
WeierstraB-Institut 
fiir Angewandte Analysis und Stochastik 

im Forschungsverbund Berlin e.V. 

Fast periodic oscillations in singularly perturbed 
relay control systems and sliding modes 

Leonid Fridman 

submitted: 5 Sep 1997 

Department of Mathematics 
Samara State Architecture 
and Civil Engineering Academy 
13-64 Gagarina str. 
Samara 443079 
Russia 
eMail: fridman@ssu.samara.ru 

Preprint No. 358 
Berlin 1997 

1991 Mathematics Subject Classification. 34C15, 34E10. 

This paper was written during the stay of L. Fridman at the Weierstrass Institute for Applied 
Analysis and Stochastics in Berlin. 



Edited by 
WeierstraB-Institut fiir Angewandte Analysis und Stochastik (WIAS) 
Mohrenstraf3e 39 
D - 10117 Berlin 
Germany 

Fax: + 49 30 2044975 
e-mail (X.400): c=de;a=d400-gw;p=WIAS-BERLIN;s=preprint 
e-mail (Internet): preprint@wias-berlin.de 
World Wide Web: http://www.wias-berlin.de/ 



Abstract 

As a mathematical model of chattering in the small neighbourhood of switch-
ing surface in the sliding mode systems we examine the singularly perturbed relay 
control systems (SPRCS). The sufficient conditions for existence of fast periodic 
solutions in such systems are found. Their stability is investigated. It is proved 
that the slow motions in such SPRCS are approximately described with equations 
obtained from the equations for the slow variables of SPRCS by averaging along fast 
periodic motions. It is shown that in the case when the original SPRCS contains 
the relay control linearly the averaged equations and equations which describe the 
motions of the reduced system in the sliding mode are coincide. The algorithm is 
proposed which allows to solve the problem of eigenvalues assignment for averaged 
equations using the additional dynamics of fast actuator . 

Introduction 
The chattering phenomena is one of the actual problems in modern sliding mode 
control theory. The presence of actuators and measuring devices is one of basic 
reasons of chattering in sliding mode control systems ([17], [4]). 

The behavior of such systems is described by the singularly perturbed relay 
control systems (SPRCS). Moreover, for such systems the conditions of dynamic 
uncertainty are held. This means that for original SPRCS there are no stable first 
order sliding modes, but for the reduced system the sufficient conditions for existence 
of the stable first order sliding mode are held ([4], [3] ,[8]). 

If in the original SPRCS contains either a sliding mode of 3rd order and greater 
or positive feedback, then sliding modes are unstable [1],[9]. In such systems the 
fast periodic oscillations can occur [17], [8]. 

The general model of sliding mode control system with fast actuators and mea-
suring devices has the following form (see [4]) 

µdz/dt = g(z, s, x, u(s)), (0.1) 

ds/dt = h1(z,s,x,u(s)), dx/dt = h2(z,s,x,u(s)) 

where z E Rmu(s) = sgn(s),g, h1, h2 are smooth functions of their arguments. 
Conditions of dynamic uncertainty for system (0.1) mean that lettingµ= 0 and 

expressing zo = cp(s, x, u(s)) from the equation 

g(zo, s, x, u(s)) = 0 

according to the formula zo = cp(s, x, u(s)) we obtain the reduced system 

ds/dt = h1(cp(s,x,u(s)),s,x,u(s)) = H1(s,x,u(s)), 

dx/dt = h2(cp(s,x,u(s)),s,x,u(s)) = H2(s,x,u(s)). 

It is assumed that 
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or 

(i) almost everywhere on s = 0 

h1(z,O,x, l)h1(z,O,x,-l) > 0 

h1(z, 0, x, l) > 0, h1(z, 0, x, -1) < O; 

(ii) the measure of domain 

S = {x: H1(0, x, 1) < 0, H1(0, x, -1) > O, x E Rn} 

(0.3) 

is nonzero and consequently S is the domain of stable first order sliding for system 
(0.2). 

System (0.1) under such suppositions can describe for instance the behavior of 
control systems in which variables x, s describe plant behavior, vector z describes 
the behavior of the fast actuator. 

Proposed paper is devoted to the investigation of fast periodic solutions in system 
(0.1). The paper consists of 3 section. Section 1 is devoted to development of 
mathematical apparatus for. the investigation of periodic solution of SPRCS. In 
section 2 this apparatus is used for the investigation of b(;:!havior of the sliding mode 
control systems with fast actuators. In section 3 proposed approach is used for 
the design of desired averaged equation in sliding mode control system with fast 
actuators. 

1. Mathematical apparatus 

1.1 Problem Formulation 
In this section we will consider the existence and stability of the fast periodic solu-
tions for the singularly perturbed relay control system of the form 

µdz/dt = g(z, e, x, u(e)), (1.1) 

µde/dt = h1(z,e,x,u(e)), dx/dt = h2(z,e,x,u(e)), 

wherez E Rm,e E u(O = sign(e),g,h1,h2 aresmoothfunctionsoftheirarguments. 
Introducing the "fast time" T = t/ µ into (1.1), we will obtain 

dz/dT = g(z, e, x, u(()), (1.2) 

de/dT = h1(z,e,x,u(e)), dx/dT = µh2(z,e,x,u(e)). 

For the smooth singularly perturbed system the existence and stability in the 
first approximation of the fast periodic solution was investigated by [13]. The exis-
tence and stability in the first approximation of fast periodic solution of (1.1) was 
investigated in [8]. 

It turns out that for the investigation of the fast periodic solutions of singularly 
perturbed system (1.2) it's impossible to use standard methods of small parameter 
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[7] for autonomous systems because setting µ = 0 in (1.2) we will obtain degenerate 
equation for the slow variables x. 

