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1. Introduction

Consider an autonomous system of stochastic differential equations in the sense of
Stratonovich

q
dX = ao(X)dt + > (e (X)ao(X) + a, (X)) o dw,(¢). (1.1)
r=1
Here X and a,, » =0, ..., q, are d-dimensional vectors, a,., r = 1,...,q, are scalars,
and w,(t), r = 1,...,q, are independent standard Wiener processes on a probability
space (2, F, P).
Let the orbit O be an invariant manifold for the system (1.1), ag(z) # 0 for every
z € 0, and a,(z) =0 for z € O. For z € O, t > 0 introduce the set S(z;¢) C R%:

S(z: ) = {X X = X(t) =2+ /Ot ao(X (s))ds

q

£ 30 [ (@(X(9)an(X(s)) +aT(X(s)))W;(s)ds} , (12)

r=1

where W,.(s), r =1, ..., g, are arbitrary smooth functions.
Due to the Stroock-Varadhan support theorem (see, for instance, [7]) S(z;¢) € O.
Putting in (1.2) W,(s) = 0, we obtain that

{X X = X() =z + /Ot ao(X(5))ds, & € o} 0.

Since ap(z) # 0, z € O, we get from here that the deterministic system of differential
equations

dX = ao(X)dt (1.3)

has a T-periodic solution X = £(t), 0 <t < T, the phase trajectory of which coincides
with the orbit O.

The noise in the system (1.1) is subdivided in two parts: the first one acts lengthwise
to the field of vectors ay(X), and the second one vanishes on the orbit O. Let us show
that under a highly general hypothesis any stochastic system

4X = ao(X)dt + 3" ba(X) o dun, (£), (1.4)

which has the orbit O as an invariant manifold, is of form (1.1). Of course, it is
supposed in addition that ag(z) # 0, z € O. As earlier the system (1.3) has a T-
periodic solution X = £(t), 0 < ¢t < T, the phase trajectory of which coincides with
the orbit O. Because

S(z:t) = {X X = X(t) =2+ /Ot ao(X ())ds + fl/ot bT(X(s))W,f(s)ds}
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ar(r), ¢ € O, such that 0,(r) = a,(T)ap(x), 7 = 1,...,q, * € O. Let us extenda the
functions a,(z) from O in some neighborhood of the orbit O. Introducing the vector
functions a,(z) = b.(z) — a,(z)ag(z) for z belonging to this neighborhood, we arrive
at the system (1.1).

The concepts of Lyapunov exponent, moment Lyapunov exponents, and stability
index for stationary points (see [8], [9], [1]-[4], [6] and references therein) are carried
over for invariant manifolds of non-linear stochastic systems in [12]. But the main
attention in [12] is given to the case of orbit with vanishing diffusion (o,(z) = 0), and
the case of orbit with nonvanishing diffusion is considered only in a general way for
systems of the form (1.4). Introducing systems of the form (1.1) makes possible to
study this complicated case more in detail. The obtained general results are applied
to investigating stochastic stability and stabilization of orbits on the plane.

2. The linearized system for orthogonal displacement

Let U be a tubular neighborhood (a toroidal tube) of the orbit O such that for any
point z € U one can uniquely find a quantity d(z), 0 < ¥(z) < T, for which £(J(z)) is
the point on the trajectory O which is the nearest one to x. It is clear that the vector

0(z) =z — £(9(z))

is a displacement from the orbit which is normal to the vector &'(¥(z)) = a¢(£(¥(x))),
ie.,
> (' = & (9())) - aj(£(I(x))) = 0. (2.1)
=1

We suppose that all the functions a,(z), a,(z), z € U, are sufficiently smooth.

In what follows it is convenient to consider ¥(z) as a multifunction which may take
at = any value of ¥(z)+ kT, k = 0,+1,£2, ... . Due to the T-periodicity of £(t), it does
not lead to any misunderstanding.

Let r be sufficiently small such that {z : |§(z)] < r} C U. Denote U, = {z :
16(z)| < r}.

Let X (t) be a solution of (1.1) with X (0) C U,. We shall consider it on the random
interval [0, 7) where 7 is the first passage time of X (¢) to the boundary 0U,.. We note
in connection with this fact that the more rigorous writing of the system (1.1) must
include the multiplier x,~; on the right. For brevity we omit such a multiplier both in
the system (1.1) and in the next nonlinear stochastic systems.

_ Oay
- Ogd

Introduce matrices A,(z) with the elements a’(z) (r), r=0,1,....,q; i,j =

1,...d.

Theorem 2.1. The displacement 6(X (t)) of the solution X (t) from the orbit O
satisfies the following system

d6(X) = (Ag — “0“3([2["2* 40))5(5)dt
+ qu oy (Ay — 2090 Ao £ A0) 355y 1)



\==/
where ag, «,, and A, have the quantity {(9(X (t))) as their argument (i.e., they are

(
defined on the orbit O) and all the O(-) in (2.2) are uniform with respect to x belonging
to the closure of U,.

Proof. Differentiating (2.1) with respect to ' and taking into account the equality

§'(9(x)) = ao(§(9(x))),

we obtain
(E(9(@))) — lan(€(P(a))) P - 9 (a)
+30 — E0(0)) - (Ao€(2(a)an €)Y - () = 0.
From here
99\ ah(E(W())
5= o) 2
where

p(z) = |ao(§(3(2)))” — (Ao(€(9(2)))ao(€(9(2))), = — £(¥(2)))-

Applying the Stratonovich rule of differentiation to the k-th component of 6(X), we
find

dé*(X) = dX* — de*(9(X)) = ab (X)dt + Z ) + a.(X))* o dw,(t)

) + a, (X)) o dw,(t))

We have (see the above expression for ¢(z))

d
k

a5 (X)p(X) — a5(€(9(X))) 3 ap(€(9(X)))ap(X)

k

= (ag(X) — a'S(S(ﬁ(X)))) Jao(§(9(X)))I*

, : (2.5)
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and

P(X) = lao(§(I(X)))I* + O(I8(X))). (2.7)

Clearly, all the O(-) in (2.6) and (2.7) are uniform with respect to z belonging to
the closure of U,.
From (2.5)—(2.7) we obtain

= (Ao(E(D(X))F(X)) - T ab(EO(X)))
_ (Ao(€(9(X)))ao(€(9(X))), 8(X)) 2
PRECE 0(£(9(X))) + O(l6(X)[7) (2.8)
Because of

we have

( 2
a0 (E(I(X)))]2 (0N + O(M(Xz'z.zi)

The relations (2.4), (2.8), and (2.9) imply the system (2.2). Theorem 2.1 is proved.
It is not difficult to prove the following theorem.

(4-(£(9(X)))d(X), ao(€(9(X)))) «
(

Theorem 2.2. The magnitude ¥(X) satisfies the following equation

d¥(X) =dt + Zq: a, o dw,(t) + O(|6(X)|)dt + 2‘1: O(|6(X)]) o dw,(2),
r=1 r=1 (2.10)

where a,,, r = 1,...,q, have the quantity £(9(X (t))) as their argument (i.e., they are
defined on the orbit O) and all the O(-) in (2.10) are uniform with respect to x belonging
to the closure of U,.

