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Abstract. This paper studies a stochastic particle method for the numerical 
treatment of Smoluchowski's coagulation equation. Convergence in probability 
is established for the Monte Carlo estimators, when the number of particles 
tends to infinity. The deterministic limit is characterized as the solution of a 
discrete in time version of the Smoluchowski equation. The results are illus-
trated by numerical examples. 
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1. Introduction 
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The Smolu.chowski ecruation first published in [5] describes the physical process of coag-
ulation. This phenomenon is important in many fields of application, in particular in 
aerosol science (cf. [7]). We consider the Smoluchowski equation in its simplest form 

l = 1,2, ... ' (1.1) 

with the initial condition 

( ) 
(0) nt 0 = nl , l = 1,2, .... (1.2) 

Here nt( t) is the concentration of particles of size l (containing l structural units or 
monomers) at time t ;:::: 0 . 

Concerning the initial value, we assume that 

n~O) ;:::: Q, l = 1, 2, .. · , (1.3) 

n~o) = 0 , l > Lo (1.4) 
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and 

max n~o) > 0. 
l 

(1.5) 

Condition (1.4) assures, in particular, that the infinite sum on the right-hand side of (1.1) 
is finite at time zero, for arbitrary kernels K. 

Concerning the coagulation kernel K , we assume that 

inf K· · > 0 i,j?_l i,3 
(1.6) 

and 

Ki,i == K;,i, i,j == 1,2, .... (1. 7) 

Among numerical methods for solving Eq. (1.1) Monte Carlo algorithms based on 
interacting particle systems play an important role. We refer to the extensive reference 
list in [4]. The purpose of this paper is to give a rigorous convergence proof for a 
stochastic algorithm, which was proposed in [2] and was numerically investigated in [4]. 
We call this procedure a Nanbu type method because of its analogy with a corresponding 
numerical algorithm for the Boltzmann equa~ion (cf. [3]). Convergence of the basic 
algorithms for the Boltzmann equation was established in [1], [6]. 

In Section 2 we describe the numerical algorithm in detail. Section 3 contains the main 
result showing convergence in probability of the Monte Carlo estimators to a deterministic 
limit as the number of simulation particles tends to infinity. The limit is determined as 
the solution of an equation, which is a discretized in time analogue of the Smoluchowski 
equation. In Section 4 we present the results of some numerical experiments illustrating 
the above mentioned convergence theorem as well as the convergence of the solution of 
the discretized equation to the solution of Eq. (1.1). 

2. Description of the algorithm 

Let us consider a stochastic particle system, where each particle is characterized by its 
size l == 1, 2, .... The state of the system is determined by the sequence 

(2.1) 

where Nz(t) is the number of particles of size l at time t ~ 0. The system depends on a 
parameter N == 1, 2, ... , and its state is defined at discrete moments 

k == 0, 1, ... ' t (N) - Q 
0 - ' 

according to the rules following below. Between these points the system does not change. 
Initial state: At time zero the system consists of N particles approximating the 

initial value in condition (1.2). More precisely, let 

N ==I: Nz(O) (2.2) 
l?_l 
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and 

N;~) ---> n}0l in probability as N ---> oo, l = 1, 2, ... , 
Co 

(2.3) 

for some appropriate normalizing sequence c~N). In correspondence with (1.4), we 
assume that 

Nz(O) = 0, l >Lo. (2.4) 

Remark 2.1 (Choice of the normalizing sequence) From {2.2}J {2.3)J {2.4)J {1.5} 
one obtains 

N _ ~ Nz(O) ~ (o) 
(N) - 6(Nf --r 6nl > 0 

co z~1 co z~1 

in probability as N --r oo (2.5) 

so that 

lim c~N) = oo. 
N--too 

(2.6) 

An appropriate choice is 

(N) - N 
Co - (0) · 

:Ez~1 nl 
(2.7) 

Remark 2.2 One may consider N as the number of monomers in the system at time 
zero) i.e. 