In this paper we develop the mathematical apparatus for investigation of the 
fast periodic oscillations (1.1),(1.2). For this end we employ the point mapping 
method (see [11],[12]). In section 1.2 the specific features of the point mapping 
which generated by system (1.2) is investigated. In section 1.3 the theorem about 
existence of fast periodic solution of system (1.1) is proved. A proof of the theorem 
about investigation of stability of this periodic solutio in the first approximation is 
given in section 1.4. In section 1.5 the auxiliary theorems about decomposition of 
two speed point mapping are formulated. The theorem about averaging is given in 
section 1.6. Section 1. 7 is devoted to the algorithm of asymptotic representation 
for the fast periodic solution of system (1.1). The algorithm for correction of the 
averaged equation is suggested in section 1.8. The reduction principle theorem is 
given in section 1.9. 

1.2 Some properties of the point mapping which made 
by SPRCS 
Let us mark the variation domain as Z, X variables (z, s, x) and x. 

Definition. We shall call the surface e = 0 the surface without stable sliding 
towards trajectories of the system 

dz/dr = g(z, e, x, u(e)), 

de/dr = h1(z,e,x,u(e)) 

(1.3) 

if all the trajectories of (1.1) which start outside the surface e = 0 cross it at the 
point (z, 0, x) where the conditions (0.3) are fulfilled. 

Suppose that the following conditions are true: 
1° hi, h2, g E c2[.Z x [-1, 1]]; 
2° surface e = 0 under all x E X is a surface without stable sliding towards 

trajectories of system (1.3); 
3° system (1.3) for all x E X has an isolated orbitally asymptotically stable 

solution (zo(r,x),fo(r,x)) with the period T(x);. 
4o let R(z,x) be a point mapping of the set V = {(z,x): h1(z,O,x, 1) > O} on 

the surface e 0 into itself, performed by system (3) which has a fixed point z*(x) 
corresponding to (zo(r, x), ~o(r, x)); 

s0 suppose that for Ai(xo) (i = 1, ... , m) the eigenvalues of the matrix ~~(z*(x0 ), x0) 

the inequalities l,Xi(xo)I =f:. 1 are true; 
6° the averaged system dx/dt = '(x), where p(x) = 

1 {T(x) 
= T(x) Jo h2(z0 (r,x),fo(r,x),x,u(eo(r,x))dr, (1.4) 

has an isolated equilibrium point xo such that 

p(xo) = 0, 
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Let us denote as z±(T,z,x,µ),e±(T,z,x,µ) the solutions of system (1.2) with 
the initial conditions z±(o,z,x,µ) = z,e±(o,z,x,µ) = 0 fore> 0 and e < 0. 

The point mapping of domain V of the surface e = 0 has the following form 

<I>(z,x,µ) = (<I>1(z,x,µ),<I>2(z,x,µ)) = 
(z-(8, z+(e, z, x, µ), x+(e, z, x, µ), µ), 

x-(e, z+(e, z, x, µ), x+(e, z, x, µ), µ)), 

where functions B(z, x, µ), G(z, x, µ) are determined by equations 

e+(e, z, x, µ) = 0, 

e-(e, z+(e, z, x, µ), x+ (e, z, x, µ), µ)) = 0. 

This means that <l> 1 (z, x, 0) = R(z, x). 
The surface e = 0 is the surface without stable sliding for system (1.3). This 

means that there exists a neighbourhood of the point (z* (xo), xo) on the surface e = 0 for which 
max{lde+ /dBi, ldC /d8j} > o. 

It follows from condition 1° and implicit function theorem that for some small µo 
functions <I>, e, 8 have the continuous derivatives into the some set U x [O, µo] on the 
surface e = 0. This means that we can consider the function <I> as the point mapping 
of the set U x [O, µo] on the surface e = 0 Moreover we can rewrite <I>(z, x, µ) in the 
form 

<I>(z, x, µ) = (R(z, x, µ), x + µQ(z, x, µ)), 

where R(z, x, µ), Q(z, x, µ)are the sufficiently smooth functions and Q(z* (xo), xo, 0) = 
0, R(z*(x), x, 0) = z*(x). 

Let's make in <I> the substitution of variables using the formula 'TJ = z - z*(x). 
Then the point mapping (1.4) takes the form 

'I!(TJ, x, µ) = ('1!1(77, x, µ), 'I!2(TJ, x, µ)) = 

= (R(TJ + z*(x), x, µ) - z*(x), x + µQ(17 + z*(x), x, µ)), (1.5) 

and consequently 'I!(O, x, 0) = (0, x). 

1.3 Existence of the Fast Periodic Solution 
Theorem 1.1. Under conditions 1° - 6° system (1.1) has the isolated periodic solu-
tion with the period µ(T(xo) +0(µ)) near to the circle (zo(t/µ,xo),eo(t/µ,xo),xo). 

Proof. We will prove the existence of the periodic solution as the existence of 
the fixed point ( 'TJ* (µ), x* (µ)) of the point mapping 'I!. Let's rewrite the conditions 
of existence of this fixed point in the form 

G(TJ* x* µ) = ( G1('TJ*,x*,µ) ) = 
' ' G2(TJ*,x*,µ) 
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(1.6) 

It is necessary to take into account that for µ = 0 77* (0) = 0, x* (0) = x0 and 
G2(0, xo, 0) = -T(xo)'(xo) = 0 and consequently for µ = 0 conditions (1.6) are 
fulfilled. Moreover, taking into account that for all x E X G1 (0, x, 0) = O we can 
conclude 8ffx1 (0, xo, 0) = 0. Let us compute the Jacobian of function G with respect 
by variables 77, x at µ = 0. ac 

B(1J, x) (0, xo, 0) = 

Im - ~~(z*(xo), xo) 0 
= 8ffry2 (0, xo, 0) -T(xo)~(xo) # O. 

This means that there exists an isolated fixed point ( z* (µ), x* (µ)) of point mapping 
G which corresponds to the periodic solution of systems (1.1) and (1.3) and in this 
case z*(µ) = z*(xo) + O(µ), x*(µ) = xo + O(µ). 

1.4 Stability in the First Approximation 
Assume that 

7° the eigenvalues Ai(xo) (i = 1, m) of the matrix ~~(z(xo), xo). satisfy the in-
equalities l-Xi(xo)I < 1(i=1, m); 

go the eigenvalues vj(xo), j = 1, ... , n of matrix ~(xo) satisfy the inequalities 

Theorem 1.2. Under conditions 1° - 8° the periodic solution of (1.1),(1.2) zs 
orbitally asymptotically stable. 

