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Abstract. In this paper we consider a quadrature method for the solution of the double layer potential 
equation corresponding to Laplace's equation in a three-dimensional polyhedron.We prove the stability for 
our method in case of special triangulations over the boundary of the polyhedron. For the solution of the 
corresponding system of linear equations, we consider a two-grid iteration and a further simple iteration 
procedure. Finally, we establish the rates of convergence and complexity and discuss the effect of mesh 
refinement near the corners and edges of the polyhedron. 

1. Introduction. 

One popular method for the solution of boundary value problems for elliptic differential 
equations consists in the reduction to boundary integral equations. For instance, the Dirich-
let problem for Laplace's equation in a bounded and simply connected polyhedron n ~ R3 

or the Neumann problem for the same equation on R3 \ n can be reduced to the second kind 
integral equation Ax = y over the boundary S := an (cf. e. g. [22] ), where A = I + 2W 
and 

(1.1) 1 f np · (Q - P) 
Wx(Q) := [1/2 - d0 (Q)]x(Q) + 471' ls IP_ Ql 3 x(P)dpS, 

dn ( Q) : = lim µ( { p E n : Ip - QI < €}) . 
€-tOO µ({PE R 3 : IP- QI< t:}) 

Here np denotes the unit vector of the interior normal to n at P and µ(Z) is the Lebesgue 
measure of Z. Note that, since the boundary Sis not smooth, Wis not compact. The kernel 
function k( Q, P) := 4~np · ( Q - P)IP - Ql-3 vanishes if P and Q lie on the same face of S. 
However, if P and Q tend to an edge point of S and lie on different faces, then k( Q, P) is 
of order IP - QJ-2 • Thus the kernel function of W has a fixed singularity at the set of edge 
points. 

For the numerical solution of Ax = y, various methods have been introduced. The first 
method was the so called panel method, i. e., piecewise constant collocation (cf. [33, 13, 34, 2] ). 
This method has been proved to converge if n satisfies the condition introduced by Wendland 
in [33] (cf. (3.2)). Moreover, Kral and Wendland [16] (cf. also [17, 1]) have shown that the 
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panel method is stable for the case of certain rectangular domains n. Arbitrary polyhedral 
domains have been considered in [26]. Elschner [9] has analysed the Galerkin method with 
piecewise polynomial trial functions over arbitrary polyhedrons, and the Galerkin method 
together with an approximation of the Lipschitz boundary by smooth surfaces has been 
investigated by Dahlberg and Verchota [7]. In [24] a quadrature method has been considered 
which is similar to the methods of Graham and Chandler [6], Kress [18], and Elschner [8] 
for the corresponding equation over polygonal boundaries. The advantage of quadrature 
methods consists in the full discretization of the equation. For other discretization schemes, 
a further discretization step is needed in order to compute the entries of the stiffness matrix. 
The analysis of this step, however, is still uncompleted. The first analysis of an iterative 
solution is due to Wendland [33] who has considered a discretized version of Neumann's 
iteration. Multi-grid methods for the solution of the arising linear systems have been analysed 
by Schippers [29, 30], Atkinson, Graham [4, 5], and the author [23] for the one-dimensional 
case as well as by Hebeker [12] and Atkinson [3] for the two-dimensional case (cf. also 
[11, 10]). The main point in the convergence proof is roughly speaking the following: Split the 
discretized operator into the sum of two parts, where the first part is the discretized double 
layer operator restricted to a neighbourhood of the set of edge points. After multiplying 
the whole discretized equation by the inverse of this first part, a second kind equation with 
discretized compact operator arises. For this situation, the well-known theory of multi-
grid methods applies. The drawback of these methods, however, is that the first part of the 
discretized operator is to be inverted. Since this step means the inversion of a large matrix, no 
improvement of the asymptotic order of complexity can be achieved. Therefore, the authors 
of [30, 3] recommend better variants of multi-grid procedures for which no convergegce proofs 
are known yet. 

The aim of the present paper is to analyse a simple quadrature method which was mentioned 
in [24] without proof. In comparison with the methods investigated in [24] it is much easier 
since it is based on a different type of the so-called method of singularity subtraction. More 
exactly, in [24] the integral f k(Q, P)x(P)dP has been written as f k(Q, P)[x(P)-x(R)]dP+ 
x(R)f k(Q,P)dP, and the quadrature rule has been applied to J k(Q,P)[x(P)- x(R)]dP. 
The point R has been chosen from the set of edge or corner points in an appropriate way 
depending on Q. In the quadrature method of the present paper we easily take R = Q. This 
choice enables us to prove stability without the so-called localization technique and to deduce 
the convergence of a simple two-grid iteration scheme analogously to the one-dimensional 
case (cf. [5, 23]). We remark that our subtraction technique may be advantageous also if 
additional terms with discontinuities along the diagonal are added to the kernel function. 
These additional terms arise if one considers domains with curved boundaries or boundary 
integral equations corresponding to the Helmholtz equation. In detail we shall describe the 
Nystrom method and its iterative solution in Sect.2. The first iteration scheme is just the 
classical two-grid method (cf. [11, 10]), where Jacobi's iterati0n is used for the smoothing step 
and Nystrom's interpolation for the restriction and prolongation. However, when applied 
to our double layer operator, it shows the same new features as detected in the case of 
one-dimensional boundaries (cf. Sect.4 and [4, 5, 23]). Namely, the convergence ratio of the 
iteration process does not tend to zero if the mesh size of the fine and coarse grid tends 
to zero. The convergence ratio rather depends on another property of the grids ( cf. (3.3) 
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and ( 4.2)). In particular, the ratio can be improved by cutting off a larger neighbourhood 
of the set of edge points (i.e., by choosing a strip with a larger E in (2.2), where E is still 
of the order of the mesh size). Beside the two-grid iteration for the solution of the arising 
linear system of equations, we also define an iteration scheme which corresponds to the 
Neumann series expansion. This iteration has been first introduced by Wendland [33] for 
the case of the panel method. In Sect.3 we prove the stability of the Nystrom method. 
It turns out that our quadrature method is stable if a certain finite section procedure (cf. 
(2.2)) is convergent. For instance, if Wendland's condition (cf. [33] or (3.2)) is satisfied or 
if the corners of n are rectangular and graphs of Lipschitz functions, then this finite section 
procedure is convergent and our Nystrom method is stable. We note that the quadrature 
method in [24] is based on a different type of finite section technique, and its stability can be 
proved also for rectangular non-Lipschitz corners. The convergence of the iteration schemes 
will be analysed in Sect.4. We shall show that the two-grid iteration is convergent if the 
Nystrom method is stable. The Neumann iteration converges if Wendland's condition (cf. 
[33] or (3.2)) is satisfied. In Sect.5 we shall introduce special non-uniform triangulations and 
obtain the same asymptotic error estimates as in [24]. From these estimates we deduce the 
complexity\ i.e., the number of necessary operations to compute the approximate solution 
with an error less than a prescribed small number. If N is the number of linear equations of 
the Nystrom method, then one needs O(N3 ) operations to solve the system of equations by 
Gaussian elimination. This order can be reduced to O(N2 ) if one applies the iteration scheme 
corresponding to the Neumann series expansion. However, for domains n with complicated 
geometry, O(N2 ) means an estimate by constant times N 2 , where the constant may be large. 
The application of the two-grid iteration over quasi-uniform grids provides an order O(N2 ) 

with smaller constant. Unfortunately, for highly graded meshes, the two-grid method has the 
same asymptotic order of complexity as Gaussian elimination, and the number of necessary 
operation reduces by a constant factor, only. In other words, comparing the Nystrom method 
over an "optimally" graded mesh solved by Gaussian elimination with the Nystrom method 
over an almost uniform .grid solved by two-grid iteration, we get the same asymptotic order 
of complexity. However, we expect the two-grid method to have a smaller constant in the 
complexity estimate. Comparing the two-grid method and Gaussian elimination for the same 
mesh grading parameter, the complexity of the two-grid iteration is less if N is sufficiently 
large. In Sect. 6 we present numerical experiments in order to confirm our theoretical 
results. In particular, we compare our iterations with the Gaussian algorithm, the GMRES 
([28, 32, 14, 31]), and the 0GMRES with two-grid preconditioner. Remark that throughout 
the paper we have chosen the composite midpoint rule as the quadrature formula. Higher 
order rules can be treated similarly (cf. [24]), but they do not improve the asymptotic order 
of convergence. In Sect. 7 we give the sequential code of the two-grid method. Finally, in 
Sect. 8 we discuss some aspects of the parallel implementation and compare the CPU-times 
of vector and parallel (SIMD) computations. 

1 Since we shall discuss iterative algorithms for linear systems where the size depends on the mesh refine-
ment, the convergence order depending on the number of degrees of freedom is not sufficient to measure the 
quality of our methods. 
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2. The quadrature method and the iteration procedures. 

2. 1. Derivation of the Nystrom method. Let us start with the singularity subtrac-
tion. Taking into account that the constant function is an eigenfunction of W corresponding 
to the eigenvalue 1/2 (cf. [22], Sect.1.3), the equation Ax = y may b.e written as 

(2.1) 
1 f np · (Q - P) 

2x(Q) + 27!" ls IQ_ Pl3 [x(P) - x(Q)]dpS = y(Q), Q ES. 

Now the next step in the discretization of (2.1) is the finite section method. We take a small 
strip Str C S of width E > 0 around the edges and set Se = S \ Str. We suppose that E is of 
the same size as the diameters of the subdomains in the partition used for the quadrature 
rule. Instead of (2.1) we consider 2 

1 f np · (Q- P) 
(2.2) 2xe(Q) + 27!" ls~ IQ_ Pl3 [xe(P) - x.,(Q)]dpS = y(Q), Q ES. 

Now we take a triangulation Se= U~1 Si of S.,. We denote the centre of the triangle Si by 
pi and the surface measure of Si by µ(Si). In order to get a quadrature method for (2.2) 
we replace the integral by a quadrature rule. Thus the Nystrom method consists in solving 

N . 
1 """ n pi · ( Q - pi) i i 

(2.3) 2xN(Q) + 27!" ~ IQ_ pil 3 [xN(P) - XN(Q)]µ(S) = y(Q), Q ES. 

As it is well known, the solution of (2.3) can be obtained in two.steps. First one has to solve 

(2.4) 
N . . . 1 npi · (P1 - pi) . . . 

2xN(P1 ) + 27!" ~ IPi _ pil 3 [xN(Pi) - XN(P1 )]µ(Si) 

j = 1, . .. ,N, 

where, taking into account that np; ·(Pi - Pi)= 0 for pi and pi on the same face of S, we 
have set np; ·(Pi - pi)IPi - Pil-3 := 0. Using the solution xN(Pi) of (2.4), the solution 
XN of (2.3) is given by Nystrom's interpolation 

(2.5) 
(Q) - __!__ ~ npi . ( Q - pi) (Pi) (Si) 

y 271" ?--- IQ - pil3 XN µ 
XN( Q) = i=lN . , Q E S. 

2 - __!__""" npi . ( Q -_ pi) (Si) 
271' ~ IQ - pil3 µ 

2 Note that the transition to this finite section equation will play an important role for the stability proof 
. in Sect.3. Since we truncate the boundary before dividing it into subdomains, we get a smaller number of 
linear equations. The additional approximation error is of the same asymptotic order as the discretization 
error without finite section. However, numerical tests show stability and smaller errors for the Nystrom 
method without finite section step. 

4 



The denominator in (2.5) is different from 0 (cf. the beginning of the proof to Theorem 3.1). 

2. 2. The two-grid method. Now we need some notation in order to introduce the 
two-grid method. Let us follow [11] and denote the operators on the left-hand side of (2.2) 
and (2.3) by Ae and AN, respectively. Further, let x stand for the characteristic function of Se 
and xI for the operator of multiplication by X· Then Ae and AN take the form (cf.(1.1),(2.2) 
and (2.3)) 

(2.6) Ae = 2[1 - W(x)]I + 2Wxl, AN= 2[1 - WN(X)]I + 2WNxI, 

where 

(2.7) 1 N n pi · ( Q - pi) i i 
WN(xx)(Q) := 471" tt IQ_ pil 3 µ(S )x(P) 

and [1 - WN(X)]I as well as [1 - W(x)]I stand for the operators of multiplication by the 
functions [1- WN(X 1)] and [1- W(x 1)], respectively. Beside the triangulation Se= U~1 Si 
we consider a coarse grid Se = U~1 S~. Let P; stand for the midpoint of S~. We denote 
the corresponding discretized double layer operator WNxl over the coarse grid by WN0 xl. 
Our aim is to solve ANxN = y by a two-grid iteration process. Therefore, we start with an 
arbitrary initial function x0 ( e. g. x0 = 0) and compute the approximate solutions xi for XN 
by iteration. Suppose we have obtained xi-l. Then xi will be determined as follows (cf.[11]): 
We start with the smoothing step 

(2.8) 

and define the residual (defect) 

(2.9) d := y - 2[1 - WN(x)Jx' - 2WN(xx'). 