N = L lNz(O), (2.8) 
l~l 

instead of {2.2). Then {2.B}J {2.3}J {2.4} and {1.5} give 

N Nz(O) ~ (o) .0 
(N) = L l (Nf --r 6 l nz > '-.f 

co z~1 co z~1 

in probability as N --r oo 

so that in this case 

(N) - N 
Co - (0) 

Ez~1 l nz 

would be an appropriate choice of the normalizing sequence. 

Time evolution: Given the state of the system (2.1) at time t1N), for some k = 
0, 1, ... , and a normalizing sequence c1N), the state at time t1~~ is constructed in several 
steps. 

1. Choose the time increment 

(2.9) 
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where 

(2.10) 

is a discretization parameter, and define 

t<N) _ t<N) + ~ (N) 
k+l - k k . (2.11) 

2. Denote 

N I N (t(N)) N.21 = N2(tk(N))' 1 = 1 k ' 

3. For each particle of size l, l = 1, 2, ... , examine with the reaction probability 

( (N)) 
p(N) ·- ~ ~(N)"' Nj tk K . 

l .- 2 k L.i (N) l,3 ' 
f~1 ck 

whether it interacts with any other particle. 

l = 1,2, ... ' (2.12) 

3.1 If yes, then find the random size m of the reaction partner according to the size 
distribution 

( (N)) 
(N) ·- Nm ik Kl,m 

Pl,m .- '°'. N ·(t(N)) K . ' 
L...-3~1 3 k l,3 

m2::1, (2.13) 

and change 

N I ·- N 1 1 N 1 ·- N 1 1 l ·- l - ' m ·- m - ' N{+m := N{+m + 1 . (2.14) 

3.2 If no, then do not change anything. 
4. To keep all components non-negative truncate the system if necessary, i.e. define 

- (N) . / N1(tk+i) .= max(O, N1), l = 1, 2, .... (2.15) 

5. Check whether the number of particles satisfies 

(2.16) 

5.1 If yes, then double the system, i.e. define 

C(N) ·- 2 c(N) k+I .- k . (2.17) 

5.2 If no, then do not change anything, i.e. define 

( (N)) - ( (N)) Nz tk+i := Nz tk+i , (N) ·- (N) ck+I .- ck . (2.18) 

Note that the probabilities (2.12), (2.13) are the same for all particles of the same size. 
The normalizing sequences, which are in fact random, satisfy c~N) = 2f3 c~N), where /3 is 
the number of those among the k time steps at which the doubling procedure (2.17) took 
place. Thus, one obtains 

(N) < (N) < 2k (N) 
co - ck - co ' k = 0, 1, .... (2.19) 
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Remark 2.3 (Growth of the particle size) During one time step, the largest non-
zero component of the sequence (Nz) may increase at most by a factor 2 {cf. {2.14)). · 
Thus, according to (2.4), one obtains 

(2.20) 
Consequently, the infinite sums in {2. 9), {2.12) and {2.13) are actually finite. 

Remark 2.4 (Number of monomers) The mass conservation property of the Smolu-
chowski equation ( 1.1), i.e. 

L lnz(t) = L lnz(O), t ~ 0' 
l~l l~I 

(see (3.9), (3.10) below) is violated for the particle system due to the truncation {2.15). 
We have (cf. {2.14)) 

l N! + m N:n + ( l + m) N!+m = l ( N! - 1) + m ( N:n - 1) + ( l + m) ( N!+m + 1) 
and there! ore 

L l N! = L l Nz(tiN)) 
l~I l~I 

but, according to (2.15), in general only 

L l Nz(t~~{) ~ L l Nz(tiN)). 
l~I l~I 

Remark 2.5 (Number of particles) The number of particles in the system satisfies 

N ::; L Nz(tiN)) ::; N, 
2 l~I 

k = 0, 1, ... ' (2.21) 

which fallows by induction from 

~ L Nz(tiN)) ::; L Nz(ti~{) ::; L Nz(t~N)). 
2 l~l l~I l~I 

From (2.21) and (2.19) one obtains 

1 '°' (N) N N (N) LI Nz( tk ) ::; (N) ::; sup (N) < oo , 
ck l~I Co N Co 

according to {2.5). 
For the proof it will be sufficient to use the rough inequality 