Remark 2.1. The relations (2.2), (2.10) can be considered as stochastic differential
equations for the process (¢(X), (X)) in view of the replacement X = £(3(X))+0(X).
The process (9(X), §(X)) belongs to a d-dimensional manifold since ag (£(9(X)))6(X) =
0.



orthogonal system)

dA = By(©)Adt + qu B,(0)By(©)A o dw, (t) + qu B, (©)A o dw,(t)

(2.11)
40 = dt + 3" 3,(0) o dun(t), (2.12)

where
u(0) = A(e(0)) - 2V LEDEED A EOD s 0)) ~ (G eto))
0 (2.13)

_  ap(€(0))ag (€00)) A, (€(0) P

B.(0) = 4,((0) e O = GO =t
Br(0) = . (£(0)). (2.15)

Let us note that £(0) is defined for all 6 as a T-periodic function.
Remark 2.2. The matrix B, () can be written similar to By() :

 ao(€(0))ag (£(0))(Ar(£(0)) + A, (£9)))
|a0(£(0))[? '

Indeed, due to a,(&(t)) = 0 we have for every k =1,...,d :

B, (0) = A-(£(0))

2 %(ﬁ(t))%t) = (A, (€(®)ao(€®))* =0, (2.16)

i.e., A.(£(t))ao(£(t)) = 0, and consequently a] (£(0))A, (£(8)) = 0. The formula (2.16)

is proved.

Theorem 2.3. Let A(tg) = 9, O(ty) = 0 and let § be orthogonal to ag(£(0)) =
£(0), i.e., aj (£(0))d = 0. Then A(t) is orthogonal to as(£(O(t))) for all t > to, i.e.,

ay (§(O(1)A(t) = ;aé(f(@(t))) FAN(t) =0, £ >ty (2.17)

Proof. The proof consists in direct checking the identity

d(; ab (£(O(t))) - A'(t)) =0, t > t,. (2.18)

Theorem 2.3 is proved.



Let A(0) # 0. Introduce

A= %:' (3.1)

and consider the process (©, A). This process satisfies the Khasminskii-type system of
stochastic differential equations (see [9], [12]) in the Stratonovich form

dA = by(©, A)dt + ij B,(©)by(©, A) o dw,(t) + ij b.(9, A) o dw, (t)
r=1 r=1 (32)

do = dt + fj 5,(8) o dw,(t) , (3.3)

r=1
where the vectors b.(6,\) are equal to
b-(0,A) = B.(0)A — (B.(0)\, M)A, 7=0,1,...,q. (3.4)

ob
Below the notation oA for the d-dimensional column vector b = (b, ...,b%)" means

ob b’ 0
the matrix e {W}’ i,j = 1,...,d, the notation 8_§\ for the scalar ¢ means the
d-dimensional vector with th ts 2 O and ¢ the matri
-dimensional vecto e components a eans the ma
imensional vector wi mponents i ..., iy, and o mean matrix
d%c
—1,...d.

i 07

Let us consider the system (3.2)-(3.3) in R%*!, i.e., not only for A such that [A] = 1.
The infinitesimal operator L of the (d 4 1)-dimensional process defined by the system
(3.2)—(3.3) has the following form

LIO.0) = (Gobo+ 5 (8.5

8b0

)(/BrbO + b + Z /87‘ /BrbO + b ))

(9 1, 62
f ]-+ Z/Br %Z(a—xl;‘(/@rbo—i_br);(ﬁv“bﬂ—i_br))
r=1
62 q 62
6)\89 Zﬂr Brbo + b)) + Z 39]20 , (0,)) € RO, (3.5)
Let ©(0) = 6, A(0) = X be such that aj (£(0))A = 0, |A\| = 1. Then due to (3.1)
ag (£(0))A(0) = 0. Using Theorem 1.3 and again (3.1), we obtain

ap (E(O(1)))A(t) =0, AT(t)A(t) =1, (3.6)

i.e., (©,A) is a Markov process on the (d — 1)-dimensional compact manifold D defined
by the following equations

D ={(0,)): aj (£E(@)X =0, ATA=1}

in the space of d + 1 variables 0, A!, ..., A%
Under each fixed 6 the manifold D gives a unit sphere S92 of the dimension d — 2

and, consequently, D is a torus which is equal to the product Ox S92,
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this system.
For |A(t)|P, —oo < p < 0o, we obtain the following linear equation

d[A@)[P =p- (Bo(©)A, A) - [A(X)[Pdt

—i—pz G- (© (O)A,A) - |A(E)[P o dw,.(t) + qu:I(BT(G)A, A)-|A(E)P o dw,q(t)(.3 )

Let A(0) = A, ATA = 1. The next formula defines a strongly continuous semigroup
of positive operators on C(D) :

Ti(p)f(0,A) = Ef(Og(t), Mg r(t))|AgA(t)P, (0,)) € D, f € C(D). (3.8)

This fact can be proved by direct checking the definition of strongly continuous
semigroup.

Our urgent aim is to find the generator A(p) of the semigroup 7T;(p).

Let f € C?(D) where f = f(0,)), (,)\) € D. Let D ¢ D c R%!, where D is
an open set, and let f = £(6,)), (6,)) € D, be a twice continuously differentiable
extension of f. For example, one can take the following function

< A CI,O(') A ~
F0,2) = f(0, 55 — (737 @0()))s ao(-) == ao(£(0)), (6,}) € D,
Al Jao ()2 (Al
as such an extension because under any (6, ) € R**!, |\| # 0, the point (8, ) with

_A e A
EEI TR A

belongs to D : (6, u) € D.

The next theorem gives a formula for the generator A(p) of the semigroup T;(p).
Theorem 3.1. Let L be the infinitesimal generator of the diffusion process (Og(t),

Aga(t)), (6,)) € D. Let f be a twice continuously differentiable extension of a function
f € C?(D). Then

. 0f & .0
A0, 0) = LFO. ) + 920 3 B + 03 20 (00 5.y +-5,)
r=1 r=1

0 r 0 T
+pf (vt Z (G Brbo +5,) + 22 LR pZ% )) €D,
= (3.9)
where
Yo = 70(9a )‘) = (BO(Q))U )‘)a Yr = ’W(ea )‘) = /87'(9)70(9’ )‘) + (BT(Q))U )‘)a r=1,..,q,

(3.10)

and L is defined by the formula (3.5).
The following formula holds

df (©g(t), Ao a(t))|Aga(t) [P = A(p) f(Os(t), Ao a(t)) - [Aa(t)[Pdt+

+2 S )+ 3O o+ ) AP0
r=1
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where the function f with its derivatives and the coefficients by, v, have Op(t), Aga()
as their arguments, B, have ©4(t) as their argument, and A is the abridged notation

fOT Ag’)\(t).