The correction term c is the solution of the coarse grid equation3 

(2.10) 

Finally, the approximate solution xi of the i-th iteration step is given by 

(2.11) xi:= x' + c. 

3 Note that we could have set also ANe := 2[1- WNe(X)]I + 2WNeXI. 
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Let us note that there exists a faster algorithm for the computation of xi due to Atkinson 
( cf.[5]). Moreover, the algorithm becomes still faster if Nystrom's interpolation in the prolon-
gation of the coarse grid data to the fine grid is replaced by piecewise constant interpolation. 
We shall describe the details in item d) of Sect.6.3. 

In Sect. 4 we shall show that xi ~ XN and llxi - xNll :::; qillx0 - XNll holds with 0 < q < 1, 
where q depends only on the parameter Ep appearing in the stability conditions for the 
quadrature method ( cf.(3.3),( 4.2)). Moreover, we derive the orders of complexity in Sect.5.2. 
Finally, we remark that there is a possibility to avoid the finite section step (2.2) without 
loosing the convergence estimates of Sect.4.1. Instead of throwing away the strip Str we 
may choose the coarse grid equal to the fine grid over Str (cf. the first remark following 
Theorem 4.1 ). In the case of one-dimensional boundaries this iteration is analysed in [23]. 

2. 3. The Neumann iteration. Since a coarse grid is used in (2.10), the computa-
tional work for the two-grid iteration is less than that for a direct method of solution of 
(2.4). This will be satisfactory if the finer triangulation is nearly uniform (cf. Sect.5.2). 
However, if we take into account the singular behaviour of the solution x = (I+ 2W)-1y 
and that of the kernel function k corresponding to the integral operator W, then we have to 
use a strongly non-uniform mesh. In this case the stability condition for the triangulation 
( cf.(3.3),( 4.2)) implies that, from the point of view of asymptotic order, the number of trian-
gles in the coarse grid is nearly equal to the number of triangles of the fine grid. Therefore, 
we consider another iteration process for the solution of (2.4). This iteration was proposed 
by Wendland [33] for the case of piecewise constant collocation and is nothing else than a 
discretized version of Neumann's iteration. We start with x0 = 0, choose a parameter x:, > 1 
(cf. the remarks after Theorem 4.2) and write the equation ANXN =yin the equivalent form 
{I+ ~(AN- x:,J)}xN = ~y. The iterative solutions are defined by xi:= ~y- ~(AN- x:,J)xi-1 , 

i.e.' 

(2.12) 

In Sect.5.3 we shall prove that xi ~ XN and llxi - XNll :::; Cqillx0 - XNll holds with 0 < q < 1, 
where q depends on the geometry of n. Note that the two-grid iteration may be preferable 
if q is close to 1. 

3. The stability of method (2.3). 

Let us consider the space C(S) of continuous functions over S supplied with the supre-
mum norm II · II· By II · 11 we also denote the operator norm on C(S). We call (2.3) stable if 
AN is invertible and llAA/11 :::; c =constant with c independent of the partition Se= usi. 
Let us introduce the constant 

1 J lnp · (P - Q)I 
C1 :=sup- IP Ql 3 dpS < oo. 

QES 471' S -

By C let us denote a generic positive constant which varies from instance to instance.For 
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fixed i, let Ei denote the union of all faces on S which do not contain the triangle Si. Further, 
set rad Si := sup{ IP - Pij, P E Si} and let Gfs > 0. In order to prove stability, we shall 
assume: 

(3.1) The operator Ae is invertible and llA;-1 II :::; Gfs· 

Note that Ae is the finite section operator defined by the left-hand side of (2.2). Thus 
assumption (3.1) means the stability of the finite section method in the second step of the 
discretization of A. This finite section method is analysed in [25], where it has been proved 
that ( 3.1) holds if and only if certain double layer operators defined over the tangent cones 
are invertible. Sufficient for (3.1) is that each corner is rectangular and the graph of a 
Lipschitz function 4 • Another sufficient condition is that 

(3.,2) 1. 1 h lnp . ( Q - P)I d S 1 1m sup sup - p < . 
r-+0 QES 271' {PES:IP-Ql~r} IP - Ql 3 

This assumption was introduced also in [33] and can be checked using the fact that the 
integral of the double layer kernel is a solid angle (cf. [22], Sect.4.2.2). In particular, (3.2) 
and therewith (3.1) hold for convex domains n. Now we have 

THEOREM 3.1. Suppose (3.1) holds. Then there is a C and an f.p (1/2 > f.p > 0) depending 
on Cb and G1 such that llA;/11 :::; C holds whenever 

(3.3) 

is satisfied. 

rad Si 
( .. <Ep, i=l, ... ,N dist S•, E•) -

Assumption (3.3) can be satisfied by choosing an appropriate partition of Se. For the proof 
of Theorem 3.1 we shall need the following 

LEMMA 3.1. 

i) For any bounded function x over S, there holds 

(3.4) 

ii) For any x E C(S), 

4 A corner is called rectangular if there exist a neighbourhood U of the corner point and an orthogonal 
coordinate system such that the corner point has the coordinates (O,O,O) and Un Sis contained in the union 
of the three coordinate planes. The corner is the graph of a Lipschitz function if there exist a neighbourhood 
U of the corner point, an orthogonal coordinate system, and a Lipschitz function cp defined over the x-y-plane 
such that Sn U coincides with {(:z:, y, cp(:z:, y)) : (:z:, y) E R 2 } n U. 
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(3.5) 

iii) We have llWxill ~ 01 and llWNxJll ~ 501. 
Proof. {of Theorem 3.1.) First we observe that 2[1- W(x)] and 2[1- WN(X)] are bounded 
from below or, equivalently, that the operators of multiplication by the inverse functions 
are bounded operators. Namely, Ae = 2[1 - W(x)]I + WxI is invertible by (3.1) and the 
operator W xI is compact. Thus the multiplication operator 2(1 - W(x)]I is Fredholm with 
index zero and hence invertible, i.e., 2(1 - W(x)] is bounded from below. From Lemma 3.1, 
i) with x = 1, we get 

(3.6) 

Thus, if Ep is small enough, then 

11~[1 - W(x)]-12[W(x) - WN(x)lll ~ 1;2 

and I+ ~[1 - W(x)J-12[W(x) - WN(X)]I is invertible. Multiplying the last operator by 
2[1 - W(x)]I, we get that 2(1 - WN(X)]I is invertible, too, and the function 2(1 - WN(X)] 
is bounded from below. From the just mentioned arguments we even conclude 

(3.7) 

where the constant depends only on Ota· Hence, for the stability of AN, it suffices to 
derive the invertibility of Hl - WN(X)]-1 AN = I+ ~[1 - WN(X)J- 12WNxI from that of 
~[1 - W(x)]- 1Ae =I+ ~[1 - W(x)J- 12WxI. Thjs, however, follows as in [6]. Namely, let 
us introduce 

and consider ll(T - TN )TNll· We obtain 

II (![1 - W(x)t 12wx1 - ~[1 - WN(x)t 12wNx1) ~[1 - WN(x)t 12wNxill 2 2 2 
1 1 1 

~ 11 2[1 - WN(x)t12[W(x) - WN(x)J2[1 - W(x)]-12wx12[1 - WN(x)t 12WNxill 

(3.8) +11~[1 - WN(x)t 12(WxI - WNxI)~[l - WN(x)t 12wNxill· 

8 



The first term on the right-hand side is smaller than CEp by (3.7),(3.6), and Lemma 3.1,iii). 
The second term can be estimated by Lemma 3.1,i) and (3.7). We get 

11~[1 - WN(x)J- 12(WxI - WNxI)~[l - WN(x)t12WNxxll ~ 

(3.9) C · 2 · { 5C1Epll~[1 - WN(x)t 12WNxxll + 

C1 .Elax sup. I (-21 [l - WN(x)t 12WNxx) (P) - (~[l - WN(x)t 12WNxx) (Pi)I }, 
i-1, ... ,N PES' 2 

where the term under the supremum can be estimated by 

I (~[1 - WN(x)t 12wNxx) (P) - (~[1 - WN(x)t 12wNxx) (Pi)I < 

1{~[1 - WN(x)t 1(P)- ~[1- WN(x)t1(Pi)} 2(WNxx)(P)I + 
(3.10) 1~[1 - WN(x)t 1(Pi)2 { (WNxx)(P) - (WNxx)(Pi) }I· 
Together with (3. 7), (3.6), Lemma 3.1,iii) and ii) we conclude 

I (~[1 - wN(x)t 12wNxx) (P) - (~[1 - wN(x)t 12wNxx) (Pi)-\ 

(3.11) ~ Cy'e;llxll· 

Thus (3.9) and (3.11) lead to 

(3.12) 

Equations (3.8) and (3.12) imply 

(3.13) 

Taking into account that (I+ T) = ![1 - W(x)J-1A~ is invertible, we choose Ep such that 
11(1 + T)-1 II · ll(T - TN )TNll ~ 1/2 and obtain 

11[1 + T + (T-TN)rNi-111 < 11u + Tt11111 [1+u+Tt1(T-TN)TNr1
11 

(3.14) < 11(1+Tt1ll·2 ~ C. 
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Furthermore, the operator 

(3.15) 

is a left inverse of (I+ TN). Since TN is a finite range operator, (I+ TN) is Fredholm and 
its index is zero. Thus (3.15) is the inverse of (I+ TN), and we get ll(J +TN t 1 11 ::; C. From 
i[l + WN(X)]- 1AN =I+ TN and (3.7) we conclude llA}/11::; C. D 

Proof (of Lemma 3.1, i) ) For Q ES, we get 

(3.16) W(xx)(Q) - WN(xx)(Q) 

- _..!.._ f np. (P - Q) x(P)dpS - _..!.._ f. np; . . (Pi - Q) x(Pi)µ(Si) 
47r ls. IP - Ql 3 47r i=l IP' - Ql3 

- _..!.._ f-- f { np . (P - Q) x(P) - np; . . (Pi - Q) x(Pi)} d S 
47r {;;{_ Js; IP - Ql3 IP' - Ql3 P 

1 N f np · (P - Q) i 
- 47r ~ Js; IP - Ql3 {x(P) - x(P )}dpS + 

_..!.._ t f {np. (P - Q) - np; . . (Pi - Q)} x(Pi)dpS. 
47r i=l Js; IP - Ql3 IP' - Ql3 

For P, pi E Si, we conclude np = np; and np · (P - Q) = np; ·(Pi - Q). Using this, we 
arrive at 

IW(xx)(Q) - WN(xx)(Q)I < C1 . max sup lx(P) - x(Pi)I + 
i::::l, ... ,N PESi 

~II 112- r lnp. (P - Q)I 1 - IP - Ql3 Id s 
{;;{_ x 47r J Si Ip - Q I 3 I pi - QI 3 p 

< C1 . max sup lx(P) - x(Pi)I + 
i::::l,. .. ,N PESi 

(3.17) I IP-QJ3 
C1llxll max sup. 1 - IP. Ql3 , 

PES' 1 -

where the last maximum is taken over all i = 1, ... , N such that Si is not on the face of S 
which contains Q. Furthermor·e, 
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(3.18) { [ IP - QI l [ IP - QI l 2} I IP - QI I < 1 + 11 - IPi - QI I+ 1 + 11- IPi - QI I+ 1 1 - IPi - QI ' 

(3.19) I 
IP-Qll lpi_pl radSi 

1 - IPi - QI :::; IPi - QI :::; dist( Si, Ei) :::; Ep < l/2. 