L Nz(ti~{)::; 2 L Nz(tiN)), 
l~I l~I 

which implies 

1 '°' (N) k N k N (N) LI Nz(tk ) ::; 2 (N) ::; 2 sup (N) < oo, 
ck l~I Co N Co 

(2.22) 

according to {2.5). 
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3. Convergence theorem 

We consider a discrete approximation to Eq. (1.1), namely 

l = 1,2, ... ' k = 0,1, ... ' 

with the initial condition 

I\ (0) (0) 
nl = nl ' l == 1, 2, .... (3.2) 

The time steps are defined as 

(3.3) 

where a is the parameter from (2.9), (2.10), and 

k = 0,1, ... ' to == 0. 

The main result is the following. 

Theorem 3.1 Let the assumptions (2.3}, (2.4} be fulfilled. Then 

Nl(t1N)) " (t ) . b b ·z·t N (N) --7 nl k in pro a ii y as --7 oo, l == 1, 2, ... ' k == 0, 1, ... ' (3.4) 
ck 

where nl is the solution of Eq. (3.1} and Nl(tiN)), c1N) were defined in Section 2. 

We start with some preparations for the proof. 

Lemma 3.2 The solution of Eq. (3.1} satisfies 

nl(tk) ;::: o, l = 1, 2, ... , k == o, 1, ... , (3.5) 

(3.6) 

I: lfiz(tk) =I: lnf0>, k=O,l, .... (3.7) 
l~l l~l 

Proof. We prove the assertions by induction with respect to k. In the case k = 0 they 
are fulfilled because of (3.2), (1.3) and (1.4). Assuming that they are fulfilled for some k 
we prove them for k + 1. Eq. (3.1) takes the form 

6 



The termin brackets satisfies (cf. (3.3), (2.10), (1.7)) 

°" " ( ) Li>1 Ki z ni(tk) 1 - .6.k L.J Ki,l ni tk == 1 - a { ~ ( ) } ~ 1 - a~ 0, 
i>l mµ Lj>1 ni tk Ki,j 

- i -

which implies (3.5). If l > Lo 2k+i , then either ni( tk) == 0 or fiz-i( tk) = 0 so that the 
right-hand side of (3.8) vanishes and (3.6) follows. Finally, we note that 

[
1 Z-1 ] L l - L Ki,l-i bi bz-i -

Z~l 2 i=l 

1 1 
-2 LL l Ki,l-i bi bz-i = - L L:(l + i) Ki,l bi bz 

i~l l>i 2 i~l l~l 
L l bz L Ki,l bi , (3.9) 
l~1 i~l 

for any symmetric matrix Kand any sequence (bi). Now (3.1) and (3.9) imply 

L: z nz(tk+i) =I: z nz(tk) (3.10) 
l~1 l~1 

and (3. 7) follows. D 

Let the system N1(t1N)), N2(t1N)), ... be fixed. For each tested particle (cf. step 3 
in the description of the time evolution in Section 2) 

(l, i)' l == 1, 2, ... ' 

we introduce a random variable 6,i that determines whether the particle takes part in 
a reaction. These random variables are independent and distributed according to (cf. 
(2.12)) 

Prob( 6,i == 1) = P/N), Prob(6,i == 0) == 1 - Pz(N). (3.11) 

We also introduce random variables 'T/l,i for the size the reaction partner, which are 
independent of each other and of (6,i). Their distribution is (cf. (2.13)) 

Prob(11z · = m) = p(N) ·1 ,i l,m ' m.== 1, 2, .... (3.12) 

We prove two lemmas related to these random variables. 