Proof. Let's find the derivatives '11 by variables 77, x 

aw 
a( '7' ) = r(1J,X 1 JL) = 77, ...,, µ 

[ 
Im - ~~(xo) + O(µ) O(µ) ] 
8~2 (0, xo, 0) + 0(µ) Im+ µT(xo)~(xo) + O(µ) · 

Consequently the matrix r(77, x, µ) has at the small vicinity of (0, xo, 0) two groups 
of eigenvalues 

.\i(xo) + O(µ), i = 1, ... , m, 

1 + µT(xo)vj(xo) + o(µ), j = 1, ... , n. 

This means that under conditions of theorem 1.3 there exists some neighbourhood 
of (0, x 0 , 0) for which '11 is contraction mapping and corresponding fast periodic 
solution of systems (1.1),(1.3) is orbitally asymptotically stable. 
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1.5 Some Auxiliary Theorems about Decom-
position of Two - Speed Point IV1appings 
It is obvious that the problems of stability of fast periodic solution of system (1.1) 
is equivalent to the problem of stability of fixed point TJ*(µ), x*(µ) of'¥(µ). Let's 
introduce into '1' the new variables according the formulae K, = TJ - TJ* (µ), x = 
x - x*(µ). Then taking into account that 8'1'(0, x0 , 0)/8x = 0, we have 

Ai(K,, x, µ) =PK,+ Q(K,, x, µ), 

A2(K,, x, µ) = X + µR(K,, x, µ), 

where Q, R - are smooth functions and under conditions 1° - 7° 

P = 8R/8z(z(xo), xo), llPll < 1 

Q(K,, x, µ) = O(µ)O(IK,I + lxl) + O(IK,1 2 + lxl2), 

R(K,, x, µ) = O(IK,I + lxl). 

Thus we can reduce Cauchy problem for system (1.1) with initial condition,s 

z(O, µ) = z0 , s(O, µ) = 0 x(O, µ) = x0 

to the investigation of the two-speed discrete system 

(D.1) 

(IC) 

K,k+l = PK,k + Q(K,k, Xk, µ), Xk+l = Xk + µR(K,k, Xk, µ), (D.2) 

K,o = z0 - z*(x*(µ)), xo = x0 - x*(µ). 

Below we will use the following theorems about decomposition of point mappings 
(D.l),(D.2) (the proofs are in [2],[14]). 

Theorem D.l. Assume, that for system (D.l) conditions (D.2) are held. 
Then system (D.l) has the slow motions integral manifold in th~ form K, = V(x, µ) 
for the smallµ. Then there exist C1, C2 such that 

llV(x,µ)11 < C1, 

llV(x, µ) - V(x, µ)II < C2llx - xii· 
The motion on manifold K, = V(x, µ) described by the equation 

Ai(V(x, µ), x, µ) = x + µR(V(x, µ), x, µ). (D.3) 

For the slow coordinate of solution (D.2) Xk(Xo) and Xk(X) the solution of system 
(D.3) with initial condition xo = x there exist c > 0, 0 < q < 1 and x E R for 
which the inequality 

is true. 
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Theorem D.2. (reduction principle). If 

Q(O, 0, µ) = O; R(O, 0, µ) = 0, 

then the problem of stability of zero solutions of systems(D.1) and (D.3) are equiv-
alent. This means that the zero solution of (D.1) are stable (asymptotically stable, 
unstable) if and only if the zero solution of (D.3) is stable (asymptotically sta-
ble, unstable). 

The function V(x, µ) may be found from the equation 

PV(x, µ) + Q(V(x, µ), x, µ) = V(x + µR(V(x, µ), x, µ), µ) 

with any level of precision in form 

V(x, µ) = Vo(x) + µVi(x) + µ2Vi(x) + · · ·. 

The function Vo(x) is a solution of the equation 

PVo(x) + Q(Vo(x), x, O) = Vo(x). 

Function Vi (x) can be found from equation 

PVi(x) + Q~(Vo(x),x, o) = Vi(x). 

An equation describing the flow on slow motions integral manifold have the form 

A2(V(x, µ), x, µ) = x + µR(Vo(x), x, µ)+ (D.4) 

+µ2 (R~(Vo(x), x, O)Vi (x) + R~(Vo(x), x, O)) + 0(µ3). 

1.6 Theorem about averaging 
Ass:.~me that 

go The solution x(t) of averaged system with initial conditions x(O) = x0 for 
t E [O, L] is situated into the closed subdomain X E X. 

Theorem 1.3. Under conditions 1° - 7° and go the slow coordinate x( t, µ) of 
solution (1.1),(1.2) and x(t) satisfy the inequality 

sup lx(t, µ) - x(t)I = O(µ). 
tE[O,L] 

1. 7 Founding of the periodic solution 
Assume now that 

1° h1 , h2 .g E Ck+2 [Z x [-1, 1]]. We will find the period of the desired periodic 
solution of (1.2) in form 

(1.7) 
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where To= T(xo) and time interval for which u = 1 and u = -1 in form 

e±( ) - e± e± 2e± ke± µ - 0 +µ 1 +µ 2 +···+µ k +···, 
where Bo = B(xo). Then the asymptotic representation of desired periodic solution 
on [O, T(µ)] takes the form 

z(r, µ) = zo(r) + µz1(r) + µ2z2(r) + ... + µkzk(r) + ... , 
X(T, µ) = eo(T) + µ6(r) + µ 26(r) + ··· + µkek(T) + ... , 
x(r,µ) = xo + µx1(r) + µ2x2(r) + ... + µkxk(r) + ... 