Proof. Since the manifold D is invariant for the process (O4(t), Aga(t)), we have

F(©4(t), Aga(t)) = F(Oa(t), Aga(t)), t >0, (,)) € D. (3.12)
Let us adduce the stochastic system (3.2), (3.3), (3.7) to Ito’s form

13 b
dA:bOdt+§Z(ﬁT6—; )(ﬁTb0+b )dt + — Zm 5 (B:bo + byt
r=1
q
+ 2 (Brbo + by )dwi(t) (3.13)
r=1
1 q q
dO = di + - > B.BLdt+> " Bedw,(t) (3.14)
r=1 r=1
1 0, 1 0 3
dIAP = pyo - |APdt + 5 Z( 81  Buby + by) - |AlPdt + pz az | APt
1 q q
+5p2 S APdt+p Y . - |APdw,(2) (3.15)
r=1 r=1

where all the functions have ©, A as their arguments.
Now one can evaluate (denote for a while the right side of the formula (3.9) by

A(p)f(6,X))
df (©g(t), Ao ()| Ao a(t)[P = df(Op(t), Ao (L)) Apa (L) [P

= A(p)f(©4(t), Aoa(t)) - [Apa(t)Pdt

Zﬁr APduw, (2) a—fz (B.b0 +b,) - |APduw, (1)

+f 0> - |APdw,(t), (6,)) € D. (3.16)

r=1

From (3.8), (3.12), and (3.16) it follows
Ti(p)f(0,2) — (6, X) = Ef(©s(t), Aoa())| Do n(t)I — f(6,) =

E/ ), Nox(s)) - |Aga(s)[Pds,

whence the formula (3.9) runs out.
Now the equation (3.16) can be rewritten in the form (3.11). Theorem 3.1 is proved.
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1 B0
ho(6, ) = [bo(g, N ] (0,0 = l@gggbo(e, N4 b 0 | 7= L 03 €D.

They touch the manifold D and generate the corresponding vector fields on D.
The following condition of nondegeneracy is supposed to be fulfilled:

dim LA(hy,...,h;) =d —1 for any (0, ) € D. (3.17)

Here LA denotes the Lie algebra generated by the vector fields hq, ..., hy.
A simple sufficient condition of nondegeneracy consists in

dim L(h4, ...,hy) =d —1 for any (0, ) € D, (3.18)

where L denotes the linear hull spanned by the given vectors.
For many situations the weaker condition,

dim LA(hg, by, ...,hy) =d —1 for any (0, ) € D, (3.19)

would be sufficient but in order to avoid some complications we impose (3.17) as a rule.

As in [4] under the Lie algebra condition (3.17), any operator T;(p), t > 0, —oco <
p < 0o, is compact and irreducible (even strongly positive). We recall that a positive
operator T in C(D) is called irreducible if {0} and C(D) are the only T-invariant
closed ideals, and T is called strongly positive if Tf(0,A) > 0, (8,\) € D, for any
f >0, f#0. Under each p € R, the generalized Perron-Frobenius theorem ensures
the existence of a strictly positive eigenfunction e,(6, A) of Ti(p) (and, consequently,
for A(p)) corresponding to the principal eigenvalue. It is known that

A(p)ep(0,A) = g(p)en(0, A), €p(0,A) >0, (6,1) € D, (3.20)

where the eigenvalue g(p) is simple and it strictly dominates the real part of any other
point of the spectrum of A(p).

Remark 3.1. It should be noted that in the case of vanishing diffusion on the very
orbit the condition (3.17) is not fulfilled. For such systems all the scalars § are equal
to zero and dim LA(hy, ..., h,) cannot be more than d — 2. In [12] precisely this case is
considered under the condition

dim L(hy, ...,hy) = d —2 for any (0, ) € D. (3.21)
Clearly, from this condition it follows that
dim L(hg, h1,...,hy) =d — 1 for any (6, ) € D.

In contrast to the nondegeneracy case (3.17), any operator T;(p), t > 0, —oo0 <
p < 00, is non-compact and there are values ¢ for which Ty(p) is non-irreducible. But
provided the condition (3.21) is fulfilled, the whole semigroup T;(p) is irreducible (we
recall that a positive semigroup T;(p) in C(D) is called irreducible if {0} and C(D)
are the only invariant closed ideals for all T;(p), ¢ > 0, at once), and the relation (3.20)
holds. However, the eigenvalue g(p), remaining real and simple, is only more than or
equal to the real part of any other point of the spectrum of A(p). We underline that the
noted distinction is not any obstacle for carrying over the theory of moment Lyapunov
exponent for the case of vanishing diffusion under (3.21) (see [12]).

Now we are ready to formulate a number of theorems relating to stability properties

of the linearized orthogonal system (2.11)—(2.12). These theorems are analogous to
9



‘1'he following theorem 1s an analogue of the Khasminskil theorem (see |3|, |9]).

Theorem 3.2. Assume (3.17). Then the process (©,A) on D is ergodic, there ezists
an invariant measure (0, \) and, for any (0,6), § # 0, with aj (£(0))8 = 0, there exists
the limit (which does not depend on 0,4)

1 1
P-as. lim = In|Aps(t)| = lim —E'ln |Ag5(t)| = / Q(O, N)du(d,N): = X7,
t—oo ’ t—oo ’ D (322)
where
1 & Oy 1 &0,
S Bby 4+ b)) + =
2 2 (Gx Orbo £0) 52 5

r= r=1

Q(ea )‘) =% +

8,. (3.23)

The limit A* is called Lyapunov exponent of the system (2.11)—(2.12).

The following theorem is an analogue of the Arnold-Oeljeklaus-Pardoux theorem (see

[4])-

Theorem 3.3. Assume (3.17). Then for all (0,6),5 # 0, with a; (£(0))6 = O the
limit (which is called p-th-moment Lyapunov exponent for (2.11)—(2.12))

o1
Jim n In E|Ags(t)[P = g(p) (3.24)

ezxists for any p € R and it is independent of (0,6). The limit g(p) is a convex analytic
function of p € R, g(p)/p is increasing, g(0) =0, and g'(0) = A*.

Further, the moment Lyapunov exponent g(p) is an eigenvalue of A(p) with a strictly
positive eigenfunction e,(0, ), i.e., the relation (3.20) is fulfilled. The eigenvalue g(p)
is simple and g(p) is more than or equal to the real part of any other point of the
spectrum of A(p).

These results can be applied (as in the case of stationary point) to study the behavior
of P{sup,~q |Qgs(t)| > p}, |6| < p, for asymptotically stable systems (A\* < 0), and of
P{inf;>0 |Ag5(t)| < p}, |6] > p, for unstable systems (A\* > 0) (of course, it is supposed
that aj (£(6))d =0, p > 0 is a certain number).

The following theorem is an analogue of the Baxendale theorem (see [6]).