Lemma 3.3 Assume} for some k == 0, 1, ... , 

Then 

(3.14) 

in probability as N ~ oo. 
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Proof. For the random variable on the left~hand side of (3.14), 

(3.15) 

we prove that the expectation tends to the deterministic expression on the right-hand 
side, i.e. 

(3.16) 

and that the variance vanishes, i.e. 

lim V dN) = 0. 
N-+oo 

(3.17) 

Let Ek denote the conditional expectation with respect to the a-algebra generated by 
the sequence Ni(t1N)), N2(t1N)),. .. . Then (cf. (3.11), (2.12)) 

(3.18) 

and, consequently, 

(3.19) 

Note that the random variable in brackets is bounded according to the definition (2.9) 
and the estimate (2.22). Thus, (3.16) follows from (3.13) and the fact that (cf. (2.9), 
(3.3)) 

in probability as N -t oo. Note that 

i = 1,2, ... ' 

since the sums are over a finite set of indices, according to (2.20) and (3.6). Moreover, 

according to (3.7), (1.5) and (1.6). 
In order to establish (3.17) we use the property 

v (l(N) = E Vic dN) + E (Ek (z(N))2 - (E(z(N))2 ' (3.20) 
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where 

From (3.16) we know that 

J~ (E(}Nl) 2 = [ ~ t;.k ii1(tk) ~ K1.;fi;(tk)] 
2

• (3.21) 

Using (3.18) we obtain 

[ [ 

2 Nt(t(N)) (N) 2 

E (E ((N))2 - E E _l_ ~ t ·]] - E [Nl(tk ) n(N)] k l - k (N) L.J C:.l,i - (N) rl · 
~ ~1 ~ 

This term is handled as the right-hand side of (3.19) giving 

lim E (Ek ez<N))2 = [-21 ~k nz( tk) L Kl,j iii( tk)]·
2 

• (3.22) 
N~oo . 

J?:l 

Finally we obtain from (3.15), (3.11) 

Nt(t~N)) (N) 
Vi ((N) = 1 '"'"" Vi e . = Nl( tk ) p,(N) (l _ p,(N)) (3.23) 

k l ( ciN))2 ~ k l,i ( c~N))2 l l · 

This random variable is bounded according to the definitions (2.12), (2.9) and the estimate 
(2.22). Its expectation tends to zero according to (3.13), (2.19) and (2.6). Thus, (3.20), 
(3.21), (3.22), (3.23) imply (3.17). D 

Lemma 3.4 Assume, for some k = 0, 1, ... , 

l = 1, 2, .... 

Then 

i, l = 1, 2,, ... ' 

in probability as N ~ oo , where 5 denotes the Kronecker symbol. 

Proof. One obtains 

according to (3.11), (3.12), (2.12), (2.13). Thus, 
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The rest of the argument is analogous to the proof of Lemma 3.3. D 

Proof of Theorem 3.1. We prove the assertion by induction. In the case k = 0 (3.4) 
is fulfilled because of (3.2) and assumption (2.3). We assume that (3.4) is fulfilled for 
some k and prove it fork+ 1. 

Let lz<f> be the number of particles of size l taking part in reactions as tested particles, 
lz<f > - the number of particles of size l taking part in reactions as partners of tested 
p~rticles, and lz~:> - the number of new particles of size l. Then, according to (2.14), 

Nf = Nz(t~N)) - ll~f) - Il,f> +fl~:), l = 1, 2,... . (3.24) 
Using the representations (cf. (3.11), (3.12)) 

and 

Nz(t~N» 

I: 6,i, 
i=l 

Ni(t~N» 
I(N) 

l,2 - I: I: ei,j 8.,,i,jl, 
i~l j=l 

l-1 Ni(t~N)) 

I: I: ei,j 8.,,i,j l-i , I(N) -
l,3 -

i=l j=l 

1 l-1 1 Ni(t~N)) l l-1 
(N) lz(,:) = L (N) L ei,j 8.,,i,j l-i ~ 2 ~k L ni( tk) Ki,l-i nz-i( tk)' 

ck i=l ck i=l i=l 

in probability as N ~ oo. Thus, according to (3.24), the induction hypothesis, (1. 7) and 
(3.1), 