From (3.17)-(3.19) we conclude the validity of i). D 

Proof (of Lemma 3.1,ii) ) Let 5 > 0 and Si,o := {P E Sen Ei : for all Q E Si there holds 
lnp · (Q - P)l/IQ - Pl :::; 5}. Furthermore, let Pl be an arbitrary plane not containing pi 
and consider pzi,o := {P E Pl : lnp ·(Pi - P)l/IPi - Pl :::; 5}. Then the solid angle under 
which pzi,o is seen from pi is just 271"5. Hence, (cf. [15] or [22], Sect.4.2.2) 

(3.20) 

Since Si,o is contained in less than M planes (Mis the number of faces on S), we conclude 

(3.21) ~ f lnp. (P - Q)I dpS < M 5 
471" }5i,6 IP - Ql 3 - 2 

for Q E Si. Now, for PE Si, we get 

w NXX( P) - w NXX( pi) 

(3.22) 

where 11 is just the sum over the k = 1, ... , N with Sk C Se\ Si•0 . The second term I2 is 
the sum over k = 1, ... , N with Sk n Si,o =f. 0. If R = Rk E Sk n Si,o and Q E Sk, then 

(3.23) 

lnq. (Pi - Q)I 
IPi-QI 

Consequently, Sk ~ Si•20 and we get 
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Analogously to the proof of i) we conclude (cf. also (3.21)) 

(3.25) 

Hence, 

(3.26) 

On the other hand, we get 

(3.27) 

l npi. . (Pk - P) ) 
IPk - Pl3 

k . -1 npi. · (P - pi) 
IPk - pil3 

(3.28) 