Theorem 3.4. Assume (3.17). If ¢’(0) = A* < 0 and the equation

9(p) =0 (3.25)

has a root v* > 0, then there exists K > 1 such that for all p > 0 and for all § with
6/<p and a] (£(6))0 = 0

%(MI/P)“ < P{sup[Ag4(t)] > p} < K(|o]/p)" (3.26)

If ¢'(0) = A* > 0 and the equation (3.25) has a root v* < 0, then there exists K > 1
such that for all p > 0 and for all § with |6|>p and a] (£(6))d =0

81/p)"" < P{inf|Aas(8)] < p} < K(18]/p)" (3.27)
10
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4. Orbital stability index

The root v* of the equation (3.25) is called stability index of the linearized orthog-
onal system (2.11)—(2.12). Theorem 3.4 establishes that the probability with which a
solution of the linearized orthogonal system exceeds a threshold is controlled by the
number v*. It turns out that the estimates (3.26)-(3.27) remain true for the nonlinear
system (2.2), (2.10) as well. This fact is an analogue of the Arnold-Khasminskii theo-
rem for the case of stationary points [3]. Such a theorem is proved in [12] for systems
with vanishing diffusion on the invariant orbit. The idea of proving the next theorem
is close to the adduced one in [3] and [12]. However, there are some distinctions of
a technique nature. In view of importance of the following theorem its proof is given
completely.

Theorem 4.1. Let the linearized orthogonal system (2.11)—(2.12) for the system
(1.1) be such that (3.17) is fulfilled. Assume that the stability indezx v* of (2.11)—(2.12)
does not vanish, v* # 0.

Then

1. Case v* > 0: There exists a sufficiently small p > 0 and positive constants cy, co
such that for all x : |§(z)| < p the solution X,(t) of (1.1) satisfies the inequalities

ci(l6(z)l/p)" < P{sup [0(X:(®)| > p} < c2(16()|/p)"". (4.1)

2. Case v* < 0 : There exists a sufficiently small r > 0 , positive constants cs, cq,
and a constant 0 < o < 1 such that for any p € (0,ar) and all z : p < |6(z)| < ar

(8@ < PLint 8(X(0)] < o} < ea(F(@l /) )
Here 7 := inf{t : |6(X,(¢))| > r}.

Proof. Due to the notation (2.13)-(2.15), the system (2.10), (2.2) (with respect to
¥ =9(X,(t)), § = 6(X,(t))) can be rewritten in the form

d9 = dt + f@ o dw, (t) + O(|6])dt + f O(|8]) o duw, (t) (4.3)

r=1 r=1

45 = Byddt + 3" (B,By + B)5 o dun(t) + O(0P)dt + 3 O(3[2) o duwn(t),
r=1 r=1 (4.4)

where By, (3., B., r =1, ...,q, have 9(X,(t)) as their argument.

Because of the supposed smoothness of the coefficients of the system (1.1) in U
(see the beginning of Section 2) the terms O(|d|) and O(|§]?) in (4.3) and (4.4) being
depended on ¢ and ¥ are sufficiently smooth as well. Moreover, for example, the deriva-
tives 00(|6])/06, 8O(|8])/86* are O(|8]), O(1) correspondingly, and these O(|d]), O(1)
are uniform with respect to the points from the closure of U, under a sufficiently small
r. We need such claims to reduce a number of Stratonovich equations to the Ito form.
In turn, the latter is necessary in this proof for the separation of martingale terms.

The system (4.3)-(4.4) has the following Ito form

d9 = (1+ % S A8+ S fdwn(t) + O(a)dt+ 3 O(d)dw,(t)  (4.5)

r=1
11



+ Zq:(ﬁTBO + B,)ddw,(t) + O(|6]?)dt + Zq: O(|6]*)dw, (t). (4.6)

r=1 r=1

Introduce

I'(Xa(t) = 0(Xa(t))/16(Xa(t))]-

Clearly, (4,T) = (¥(X.(t)),['(X.(¢))) € D. In view of (4.4) and (4.6) it is not difficult
to obtain

dl' = bydt + i(ﬂrbo +b,) o dw,(t) + O(|8])dt + f: O(|8]) o dw,(t)  (4.7)

r=1 r=1
and

1 q

oby Ob
dl' = (b - ) ——
(0+27§(ﬁ (9)\+

oA

)(Brbo + b,) + % > BT%(BTbO +b,))dt
r=1

q

> (Brbo + by)dw,.(t) + O(|6])dt + Zq: O(|6])dw,(¢). (4.8)

r=1 r=1

9 by b,
Here the functions §,(), the vectors b,(0, A), %(ﬂrbﬂ + b;), the matrices 3—)(\)’ O\

have 9(X,(t)), I'(X.(t)) as their arguments. Finally, using (3.5) and (3.9), after fairly
long but routine calculations we get for f(6,\) € C?(D) (compare with (3.11)):

0f & . of
r=1 r=1

+pf Zi) Ve - 6P dw, (t) + O(|6[P*)dt + ij O(|5|P ™) dw, (t). (4.9)

r=1 r=1

As the specific form of the martingale terms has not any meaning in what follows, we
shall use the same notation }-7_; m,dw,(t) for different martingale terms. For example,
the equation (4.9) acquires the form

df (9,167 = A(p)f - |8]Pdt + O(|6]P V) dt + gqj madw, (). (4.10)

r=1

Case 1. Let v* > 0 be the stability index for (2.11)-(2.12), 0 < ¢ < 1 be a positive
constant, and ey« (0, A), e4+4.(0, A) be strictly positive solutions of the equations (see
Theorem 3.3, the formula (3.20) and remember that g(y*) = 0)

A(Y")eq-(6,A) =0, (4.11)

AV +c)eyic(0,A) = g(v" + c)ey-1c(0, N), (4.12)

where g(v* +¢) > 0.
Introduce the following functions

Vz(2) = ey (9(2), () /[8(2)]) - [6(2) " F eye1c(I(), 8(2) /|8 (2)]) - |6(2) " .
(4.13)



dVe(Xe(t)) = F9(7" + c)eyse(V, 1) - [0(X2(2))]T T7dt + O(|o]" 7 )dt + ) mydw,(t).
=l (4.14)
Let the eigenfunctions e, and e,». have already been chosen. It is clear from (4.13)

and (4.14) that there exists a sufficiently small p > 0 such that V_(z) > 0 for all z
with 0 < |§(z)| < p and V_(X,(t A 7s,,)) With

Top: =inf{t: [6(X,(t))| > p}

is a supermartingale.
Hence there exist positive constants a; and as such that the following inequalities
hold:

@l6@)[" > V-(@) > BV-(X,(t A o,)) > aap’ P{ sup [6(Xa(s))| > o}

and therefore

Pisup|d(Xx(t))| > p} = lim P{ sup [6(Xs(s))| > o} < Z—:(|5(x)|/p)7*-

(4.15)

As Vi(z) > 0 (see (4.13)) and V, (X, (t A 7)) is a submartingale for a sufficiently
small p (see (4.14)), we get

a3|5(x)|7* <Vi(z) < EVi(Xp(Toe A Tsp)) < a4p7*P{sup |0(X.(2))| > p} + ase”’,
t>0 (4.16)

where a3, a4, as are some positive constants which do not depend on ¢, € < |§(z)| < p,
and

Tee: =inf{t: |6(X,(2))] < e}

The relations (4.15) and (4.16) give (4.1) provided p is the smallest among (4.15)
and (4.16). Case 1 is proved.