(~) Nf ~ nz( tk) + ~k (~I: ii;( tk) K;,1-i ii1-i( tk) - ii1( tk) :E ii;( tk) K;,1) 
ck i=l i~l 

= nz(tk+i) (3.25) 
in probability as N ~ oo. Now (3.25), (2.15) and (3.5) imply 

1 "A-T ( (N)) _ 1 ( ') " ( ) (N) 1vl tk+l - (N) max 0, Nl ~ nl tk+l . 
ck ck 

Finally we not~ that the doubling transformation does not change the limit, since 
1 (N) _ 1 - (N) 

(N) Nz(tk+1) - (N) Nz(tk+i) 
ck+l ck 

in both cases (2.17) and (2.18). This completes the proof. D 
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4. Numerical experiments 

In this section we illustrate two effects. The .first is convergence for N ~ oo of the 
numerical approximation to the solution of Eq. (3.1), i.e. the result of Theorem 3.1. This 
solution depends on the discretization parameter a (cf. (3.3)). The second effect to be 
shown is convergence for a~ 0 of the solution of the discretized equation to the solution 
of the original equation (1.1). 

We consider some special cases of Eq. (1.1), in which the analytical solution is known. 
Beside the solution nz we calculate the average particle size 

( 4.1) 

and the particle size distribution 

nz(t) 
sz(t) :== L: (t), 

z~1 nz 
l==l,2, .... (4.2) 

For the (normalized) initial value 

n (O) - 1 
1 - ' n (O) - Q 

l - ' l2::2, (4.3) 

and the coagulation kernel 

Ki,j = 1, i, j == 1, 2, ... ' ( 4.4) 

the exact solutions are 

(~) l-1 

sz(t) = z , 
(1 + ~) 

(4.5) 

For the initial value ( 4.3) and the coagulation kernel 

Ki,j == i + j, i,j = 1, 2, ... ' (4.6) 

one has 
z1-1 

(t) -t (l -t)l-1 -l (1-e-t) nz = -e - e e 
l ! 

(4.7) 

and 

zz-1 
(t) == _ (l _ -t)l-1 -l (1-ct) sz l ! e e , (4.8) 

The initial value of the system is 

Nz(O) = 0, l2::2, (4.9) 
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so that (2.3) is fulfilled for the sequence (cf. (2. 7), ( 4.3)) 

c~N) = N. 

Let the random functions 
Nz(t) 

c(N)(t) ' t E [ 0, T] , l = 1, 2, . . . , 

( 4.10) 

be obtained by linear interpolation between the points tiN) (cf. (2.11)) and c(N)( tiN)) := 
ciN). Using averaging over M independent trajectories we construct the empirical mean 
values as well as confidence intervals in a standard way. 

In order to investigate the convergence 

Nz(t) ,... 
c(N)(t) -t nz(t) as N -t oo, 

we consider the kernel ( 4.4), fix a= 0.8 and calculate the random trajectories on a time 
interval of length T = 10. The results for two components n3 and n5 of the solution are 
given in Table 1. The columns "ni-err" and "ni-conf" ( i = 3, 5) show the supremum 
over the time interval of the systematic error and the length of the confidence interval, 
respectively, i.e. 

[ 
Ni(t) ] ,... ( ) sup E (N)( ) - ni t 

tE[O,T] C t 
and 1 V [ Ni(t) ] 3 sup ~ . 

tE[O,T] M c c(N)( t) ( 4.11) 

The truncation error related to (2.15), i.e. 

1 ~l Nz(t) 
sup - L...J (N)( ) , 

tE[O,T] l~l C t 
( 4.12) 

(cf. Remark 2.4, (4.9), (4.10)) is denoted by "trunc", while "steps" means the number of 
time steps on the interval. Both values are averaged over M trajectories. 