lnpi. . (Pk - pi)I 
IPk - pil3 

k k . n pi. · ( P - P) n pi. · ( P - pi) 
IPk - Pl3 IPk - pil3 

k . npi. · (P - pi) 
IPk - pij3 

k k ") npi. · (P - P) npi. · (P - pi 
jPk - Pj3 IPk - Pj3 

~~~~~k~~.)~~- + 
npi. · (P - pi 

IPk - pil3 
k . k . n pi. · ( P - pi) n pi. . ( P - pi) 

IPk - PJ3 JPk - pij3 
( k . npi. · P - pi) 

jPk _ pil3 
npi. . (Pi - P) . IPk - pil3 { IPk - pil3 - 1} 
npi.(Pk - pi) JPk - PJ3 + JPk - PJ3 . 

If tp < 6 /2 and S\ Si lie on different faces of s, then sk ~ SE \ Si,o implies that there exists 
a point Q E Si such that 
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This and (3.18),(3.19) yield 

(3.29) 

Now, analogously to (3.25), we conclude from (3.27),(3.29) 

(3.30) 

Together with (3.22) and (3.26) we get 

Let 8 = ..JE;. Then we obtain 

(3.32) 

D 

Proof (of Lemma 3.1, iii)). The estimate l\Wxll ::; C1 follows from the definition of C1. 
The second estimate is a consequence of the first and of i). 0 

at 

4. The convergence of the iteration process . 

4. 1. The two-grid iteration. Writing the steps (2.8)-(2.11) in one equation we arrive 

xi - {I - AN-!2WNxI} ~[1 - WN(x)t 1y +Op xi-i, 

1 
Op AN-!2(WNxI - wNcx1)2[1 - WN(x)t 12WNxI 
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Obviously, XN is a fixed point of the iteration. Hence, we get from the last equation 

( 4.1) ( i ) . 0 ( i-1 ) X - 'XN = p X - 'XN • 

However, the proof of Theorem 3.1 yields llA!f!JJ ~ C if 

( 4.2) radS~ . N 
d . (Si Ei) ~ Ep, 1, = 1, ... ' c· isi ci c 

Here E~ denotes the union of all faces of Snot containing S~. We get 

ll2(WNcXI - WNxI)~[l - WN(x)t 12WNxill ~ 
1 

ll2(WxI - wNxn2r1- wN(x)t 12wNxill+ 
1 

ll2(WNcXI - WxJ)2[1- WN(x)t 12wNxill. 

Similarly to (3.12) we conclude that both terms on the right-hand side of the last inequality 
are less than C ~ if (3.3) and ( 4.2) hold. Thus JJOpjj ~ C-..fa;. If an arbitrary q with 
0 < q < 1 is given and Ep is small enough, then C-..fa; ~ q < 1, and from (4.1) we conclude 

THEOREM 4.1. Suppose (3.1) holds and choose an arbitrary q such that 0 < q < 1. Then 
there is a small positive Ep depending on q such that the two-grid iteration {2.8)-(2.11) 
converges for any triangulations SE= usi' Se= us~ satisfying (3.3) and {4-2)1 respectively. 
Moreover1 there holds 

( 4.3) 

REMARK Suppose no finite section step is performed and, nevertheless1 the operators AN 
and AN0 are stable. Instead of the truncation, assume that the partitions S = U~1 Si and 
S = U~1 S~ coincide over the strip Sir of width€. Define Ei for Sin Sir = 0 as in the 
beginning of Sect.3. For Sin Sir # 01 let E~ stand for the union of all faces on S which 
do not contain Si and set Ei := E~ \ Sir. Similarly1 let us define E~ and consider {3.3) 
and (4.2) with this new definition of Ei and E~. Then Theorem 4.1 remains true without 
the assumption {3.1). The proof is just the same since the restrictions of WN and WN0 

to Sir coincide and thus these restrictions ·vanish in the difference W N - W Ne and in the 
corresponding operator Op. 

REMARK . Obviously1 Theorem 4-1 remains valid if we assume the stability of the coarse 
grid operator AN0 instead of the assumption (3.1). 
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4. 2. The Neumann iteration. For the iteration (2.12) we prove 

THEOREM 4.2. Suppose {3.2} holds. Then there is a q, 0 < q < 1 and an Ep, 0 < Ep < 1/2 
such that, for any triangulation satisfying {3.3), the iteration (2.12} converges and there 
holds 

( 4.4) 

Proof Let us set TN:= 2[~-WN(X)]J +2WNxI, T := 2[~-W(x)]J +2Wxl. Furthermore, let 
P1 stand for the essential norm of the operator 2W. It is well known that (3.2) implies p1 < 1 
( cf.[15, 33] or [22], Sect.4.2.3). Moreover, let p2 denote the maximum of the absolute values 
of the eigenvalues of 2W which are different from 1. Then the well-known estimate p2 < 1 
follows e.g. from the proof of Theorem 12 in Sect.1.3 of [22]. Hence, p := max{p1 , p2 } < 1, 
and we can choose q with max{~ -1 , 1 +(p-1)~} < q < 1. Now it is not hard to verify that 
the iterative solutions of the Neumann iteration satisfy (4.1) with Op:= -~{TN+(l-K)l}. 
Thus all what we need to show is that the spectral radius of the operator Op is less than 
q. This, however, follows if we prove that the spectrum of TN is contained in the set 
Z := {z E C : lzl < p + 5} U {z E C : lz - ll < 5} for any sufficiently small 5 > 0. 
Thus we have to show the invertibility of AA,N := {I - >.TN} for >.-1 E C \ Z. To get this 
we observe that AA := {I - >.T} is invertible for >.-1 E C \ Z. Namely, the spectrum of 
2W is contained in Z and the proofs of Theorems 2.1 and 3.2 of [25] yield the invertibility 
of the finite section operator AA,e· Now consider the Nystrom approximate operator AA,N 
for AA and suppose (3.3) holds. Repeating the proof of Theorem 3.1, we conclude that, for 
sufficiently small Ep, the operator AA,N is invertible for any >. with >.-1 E C \ Z. D 

REMARK . If the number p from the last proof is known explicitly1 then the optimal choice 
for K is K = (3 - p)/2. Namely, in this case the lower bound max{~ -1, 1 + (p-1)~} of q 
is minimal. If p is unknown1 then one should choose at least 1 < K ::::; 3/2. 

REMARK . As it has been mentioned in the last proof, 2W has a single eigenvalue >. = 1 and 
the rest of the spectrum is contained in { z E C : I z I ::::; p}. Due to the singularity subtraction 
1 is an eigenvalue of TN, too. Moreover, let _us choose any q with p < q < l. Analogously 
to {27}, Sect.5 one can prove that the corresponding eigenspace is of dimension one and the 
absolute values of the other eigenvalues are less than q provided the number Ep in {3.3) is 
sufficiently small. We recommend the following iteration procedure: Start with x1 = y /2 and 
set xi = y - (AN - !)xi-\ i = 2, 3, .... This iteration corresponds to the procedure {2.12), 
where x0 = 0, K = 2 for i = 11 and K = 1 for i = 2,... . The operator Op from (4.1) is 
equal to HI - TN) for i = 1 and to -TN for i = 2, .... Hence1 the component of the error 
taken in the direction of the eigenfunction corresponding to eigenvalue 1 vanishes after the 
first step. Since this error component is zero and the other eigenvalues of TN have absolute 
values less than q1 the iteration converges and JJxi - xNll ::::; Cqillx0 - xNll · In the numerical 
example of Sect.6.3 we have implemented this iteration. 

REMARK . Let us suppose again that Ep is sufficiently small and that all the eigenvalues of TN 
which are different from 1 are contained in {z E C : lzJ < q}. In addition we suppose that TN 
is diagonalizable. Then (cf.{28}) the GMRES is convergent and llxi - XNll ::::; Cqillx0 - xNJI. 
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5. Rates of convergence and complexity . 

5. 1. The error estimate and the complexity for Gaussian elimination. In 
order to get rates of convergence we need more information about the triangulation. Fol-
lowing [24], we could introduce special triangulations for an arbitrary polyhedron n. For 
the sake of simplicity, however, let us define the partitions only for the case of the cube 
f2 = (0, 1) x (0, 1) x (0, 1).5 Since the faces of the cube are squares, we can use rectangles 
in the partition of Se. 'Moreover, by symmetry it is enough to define the partition over one 
face, e. g. over F := [O, 1] x [O, 1] ~ [O, 1] x [O, 1] x {O}. We choose the fixed grid param-
eters a ~ 1, i 0 E Z+ and define, for any integer n > i 0 , the set Se = Sn and the partition 
Sn = U~1 Si depending on n. To get these partitions over F, we first divide F into n "strips" 
Fi, i = 0, ... , n-1 parallel to the sides of F with distances !(*yx to the boundary (cf. Fig.l): 

~(///////~ 
/ ~ 
Fi ~ 
~ ~ %: %: 
//////~~~ 

~ 

!(*)'x Hi!l )a 

' • 
FIG. 1. The strip Fi. 

The number a is the grading parameter. Choosing a high a results in very small strips 
near the sides of F, i.e., near the set of edge points. We introduce E := (i0 /nyx and obtain 
F n Str = U~~01 Fi and Sn = S \ Str. Thus the parameter i 0 defines the size of the strip 
which we cut off in the finite section step. Now we only have to divide the rest of the strips 
Fi, i = io, ... , n - 1 into rectangles. In order to satisfy (3.3) for a small Ep and to obtain a 
small number of subdivision domains, we divide Fi into rectangles, where the lengths of the 
sides are nearly equal to the width of the strip. For symmetry reasons, it is enough to give 

·this partition of Fi over the part 

5 All the results of this section remain true if the boundary S is locally the graph of a Lipschitz function, 
if the Nystrom method is stable, and if the special grids introduced in Sect.4 of [24] are used. 
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1 { ( ) 2 1 ( i )a 1 i + 1 a 1 i )a 1 ( i )a} Fi:= x,y ER : - - < x < -(-) ,-(- < y < 1- - - . 
2n 2 n 2n 2n 

FIG. 2. Partition of F 

We set F: = UJ=1 Fi,i with 

(5.2) R· .-•,J { ( ) R 2 1 ( i )a 1 ( i + 1 )a } x, y E : - - < x < - -- , t; < y < i;+1 , 
2 n 2 n 

(5.3) t1 -
lia li+la li+la lia 
2(;) ,t2 = 2(-;;:-) ,tk = l -2(-;;:-) ,tk+l = 1-2(;) ' 

t· J .- ( . 2) tk - t2 . k 
t2 + J - k ' J = 3, 4, ... ' - 1. -2 

In order to get that the Fi,j are almost squares, we choose k such that 

(5.4) 

Now the partition Sn = U~"1 Si is the union over all rectangles Fi,j for all strips Fi and all 
faces of S (cf. Fig.2). 

Summing up the numbers k from (5.4) for i = i 0 , ••• , n - 1, we obtain that the number Nn 
is of order 
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(5.5) 
if a> 2 
if a= 2 
if 2 >a. 

Condition (3.3) is fulfilled for sufficiently large i 0 since 

(5.6) 
rad Si .!((io+l)a - (!2.)°') a(i + l)°'-1 1 . . . < C 2 n . n < C 0 . < C-:-. 

dist( Si, Ei) - H~ )°' - i 0 - io 

In other words, if i 0 is large enough, then Theorem 3.1 implies the stability of the Nystrom 
method (2.3) over the partition Sn = Uf:"1 Si. On the other hand, a larger io will lead to a 
larger error in the quadrature. Thus we choose i 0 to be the smallest number such that (2.3) 
is stable. Now suppose the right-hand side y of our integral equation is continuous on Sand 
C00 on each face of S. Then ( cf.[22], Sect.5.1.4) the solution x fulfills 

(5.7) sup lx(P)I::; C, IV1x(P)I::; Cdist(P, e)°-1, (l = 1, ... ), 
PES 

where e is the edge nearest to P and 0 < 5 < 1 is a certain number. This number 5 depends 
on the geometry of S. Its determination for arbitrary S is a hard problem since it requires 
the computation of eigenvalues for certain boundary value problems over spherical domains. 

THEOREM 5.1. Let a 2: 1. Suppose (3.1) holds and choose i 0 such that (3.3) is satisfied 
with 0 < Ep 1 where Ep is taken from Theorem 3.1. If the function y is continuous on S and 
C00 on each face of S and if XN is the solution of (2.3) 1 then 

(5.8) 

Here 5 is the exponent appearing in (5. 7). 

if a>2/5 
if a= 2/5 
if a< 2/5. 

Proof Let us define the piecewise interpolation projection PN by 

Since the WNxf depends on {f(Pi)} only, we get WNxI = WNXPN and, for the multi-
plication operator 2[1 - WN(X)]I, we arrive at PN2[1 - WN(X)]PN = PN2[1 - WN(X)]I. 
Thus . 

AN= 2[1 - WN(x)]I + 2wNxI = 
PN {ANlimPN}PN +(I - PN) {2(1- WN(X)]J}(J - PN) +(I - PN) {ANlimPN} PN. 
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From this equation we conclude that AN is invertible if and only if { PN AN lim pN} is invertible, 
and 

Using the boundedness of II {PNANlimPN}- 1 II, the proof of Theorem 5.1 follows analogously 
to that of Theorem 4.1 in [24]. The only difference is that instead of (4.5) in [24] one has to 
use 

which follows from the formulae (5.7). Note that only the last inequality is used in the 
considerations following ( 4.5) of [24]. D 

Now let us suppose we solve (2.4) using Gaussian elimination. Then the number of operations 
is of order N~. In order to get an error smaller than a prescribed positive Ee, we have to 
choose (cf.( 5.8)) n '"'-' Ec1/2 if a > 2/ 5, n '"'-' Ec1/2 log1/2( Eel) if a = 2/ 5 and n '"'-' Ecl/(a.o) if 
a < 2/ 5. Consequently, the number of complexity comp, i. e., the number of operations to 
achieve an error less than Ee is given by (cf.(5.5)) 

-s/(a.o) 
Ea if l::;a<2 
-3/o 1 3( -1) Ea og Ee if a=2 

(5.9) comp"' -3/o 
Ea if 2<a<2/5 
-3/o 1 3/o( -1) Ea og Ee if a= 2/5 
-3a./2 

Ea if 2/5 <a. 

5. 2. The complexity of the two-grid method. Now let us consider the two-grid 
iteration (2.8)-(2.11). We choose the coarse grid as follows: First we choose a fixed parameter 
T/ > 1. As above we give the grid only over one face of S, i.e., on the square F. We introduce 
the strips Fc,i with distance rJi/2 to the boundary, where T/i := (i 0 /n)a.TJi, i = 0, ... ,i1. In 
other words we set 

{ 1 1 1 1 } Fc,i := (x,y) E F: 2(1-TJi+i) < max{!2 - xi, 12 -y!} < 2(1 -TJi) , 

(5.10) i = o,1, ... ,i1, ii:= [a 11:~~], T/i1+1:=1 

and get a similar partition into strips as for the fine grid, only with a geometric grading. 
Since T/ is a fixed number, the maximal width of the strips does not tend to zero if n tends 
to "infinity. Analogously to the fine grid, we define the further partition only over 
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We set 

(5.11) 

(5.12) 

where k is chosen such that Fc,i,j is nearly a square, i. e. 

(5.13) ic,k - ic,2 

k-2 

(5.14) 

Now the partition Sn = U~i"' S~ is the union over all rectangles Fc,i,j for all strips Fc,i and 
all faces of S. 
In every strip Fc,i we have about O(H(i0 /n)°'77i+1 - Hio/n)°'77i}-1 ) subdomains. Thus the 
number Nc,n of all subdivision domains is of order n°'. For 71 sufficiently close to one, condition 
( 4.2) is fulfilled since 

(5.15) 

The LU-factorization of the coarse grid matrix corresponding to AN0 requires O(N;,n) op-
erations and each iteration step of the two-grid algorithm requires O(N~). To obtain an 
error less than Ee we need about log E(/ iterations. For the complexity of this iteration, we 
conclude from (5.5), (5.8), and Nc,n,...., n°' that 