Denote 
- 2 k Tk (µ) = To + µTi + µ T2 + ... + µ Tk, 

et(µ) = Bt + µBt + µ2e~ + ... + µkef. 
Let's find the k-th approximation of asymptotic representation for desired periodic 
solution for T E [O, 1\ (µ )] in form 

Zk(r,µ) = zo(r) + µz1(r) + µ 2z2(1) + ... + µkzk(r), 

Bk(r,µ) = eo(r) + µ6(r) + µ 26(r) + ... + µkek(r), 

Xk(r,µ) = xo + µx1(r) + µ2x2(r) + ... + µkxk(r), 

where continuous functions Zi, ~i, Xiaresmoothon[O, et(µ)) u (et(µ), Tk(µ)] but have 
the jumps in the derivatives at T = et(µ). Let's show that under conditions of 
theorem 1.1 the functions Zf, et, Xf and constants Bi, 8i for every i = 1, ... , k can 
be uniquely found. 

Let's introduce in system (1.2) two "new times" according the formulae 

T+ = r/et(µ); T- = (r - et(µ))/B-,;(µ), T± E [O, l] 

and the auxiliary functions zt(r±), et(r±) as the solutions of systems 

dzt/dr± = Btg(zt,et,xo,±1), 

det /dr = Bth1(zt, et, xo, ±1) 

with initial and periodicity conditions 

zt(O) = z*(xo) = Zo, et(O) = 0; 

z0(0) = zci(l), e0(0) = eci(l) = 0; 
zc)(l) = z*(xo), eo-(1) = 0. 

(1.3.±) 

(1.8) 

From the periodicity of functions zo( r), fo( r) it follows that system (1.3±),(1.8) has 
the unique solution. 

Functions xt ( T) are described by the equations 

(1.4.1) 
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with initial and periodicity conditions given by 

(1.9.1) 

Moreover 

(h20](xo) = l h2(zo( r+, xo), €6 ( r+, xo), xo, l)dr+ + 

+ l h2(zo(r-, xo), €Q(r-, xo), xo, -l)dr- = 0, (1.10) 

d[h20] d'p 
detl~(xo)I = T(xo) dx (xo) # 0. 

This means that for every xi there exists the unique solution of (1.4.1) and (1.9.1) 
for which fo1 xt(r+)dr+ + fo1 x1(r-)dr- = 0 and we can define function x1(r) in 
form 

={ 
x1(r) =xi+ x1(r) = 

xi+ xt(r/Bt(µ)) for TE [O, et(µ)] 
xi+ x1((r - et(µ))/B"};(µ))for TE [Bt(µ), 1\(µ)]. 

Functions zt ( T±, xi), et ( T±, xi) are defined by equations 

dzt /dr = g~±zt + g~±et + g~xt) +erg±; 

d6/dr = et(h~~zr + h~1et + h~~xt) + Btht, 

(1.3.1) 

where the values of functions g±, ht and its derivatives are calculated at the points 
(zt(r±, Xo), et( T±, xo), Xo, ±1). 

Initial and periodicity conditions for system (1.3.1) are defined by equations 

zi(O, xi)= z;-(1, xi); z;-(o, xi)= zi(l, xi) (1.8.1) 

et(o, xi)= ei(l, xi)= e;-(o, xi)= e;-(1, xi)= 0. 
Equations (1.3.1) depend linearly on Zf' et' et end consequently their solutions 
Zf ( T, xi), et ( T, xi), et (xi) are linearly dependent On the initial conditions Zf ( 0, xi). 
Expressing zr(r,xi),er(r,xi),Bf(xi) through zi(O,xi) end substitute the results 
in the first equation of (8.1) we have the linear on zt(o, xi) system of algebraic 
equations which determinant coincides with detllm - 8R(z*(xo), xo)/ 8zl :f. 0. 

Functions x~(r) are described by the equations 

dx~ /dr = et(h~zzt+ 

+h~eetxf + h~xxt) + Bth2, 

where the values of functions h~ are calculated at the points 

(zt(r±' xo), et(r±' xo), xo, ±1). 

Initial and periodicity conditions are 
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The condition under which system (1.9.2) for every x2 have the periodic solution 
with zero averaged value takes the form 

f Wd(h;+,z{(r+, xi)+ h;~et(r+, xi)+ 

+h~~xt(r+, xi))+ et(r+, xi)ht]dr+ + 

+ f WO (h;--,z-; ( r-, xi) + h;(-el ( r-, xi)+ 

+h~~x!(r-, xi))+ +B!(xi)h2]dr- = 0. (1.10.1) 

Condition (1.10.1) is a system of linear equations for obtaining of xi, whose determi-
nant coincides with ~~ (xo) -:/:- 0. This means that we can find uniquely the function 
x2(r) in form x2(r) = x2 + x2(r), where x2(r) is the function with zero averaged 
value. 

Suppose now that functions Zi-1(r),ei-1(r),xi(r) and constants x;_1 ,et_1 are 
found, moreover, the periodic function xi( r) for every xi can be represented in form 
of the sum of xi and the function Xi(r) with zero averaged value. 

Then the functions zt ( T±' xi)' et ( T±' xi)' xt ( T±' xi) are defined by equations 

+et(xi)g± + nt(r±); (1.3.i) 

dei/dr± = et(h~~zt + h~~et + h~=;xt)+ 
et(xi)hf + n~(r±), 

where the values of functions and its derivatives g±, hf are calculated at the points 
( zt ( T±, XQ), et ( T±, XQ), XQ, ± 1), and functions Il]i, j = 1, 2 are uniquely defined 
functions containing the terms of order µi in asymptotic representations of g±, hf 
depending from z[' e±' xJ=' xj' j ::::; i-1. Initial and periodicity conditions for system 
(1.3.i) are defined by the equations 

(1.8.i) 

et(o, xi)= et(1, xi)= e;(o, xi)= e;-(1, xi)= 0. 
Equations (1.3.i) depend linearly on zt, et, et and consequently their solutions 
zt(r,xi),et(r,xi),8f(xi) are linearly depend on the initial conditions Zf(O,xi). 
Expressing zf(r, xi), et(r, xi), Bf(xi) through zt(o, xi) and substituting the re-
sults in the first equation of (1.8.i) we have linear in zi (0, xi) system of algebraic 
equations whose determinant is coincide with det!Im - 8R(z*(xo), xo)/8zl -:/:- 0. 