Table 1 

N M n3-err n3-conf n5-err n5-conf trunc steps 
16 640000 2. 79e-2 2.97e-4 l.02e-2 l.26e-4 0.41 5.23 
32 320000 2.0le-2 3.43e-4 7.92e-3 l.40e-4 0.22 5.05 
64 160000 l.37e-2 3.84e-4 5.90e-3 l.55e-4 0.10 4.99 
128 80000 8.26e-3 4.09e-4 4.18e-3 l.67e-4 0.04 4.99 
256 40000 4.26e-3 4.20e-4 2.76e-3 l.76e-4 0.01 4.99 
512 20000 l.95e-3 4.22e-4 l.60e-3 l.83e-4 0.00 5.00 
1024 10000 l.2le-3 4.35e-4 9.72e-4 l.89e-4 0.00 5.00 
2048 5000 3.87e-4 4.34e-4 4.90e-4 l.90e-4 0.00 5.00 
4096 2500 l.78e-4 4.31e-4 2.71e-4 l.96e-4 0.00 5.00 

The time dependent curves for the empirical means approximating the components n3 and 
ns are shown in Figures 1 and 2. The lines correspond to N = 32 (dashed), N = 128 
(dotted), N = 512 (dashed-dotted), and the exact limit (solid). 
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Figure 1: Convergence c~f~i) ~ n3(t) as N ~ oo (a fixed) 

0.005 

0 2 4 6 8 10 

Figure 2: Convergence c<~f~~) ~ n5(t) as N ~ oo (a.fixed) 
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Next we numerically illustrate the convergence 

For this purpose, we fix N = 10000 and M = 1000 and again calculate the random 
trajectories of the system on the time interval of length T = 10. The results for the 
two components n3 and n5 are shown in Table 2. The meaning of the columns "ni-err" 
and "ni-conf'' (i = 3,5) is analogous to (4.11) taking now ni(t) (cf. (4.5)) as the exact 
reference value. The columns "t1" and "t2" show the first and second moment of time at 
which the system is doubled according to (2.16), (2.17). 

Table 2 

a n3-err nJ-conf n 5-err n 5-conf ti t2 
0.8 4.20e-2 4.58e-4 l.64e-2 2.03e-4 2.13 4.34 
0.4 2.23e-2 2.55e-4 6.77e-3 l.38e-4 2.30 6.03 
0.2 9.48e-3 2.34e-4 2.73e-3 l.13e-4 1.97 5.99 
0.1 4.36e-3 2.37e-4 l.27e-3 l.09e-4 2.00 5.85 

0.05 2.1~~3 2.22e-4 6.32e-4 l.lOe-4 2.00 5.97 
0.01 4.0le-4 2.12e-4 9.86e-5 l.12e-4 2.00 5.99 

The time dependent curves for the empirical means approximating the components n 3 

and n 5 are shown in Figures 3 and 4. The lines correspond to a= 0.8 (dashed), a= 0.2 
(dotted), a= 0.05 (dashed-dotted), and the exact limit (solid). 

Numerical experiments with the kernel (4.6) (cf. (4.7), (4.8)) show a qualitatively 
similar behaviour, while the process of coagulation is going on much faster. Some results 
are shown in Table 3. Here the values N = 10000 and M = 1000 are fixed, and the 
meaning of "n3-err" and "n5-err" is as before. The truncation error ( 4.12) is denoted 
by "trunc", and "steps" means the number of time steps on the time interval of length 
T = 1. 75 . The column "S-err" shows the supremum over the time interval of the error 
for the average particle size (4.1). The column "s-err" shows the supremum over l of the 
error for the particle size distribution ( 4.2) at the end of the time interval. 

Table 3 

a n3-err ns-err S-err s-err trunc steps 
0.2 l.13e-2 2.08e-3 l.17e-1 5.79e-3 0.04 302 
0.1 4.88e-3 l.OOe-3 7.93e-2 2.38e-3 0.02 627 

0.05 3.15e-3 7.14e-4 3.85e-2 l.lle-3 0.00 1358 
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