-4/(a:6)l ( -1) Ee og Ee if 1 ~ 0: ~ 4/3 
-3/6 if 4/3 < 0: < 2/5 (5.16) Ee comp,...., -3/61 3/6( -1) if a= 2/5 Ee og Ee 
-3a:/2 

Ee if 2/5 < o:. 

Note that the factor log( Ec1) i~ the case 1 ~ a~ 4/3 can be removed if we solve the Nystrom 
equation over a sequence of meshes and start the iteration with the solution from a coarser 
grid as initial function. In the case of a one-dimensional boundary this variant is analysed 
by Atkinson and Graham [5]. We also note that in practical computations the coarse grid 
equation can be solved by another iteration method. 'This would lead to better orders of 
complexity. 
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5. 3. The complexity of the Neumann iteration. If we use the procedure proposed 
by Wendland, then (cf. Theorem 4.2) we need about G log( e-(;;1) iterations in order to get an 
error less than Ee, where G depends on the geometry of S, only. Hence, we need G N~ log( E(/) 
operations and the complexity is given by ( cf.(5.8),(5.5)) 

-4/(a.o) 1 ( -1) Ee og Ee if 1::::0:<2 
-2/81 3( -1) Ee og Ee if a=2 

(5.17) comp"' Ea210 1og( Ee?) if 2 <a< 2/5 
-2/81 1+2/8( -1) Ee og Ee if a= 2/5 

E(t log( E(;1) if 2/5 <a. 

Again, one factor log( E(71 ) can be dropped, if a sequence of partition is used (cf. the end of 
Section 5.2). 
Summarizing the complexity results, we can say the following: If one uses Gaussian elim-
ination for the solution of the system of linear equations, then the best choice of a is to 
take a a little bit larger than two or, roughly speaking, to set a = 2. With this choice 
the complexity is reduced from CE0618 for the uniform mesh with a = 1 to 0E0318 for the 
graded mesh defined by a E (2, ~ ). Especially, the optimal choice of a is independent of 
the parameter 5 appearing in (5.7). The Neumann iteration with the same a results even 
in a complexity of about CE0218 . However, if the geometry of S is complicated, then G is 
large and the Neumann iteration is slow. In this case we recommend the two-grid iteration, 
where the convergence speed of the iteration can be improved by using appropriate meshes. 
This method together with the choice a = 4/3 gives the same asymptotic rate as obtained 
by Nystrom's method together with Gaussian elimination and a = 2. The constant in the 
asymptotic estimate for the two-grid algorithm, however, seems to be much smaller. If we 
compare two-grid iteration and Gaussian elimination for the same a and for large n, then 
the complexity of the two-grid iteration is smaller since the LU-factorization is performed 
for a smaller system of equations. 

6. Numerical examples. 

6. 1. The error of the Nystrom method. In the numerical examples of Sect.6 
we shall consider the double layer potential equation over the boundary of three different 
domains ni, i = 1, 2, 3. The first one is the convex cube 0 1 := [O, 1] x [O, 1] x [O, 1]. Beside 
this we consider the L-block 0 2 , i.e., the direct product of the L-shaped domain ([O, 1] x 
[O, 0.5]) U ([0.25, 1] x [0.5, 1]) in the x-z-plane multiplied by the interval [O, 1 J in y-direction. 
Note that 0 2 is rectangular and locally the graph of a Lipschitz function. Our third domain 
0 3 is the polyhedron of Fig.3, where we have chosen P1 := (0, 0, )2-), P2 := (0, 0, 0), P3 := 
(-1, -1, ->.), P4 := (1, -1, >.), P5 := (1, 1, ->.), and P6 := (-1, 1, >.) with >. := 1 6 . This 
polyhedron 0 3 does not fulfil any sufficient condition for the stability of our Nystrom method. 

6 In order to get a nice and clear picture, we have drawn 0 3 in Fig.3 with a smaller ,\. 
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FIG. 3. Polyhedron 03 

In our first example let us consider method (2.3) over D2 for the continuous but non-harmonic 
data y(P) = 6IP - (1, 0, O)l-2 • The "supremum norm" error SER = SERn depending on 
the values n, i 0 , and a is given in Tables 1 and 2. For simplicity, the supremum norm is just 
the maximum of the error taken over the six points (0.25,0,0.5), (0.25,0.5,0.5), (0.625,0,0.25), 
(0.25,0.1,0.5), (0.325,0,0.45), and (0.025,0,0.25). Moreover, to determine this error we have 
replaced the true solution by an extrapolation of the approximate values. By EX = EXn 
we denote the following estimate for the order of convergence: 

EX·-_ log SERn - log SERn-t 
.- logn - log(n - 1) · 

Thus SE Rn '"" n-EX. The mesh for the Nystrom method in Tables 1 and 2 is defined 
analogously to Sect. 5.1. Note that the partition Se = U~"tSi of Sect.5.1 is determined by 
the parameters a, i 0 and n, where a is the degree of mesh refinement near the edges. The 
integer n denotes the total number of strips and i 0 the number of strips which are neglected in 
the quadrature rules. High values of a lead to small subdivision domains near the edges and 
to greater subdivision domains around the mid-points of the faces of S = 8D2 • In order to 
keep the last subdomains small, we have used an idea of Kress (cf. Equ.(2.2) in [18]) and have 
replaced7 the function * 1--t (*)a in the definition of the strips Fi by a function * i--+ rp(*), 
where <p: [O, 1] ~ [O, 1] behaves like ti--+ ta fort near to 0 and Crp := maxo<t<t lrp'(t)I is as 
small as possible. Note that the maximal side length of the subdomains in the strip Fi is 
equal to ~[rp(i~t) - rp(*)] and can be estimated by 2~ Grp. Especially, we have set 

{t[l +At - Ati]}a 
rp(t) := {t[l +At - Att]}a + {(1 - t)[l +At - At(l - t)]} 

7 If n is very small and the strip Str is neglected, then the mesh after the replacement is nearly uniform. 
Therefore, we have used the original function £ 1-4 (£)'' for the computations in the Tables 3 and 8. 
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The parameter >. 1 is 0 for Ci = 1, 0.105 for CL = 4/3, 0.28 for a = 2, and 0.48 for a = 3. 
Now, if U is the solution of the Dirichlet problem in n2 with the boundary value U(P) = 
3IP - (1, 0, O)l- 2 (P E S), then U admits the representation 

(6.1) U(Q) = _!__ f np. (Q - P) (P)d S 
47r ls IQ - Pl3 x P ' 

where x is the solution of the double layer potential equation Ax = y. Substituting XN into 
this representation formula and computing the integral via quadrature rule, we arrive at the 
formula 

(6.2) 

Here S = U~"1 S~ denotes the uniform partition of Sect.5.1 defined with CL = 1 and i 0 = 0. 
The error ERR := IU(Q) - UN(Q)I for Q = (0.5, 0.5, 0.5) is given in the last columns of 
Tables 1 and 2. If we compare the supremum norm errors in Tables 1 and 2 for i 0 = 0, large 
n, and equal numbers Nn, then we get smaller errors for large orders of mesh grading Ci. 

The best approximate values for U(0.5, 0.5, 0.5) correspond to the parameters CL= 2, i 0 = 1. 
Thus graded meshes lead to better approximations. However, since the convergence orders 
EX oscillate, the effect of mesh grading is not so clear as expected in view of Theorem 5.1. 
For small n, CL = 1 is still a good choice. Moreover, we have no explanation for the high 
orders of convergence obtained in the case i 0 = 0. The first term in the asymptotics of the 
solution seems to be due to the edge singularity, i.e., the exponent 5 appearing in (5.7) is 
equal to 2/3. Thus EX should tend to 2/3 ·a. The values EX, however, are close to 2/3 ·a 
only for i 0 > 0. The smallest supremum norm errors are obtained in the case i 0 = 0 and we 
recommend to choose i 0 = 0 whenever the method (2.3) is stable with this choice. For the 
pointwise behaviour of the error, we refer to the paper [24]. 

Next let us consider the cube n1 , S := 8D1 and the harmonic function 

(6.3) U( Q) := ~ { l + l } , Q E D1. 
2 IQ - (1.5, o.5, o.5)1 IQ - (-o.5, o.5, o.5)1 

Then U(0.5, 0.5, 0.5) = 1 and U is given by (6.1), where x is the solution of Ax = y := 
2Uls· Table 3 contains some results for the error ERR:= IUN(0.5, 0.5, 0.5)-U(0.5, 0.5, 0.5)1 
depending on a, io and n. The choice i0 = 1 yields smaller systems of equations (cf. Nn in 
Table 3) and smaller errors ERR in comparison to the choice i 0 = 0. We have observed this 
surprising result also for n2 but not for all boundary values Uls· 

6. 2. Convergence of the two-grid iteration. Let us consider n2 and the two-grid 
method (2.8)-(2.11), where the coarse grid is defined as in Sect.5.2. The choice i 0 = 1 will be 
sufficient to get a fast iteration procedure. By (5.15) we get Ep = C(T/ -1) and from Sect.4.1 
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FIG. 4. Convergence factor RA of the two-grid method, fh, Continuous line: n = 6, Dotted line: n = 7, 
Neglect of Str, io = 1, a= 4/3 

we conclude llOPll < Cy%= C~. To confirm this dependence, let us introduce the 
estimate RA for llOPll by setting 

(6.4) 

(6.5) 

Some values for RA are given in Fig.4. Indeed they show that RA is smaller for smaller 
(77 - 1). We even get a satisfactory RA if the coarse grid is obtained by dividing each face 
F \ Str (cf. Sect.5.2.) into four equal squares. Since this choice leads to a small number Ne 
and a small number of necessary operations in the iteration process, we have used this coarse 
grid for the computations in Table 8. If we do not neglect the strip Str, then the convergence 
factor RA is much greater (equal to 0.4). On the other hand, if we do not neglect Str but 
choose the coarse grid equal to the fine one over Str, then RA is small again. Some of the 
values of RA are presented in Fig.5. Again, we get a satisfactory RA if the coarse grid is 
chosen equal to the fine one over Str and equal to the four uniform squares over each face 
F \ Str. This choice has been used in the computations for the Tables 4 and 5. Note that, 
for this coarse grid, Ep grows slightly if n becomes larger. In the computations for !13 (cf. 
the Tables 6 and 7) we have chosen i 0 = 3 as well as 71 = 1.5. For smaller i 0 , the two-grid 
m.ethod over !13 diverges. 

6. 3. Comparison of several iteration procedures. We have implemented the 
following algorithms for the solution of the system of equations (2.4). 

a) GE: The first method is the Gaussian elimination (LU-factorization). 
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FIG. 5. Convergence factor RA of the two-grid method, No neglect of Str, 02, io = 1, a= 4/3, n = 6 

b) GM: The second is the GMRES method ( cf.(28]). Before applying this iteration, 
we multiply both sides of the equation by the inverse of the main diagonal of the 
matrix. The basis of the Krylov space is obtained by the method of Householder 
[32, 14, 31 J and no restart is performed. A restart would result in slower convergence 
for nl and n2 and in no convergence for n3. 

c) TH: We consider the two-grid method of the form (2.8)-(2.11), where the coarse grid 
equation (2.10) is solved by GE. Note that this form of the two-grid iteration can 
be found for example in the book by Hackbusch [11]. 

d) TA: This is the method (2.8)-(2.11), where the coarse grid equation is solved by GE 
and the prolongation defined by Nystrom's interpolation is replaced by piecewise 
constant interpolation. Note that piecewise linear prolongation would not improve 
the numerical results essentially. The use of Nystrom's interpolation for the re-
striction and piecewise constant interpolation for the prolongation seems to be the 
most efficient variant of the two-grid iteratio:fh-since only one multiplication by an 
N x N-matrix is required. Moreover, we have computed the iterative solutions 
following the algorithm of Atkinson [4, 5]. Thus the iteration looks as follows: 
Start with the initial solution x 0 := 0 and suppose we are given the iterative so-
lution xi over the node points of the fine grid. We compute the residual (defect) 
r := ~[1- WN(X)J-1 {y - ANxi} over the node points of the fine grid (multiplication 
of an N x N-matrix times a vector). Then we determine p := -2WN(xr) over the 
node points of the coarse grid (multiplication of an Ne x N-matrix times a vector). 
We solve the coarse grid equation AN0 d = p to get dover the nodes of the coarse 
grid. Finally, we compute xi+i = xi+ r + d' over the nodes of the fine grid. Here d' 
is the piecewise constant interpolation of d, i.e., d'(Pi) = d(Pj) if the fine grid node 
pi belongs to the coarse grid sub domain s~. 

e) TA': This is the method TA with the only difference that the coarse grid equation 
is solved by GM. 
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f) PG: We consider the preconditioned GMRES method. Thus instead of solving 
ANXN = y over the nodes of the fine grid, we solve A(-l)ANXN = A(-l)y, where 
A(-l) _is an approximate matrix for the inverse of AN. More exactly, A(-l) is the 
matrix which corresponds to one step of the iteration TA .. 

g) PG': This is the same method as PG with the difference that A(-l) is the matrix 
which corresponds to one step of the iteration TA', i.e., the coarse grid equation in 
the two-grid preconditioner is solved by GM. 

h) NE: This is the simple iteration (2.12) with K- = 1 and initial function x1 = y /2. 
i) JA: This is Jacobi's method. 

In the Tables 4, 5, 6, and 7 we present the computing times TI for the several methods 
applied to the solution of (2.4) over n2 , n3 , and n1 . The time is given in CPU-seconds. The 
linear system of equations is solved up to an error of a tenth of the discretization error and 
the discretization error is the arithmetic mean of the errors lxN(Pi) - x(Pi)I, i = 1, ... , N. 
Furthermore, the coarse grid equation in PG' is solved up to an error of 10-5 for n3 and 10-5 

for n2 • The coarse grid solution in TA' is computed up to 10-4 for n3 and up to a tenth of 
the discretization error for n2 • The right-hand side is y(P) = 6IP - (1, 0, 0)1-2 for n2 and 
y(P) = 2IP - (1, 0, :72)J-1 for n3 . Note that the number RA for the algorithms GM, PG, 
and PG' is the geometric mean value of the ratios llxi - xNll / llxi-l - XNJI. For GE, TH, TA, 
NE, and TA', the ratio RA is defined as in (6.4). The number of iterations is denoted by 