Functions Xi+l ( r) are described by the equations 

dx°t+1/dr = et(h;zzt + h;eet + h~xXf)+ 

+ethi+i + 7r~(r), 
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where the values of functions h~ and its derivatives are calculated at the 

(z~(r±, xo), ~~(r±, xo), xo, ±1) 

and functions 7rt, j = 1, 2 are uniquely defined functions containing the terms of 
order µi in asymptotic representations of h~ depending from z[, ~±, x[, xj, j _::; i-1. 
Initial and periodicity conditions are 

(1.9.i + 1) 

The condition under which system (1.9.i+l) have a periodic solution with zero 
averaged value for every x;+l takes the form 

l [Bci(h;+,zt(r+, xi)+ h;~Ei(r+, xi)+ 

+h~~xt ( T+, xi)) +et ( T+, xi)ht]dr+ + (1.10.i + 1) 

+ l [BQ(h;-,z;(r-,xi) + h;€Ei(r-, xi)+ 

+h~~Xi ( T-, xi)) +Bi (xi)h2]dT- = 0. 

Condition (1.10.i+l) is a system of linear equations for obtaining of xi, whose de-
terminant coincides with *(xo) #- 0. This means that we can uniquely find uniquely 
the function Xi+i ( T) in the form Xi+i ( T) = xi+i +xi+l ( T), where Xi+i ( T) is a function 
with zero averaged value. To finish the algorithm for design of desired asymptotic 
representation it is necessary to define 

={ 
+ -+ + -+ -+ (zi (r/Bk (µ),xi),~i (r/fJk (µ),xi)) for TE [O,Bk (µ)], 

(zi((r - et(µ))/B"j;(µ), xi), ~[((r - et(µ))/e; (µ),xi)) 
-+ - . -for ·TE [Bk(µ), Tk(µ)],J - 1, ... , k. 

{ 

xj + xj(r/Bt~)) fo~ TE [O, et(µ)], 
Xj(T) = xj + xj((r - Bt(µ))/B"j;(µ)) 

-+ - . -for TE [Bk (µ),Tk(µ)],J -1, ... ,k. 

1.8 Correction of Averaged Equations 
Let us show how we can use the knowledge of the fast periodic solution for correc-
tion of averaged equations with any precision level according the small parameter 
degrees. The knowledge of such equations is necessary the case when the linear part 
of averaged equations (1.3) has the spectral points on the imaginary axis. 

Assume that we have found the functions 
00 

e±(x, µ) = B~(x) + L µiBf (x), 
i=l 
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T(x,µ) = e+(x,µ) + e-(x,µ) 
and zt ( T±, X), et ( T±, X), xt ( r±, X) = 

then 

(zt(T ;e+(µ, x), x), et ( T ;e+(µ, x), x), x+( T ;e+(µ, x), x)) 
for (0, e+(µ, x)], 

= (z;((r -e+(µ))/e-(µ,x),x),e;((r-e+(µ,x))/e-(µ,x),x), 
xj((r-8+(µ,x))/e-(µ,x),x)) 
for [e+(µ, x ), T(µ, x )]. 

z(r,x,µ) = zo(r,x) + µz1(r,x) + ... + µizi(r,x) + ... , 
e(r, X, µ) = eo(r, x) + µ6(r, X) + ··· + µiei(T, x) + .. ., 

x(r, x, µ) = µx1(r, x) + ... + µixi(T, x) + ... . 
Then the precise averaged equation has the form 

1 {T(x,µ) 
dx/dt = T(xµ) lo h2(z(r, x, µ), e(r, x, µ), x+ 

+x( r, µ), u(e( r, x, µ)))dr. (PAE) 

Equations (PAE) correspond to the system (D.3) which describes a flow on the 
slow motion manifold in system (D.l). In this case the first order approximation of 
(PAE) has the form 

l { {To(x) 
dx/dt = To(x) (1 - µTi(x)) lo h2dr+ 

+µ [foTo(x) ( h~,zi(r, x) + h~e6(r, x) + h~xX1 (r)) dr+ 

+et(x)h2(zo(Bo(x), x), fo(Bo(x), x), x, 1)+ 

+e1(x)h2(zo(To(x), x), fo(To(x), x), x, -1)] }, (FAAE) 

where the values of functions h2 and it's derivatives in integral terms are calculated 
at the points (zo(r,x),fo(r,x),x,u(eo(r,x)). Analogously we can obtain the aver-
aged equations with any precision level expanding in powers of the small parameter. 

1.9 Investigation of Stability in Critical Case 
Theorem 1.4 (Reduction Principle). Under conditions 1° - 7° the periodic so-
lution for original system (1.1) is stable (asymptotically stable, unstable) if and only 
if the equilibrium point of system (PAE) is stable (asymptotically stable, unstable). 

Corollary. Assume that for system {1.1) conditions 1° - 7° are true. If the 
equilibrium point of system (FAAE) is asymptotically stable {unstable) in the first 
approximation than the periodic solution for original system (1.1) is asymptotically 
stable (unstable). 
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2. Analysis of Averaged Equations in Sliding 
Mode Control Systems with Fast Actuators 

2.1. Averaged Equations of Systems which Linearly De-
pend on Relay Control 
In this section we will consider the SPRCS which linearly depend on relay control. 
We will show that the averaged equations whose describe the slow motions in such 
SPRCS and the equations whose describe the sliding motion in the reduced systems 
are coincide. 

