.10)

we get from (3.7)

u1(l2) = e�l1(��c1)��2(��c2)r1 + v1(�; c1; c2; d1; d2);

u2(l2) = el1(��c1)+l2(��c2) + v2(�; c1; c2; d1; d2):

Hence, according to (3.5) the following matrix vanishes:

el1(��c1)+l2(1�c2)� r1r2e
�l1(��c1)�l2(��c2)+ v2(�; c1; c2; d1; d2)� r2v1(�; c1; c2; d1; d2): (3.11)

Now, suppose that Theorem 4 is not true. Then there exist " > 0; c
�
> 0 and complex

sequences �(k); c
(k)
1 ; c

(k)
2 ; d

(k)
1 and d

(k)
2 such that jIm�(k)j ! 1 for k !1 and that for all

k we have jRe�(k)j < c
�
; jc(k)1 j < c

�
; jc(k)2 j < c

�
; jd(k)1 j < c

�
; jd(k)2 j < c

�
,

dist (�(k); spec H
(k)
0 ) � " (3.12)

and (cf. 3.11)

0 = el1(�
(k)
�c

(k)

1 )+l2(�
(k)
�c

(k)

2 ) � r1r2e
�l1(�

(k)
�c

(k)

1 )�l2(�
(k)
�c

(k)

2 ) +

+v2(�
(k); c

(k)
1 ; c

(k)
2 ; d

(k)
1 ; d

(k)
2 )� r2v1(�

(k); c
(k)
1 ; c

(k)
2 ; d

(k)
1 ; d

(k)
2 ):

(3.13)

Here H
(k)
0 is the operator H0, de�ned by (2.2) with coe�cients c

(k)
1 and c

(k)
2 (cf. (1.2)).

But (3.8), (3.10) and (3.13) imply

e2(l1(�
(k)
�c

(k)

1 )+l2(�
(k)
�c

(k)

2 )) ! r1r2 for k !1;

and this contradicts to (2.3) and (3.12).

6



3.4 Proof of the Corollary

For 0 � " � 1 and k 2 Z let us introduce the notation H" := H0 + "(H �H0) (cf. (2.2))
and

�(k)" :=

(
� 2 spec H" :

����� 1

l1 + l2

�
1

2
ln(r1r2) + c1l1 + c2l2 + k�i

� ��� � �

2(l1 + l2)

)
:

According to Theorem 1 (ii) there exists a k0 2 N such that for all k 2 Z with jkj > k0
and for all " 2 [0; 1] the sets �(k)" are spectral sets of H", i.e. they are open and closed

in the spectrum of the operator H". Moreover, there exists a �
�
> 0 such that for all

" 2 [0; 1] and for all � 2 specH" with jIm�j > �
�
we have � 2 �(k)" for a certain k. Hence,

it remains to show that, for large k, the spectral sets �
(k)
1 consist of exactly one simple

eigenvalue.

Let m(k)
" be the sum of the algebraic multiplicities of all eigenvalues in �(k)" . Perturba-

tion results for spectral sets consisting of �nitely many eigenvalues (cf. [10, Chapter IV.5])

yield that, for jkj > k0, each m(k)
" depends continuously on ". But from Theorem 1 (ii) it

follows m
(k)
0 = 1. Hence, m

(k)
1 = 1 for jkj > k0.

Remark For jkj > k0 we denote by �(k) the unique element of �
(k)
1 , i.e. �(k) is an

eigenvalue of the operator H. Then Theorem 4 yields

�(k) =
1

l1 + l2

�
1

2
ln(r1r2) + c1l1 + c2l2 + k�i

�
+ o(1) as k !1:

Moreover, it is easy to calculate the following, more precise asymptotic expansion

�(k) =
1

l1 + l2

 
1

2
ln(r1r2) + c1l1 + c2l2 + k�i+

i

2k

 
d1l1

r1
+
d2l2

r2
� d1l2r2 � d2l1r1

!!
+o
�1
k

�

as k !1.
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