NI. From the Tables 4, 5, 6, and 7 we learn that GM is the most effective solver. However, 
if n is much higher than in the Tables 4-7, then we expect the methods TA' and PG' to be 
much faster than GM. We have tested higher values of n for the domain n1 . For n = 11 
and Nn = 2904, GM requires 402 seconds whereas TA' only 372. The iteration PG does not 
seem to be an acceleration of the two-grid iteration though the convergence ratio RA is the 
best for this algorithm . Numerical tests show that NE diverges for the domain n3 . 8 For 
n2 it is quite fast and better than TA. Furthermore, let us mention that we have obtained 
similar results for a = ~ and a = 2. 

In our last numerical example let us consider n1 and neglect the strip Sir. Let us consider 
the function (6.3) and choose a = 4/3, i 0 = 1. In this situation Ne = 24 is already much 
smaller than N and the two-grid algorithm should be the fastest. In Table 8 we present the 
CPU-time for the computation including JA, NE, GM, and TA. Indeed, it turns out that 
TA is faster. The number RA for the algorithm GM is the geometric mean value of the 
ratios JJxi - xNJI / IJx1- 1 - xNll an-cl the ratio (6.4) for JA, NE, and TA. Thus the convergence 
factors of the iteration procedures are smaller for TA and, therefore, a smaller number of 
iteration steps is needed. The method TA can be accelerated by choosing 'r/ = 10 (cf. the 
introduction of the coarse grid in Sect.5.2). Then, for e.g. n = 11, TA requires 299 seconds 
only. Note that the time for the computation of the matrices is greater than that for the 
iteration process provided that n is large and that TA, GM, or TA' are applied. For instance, 
244 seconds of the 318 for TA and 235 seconds of the 353 for GM (cf. Table 8) are needed 
in order to generate the matrices. All the calculations for the CPU-time (cf. Tables 4-8 ) 

8 The reason for this seems to be that the actual number Ep (cf. (3.3)) for the grids are not small enough. 
We conjecture that Theorem 4.2 remains true even if (3.2) is not satisfied. 
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have been performed in double-precision arithmetic on a VAX 4000-300. 

7. Code for the two-grid method TA'. 

In this section we shall describe the sequential code for method TA' (cf. Sect. 6.3 d) 
and e)). It is one of the fastest methods tested in Sect. 6.3 and the fastest variant of the 
two-grid method (2.8)-(2.11). The whole code is written in FORTRAN 77. It consists of a 
main program and some subroutines. The main program performs the following steps: 

• input of parameters 
• generation of the grids (subroutine GRID), 
• computation of the matrices (subroutines MATRIX, DIAG), 
• computation or input of the boundary values (subroutine DIRICH), 
• two-grid iteration due to Atkinson (including subroutine GMRES 

for the solution of the coarse grid equation), 
• output of the solution. 

In the sequel the codes for the main program and the subroutines MATRIX and DIAG are 
given. For the subroutines DIRICH, GRID, and GMRES, only necessary input and output 
parameters are described. 

Before we start with the code, let us mention that in the implementation of TA' there arise 
three different matrices A, C, and D. All these matrices are of the same structure. Let pi 
be the midpoint of Si and np the unit vector of the interior normal to n at P and set 

(7.1) 
1 np; . (Pi - pi)µ(Si) . . 

Wii := - I . ·13 ' '/, = 1, ... 'N,J = 1, ... 'N. 271" pi - p1 

Then the restriction of operator 2WNxI (cf. (2.7)) to the grid {Pi,i = 1, ... , N} has the 
matrix representation A = ( Wii )E=i. If in ( 7 .1) the points pi, pi, i, j = 1 ... , N are replaced 
by the coarse grid points Pj, P;, i, j = 1 ... , Ne and the weights µ(Si) by µ(St) (cf. Sect. 
2.2), then the restriction of 2WN0 xI to {P;,i = l, ... ,Nc} has the matrix representation 
D = ( wii )f;J=i. Moreover, if in ( 7 .1) the pi and Si remain and the pi are replaced by 
P;, then we get the matrix C = ( Wii )i=l, .. .,Nc,i=l,. .. ,N which corresponds to the restriction 
of 2W NXI acting from the fine grid to the coarse grid. The last restriction appears in the 
Nystrom interpolation. The restriction of AN (cf. (2.6)) to the fine grid has the matrix 
representation A+ DIAG_A, where DIAG_A stands for a certain diagonal matrix. Note, 
that DI AG_A is just that diagonal matrix for which all row sums of A+ DI AG_A are equal 
to 2. Similarly, the restriction of ANc (cf. (2.10)) to the coarse grid has the representation 
D +DIAG_D. 

C*******************~*************************************************** 
c main program 
C*********************************************************************** 
C double layer potential equation for Laplacian, 
C interior Dirichlet problem for a polyhedron, 
C calculation of the double layer weight function, 
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C quadrature method (Nystroem's method) with singularity subtraction, 
C generation of a fine and a coarse grid, 
C subdivision into rectangles or triangles, 
C first each face of the polyhedron is divided into strips parallel 
C to the edges, then each strip is divided into nearly uniform 
C rectangles or triangles, 
C mesh grading perpendicular to the edges, 
C degree of grading for the fine mesh controlled by parameter ALPHA 
C (cf. (5.1)), 
C degree of grading for the coarse mesh controlled by parameter ETA 
C (cf. Sect. 5.2), 
C neglect of a small number of strips near the edges, 
C choose fine and coarse grid such that they coincide over 
C a small number of strips near to the edges, 
C application of midpoint rule as quadrature formula, 
C solution of the resulting linear system by the two grid method TA' 
C (cf. Sect. 6.3 d), e)), 
C two-grid iteration algorithm due to Atkinson, 
C prolongation by piecewise constant interpolation, 
C solution of the coarse grid equation by GMRES. 
C*********************************************************************** 
C NMAX1 = maximal number of subdomains of the fine grid 
C NMAX2 = maximal number of subdomains of the coarse grid 
C*********************************************************************** 

INTEGER NMAX1,NMAX2 
PARAMETER (NMAX1=3035, NMAX2=225) 
DOUBLE PRECISION 

* A(NMAX1,NMAX1),C(NMAX2,NMAX1),D(NMAX2,NMAX2), 
* PX(NMAX1),PY(NMAX1),PZ(NMAX1), 
* NX(NMAX1),NY(NMAX1),NZ(NMAX1), 
* RX(NMAX2),RY(NMAX2),RZ(NMAX2), 
* NRX(NMAX2),NRY(NMAX2),NRZ(NMAX2), 
* S(NMAX1),SR(NMAX2), 
* XO(NMAX1),X1(NMAX1),X2(NMAX1), 
* YO(NMAX2),Y1(NMAX2), 
* DIAG_A(NMAX1),DIAG_D(NMAX2), 
* ALPHA,ETA,RO,R05,RM6 

INTEGER LITTN,I,J,J1,K,L,IO,NEGLEC,ITER,KRYL,IND(NMAX1) 
DATA RO,R05,RM6/0D0,0.5D0,1D-6/ 

c 
C*********************************************************************** 
C input: ALPHA - grading parameter (cf. (5.1)), 
c 
c 
c 

LITTN - n = number of strips parallel to the edges, 
NEGLEC - number of neglected strips , 
IO - number of strips where fine and coarse grid 
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c 
c 
c 
c 

ITER 
KRYL 
ETA 

coincide, 
- number of steps of the two-grid iteration, 
- maximal dimension of Krylov space for GMRES, 
- grading parameter (cf. Sect. 5.2). 

C*********************************************************************** 
c 

WRITE(6,*) ' INPUT: ALPHA, LITTN, NEGLEC, IO, ITER, KRYL, ETA' 
READ (5,*) ALPHA, LITTN, NEGLEC, IO, ITER, KRYL, ETA 

c 
C*********************************************************************** 
C calculation of the 
C midpoints of the subdomains for the 
C -fine grid (PX, PY, PZ: x-, y-, z-coordinate), 
C -coarse grid (RX, RY, RZ: x-, y-, z-coordinate), 
C interior normals of the subdomains for the 
C -fine grid (NX, NY, NZ: x-, y-, z-coordinate), 
C -coarse grid (NRX, NRY, NRZ: x-, y-, z-coordinate), 
C quadrature weights of the 
C -fine grid (S), 
C -coarse grid (SR), 
C number of subdomains of the 
C -fine grid (K), 
C -coarse grid (L), 
C index array IND with the property: 
C J =IND(!), if point (PX(I),PY(I),PZ(I)) of fine grid belongs 
C to subdomain on coarse grid containing (RX(J),RY(J),RZ(J)) 
C*********************************************************************** 
c 

c 
* 
* 

CALL GRID(ALPHA,ETA,LITTN,NEGLEC,IO,NMAX1,NMAX2, 
PX,PY,PZ,NX,NY,NZ,S,K, 
RX,RY,RZ,NRX,NRY,NRZ,SR,L,IND) 

C*********************************************************************** 
c 

IF(K.GT.NMAX1 .OR. L.GT.NMAX2) THEN 
WRITE (6,*) 'Stop because NMAX1 or NMAX2 is exceeded!' 
STOP 

END IF 
c 
C*********************************************************************** 
C determination of the matrices (7.1): 
C - A: fine grid matrix, 
C - C: matrix defining the transition of fine grid data 
C to the coarse grid, 
C - D: coarse grid matrix, 
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C separate determination of the diagonals DIAG_A and DIAG_D 
C*********************************************************************** 
c 

c 

c 

c 

c 

c 

CALL MATRIX(NMAX1,NMAXi,K,K,A,PX,PY,PZ,NX,NY,NZ,S,PX,PY,PZ) 

CALL MATRIX(NMAX2,NMAXi,L,K,C,PX,PY,PZ,NX,NY,NZ,S,RX,RY,RZ) 

CALL MATRIX(NMAX2,NMAX2,L,L,D,RX,RY,RZ,NRX,NRY,NRZ,SR,RX,RY,RZ) 

CALL DIAG(NMAX2,NMAXi,L,K,C,DIAG_D) 

CALL DIAG(NMAXi,NMAXi,K,K,A,DIAG_A) 

DO I=i,L 
D(I,I) = DIAG_D(I) 

END DO 
C*********************************************************************** 
C calculation of Dirichlet boundary values, XO contains 
C the doubled values 
C*********************************************************************** 

CALL DIRICH(NMAXi,K,XO,PX,PY,PZ) 
c 
C*********************************************************************** 
C two-grid iteration TA' (cf. Sect. 6.3 d), e)) realised by loop iOOO 
C*********************************************************************** 
c 
C initial solution Xi: 

c 

c 

c 

DO I=i ,K 
Xi(I)=RO 

END DO 

DO iOOO Ji=i,ITER 

IF(Ji .EQ. i) THEN 
DO I=i,K 

X2(I) = XO(I)/DIAG_A(I) 
END DO 

ELSE 

C calculation of dotpro·ducts TX(I) = A * Xi 
DO I=i,K 

TX(I) = RO 
END DO 
DO J=i,K 

DO I=1,K 
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c 

TX(I) = TX(I) + A(I,J)*Xi(J) 
END DO 

END DO 

C determination of the defect r=X2: 

c 

DO I=i,K 
X2(I) = (XO(I) - DIAG_A(I)*Xi(I) - TX(I))/DIAG_A(I) 

END DO 
END IF 

C determination of p=Yi on the coarse grid: 

c 

DO I=1,L 
Yi (I) = RO 

END DO 
DO J=i,K 

DO I=i,L 
Yi(I) = Yi(I) - C(I,J)*X2(J) 

END DO 
END DO 

C solution of the coarse grid equation by GMRES iteration: 
C input/output: 
C YO initial solution and final solution. 
c 
c 
c 
c 
c 
c 
c 
c 
c 

input: 
D 
Yi 
KRYL 
RM6 

output: 
IANZ 

matrix, L: order of D 
right-hand side of linear system 
maximal dimension of Krylov subspace 
prescribed error 

number of iteration steps performed to reach an error 
less than the prescribed error; if this is not possible 
within KRYL steps, then IANZ=KRYL 

C TOLSCH: error estimate for the solution YO 
c 

c 

DO I=1,L 
YO(I) = Yi(I)*R05 

END DO 

CALL GMRES(L,NMAX2,D,Yi,KRYL,RM6,IANZ,TOLSCH,YO) 
c 
C new iterative solution Xi: Xi+ r + prolongation(d), d=YO: 
C prolongation is done by piecewise constant interpolation 
C with the help of index array IND 
c 

DO I=i,K 
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c 

Xi(I) = Xi(I) + X2(I) + YO(IND(I)) 
END DO 

C end of iteration 
c 

iOOO CONTINUE 
C*********************************************************************** 
C discrete solution of the double layer potential equation is Xi 
C*********************************************************************** 

WRITE(6,*) ' solution of the double layer potential equation:' 
WRITE(6,*) (Xi(I), I=i,K) 
STOP 
END 

c ...................................................................... . 

C*********************************************************************** 
C file MATRIX.FDR 
C*********************************************************************** 
C generation of matrix (7.1) 
C input: 
C NMAX2: maximal number of rows of matrix 2W 
C NMAXi: maximal number of columns of matrix 2W 
C N2 actual number of rows of the matrix, 
C dimension of RX, RY, RZ 
C Ni actual number of columns of the matrix, 
C dimension of PX, PY, PZ, NX, NY,'NZ, S 
C PX,PY,PZ: midpoints of the subdomains of one grid, 
C x-, y- and z-coordinates 
C NX,NY,NZ: interior normals of the subdomains of this first grid, 
C x-, y- and z-coordinates 
C S : quadrature weights 
C (areas of the subdomains of the first grid) 
C RX ,RY ,RZ: midpoints of the subdomains of a second grid, 
C x-, y- and z-coordinates 
c 
c 

output: 
A matrix (7.i) 

C*********************************************************************** 
SUBROUTINE MATRIX(NMAX2,NMAX1,N2,N1,A,PX,PY,PZ,NX,NY,NZ,S, 

* RX,RY,RZ) 
C*********************************************************************** 

INTEGER NMAXi,NMAX2,N1,N2 
DOUBLE PRECISION PX(NMAX1),PY(NMAX1),PZ(NMAX1),S(NMAX1), 

* NX(NMAX1),NY(NMAX1),NZ(NMAX1),RX(NMAX2),RY(NMAX2),RZ(NMAX2), 
* A(NMAX2,NMAX1),Xi,X2 

32 



c 

c 

DOUBLE PRECISION RO,R2,RM15,PI 
INTEGER I,J 
DATA RO,R2,RM15 /OD0,2D0,1D-15/ 
DATA PI I 0.31415926535897932384626433832795028D+01/ 

DO J=1,N1 
DD I=1,N2 

Xi = NX(J)*(RX(I)-PX(J)) + NY(J)*(RY(I)-PY(J)) + 
* NZ(J)*(RZ(I)-PZ(J)) 

IF(ABS(X1) .LT. RM15) THEN 
A(I,J) =RO 

ELSE 
X2 = SQRT((RX(I)-PX(J))**2 + (RY(I)-PY(J))**2 + 

* (RZ(I)-PZ(J))**2) 
A(I,J) = -S(J)*X1/(R2*PI*X2**3) 

END IF 
END DO 

END DO 

RETURN 
END 

c ...................................................................... . 
c-----------------------------------------------------------------------
C*********************************************************************** 
C file DIAG.FOR 
C*********************************************************************** 
C calculation of DIAG_A or DIAG_D (cf. comments after (7.1)) 
C input: 
C NMAX2: maximal number of rows of matrix A 
C NMAX1: maximal number of columns of matrix A 
C L actual number of rows of the matrix 
C K actual number of columns of the matrix 
C A matrix (7.1), calculated by subroutine MATRIX 
C output: 
C DI(NMAX2): diagonal of the matrix 