Case 2. Let v* < 0. Then there exists a sufficiently small ¢, 0 < ¢ < 1, such that
g(v* +¢) < 0in (4.12). Now V. (X,(t A 7z,)) is a supermartingale for a sufficiently
small r and for z with 0 < |0(z)| < 7.

We have for some positive a;, as and for z with p < |§(z)| < r :

ai|d(2)[" > Vi(z) > BV (Xo(t ATor)) > azp” P{ inf [6(Xo(1))] < p}.
0<t<Ta,
- (4.17)

Relation (4.17) implies the second part of (4.2).

Further, V_(X,(t A 7)) is a submartingale for a sufficiently small » and there exist
positive constants as, a4, as such that for all z with p < [6(z)| <7 :

al6(@)"" < V- () < BV-(Xa(ropn A7) < aap” P{ 0l BOG0)] < p} + 51
where a3, a4, a5 do not depend on p and r.
If p < |0(z)| < ar, then
asp” P{ _inf [6(X.(t))] < p} > asld(2)[" — ar™ >

St<Te,r

1
e

* 1 * *
T+ §a3|a7‘|7 —azr? . (4.18)

13
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The root v* is called stability index of the orbit O of the system (1.1).

Let us give a summary with a comment on the procedure of searching for v*. We start
from the fact that the deterministic system (1.3) has a T-periodic solution X = &(t)
which orbit O : z = £(), 0 < 0 < T, is invariant for the stochastic system (1.1). To
this end we suppose a,(z), r =1, ..., g, to be equal to zero at O, i.e., a,(£(0)) =0, 0 <
6 < T. We consider £(6), —oo < 6 < 00, as a T-periodic vector function. We introduce
the scalar multifunction ¥(z) for all sufficiently close to orbit O points z : ¥(z) is such
that the belonging to O point £(¥(z)) is the nearest one to z. Clearly, the vector

0(z) = z — £(I(z))

is a displacement from the orbit which is normal to the orbit O. Our most impor-
tant aim is an investigation of asymptotic behavior of the displacement 6(X(¢)) for
the solution X () of the considered stochastic system provided X (0) is sufficiently
close to O. With that end in view we derive the system (2.2), (2.10) for §(X(¢)),
¥(X(t)). Then we linearize this system and obtain the linearized orthogonal sys-
tem (2.11)—(2.12) for A(t), O(t), where A(t) corresponds to §(X(t)) and ©(t) cor-
responds to ¥(X(¢)). Underline that the coefficients of the system (2.11)-(2.12) are
found explicitly. Solutions of the linearized system repeat the orthogonal property for
6(X (1)), 9(X(¢)) :if A(ty) is orthogonal to ag(£(©(tp))) then A(t) is orthogonal to
ao(€(O(t))), t >ty (for 6(X (¢)), ¥(X(t)) this property flows out the very definition of
4, 9).

The most important characteristics of asymptotic behavior of A are the Lyapunov
exponent A*, the moment Lyapunov function g(p), and the stability index v*. To inves-
tigate them, we consider the Khasminskii-type system (3.2)—(3.3) with the invariant
compact manifold D. After that we can introduce on C(D) the strongly continu-
ous semigroup T;(p) analogously to [1], [4]. The definition (3.8) of the semigroup
is connected both with the linearized orthogonal system (2.11)—(2.12) and with the
Khasminskii-type system (3.2)—(3.3). But because the equation (3.7) is linear with
respect to |A(£)|?, it is not difficult to define the semigroup 7T;(p) only in terms of the
system (3.2)—(3.3). Underline that the formula (3.9) for the infinitesimal generator of
the semigroup T;(p) is obtained in explicit form. Theorems 3.2 and 3.3 prove the exis-
tence of the Lyapunov exponents A* and g(p) and give the important formulas for them
in the nondegenerate case (3.17). Theorem 3.4 explains meaning of the stability index
~v* in the asymptotic analysis of the linearized orthogonal system. Finally, Theorem
4.1 answers the question about stability of the orbit O for the input system (1.1). To
emphasize the significance of this theorem, let us note that in contrast to the deter-
ministic case when solutions of a nonlinear system and solutions of the corresponding
linearized system usually have many common features in their asymptotic behavior,
the stochastic case is far intricate. Consider, for example, a possible situation for the
system (1.1) when all its solutions are uniformly bounded. Then the limit

9s(p) = Jim - In|5(X(0))"

cannot be positive for any p > 0.
At the same time, the moment Lyapunov function g(p) for the linearized orthogonal

system (see the formula (3.24)) is usually positive for a sufficiently large p > 0 because
14



system (1.1). But the stability index ", which 1s defined only by the linearized system,
repeats the very important properties both of the system (2.2), (2.10) and of (2.11)—
(2.12).

We also turn shortly our attention to computational aspects. A use of the for-
mulas (3.22), (3.24) together with the Monte-Carlo evaluation of the mathematical
expectations Eln|Ag5(t)| and E|Ags(t)|P by virtue of the linearized orthogonal sys-
tem (2.11)—(2.12) gives one of possible ways. An implementation of such a way requires
numerical integration of the system (2.11)—(2.12) on large intervals of time. Because of
unboundedness of A, such a problem is connected with serious computational difficul-
ties. Apparently, a numerical integration of the Khasminskii-type system (3.2)—(3.3) is
more preferable in view of compactness of the manifold D (we point out that for any p
the equation (3.7) is the linear scalar one with respect to |A(¢)[P with coefficients de-
pending only on the solution of the system (3.2)—(3.3)). Clearly, such an approach will
require methods of numerical search for solutions which belong to a known invariant
manifold.

Another way is analytical. It consists, for example, in a use of the formula (3.20) or
of the last part of the formula (3.22). Such a way is effective for systems of not large
dimension. It is fully realized for two-dimensional systems in the case of stationary
point in [11] and in the case of orbit with vanishing diffusion in [12]. Below we extend
this approach to systems with nonvanishing diffusion.

5. Orbital stability on the plane

Consider the input system (1.1) in two-dimensional case (d = 2). The equations
(3.6) in this case define A(t) in the following way:

1 _ = @EOF) o a(€(O)))
G0 M TECON -
i.e., the vector A(t) is identically determined to within a sign by the values of ©(¢).