Let's consider the system 

µdz/dt = A(s, x)z + fi(s, x) + K1(s, x)u(s), 

ds/dt = B(s, x)z + h(s, x) + K2(s, x)u(s), 

dx/dt = D(s, x)z + h(s, x) + K3(s, x)u(s), 

(2.1) 

where z E Rm, s E R, x E Rn, u(s) = sgn (s), fi, Ki (i = 1, 2, 3) are smooth func-
tions of their arguments. Accepting µ = 0 and expressing zo from the first equation 
of system (2.1) according to the formula zo = -A-1(s, x)[f1(s, x) + K1(s, x)u(s)] 
we obtain the reduced system 

ds/dt = -B(s, x)A-1(s, x )Ji (s, x) + h(s, x)-

-[B(s, x)A-1(s, x)K1(s, x) - K2(s, x)]u(s), 

dx/dt = D(s, x)A-1(s, x)fi (s, x) + h(s, x)-

-[D(s, x)A-1(s, x)K1(s, x) - K3(s, x)]u(s). 

Suppose that for original system (2.1) the conditions of dynamic uncertainty are 
held which means that 

(CDU) 

The equations which describe the motions in sliding modes in the reduced system 
have the form 

dx/dt = -D(O, x)A-1(0, x)fi(O, x) + h(O, x)-

-[D(O, x )A-1 (0, x )K1 (0, x) - K3 (0, x )]( u(s) - Ueq(x) ). (2.2) 

Ueq(x) = [B(O, x)A-1 (0, x)K1 (0, x) - K2(0, x)t1 x 

x [-B(O, x)A-1 (0, x)fi (0, x) + h(O, x)]. 

Let's show that the averaged equations for original system (2.1) are coincide with 
system (2.2). 

Suppose that for all x E X the following conditions are true: 
(*) Re SpecA(O, x) < O; 
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(**) lueq(x)I < 1. 
It is obvious that if conditions of dynamical uncertainty are true it is reasonable 

to consider only solutions of system (2.1) with initial conditions 

z(O, µ) = z0 , s(O, µ) = µs0 , x(O, µ) = x0 

which are situated in the O(µ) vicinity of switching surface. Following [3],[8] let us 
increase in 1/ µ times the neighbourhood of discontinuity surface s = 0 in system 
(0.1) and i,ntroduce into it the fast time T = t/ µ and the variable e = s/ µ. Then 
we will rewrite the system (2.1) in form 

µdz/dt = A(µe, x)z + fi(µe, x) + Ki(µe, x)u(e), 

w 1 :·/dt = B(µe, x)z + h(µe, x) + K2(µe, x)u(e), 

dx/dt = D(µe, x)z + f3(µe, x) + K3(µe, x)u(e). 

(2.3) 

In this case the system which describes the fast motions in system (2.1) has 
analogously (1.3) the form 

dz/dr = A(O, x)z + fi(O, x) + Ki(O, x)u(e), 

def dr = B(O, x)z + h(O, x) + K2(0, x)u(e), 
(x - parameter). 

(2.4) 

Introducing into system (2.4) the new variables 7J = z+A-1(0, x )[Ji (0, x )+K1 (0, x )ueq(x )] 
we will have 

d7J/dr = A(O, x)7J + Ki(O, x)u(e, x), 

de/dr = B(O, x)'TJ + K2(0, x)u(e, x), 

u(e, x) = u(e) - Ueq(x). (2.5) 

Let's consider the point mapping of surface e = 0 into itself which made by system 
(2.5). The solution of system (2.5) with initial conditions 

has the form 

'TJ+(o, µ) = 'Tj, e+ = o; 
7J En+= {('TJ, µ) : B(O, x)7J + Ki(O, x)u(e, x) > O} 

Kt= Ki(l -ueq),i = 1,2 

'TJ+(r, 'TJ, x) = eAr('TJ + A-1Kt) -A-1 Ki, 

e+(r,7J,µ) =BA-1(eAr -I)('TJ+A-1K{)-

-(BA-1Ki - Ki)r. 

Here and always below the functions A, B, K 1 , K2 are computed at the point (0, x). 
For T = 0 de/dr = B(O, X)'TJ + Kt(o, x)ileq(e, x) and consequently e+(r, 'T], µ) > 0 at 
list for the small T > 0. From the other hand from the condition (i) it follows that 

lim e+(r, 'T), µ) = -oo. 
r-+-oo 
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This means that there exists Ti(r, 'TJ, µ)the smallest root of equation ~+(T1 ( r, 'TJ, µ), 'T/, µ) = 
0. Let's rewrite this equation in form 

BA-1(eATi - I)('TJ + A-1Kt) = 

= (BA- 1 Kt- Kt°)T1. 

It follows from the definition of Ti that d~+ / dr(T1)) :::; 0. This means that we ~an 
define the point mapping of the set n+ into the set 

where Ki = Ki(l + Ueq), i = 1, 2. Analogously the point mapping 

-(,.,, ) AT2 ( A-lK-) A-lK-'TJ J.2, 'T/, x = e 'TJ - 1 + 1 ' 

BA-1(eAT2 - I)('TJ - A1 K1 = 
= -(BA-1 K1 - K2)T2. 

transforms the set n+ into the set 

n* = {(ry, µ) : B(O, x)ry - Ki(O, x) > 0, x EX}. 

This means that the point mapping 'TJ-(T2, ry+(T1, 'TJ, x), x) describing by formula 

transforms the set r2* into itself. Let's mark ry* (x) the fixed point of the point 
mapping <I>(ry, x) which corresponds to the periodic solution (zo(r, x), ~o(r, x)). For 
ry* ( x) we have the formula 

ry*(x) = {2[I - eA(T1+T2)r1[I - eAT2] - -(1 - ueq)}A-1 Ki. 

Let's ,study the properties of :lveraged values of the periodic solutions 'T/O ( T, x), fo ( r, x) 

Taking into account that ~o(T(x), x) = 0 we will have 

fo(T(x), x) = 
{T(x) 

=lo Bryo(r, x)dr - K2[(1 + Ueq)T2 - (1 - Ueq)T1] = 0. 

This means that (1 + Ueq)T2 = (1 - Ueq)T1. The following lemma is true. 
Lemma 2.1. If there exists the T(x) periodic solution of system (2.5) then 

{T(x) 
lo 'TJo(r,x)dr =0. 
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{T(x) T2(x)-T1(x) 
lo u(rJo(r, x))dr = T(x) = Ueq(x). 