C*********************************************************************** 

SUBROUTINE DIAG(NMAX2,NMAX1,L,K,A,DI) 
C*********************************************************************** 

INTEGER NMAX1,NMAX2,K,L 

c 

DOUBLE PRECISION A(NMAX2,NMAX1),DI(NMAX2) 
DOUBLE PRECISION S,RO,R2 
INTEGER I,J 
DATA RO,R2 /OD0,2DO/ 
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c 

DO I=1,L 
DI(I) = RO 

END DO 
DO J=1,K 

DO I=1,L 
DI(I) = DI(I) + A(I,J) 

END DO 
END DO 
DO I=1,L 

DI(I) = R2 - DI(I) 
END DO 

RETURN 
END 

8. Implementation of the two-grid method on a massively parallel computer. 

8. 1. Analysis of storage and parallelization of the two-grid method. Let us re-
tain the notation of A, C, and D from the last section and denote the matrix ( Wij )i=l, ... ,N,j=l, ... ,Ne 

by B, where Wij is given by (7.1) after replacing SJ by st and p3 by Pj. Suppose we are 
given the coarse grid data { u3}. Then the determination of the Nystrom interpolant (2.5) at 
the point P = pi requires the computation of the scalar product of the i-th row of B times 
the vector { u3} as well as the computation of the i-th row sum: 

(8.1) 
'\"Ne Yi - L..Jj=l WijUj 

Vi = Ne , i = 1, , , . , N. 
2 - Lj=l Wij 

If we replace pi by P: or Pj by p3, then a similar formula holds provided the entries Wij of 
B are replaced by those of A, C, and D, respectively. 

Each iteration step of the two-grid method (2.8)-(2.11) consists of the following operations: 

• two Nystrom interpolations of fine grid data to the fine grid, 
• one Nystrom interpolation of coarse grid data to the fine grid (prolongation), 
• two Nystrom interpolations of fine grid data to the coarse grid (restriction), 
• the solution of a linear system on the coarse grid 
• a multiplication (of complex manner). 

Supposing that the different dense matrices A, B, C, and D are stored in RAM, we need 
(N 2 + 2NNc + Nc 2 ) x 8 bytes of memory for arrays in double precision (16 decimals). Fur-
ther let Ne be small (say 0) and the available memory on our computer be large (say 128 
megabytes). Then, nevertheless, N is less than 4100 or even smaller. Depending on a,i0 

and the domain n, the number n of strips on every face (cf. (5.1)) of n is limited at least by 
14 which is obtained in the best case where a= 1, strip Str is neglected, and f2 = 0 1 . This 
number is to small to get a high accuracy for the approximate solution determined by (2.3). 
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Especially, this is not sufficient if we wish to determine the estimate EX.11 for the order of 
convergence (cf. Sect. 6.1 and Tables 1 and 2). 

To overcome this limitation we have two possibilities: 

1. compute the matrices once and write them to a disk or 
2. compute the matrices every time when they are needed. 

Because we want to treat problems with up to 100,000 subdomains on the fine grid the first 
way would require more than 105 x 105 x 8 = 80 gigabytes disk storage. If a high speed disk 
would have the desired capacity and if the I/ 0 disk rate is 10 megabytes per second (a high 
one), it would take 8,000 seconds (more than 2 hours) to transfer this amount of data once 
from memory to disk or vice versa. Therefore, let us choose the second way. 

For the generation of the matrices A, B, C, and D, the distances of a fixed point to 
all the other points and some additional elementary operations are to be computed. The 
main part can be organized as a sequence of elementwise array operations. Therefore, both 
the Nystrom interpolation and the matrix generation are suitable for a pipeline code. A 
massively parallel computer on which such a code would run very fast is the MP-1 (or newly 
the MP-2) computer from the MasPar Corporation. 

8. 2. Description of the massively parallel computer. All code has been de-
veloped and tested on the MasPar MP-1216 at the Institut fiir Parallele und Verteilte 
Hochstleistungsrechner (IPVR) of Stuttgart University. This computer has a fine grained, 
massively and data parallel architecture (Single-Instruction-stream Multiple-Data-stream = 
SIMD), cf. [21]. The SIMD architecture is a good match for applications involving massive 
amounts of data elements, all being processed in a parallel manner like in great parts of our 
algorithm. The MP-1216 at the IPVR has 16,384 processing elements arranged on a 128 by 
128 grid and a total of 256 megabytes of high speed memory. Each processor contains 16 
kilobytes of local memory and is able to communicate directly with any of its eight nearest 
neighbours via the fast X-Net or to use the Global Router for 1024 simultaneous connections 
to arbitrary processors. This configuration has a peak performance of about 550 megafl.ops 
(double precision). 

Let us remark: 

- On the MasPar-system of the IPVR the I/O rate is rather 1 megabyte per second 
than 10 megabytes per second. So one transfer from RAM to disk would rather take 
22 than 2 hours. 

- Some weeks ago MasPar has offered a high speed disk array with an I/O rate of 60 
megabytes per second. Unfortunately, it is very expansive. 

Thus our choice to generate any matrix once again at any time of occurrence is the only 
possible for a high number of strips. 

The code is written in FORTRAN 90 because a FORTRAN 77 code for a serial and a 
vector computer has been established earlier. The FORTRAN 77 code has been translated 
into FORTRAN 90 by VAST-2 and then adapted by hand to get high performance. An 
important point for coding an algorithm in FORTRAN 90 for the MasPar system is the array 
mapping (cf. [20)). In general every individual array element is placed on one processor. A 
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vector (one-dimensional data array) is mapped onto the two-dimensional processor grid in 
a serpentine fashion, beginning with the first data element in the upper left corner of the 
processor grid, continuing with the first column of the processor grid, going to the second 
one and so forth until the last column is filled or the data array· ends. If the number of 
entries of the vector is greater than that of processors in the processor grid, a next layer 
of the local memory of the processor grid is filled until all data elements are in the local 
memory of the processors. Two-dimensional arrays (matrices) are mapped to the processor 
grid in a way called cut-and-stack. Imagine a stamp as great as the processor grid and 
stamp the data matrix with this stamp beginning in the upper left corner of the matrix. 
(With a stamp of 128 x 128 processors a block of 128 x 128 data elements will be stamped.) 
Continue stamping to the right of the matrix until all data elements of the first 128 rows 
and possibly also some free places at the right hand side of the matrix are stamped. Then 
continue stamping a second stamp row and so forth until all matrix-elements are stamped. 
Enumerating the stamped blocks of the matrix in the order of stamping, we get the layers 
in the local memory where the data-blocks of the matrix are stored. 

The following simple example of multiplying the elements of two arrays will show the data-
parallel model and the use of parallel operations (cf. (19)). The data-parallel code reads as: 

PARAMETER ( N = 16000) 
DOUBLE PRECISION A(N), B(N), C(N) 
C =A* B 

where N (i.e. 16,000) processors are performing the calculation in parallel. Its execution 
looks like: 

a) load A into register! on all processing elements 
(i.e. A(l) ===? PEl, A(2) ==} PE2, ... ), 

b) load B into register2 on all processing elements 
(i.e. B(l) ===? PEl, B(2) ===? PE2, ... ), 

c) multiply register! with register2, store the result into register3 on 
all processing elements 

d) store register3 into C on all processing elements 
(i.e. PEl ===? C(l ), PE2 ===? C(2), ... ). 

Notice that there are no loops in the data-parallel code. The concept of one element per 
processor is expressed by omitting the loop and defining operations that act on each element 
of a data set. Moreover, note the implicit ordering of data, i.e., the elements A(l) and B(l) 
are defined to reside in the same processor's memory. If the vector Bis to be multiplied by a 
constant, then at first this constant is to be broadcasted to all PEs and the execution a)-d) 
can be performed. 

8. 3. Parallel code. Let us show and comment the parallel code for the time-consuming 
parts of the two-grid method (2.8)-(2.11 ). These parts are the matrix generation and the 
Nystrom interpolation. Both are implemented in the same subroutine, first computing a part 

.of ~he matrix and then using it immediately for the Nystrom interpolation. To improve the 
performance, the algorithm is adapted to two different situations, namely, a small number 
of rows together with a large number of columns and vice versa. 

At first we present the code MCNYFI, where the case of a small number of rows and a great 
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number of columns is implemented. We shall call it the row oriented code (ROC). 

C*********************************************************************** 
c file mcnyfi. for 
C*********************************************************************** 
C Generation of matrix C (cf. (7.1)) and the Nystroem interpolation 
C from fine grid data to the coarse grid (restriction). 
C This corresponds to a small number of rows and a large number 
C of columns of the matrix. 
C input: 
C NMAX2: maximal number of subdomains on the coarse grid 
C NMAX1: maximal number of subdomains on the fine grid 
C L actual number of subdomains on the coarse grid 
C = number of rows of the matrix, 
C dimension of RX, RY, RZ, X, Z 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

K actual number of subdomains on the fine grid 
= number of columns of the matrix, 
dimension of PX, PY, PZ, NX, NY, NZ, S, Y 

PX,PY,PZ: midpoints of the subdomains of the fine grid, 
x-, y- and z-coordinates 

NX,NY,NZ: interior normals of the subdomains of the fine grid, 
x-, y- and z-coordinates 

S : quadrature weights 
(areas of the subdomains of the fine grid) 

RX,RY,RZ: midpoints of the subdomains of the coarse grid, 

y 

z 
output: 

x 

x-, y- and z-coordinates 
vector which is to be interpolated 
vector of the right-hand side 

resulting vector 

C*********************************************************************** 
SUBROUTINE MCNYFI(NMAX2,NMAX1,L,K,PX,PY,PZ,NX,NY,NZ,S,RX,RY,RZ, 

1 X,Y,Z) 
C*********************************************************************** 

INTEGER NMAX2,NMAX1,L,K 
DOUBLE PRECISION, INTENT (IN), ARRAY (NMAX2) : : 

* RX, RY, RZ, Z 
DOUBLE PRECISION, INTENT (IN), ARRAY (NMAX1) : : 

* PX, PY, PZ, S, NX, NY, NZ, Y 
DOUBLE PRECISION, INTENT (OUT), ARRAY (NMAX2) : : X 

c 
C local variables: 
c 

INTEGER I,J 
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c 

c 

DOUBLE PRECISION UV1(K), UV2(K), UV3(K), UV4(K), W(L) 
DOUBLE PRECISION RO,R2,RM15,PI,PIT 
DATA RO,R2,RM15 /OD0,2D0,1D-15/ 
DATA PI / 0.31415926535897932384626433832795028D+01/ 

PIT = 1DO/(R2*PI) 

C generate one row UV4 of the matrix and 
C compute the scalar product X of UV4 and Y as well as 
C the row-sum W. 
c 

DD I=1,L 
C broadcast the coordinates (RX,RY,RZ) of the points with index I 
C to the processing elements of all other points: 

c 

UV1(:K) = RX(I) 
UV2(:K) = RY(I) 
UV3( :K) = RZ(I) 

C determine the differences in the coordinates of all points to 
C the broadcasted point: 

c 

UV1(:K) = UV1(:K) 
UV2(:K) = UV2(:K) 
UV3( :K) = UV3( :K) 

- PX( :K) 
PY( :K) 
PZ( :K) 

C determine the numerator of equation (7.1): 
UV4(:K) = S(:K)*(NX(:K)*UV1(:K) + NY(:K)*UV2(:K) + 

1 NZ(:K)*UV3(:K)) 
c 
C determine the denominator of equation (7.1): 
C code is faster in this form than with immediate computation 
C of the power to 3/2: 

UV3 (: K) = SQRT (UV1 (: K) **2 + UV2 (: K) **2 + UV3 (: K) **2) **3 
c 
C compute the ratio in equation (7.1) for those denominators 
C which are different from zero: 

c 

WHERE ( UV3(:K) .LT. RM15 ) 
UV4(:K) =RO 

ELSE WHERE 
UV4(:K) = (UV4(:K)) / (UV3(:K)) 

END WHERE 

C perform the scalar product of the numerator of the 
C Nystroem interpolation step (2.5): 

X(I) = -PIT*DDTPRODUCT(UV4(:K),Y(:K)) 
c 
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c 

c 

determine the row sum of the denominator of (2.5): 
W(I) = -PIT*SUM(UV4(:K)) 

END DO 

C perform the operation of equation (2.5): 
X(:L)=(Z(:L) - X(:L)) / (R2 - W(:L)) 
RETURN 
END 

After broadcasting the coordinates of one point to all processor elements (a less parallel 
operation), all further operations until the WHERE-statement are done in parallel, i.e., si-
multaneously on all processing elements. The WHERE-statement is the parallel version ~f 
the scalar IF-clause. The condition after the WHERE is checked on all processing elements, 
i.e., for all array elements simultaneously. The assignment statement following the logical 
expression is executed for all elements having the value .TRUE., and the assignment state-
ment following the keyword ELSEWHERE is executed for all elements having the value 
.FALSE .. Consequently, this is done in two steps. The computation of the scalar produd 
and the vector sum are done with the FORTRAN 90 intrinsic functions DOTPRODUCT 
and SUM, respectively. These functions are tuned for the MasPar system and realize a quite 
good performance. 

Now we present the code for subroutine MBNYFI, where the case of a large number of rows 
and a small number of columns is implemented. We call this code the column oriented code 
(COC). 

C*********************************************************************** 
c file mbnyfi.for 
C*********************************************************************** 
C Generation of matrix B (cf. (7.1)) and the Nystroem interpolation 
C from the coarse grid data to the fine grid (prolongation) . 
C This corresponds to a large number of rows and a small number 
C of columns of the matrix. 
C input: 