For definiteness, let us choose minus for A and plus for A? in the expressions (5.1).
Let us introduce the vector

L [ —ak(e))
MO = o) l at(€(9)) ]

and the coefficients (see the formulas (3.10) together with the condition (6, ) € D)
%o = 70(0) == (Bo(0)A(0), A(9)),
¥ = 7(0) = Br(0)70(0) + (B, (0)A(0), A(0)), 7 = 1,.... q. (5.2)

These coefficients can be simplified in two-dimensional case. In fact, (ag(£(6)), A(0)) =
AT (0)ag(€(0)) = 0, and we obtain

(a0(£(0))aq (£(0))Ar(£(0))A(0), A(©)) = AT (B)ao(€(0))aq (€(0)) Ar(£(0)A(0) = 0.
Hence (see the formulas (2.14))
(Br(0)A(6), A(0)) = (A:(£(0))A(0), A(0)), r =1, ..., 4. (5.3)

Analogously
(Bo(9)A(0), A(6)) = (Ao(£(0))A(0), A(9))- (5.4)

15
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L r< 4
8x1a0a0 Oz2 °

(Ar(£(0))A10), AlV)) =

" ot (5.5)

Further, because a.(£(0)) = 0, r = 1,...,q, we have A.(£(6))ao(£(f)) = 0 and,
consequently,

1 1 Oal al a? da?
|a0_|2(ATa0,ao) = |a0|2(3x1 a(l)a(l] + 972 a(l)ag + pys a(l)ag + 52 agag) =0, r=1, (’5qé)

Therefore due to (5.2), (5.3), (5.4), and (5.7)
) )

70(0) = (Ao(£(0))A(0), A(0)), 1 (0) = Br(0)70(0) + trA(£(0)), r =1,...,q. 655)
5.8

Adduce also the formula

trA2(£(0)) = tr?A,.(€(0)), r = 1,...,q. (5.9)

Indeed, the direct calculations give

AT+ apag =1 . (5.10)

|ao?
Using (5.7), (5.10), and the relation AT(S(Q))aO(f(Q)) =0, we get

tr? A, (£(0)) = ATAI AN = AT A2 — A Aragag A ) = ATAZN

|a0|2

Further, we can show that AT A2\ =trA? in the same way as (5.7) was obtained
because A2(£(0))ao(£(0)) = 0. Thus the formula (5.9) is proved.
We have the following system for two scalar variables ©(t) and |A(t)[? :

do = dt + fjﬁr(@) o dw,(t), ©(0) = 0, (5.11)

r=1

dA@D)F = py(©)|A(H)["dt + qu: 7 (©) - [A@)F o dwn(t), |A0)F = 1.
r=1 (5.12)
The strongly continuous semigroup T;(p) on C(O) is defined by the formula
T(p)f(0) = Ef(©s()[AM)F, |AO)F =1, f € C(O). (5.13)
The system (5.11)-(5.12) has the following Ito form:

1+ ZB dt+Zﬁr )duw, (t) (5.14)
dl A = )+ - Z% )+ pZ% A(t)|Pdt

+p2% (&) Pdw,(t), [A(O)] = 1. (5.15)

16



Ap)J\v) = 2 2 0.\0)J V) {1l~+ 2 2. 0:\0)0:\0) D) 7\U)or\U)):J V)
r=1 r=1 r=1
1 1 &,
+p(70(0) + 5 > 7.(0)6:(0) + P > 72(0)) - f£(0)
r=1 r=1

= %1&(9) - f"(0) +0(0;p) - £'(0) + c(0;p) - £(0). (5.16)

Clearly, all the coefficients k?(6), b(0;p), c(0;p), which are defined by the relation
(5.16), are T-periodic functions with respect to 6.

As it was mentioned, the case of vanishing diffusion on the very orbit has been
considered in [12]. Remember the main formulas in this case (to avoid a confusion
let us note that in [12] the input system was considered in the Ito sense). Because
a.(z) =0, r =1,...,,q, we have 5, = 0, r = 1,...,q, and the Khasminskii system
becomes extremely simple

40 = dt,
i.e., © is deterministic: ©y(t) = 0 + ¢.
The equation (5.15) acquires the form

AAGP = (p(0-+1) + 1p° D420+ 1) - |t

r=1

530+ 1) - |AQ) Pdw, (1), [AO)F = 1. (5.17)

r=1
Hence the semigroup T;(p) is defined by the formula
Ti(p)f(0) = Ef(©s()IAM)P = F(0 + 1) EIAR)P

= (0 +1¢)exp {/:(p%(e )+ %ngﬁ(e " S))ds} Feco) (5.18)

and its generator A(p) has the form
A1) = FO) + () + 1 SA20)0), f€CO).  (319)

Due to the formulas (5.8), and the relations 8, =0, r = 1, ..., q, we have
Y0(0) = (Ao(€(0))A(0),A(0)), 7 (0) = trA.(£(0)), r=1,..,q.

From the equation
A(p)e,(0) = g(p)ey(0), e, € C(O), e,(6) >0, 0<60 < T,

we obtain the eigenfunction
0 1 q
ep(f) = exp {g(p)9 - /0 (Pyo(s) + 5P’ 273(8))018} :
r=1

where the eigenvalue g(p) is equal to

0) = o [ s+ % [ s)d (5.20)
gp—2T0T:1'yT_S S$*'p TU'}’OS §'D. .
17



), \F0\SL8))ALE), AL5))as = | LTA0LG1S))aS.
0 0

We have (for the sake of simplicity we omit the argument £(s) in writing)

)
/T(Ao(g(s))k(s),)\(s))ds_/T 1 6&0 2 2 dal 8@3 aag 11

0 1 2 1.2
asa, —— QA — —— 00y + —~ a0, )ds.
0 |CI, |2( Orl 0%0 Ox2 00 orl 00 Ox2 0 0)

Further, due to periodicity of the considered functions we get

_ % /Olen[(a(l](g(S))Q + (a2(€(s))?ds

1 ‘9%11 Oag 1 5 045 1 5 085 5
_ / il 8 Qo0 + @aoao + 8—a0a0 + a—aoao)ds
Summarizing these two equalities, we obtain (5.21).
Therefore

M= g(0) = %/OT vo(s)ds = %/OTtrAO(f(s))ds.

The condition
/ trAo(£(s))ds < 0

is a sufficient condition of orbital stability for deterministic systems in two-dimensional
case (the Poincare criterion). Thus, the noise in the sense of Stratonovich does not
make worse stability properties of a system with respect to the Lyapunov exponent
A* of the linearized orthogonal system.

If [T30 tr2A,(E(s))ds # 0, [TtrAo(£(s))ds # 0, then the stability index is equal
to

’Y* — _9. f(;T tI'AU(S(S))dS
Jo Ty tr2An(E(s))ds
So, all the characteristics in two-dimensional case with vanishing diffusion on the
invariant orbit can be evaluated in explicit form.
In connection with Remark 3.1 we can note that as it obviously follows from the
formula (5.18), any operator T;(p), 0 < t < 0o, —00 < p < 00, is noncompact and, for

instance, for ty = kT, k = 0,1, ..., the operator T, (p) is not irreducible. We also note
that the spectrum o(A(p)) consists of the eigenvalues g(p)+2mik/T, k = 0,+1,+2, ... .