Remark. This lemma was obtained at the first time in [10] by using of transfer 
functions method. 

Let's turn back to the system (2.1). Iffor system (2.3) the conditions of Theorem 
1.2 are true there exists the isolated periodic solution (z(r, µ), e(r, µ), x(r, µ)) which 
corresponds to the periodic solution (77o(r, x), fo(r, x)) of system (2.5). Moreover 

{T(x) 
lo zo(r, x)dr = A-1 (0, x)(fi(O, x) + K 1 (0, x)ueq(x)). 

This means that the averaged equations which approximately describe the behavior 
of the slow motions in the system (2.1) are coincide with equations (2.2) for the 
sliding motions in the reduced system . 

2.2 Example 
Suppose that mathematical model of control system taking account of actuator 
behavior has the form 

µdz/dt = -z - u, ds/dt = z +(a+ x)u, a> 0 

dx / dt = - z + x - u. 

(2.6) 

(2.7) 

z, s, x E R, u(s) = sgns, µ - actuator time constant. Fast motions taking place in 
(2.6), (2.7) are described with the system 

dz/dr = -z - u, defdr = z +(a+ x)u, u = sgne. (2.8) 

System (2.8) is symmetric relatively to the point z = e = 0 so we shall consider as 
point mapping R(z, x) of domain z +a> 0 on the switching line~= 0 into domain 
z +a < 0 performed by system (2.8) withe > 0. Then 'W(z) = -1+e-T(z+1) 
where r is the smallest root for equation 

(1 - e-T)(z + 1) = (1 - a - x)r. 

The fixed point z* = 'W(z*(x), x) corresponding to periodic solution (2.8) is deter-
mined by the equation 'W(z*(x), x) = -z*(x). Then the fixed point z*(x) (amplitude) 
and the semiperiod T(x)) of the periodic solution are determined by equations 

2th(T/2) = (1- a - x)T, z*(x) = th(T/2). (2.9) 

Equations (2.9) with 0 < a + x < 1 have positive solution which corresponds 
to existence of 2T periodic solution in system (2.8). The slow motions averaged 
equation for system (2. 7) assumes the form 

dx/dt = -x 

This equation has the asymptotically stable equilibrium point x = 0. For x = 
0 a = ~ t~=. It follows from (2.9) that T ~ 3.83, .:\ ~ -0.07 and so system (2.6), 
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(2.7) has an orbitally asymptotically stable periodic solution which situated into 
the O(µ) neighbourhood of the switching surface. 

Changing positive feedback parameter a in system (2.6) we can design the fast 
periodic oscillations with desired frequency. Thus if we want to obtain in system 
(2.6) the periodic oscillations with frequency 2µ(T~O(µ)) and amplitude th(T /2) then 
from (2.9) we should choose the value of a according the formula a= 1 - 2 th(~/2). 

2.3 The System Containing The Relay Control Nonlin-
early 
Consider the control system which described by the equations 

µdz/dt = -z - u, ds/dt = z +au, 

dx/ dt = (z4 - z2 + j3)x, (2.11) 
where x, s, z E u(s) = sgn (s ), 0 < a, /3 < 1, µ is the actuator time constant. If we 
take µ = 0 in system (2.11) we will have 

ds/dt =(a - l)u, dx/dt = (u4 - u2 + (3)x (2.12) 

In system (2.12) the stable sliding mode exists. For motions in sliding mode in (2.12) 
both classical definitions of solutions according to the equivalent control method and 
Filippov are coincide. This motions are described by the equation dx / dt = (3x. They 
are unstable for j3 > 0. 

At the same time if 0 <a < 1 in system (2.11) the fast periodic solutions occur. 
Let us mark z( T) the first coordinate of periodic solution (2.8) by x = 0. If a and j3 
are selected so that 

{T(xo) 
-1 =Jo [z4(T) - z2(T)]dT < -/3 < 0 

the averaged equation has the form dx/dt = -(t-j3)x. Consequently system (2.11) 
has stable periodic solution in 0(µ) neighbourhood of the point s = x = 0. This 
mea:.1s that the general case averaged equations no~ coincide with equations of the 
equivalent control method and Filippov determination of solution. Moreover the 
introduction of positive feedback was used for transition from one vector of convex 
closure of the right hand part to the other one and for giving the system desired 
dynamic properties. 

3. Eigenvalues Assignment in Averaged Equa-
tions using Dynamics of Actuators 

3.1 Problem Formulation 
Let us suppose that the behavior of control system is described with the state vector 
(s, x) (s ER, x E Rn) is described with equations 

s = Ais + A2x + biu(s), x = A3s + A4x + b2u(s), (3.1) 
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where the discontinuous control law has been designed in form u( s) = sgn ( s) Let 
us suppose that this control law ensure the stable sliding mode on surface s = 0. 

Then the motions in sliding mode in system (3.1) are described by the equations 

(3.2) 

For eigenvalues assignment in system (3.2) in [17] was proposed to extend the 
state space by using of additional dynamics and then to solve the problem of eigen-
values assignment in extended state space. 

In [15] was considered the problem of sintrol for the slow motions equations for 
systems which describe the behavior of the sliding mode systems with fast actuators. 
It was suggested to introduce the fast variable in equation for switching surface. This 
approach ensures the existence of first order sliding mode in complete system. For 
such systems in [5] the composite control method ( see [6]) was used. 

We suggest to use the dynamics of actuators which is present in system for 
control of motions in (3.1). Proposed algorithm is based on the theorem 1.2. It is 
necessary to mark that in this case we can use only slow coordinates of state-vector 
for control design and we can solve the eigenvalues assignment problem in space of 
sliding mode equations. 

3.2 The Eigenvalues Assignment in Averaged Equations 
Let us suppose that the complete model of control system allowing to take into 
account the fast actuator dynamics has the form 

µz = Biz+ B2s + B 3x +div 

s = B4z + Bss + B5x + d2v, x = B1z + Bss + Bgx + d3v. (3.3) 

where z E Rm, v E Rl, µ is actuator time constant. Now we suppose that the 
conditions 

rank ( ~~ ) ~ 2, 

rank di ~ 2, m ~ l ~ 2 (3.4) 

are held. 
The conditions (3.4) mean that the discontinuous control is transmitted to the 

plant through actuators and the dimension of state vector of actuators is more than 
dimension of control vector. 