C NMAX1: maximal number of subdomains on the fine grid 
C NMAX2: maximal number of subdomains on the coarse grid 
C K actual number of subdomains on the fine grid 
C = number of rows of the matrix, 
C dimension of PX, PY, PZ, X, Z 
c 
c 
c 
c 
c 
c 
c 
c 

L actual number of subdomains on the coarse grid 
= number of columns of the matrix, 
dimension of RX, RY, RZ, NRX, NRY, NRZ, SR, Y 

RX,RY ,RZ midpoints of the subdo'mains of the coarse grid, 
x-, y- and z-coordinates 

NRX,NRY,NRZ: interior normals of the subdomains of the coarse grid, 
x-, y- and z-coordinates 

SR : quadrature weights 
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c 
c 
c 
c 
c 
c 
c 
c 

(areas of the subdomains of the coarse grid) 
PX,PY,PZ : midpoints of the subdomains of the fine grid, 

y 

z 
output: 

x 

x-, y- and z-coordinates 
vector which is to be interpolated 
vector of the right-hand side 

resulting vector 

C*********************************************************************** 
SUBROUTINE MBNYFI(NMAX1,NMAX2,K,L,RX,RY,RZ,NRX,NRY,NRZ,SR,PX,PY,PZ, 

1 X,Y,Z) 
C*********************************************************************** 

INTEGER NMAX1,NMAX2,K,L 
DOUBLE PRECISION, INTENT (IN), ARRAY (NMAX1) 

* PX, PY, PZ, Z 
DOUBLE PRECISION, INTENT (IN), ARRAY (NMAX2) 

* · RX, RY, RZ, SR, NRX, NRY, NRZ, Y 
DOUBLE PRECISION, INTENT (OUT), ARRAY (NMAX1) : : X 

c 
C local variables: 
c 

c 

c 

INTEGER I,J 
DOUBLE PRECISION RO,R2,RM15,PI,PIT 
DOUBLE PRECISION UV1(K), UV2(K), UV3(K), UV4(K), W(K) 
DATA RO,R2,RM15 /OD0,2D0,1D-15/ 
DATA PI / 0.31415926535897932384626433832795028D+01/ 

PIT = 1DO/(R2*PI) 

C generate one column UV4 of the matrix and 
C add the product of this column by an element of vector Y 
C to the actual scalar products X of all rows, 
C add this column to the actual sums W of all rows. 
c 

X( :K) = RO 
W( :K) = RO 
DO J=1,L 

C determine the differences in the coordinates of all points to 
C the J-th point: 

c 

UV1(:K) = PX(:K).- RX(J) 
UV2(:K) = PY(:K) - RY(J) 
UV3(:K) = PZ(:K) - RZ(J) 

C determine the numerator of equation (7.1): 
UV4(:K) = SR(J)*(NRX(J)*UV1(:K) + NRY(J)*UV2(:K) + 
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c 
c 
c 
c 

c 
c 
c 

c 
c 

c 

1 NRZ(J)*UV3(:K)) 

determine the denominator of equation (7.1): 
code is faster in this form than with immediate computation 
of the power to 3/2: 
UV3(:K) = SQRT(UV1(:K)**2 + UV2(:K)**2 + UV3(:K)**2)**3 

compute the ratio in equation (7.1) for those denominators 
which are different from zero: 
WHERE ( UV3(:K) .LT. RM15 ) 

UV4e :K) = RO 
ELSE WHERE 

UV4e:K) = euv4e:K)) / euv3e:K)) 
END WHERE 

actualise the sums and the scalar products of all rows 
xe:K) = xe:K) + UV4e:K)*YeJ) 
we :K) = we :K) + UV4e :K) 

END DO 

C perform the operation of equation e2.5): 
xe:K)=eze:K) + PIT*Xe:K)) / eR2 + PIT*We:K)) 
RETURN 
END 

After one column UV4 is computed, its values are added to the vectors X and W assigned 
on the DPU and containing the actual scalar products and row sums of all rows (starting 
value zero). Because L is small in comparison to K (L ::;; 4,000, K ::;; 100,000 ) long vector 
operations (additions and multiplications) are performed and the processing elements are 
working efficiently. Using the ROC instead, only a great number of short scalar products 
and row sums are to be evaluated. If L = 4,000, only about a fourth of the 16,384 processing 
elements would compute the row sum. Often L is less than 4,000 and only a much smaller 
number of PEs is involved. The COC is also used in the case that the number of rows and 
that of columns are equal. The ROC is not efficient in this case, too. 

Table 9 shows the times effected by the use of different combinations of the two codes for the 
generation of A, B, and C. The example is computed for the case of L-block D2, no neglect 
of strip Str, i 0 = 1, a = 1, 'T/ = 1,000, and 3 Iterations. For n = 18, we get N = 15,644, Ne 
= 1,740. 

On the MP-1216 two variants of the algorithm TH (cf. Sect. 6.3 c)) are implemented. TH 
together with matrices B, C, and Din RAM will be called THG. Because the coarse grid 
solver GE has not been adapted to the parallel machine9, only examples with a small number 

9 Note that the array mapping of the MasPar system is not very suitable for the implementation of GE. In 
contrary, the array mapping fits for algorithms like GMRES, where the main part consists of multiplications 
matrix times vector. 
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Ne of coarse grid subdomains could be handled with THG. Usually, Ne is small if strip Str 
is neglected, i 0 = 1 and 7J is large. The second variant of TH will be called THR. The only 
difference with respect to THG is that the coarse grid equation is solved by GM and that the 
coarse grid matrix D is the only matrix stored in RAM. For the evaluation of the iterative 
GMRES solution, in every iteration step it is necessary to multiply the coarse grid matrix 
by a vector. This matrix times vector operation is also realized in parallel. The percentage 
of GMRES time in comparison to that of the whole method for the example in Table 9 is 
below 6% and will decrease for higher n. So we omit this parallel code. With algorithm 
THR it is possible to handle problems up to Ne ::::; 4,000. 

In Table 10 we present the CPU-times T2 for method THG on the MP-1216 and compare it 
with the CPU-times Tl on a Convex 210 with pipeline-processor which has a peak perfor-
mance of about 50 megafl.ops. The times are given in CPU-seconds. On the Convex method 
TH is implemented in its original form, i.e., matrix A is stored in RAM, too. Since the 
Convex at our institute has only a RAM of 60 megabytes, we must emphasize that problems 
with Nn greater or equal to 2,500 are swapped to disk by the system and the computing 
time increases rapidly10 • The example of the numerical test is computed for !12 , S =an and 
the function U(P) = .Jlli41P - (-1, 0, O)l-1 . The error ERR is defined as in Sect. 6.1 and 
RA as in (6.4). As parameters for the method we use a = 4/3, neglect of strip Str, i 0 = 1 
and 5 iterations are performed. 

In Table 11 further CPU-times are presented for the same boundary value but another 
domain n. Let n = !14 be the rectangular domain of Fig.6 which is rectangular but locally 
not the graph of a Lipschitz function. T3 represents CPU-times for method T.HR on the 
MP-1216. 

FIG. 6. Domain 0 4 := {O,O. 75)x (0.25,J)x (0,1}U{O. 75,l}x (0,1)x {0,0.5). 

The tables clearly show that it is impossible to treat proble~s with up to 100,000 subdomains 
on the fine grid on a Convex 210 with only 64 megabytes of memory. Even the MP-1216 
requires some hours to treat these problems. Finally, let us mention that, on the MasPar MP-
1216 with a peak performance of 550 megafl.ops, our code reaches 234 megafl.ops. Namely, 

10 cf. the 6,649 seconds for Nn=2,786 in column Tl of Table 10 and the 1,016 seconds for Nn=3,274 in 
column Tl of Table 11. 
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for the case of fh, a= 4/3, i 0 = 1, N = 96, 706, Ne = 242, five iterations, and neglect of Str, 
the 2.07 · 1012 arithmetic operations require a time of 2 hours 27 minutes and 10 seconds. 
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nearby Munich for the permanent help during the implementation of the parallel code on 
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I a I io I n I Nn I SERn I EXn I ERR II a I io I n I Nn I SERn I EXn I ERR 
1 0 6 1688 0.01820 2.78 0.00116 1 1 4 406 0.1428 0.57 0.00104 

8 3034 0.00181 8.03 0.00066 6 1164 0.1099 0.64 0.00121 
10 4774 0.00595 -5.34 0.00044 8 2316 0.0900 0.69 0.00111 
12 6902 0.00740 -1.20 0.00032 10 3856 0.0765 0.73 0.00100 
14 9424 0.00694 0.42 0.00024 12 5790 0.0666 0.76 0.00090 
16 12340 0.00596 1.15 0.00019 14 8118 0.0591 0.78 0.00082 
18 15644 0.00497 1.54 0.00016 16 10834 0.0531 0.78 0.00075 
20 19342 0.00413 1.76 0.00014 18 13944 0.0482 0.78 0.00069 
22 22434 0.00345 1.87 0.00012 20 17448 0.0442 0.83 0.00064 
24 27914 0.00292 1.91 0.00011 22 21340 0.0408 0.84 0.00059 
26 32788 0.00251 1.91 0.00010 24 25626 0.0379 0.85 0.00055 
28 38056 0.00218 1.89 0.00009 26 30306 0.0379 0.84 0.00052 
30 43712 0.00192 1.87 0.00008 28 35374 0.0335 0.74 0.00049 
32 49762 0.00170 1.84 0.00007 30 40836 0.0318 0.75 0.00046 

4 0 3 458 0.1151 -0.31 0.0044 4 1 6 1190 0.0794 0.91 0.00035 3 3 
4 836 0.0727 1.61 0.00283 8 2406 0.0593 1.01 0.00040 
5 1370 0.0450 2.15 0.00174 10 4070 0.0466 1.08 0.00038 
6 2030 0.0265 2.90 0.00121 12 6230 0.0431 0.43 0.00035 
7 2746 0.0141 4.08 0.00090 14 8884 0.0405 0.39 0.00031 
8 3660 0.00801 4.25 0.00069 16 12006 0.0373 0.62 0.00028 
9 4634 0.00517 3.72 0.00056 18 15564 0.0341 0.78 0.00025 

10 5794 0.00149 11.80 0.00046 20 19660 0.0310 0.87 0.00022 
11 7074 0.00120 2.29 0.00038 22 24228 0.0284 0.95 0.00020 
12 8442 0.00161 -3.35 0.00033 24 29256 0.0260 0.99 0.00018 
13 10022 0.00126 3.04 0.00028 26 34792 0.0230 1.57 0.00016 
14 11630 0.00126 -0.04 0.00025 28 40788 0.0221 0.49 0.00015 
15 13392 0.00134 -0.83 0.00022 30 47364 0.0205 1.09 0.00014 
16 15320 0.00116 2.19 0.00020 32 54324 0.0191 1.11 0.00013 
17 17314 0.00103 1.84 0.00018 
18 19466 0.00090 2.55 0.00016 
19 21716 0.00079 2.40 0.00015 
20 24152 0.00069 2.56 0.00014 

TABLE 1 
Method {2.4), 0 2 , Supremum norm error, Error of Dirichlet solution at (0.5,0.5,0.5} 
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I a I io I n I Nn I SERn I EXn I ERR II a I io I n I Nn I SERn I EXn I ERR 
2 0 3 646 0.0755 -1.80 0.00494 2 1 6 1384 0.0524 0.65 0.000531 

4 1310 0.0388 2.31 0.00275 8 2982 0.0402 0.92 0.000291 
5 2234 0.0209 2.77 0.00186 10 5320 0.0300 1.32 0.000186 
6 3428 0.0189 0.55 0.00127 12 8522 0.0221 1.66 0.000134 
7 4902 0.0165 0.90 0.00092 14 12526 0.0171 1.65 0.000104 
8 6666 0.0096 4.01 0.00073 16 17380 0.0135 1.77 0.000086 
9 8766 0.0077 1.93 0.00058 18 23158 0.0109 1.80 0.000075 

20 29906 0.0090 1.85 0.000066 
22 37596 0.0075 1.86 0.000059 
24 46276 0.0064 1.88 0.000055 
26 55940 0.0055 1.89 0.000051 
28 66640 0.0048 1.91 0.000048 

TABLE 2 
Method (2.4), 02, Supremum norm error, Error of Dirichlet solution at {0.5,0.5,0.5} 

I a j io I n I Nn I Nu I ERR II a I io I n I Nn I Nu I ERR 
1 0 2 96 96 0.014 2.5 1 2 24 96 0.00019 

3 216 216 0.0063 3 144 216 0.00099 
4 384 384 0.0036 4 408 384 0.00038 
5 600 600 0.0023 

4/3 0 2 120 96 0.014 3.5 1 2 24 96 0.0039 
3 264 216 0.0059 3 192 216 0.0017 
4 504 384 0.0034 

4/3 1 2 24 96 0.0028 
3 96 216 0.0082 3.5 2 3 24 210 0.0099 
4 240 384 0.0081 4 144 384 0.0055 
5 408 600 0.0072 

TABLE 3 
Method (2.4), 0 1 , Error of Dirichlet solution at the midpoint 

II GE I II NE I II TH I II TA I 
n 4 6 8 4 6 8 4 6 8 4 6 8 
N 736 1688 3034 736 1688 3034 736 1688 3034 736 1688 3034 
Ne 370 564 758 370 564 758 
NI 27 31 35 3 4 5 4 5 6 
RA 0.78 0.79 0.79 0.07 0.14 0.19 0.14 0.18 0.21 
TI 249 2914 16919 32 185 651 81 351 1147 63 255 726 

TABLE 4 
CPU-times for several solvers, 0 2 , a= 1, No neglect of Str 
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II GM I II TA' I II PG I II PG' I 
n 4 6 8 4 6 8 4 6 8 4 6 8 
N 736 1688 3034 736 1688 3034 736 1688 3034 736 1688 3034 
Ne 370 564 758 370 564 758 370 564 758 
NI 9 10 11 4 5 6 5 6 7 5 6 7 
RA 0.37 0.38 0.38 0.14 0.18 0.19 0.09 0.12 0.13 0.09 0.15 0.21 
TI 25 141 470 38 162 498 67 274 788 55 213 623 

TABLE 5 
CPU-times for several solvers, 0 2 , et= 1, No neglect of Str 

II GE I II GMI II TH I II TA I 
n 5 7 9 5 7 9 5 7 9 5 7 9 
N 720 1344 2160 720 1344 2160 720 1344 2160 720 1344 2160 
Ne 696 1104 1488 696 1104 1488 
NI 60 75 94 4 5 5 3 3 5 
RA 0.99 0.98 0.95 0.22 0.35 0.23 0.17 0.23 0.25 
TI 224 1521 6286 111 440 1271 282 1072 2617 245 927 2285 

TABLE 6 
CPU-times for several solvers, 0 3 , et= 1, No neglect of Str 

II TA' I II PG I II PG' I 
n 5 7 9 5 7 9 5 7 9 
N 720 1344 2160 720 1344 2160 720 1344 2160 
Ne. 696 1104 1488 696 1104 1488 696 1104 1488 
NI 3 3 5 3 3 5 3 3 5 
RA 0.17 0.23 0.25 0.12 0.13 0.23 0.12 0.13 0.23 
TI 330 984 2303 249 941 2319 389 1325 3556 

TABLE 7 
CPU-times for several solvers, 0 3 , et= 1, No neglect of Str 

JA NE GM TA 
n Nn NI RA TI NI RA TI NI RA TI NI RA TI 
2 24 3 0.22 4 0.54 2 1 
4 240 8 0.55 2 4 0.35 2 3 0.07 2 2 0.02 2 
8 1368 20 o.71 116 6 0.54 68 5 0.10 72 4 0.16 63 

11 2928 34 0.78 772 9 0.56 368 6 0.11 353 5 0.22 318 
TABLE 8 

CPU-times for JA, GE, GM and TA, 0 1 , et= 4/3, Neglect of Str 
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n 
2 
3 
4 
5 
6 
7 
8 

16 
32 

40 

c A B overall time in seconds 
ROC ROC ROC 1,160 
ROC ROC coc 660 
ROC coc coc 475 

11.23 65.93 4.73 
TABLE 9 

Method {2.8}-(2.11}, THR, 0 2 , Time using different combinations of codes for the generation 
of A, B, and C and the Nystrom interpolation, percentage of the time for different codes in 
case of the most efficient combination. 

Nn 1] - 1 Ne ERR RA Tl (method TH) T2 (method THG) 
40 1,000 40 0.0030 - 0 12 

180 1,000 40 0.0015 0.012 1 20 
444 1,000 40 0.0023 0.043 5 33 
818 1,000 40 0.0023 0.071 15 52 

1,368 1,000 40 0.0022 0.106 49 80 
2,014 1,000 40 0.0020 0.133 172 114 
2,786 1,000 40 0.0018 0.160 6,649 155 

13,966 1,000 40 0.0009 - - 1,040 
63,146 69 124 0.0004 0.300 - 5,394 

T3 (method THR) 
101,392 98 124 0.0003 0.330 - 13,000 

TABLE 10 
CPU-times for method TH on a Convez 210 and THG on a MP-1216, domain 0 2 • 

n Nn 17 -1 Ne ERR RA Tl T2 T3 (method THR) 
2 48 1,000 48 0.0149 - 0 45 98 -
3 212 1,000 48 0.0076 0.016 1 54 117 
4 520 1,000 48 0.0045 0.038 7 70 141 
5 964 1,000 48 0.0030 0.059 24 91 205 
6 1,604 1,000 48 0.0022 0.073 66 120 221 
7 2,364 1,000 48 0.0017 0.088 200 154 254 
8 3,274 1,000 48 0.0014 0.114 1,016 196 312 

16 16,394 12 344 0.00045 0.086 - - 1,135 
24 39,972 20 348 0.00024 - - 2,960 -
32 74,110 25 436 0.00016 0.153 - - 7,400 

TABLE 11 
CPU-times for method TH on a Convez 210 and THG and THR on a MP-1216 for the same 
ezample as in the Table 9 but over 04. 
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