(5.22)

Let us turn to the case of nonvanishing diffusion on the invariant orbit. In what
follows the nondegeneracy condition

q

:iﬁg(@:Zaf(f(G));&Ofor any — oo < f < oo (5.23)

r=1
is supposed to be fulfilled.
Clearly, under the nondegeneracy condition (5.23) the process O(¢) defined by the
equation (5.14) is ergodic, and the equation for the density p(6) of the invariant measure
has the form

SO~ (1+ Zﬁ ) =0, w(0) = (1), [ @y =1,

18
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b

where

b(6) = exp {_2 /00 1+ % Egkzl(fi(S)ﬁT(S) ds}

and the constant C' has to be found in accord with the second condition from (5.24).
Due to (3.22) the Lyapunov exponent A* (as in [9]) can be found explicitly

3= [ 000 + 5 XA 0)58.0)) - wo)ao, (5.25)

where v,(0), r=0,1,...,q, are from (5.8).

One can take advantage of the results [11] for search for the Lyapunov moment
function g(p). The paper [11] is devoted to Lyapunov exponents of stationary points.
But the offered there methods are connected with a boundary value problem for a
second order deterministic linear differential equation. Here we have the problem (see
Theorem 2.3 and (5.16))

AW)f(0) = SK(6) - £(6) +5(6;p) - 1'(6) + e(6;1) - 1(6) = 9(p) 1 (6),
£(0) = f(T), £'(0) = f(T), f(6) >0, 0< 0 <T, (5.26)

which is similar to the considered one in [11].
Let us give the main algorithm of solution of the problem (5.26) (proofs and more
details see in [11]). To this end, introduce another boundary value problem on [—T, T

A(p)y — vy =0, (5.27)
y(=T;p,v) =1, y(T;p,v) = L. (5.28)

Let vy = 1p(p) be the maximal eigenvalue for Sturm-Liouville’s problem
Alp)y —vy =0, y(=T;p) = y(T;p) = 0. (5.29)

We note that vy(p) < maxo<p<r c(6;p). For all v > vy solutions of the equation
(5.27) are non oscillating on [—T, T'|, and therefore the solution y(8; p, v) of the problem
(5.27)-(5.28) exists and is unique. It can be found in the following way. Let y,(6;p, v),
y2(0; p, v) be the solutions of (5.27) with the initial data

y(~T;p,v) =0, y,(~T;p,v) = 1,

v2(T;p,v) =0, 4(T;p,v) = —1.

It is clear (of course, we suppose v > ) that y(6;p,v) > 0 on (—7,7T] and
y2(0;p,v) > 0 on [—T,T). Let us note in passing that if y;(0;p,v) > 0 on (—T,T]
or y2(0;p,v) > 0 on [T, T) for some v, then v > v.

The solution y(0; p, v) of (5.27)-(5.28)) is evidently expressed in the form

v1(0;p,v) | w(0;p,v)
O;p,v) = .
v ) n(T;p,v)  y(=T;p,v)

(5.30)

Proposition 5.1. The function y(0;p,v) for any —T < 0 < T andp € R is a
strongly monotonically decreasing convez function with respect to v for v > vy(p), and

the following relations
19
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vivo(p)
are true.
Proposition 5.2. The eigenvalue g(p) of the problem (5.26) is a oot of the equation

0; 0;
y(0: p.v) Y ( P v) |y P v)
n(Tsp,v)  ya(=T;p,v)
v(p) < g(p) < oo, and the eigenfunction f(0;p) is equal to
)

=1, (5.32)

oY — u(0: _ n(0:p.g(p))  :(0:p 9(p))
O =00 90D = (0 9o) * a(Timg =0T (5.33)

Thanks to Propositions 5.1 and 5.2, the problem of evaluating g(p) and f(0;p) is
sufficiently simple under any fixed p. In [11] several efficient numerical methods (and
among them the Newton method) are obtained for searching for both g(p) and ¢'(p).
Thus the evaluation of moment Lyapunov exponents becomes reliable and effective
matter for orbits on the plane in the nondegenerate case (5.23).

6. Stability of orbits on the plane under small diffusion

Consider the two-dimensional perturbed Hamilton system with respect to z = (z*, z?)

dxlz—%dtJr 1 (2) - (H — Cdt+z %—i—c() (H — C)) o du, (t)
dz’® = %dt + () - (H — C)dt + Z:(ar(x)% + A(z) - (H — C)) o dw,(t).

(6.1)
Let O : H(p,q) = C, where C is a constant, be the orbit of the Hamilton system
dz! OH dz?> OH

dt 9z dt Ozl
Then the orbit O is invariant for the system (6.1). The noise in the system (6.1)
is subdivided in two parts: the first one acts lengthwise to the directional field of the
Hamilton system, and the second one vanishes on the orbit O. Besides, the deterministic
perturbations are present in the system (6.1). They are small nearby the orbit O and
vanish on it. Let us note in passing that the (2d — 1)-dimensional manifold H = C'is
invariant for the 2d-dimensional system of the form (6.1).

1
In what follows we restrict ourselves to the case H = 5(3:12 +z¥) = §|31:|2 and

1
cs(z) = 0, cZ(z) = 0. For convenience put C = §p2. We come to the system of the

form
q cl
dz' = —2’dt + > (—a, - 2> + 5’“ (|z]* — p?)) o dw,(t)
r=1
q 2
dz* =z'dt + > (e, - 2" + 5’" (Jz]* — p?)) o dw, (1), (6.2)

r=1
where ci(z), i = 1,2; 7 =0,1,...,q, and a,(z), r = 1,...,q, are some scalar functions

of z.
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O:z' =¢4(0) = pcosh, z°> = £*(0) = psinb, 0< 0 < 2,

Br(0) = a-(£(0)) = ar(pcosh, psinb), r=1,...,q, (6.3)
e = | 20" | a0 = |~

0 —1 ct(&(0 cos® cL(&(0)) - psinf
wieon=[ 2 31| iy = L) pems ey e
Y0(0) = 0, 7,.(0) = p- (c:(£(0)) - cos O + c2(£(0)) - sinB), r =1, ..., q. (6.4)

If for every r = 1,...,q either 7.() = 0 or 3.(6) = 0, then the equation (5.15)
acquires the form

d|A(t) ——pE}n Pﬁ+p2h% ) - |A() [Pdw,(t), [A0)P = 1.

r=1

From here
E|A()P > 1, t >0,

and consequently
1
— Tim — P
g(p) = Jim . In E|A(¢t)|P >0,

i.e., in particular, the orbit O of the system (6.2) cannot be stabilized by noise if the
every noise either vanishes on the orbit or acts only lengthwise to the directional field
of the system
dt dt
To investigate the possibility of stabilization by noise, consider the following system

with small noise (we put in (6.2) ¢ = 1, ay(z!,2?) = /e(ap + ol 4 ng), where
p p

a b
a, B, ay are some constants, c} = const = y/z—, c% = const = \/e—)
p p

da' = ~a*dt + Vel + 5o+ 0a%) o o (off = )] o du(t)

B s

dz® = z'dt + e[(a + px + :E )zt + LN (|z|® — p?)] o dw(t). (6.5)

2p

Due to the formulas (5.16), (6.3), and ( .4), the boundary value problem (5.26) is of
the form

(L +2L)f = 3eB2(0)f" + 1+ 528(0)5'(0) +=pB(O)(0))f
+<pBOYY (0) + P (0))f = o(p)S, (6.6
f(0) = f(2m) =1, f'(0) = f'(2m), f(8) >0, 0 <6 < 2, (6.7)
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B d 1, d2 1 , d 5 o
We suppose that al>a —l—ﬁz, whence the nondegeneracy condition (5.23) runs out.