Ignoring actuator dynamics , having accepted that µ = 0 and expressing z 
according to the formula z = -B"1i(B2s + B3x +div) we obtain 

s =(Es - B4B1iB2)s + (B6 - B4B1i B3)x + (d2 - B4B11di)v (3.5) 

x =(Es - B1B1iB2)s + (Bg - B1B11 B3)x + (d3 - B1R11di)v. 

Let us suppose that in the case when the control law has been designed in 
the form v = Ku(s) (K,u(s) = sgns is constant vector), systems (3.5) and (3.1) 
coincide. 
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Proposed algorithm uses theorem 1.2. We propose to use the control law in the 
form 

v=Ku(s)+w. (3.6) 

;_,From theorems 1.2 it follows that slow motions in (3.3) are described by the 
equations 

x = (A4 - b2b11 A2)x - [d3 - B1b11(d2 - B4B11d1)]w (3.7) 

Assume that 
D.1.M atrices 

are controllable. 

w=Lx 

Then, choosing the control vector in form thew= Lx, we can solve the eigenvalues 
assignment problem for (3.7). Then if the conditions of Lemma 2.1 are fulfilled the 
equations (3.7) coincide with averaged equations which approximately describe the 
slow motions in a small neighbourhood of the switching surface of system (3.3). 
To use this algorithm it is necessary to ensure existence and stability in the first 
approximation of periodic solutions of the system 

(3.8) 

describing the fast motions in (3.3) in the small neighbourhood of the equilibrium 
point x = 0 of averaged equation (3.7). 

To formulate those sufficient conditions consider the point mapping R(z) of the 
domain 

O* = { z : B4z - d2K > 0, z E Rn} 

on the surface s = 0 into itself, given by the formulae 

R+(z) = eB1 r 1 (z + B11d1K) - B11d1K, 

R(z) = eB1 r 2 (R+(z) - B11d1K) + B11d1K, 

where Ti, T2 are the smallest positive roots of the equations 

B4B11(eBiri - I)(z + B11d1K) = (B4B11d1 - d2)KT1, 

B4B11(eB1 r 2 - I)[eB1 r 1 (z + B11d1K) - -2B11d1K] = -(B4B11d1 - d2)KT2. 

Taking into account the symmetry of system (3.1) for u(s) =sign (s) we can rewrite 
the conditions of existence of the fixed point in the form R+(z*) = -z*. Then 

z* =[I+ eBiTtl(I - eB1T)B11d1K, 

where a semiperiod of desired periodic solution T > 0 is the smallest root of the 
equation 
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Then from theorems 1.2 it follows 
Theorem 3.1. Assume that condition D.1 is true and the conditions 
D.2 Re Spec Bi < 0. 
D.3. The point mapping R(z) has an isolated fixed point z* E D*. 
D.4. For Ai(xo) (i = 1, ... , m) the eigenvalues of the matrix ~~(z*) the inequali-

ties I Ai I -/:- 1 
are true. 
Then the slow motions in system (3.3) within the accuracy O(µ) are described 

by equation (3. 7} and there exists a matrix L which provides that the characteristic 
polygon of the matrix 

has desired form. 

3.3 Example 
Let us suppose that the state vector of control system is described by the equations 

8 = -u(s)/2, 

(3.9) 

and discontinuous control u( s) = -sign( s) has been designed. The motions in 
sliding mode in (3.9) are described by the equations 

(3.10) 

Spectrum of matrix in (3.10) is imaginary. Let us suppose that the discontinuous 
control u( s) is transmitted to the plant with the help of actuators which behavior is 
described by variables zi, z2 and the complete model of the system has the following 
form 

µzi = -Zi +Vi - Xi, µz2 = -zi + V2, 

8 = z2 + v2/2, ±1 = x2, ±2 = z1. (3.11) 

It can be easily seen that in the case where we suppose that vi = v2 = -signs, 
system (3.11) takes the form 

µz1 = -z1 - signs - xi, µz2 = -z2 - signs, 

s = z2 + 1/2sign s, xi= x2, ±2 = z1. 

and slow motions in it are described by system (3.10) within accuracy O(µ). 
Let's show that for system (3.11) the conditions of theorem 3.1 are fulfilled. 

Consider the point mapping R+(z) of the domain 

D* = {(z,x): z-1/2 > O} 
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on the surface s = 0 into the domain n- = {(z, x) z2 - 1/2 > 0,} made by the 
system 

dz1/dr = -z1 - signs, dz2/dr = -z2 - signs, deJdr = z2 + l/2signs. (3.12) 

The point mapping R+(z) of the domain O* into the domain n- = {z: z2 +1/2 < O} 
made by the system (3.12) has the form 

where r is the smallest root of the equation (1 - e-r)(z2 + 1) = r /2. System (3.12) 
is symmetric with respect to the point (0, 0) and consequently the condition of 
existence of fixed point z* corresponding to desired periodic solution of (3.12) takes 
the form R+(z*) = -z*. Then z* and the semiperiod T satisfy the equations z2 = 
th(T /2), 2th(T /2) = T /2 with the solution z2 = zi ~ 0, 95, T ~ 3, 83. Moreover 

BR+ (z*) = ( - - 0, 07 O ) 
8(z1, z2) 0 -0, 07 

This means that for system (3.12) the conditions of theorem 1.2 are fulfilled and 
the slow motions in (3.12) are described by averaged equations (3.10). This means 
that for eigenvalues assignment in system can use the control law in the form 

Assume that for our goal the desired characteristic polygon of averaged equations 

(3.13) 

has the form 
A.2 + a'A. + {3, a, f3 are constants. (3.14) 

This means that choosing li = 1- {3, l2 = -a, we can ensure that the characteristic 
polygon of averaged system (3.13) has the form (3.14). 
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