Let us use the formula (5.25). We have

€ 27
X(e) =2 [ (0)8(6) - w(6; ), (6.8)
0
where £(0; €) is the solution of the following problem (see (5.24))
2O — (1 + S5 O8O =0, w(03e) = u(2mie), [ u(0;2)d0 = 1.

(6.9)
One can prove that
M(e) =eh+ e+ - +e" A+ (e), |ra(e)] < Ch,

where Aq, ..., A\p, C,, are some constants. Moreover, one can adduce a procedure for
finding these constants. The proof and the procedure are analogous to the ones from

[5] (see also [13]).
Here we restrict ourselves to proving the following result.

Proposition 6.1. Let a2 > o? + (3% and let
1
0 < By < 5%(0) < Bi, 5|6(0)8(6)] < K, (6.10)

(clearly, the constants By, By, K can be indicated explicitly for 3(0) = oy + acosf +
Bsin ).

Then under ¢ < 1/2K
4B1 K
7TBO ’

u(0;e) = % +ev(b:e), (b:e)| < (6.11)

and

4B 1K

€ (ab — Ba) + 2r1(e), |r(e)| < =
0

Xe) =

Bi(a?+b2).  (6.12)

Proof. From (6.9) we have
L) — (1 S80I = AG).
Integrating this equality from zero to 2w, we get
14 g 02” 8'Budf = 2w A(e).
Because of (6.10) and the last condition of (6.9), we obtain for 14 2w A(g) := £C(e)
el =31 [ " ' Budo| < eK. (6.13)
Introduce the new function v(6;¢) according to the equality

1
u(b;e) = o— +ev(b;e).
7
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where

£(0:) = 2= o) -

The problem (6.14) has the following solution

N exp(f02"§(s;s)ds) . 2 e |
V(e’g)_1—exp(f02“§(s;a)ds) /; exp( /gﬁ(S’S)dS)n(so,e)dso

exp(Jy £(s;€)ds) 0 e ‘
1~ exp(J7™ €(s; €)ds) || exe(= [ Gsie)asyutse)ds. (6.16)

We have (see (6.15), (6.13), and (6.10))

20() - B(0)5(6)

) (6.15)

N S W _1
n_waBO’f(w;a)_2—6-2K’E K
Therefore
" * (s 2)ds)n(; )] < . [ “e(s;6)ds)d
) exo(= [ el eydameseldel < - [ exn(— [T e(sic)ds)de
2K L | 4 4
_ . _ ny d/ . £)d
By Epim PO ) ([ (sie)ds)
2K €B1

< ai Lo [ e,

and consequently, the modulus of the first term in (6.16) is bounded from above by

KB
the number —— —* _  The second term has the same bound. Hence the relation
7TBO(1 - SK)
(6.11) is proved. The relations (6.12) easily follow from (6.8) and (6.11). Proposition

6.1 is proved.

Clearly, both g and f in (6.6)-(6.7) depend on p,e : g = g(p,e), f = f(0;p,e).
Let us give a procedure of asymptotic series expansion for g(p,e) and f(60;p,¢). This
procedure coincides with that one which is proposed in [10] for the moment Lyapunov
exponent in the case of stationary points. After substituting the formal expressions

9(p.e) = go(p) +eg91(p) + - - +€"gulp) + -

f0;p,¢) = fo(0;p) +efi(0;p) +-- -+ €"fu(b;p) +---

in (6.6), we obtain the following relations for gy, 91, .., gn,..- and for 27-periodic in ¢
functions fo, fi,..., fn,- :

Lyifo = gofo, fo(0;p) = fo(2m;p) =1, (6.17)

Lyfi + Lafo = gof1 + g1fo, f1(0;p) = f1(2m;p) =0, (6.18)

Lifo+ Lofno1 = gofn + g1 fu1+ -+ + gufo, fn(0;p) = fu(2m;p) = 0.
(6.19)
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Let go, g1, ..., gn_1 and 2m-periodic in 0 functions fy, fi,..., fn_1 be found. Due to
(6.20) the equation (6.19) acquires the form

dfn
% — _Lanfl + glfnfl +- gnflfl + Gn-
The function —Lsf,_14+ g1 fn_1+ -+ gn_1f1 is known and is evidently 2m-periodic
in #. The function f, can be 27-periodic if and only if

gn i /UZW(Lan—l - glfn—l -t gn—lfl)dg' (6'21)

:27r

Provided (6.21)

fn(0;p) = /:(_Lanl(s; p) +91(0)fn1(5;0) + -+ gn1(P) f1(5;0) + gn(p))ds.

Let us note that for any f,(6;p) the second condition in (6.7) f/(0;p) = f.(2m;p) is
also fulfilled. Thus, the formal asymptotic series expansions for g(p,e) and f(0;p,¢)
are obtained in the constructive manner.

The following theorem can be proved analogously to [10].
Proposition 6.2. Let a2 > o? + 32, Let go(p), ..., gn(p) and fo(0;p), ..., f(0;p) be
the functions obtained from the recursive procedure (6.17)-(6.19). Then for any n > 0

9(p.e) = go(p) + £g1(p) + - - - +€"gu(p) + O(e™H), (6.22)

where O(e™™!) is uniform with respect to p € B, B C R is any bounded set.

The zero terms have already been found : go(p) = 0, fo(0;p) = 1. From (6.21) we
get

1 g 1 Lo o o
gp) =5 | Lafodd = ;p(ab— Ba) + 1p7(a” +b°),
and consequently,
9(p,€) = Sp(ab — Ba) + Lp*(a> + ) + O(c?).

The following formulas for the Lyapunov exponent and for the stability index can
be proved analogously to [10]:

_ab—ﬁa

N(e) = (ab— Ba) + O(), () =~

+ O(e).
Thus, the sufficient condition for stabilizing the orbit |z|> = p? of the system (6.5)

by small noise is the fulfillment of the following inequality

ab — fBa < 0.
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