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1. Introduction

Large inhomogeneous interactive networks play an increasing rôle in many technologically

relevant areas of modern technology such as communication networks, processor networks, and

neural networks. As the sizes of available systems is increasing rapidly, it becomes more and more

important to gain analytical control over the functioning of such systems. As is evident from many

of the contributions to this volume, a probabilistic approach to such systems is most promising,

and in particular methods coming from the theory of large deviations and statistical mechanics

appear to provide a natural approach to tackle such questions.

In the present review we will focus on a class of models coming from the theory of neural

networks and that generalize what is know as the Hop�eld model [Ho] of an autoassociative memory.

These models have been heavily investigated over the last 20 years both on the level of theoretical

physics and, more recently, of rigorous mathematics. They are thus well suited to explain the use of

the formalism of statistical mechanics and thermodynamics in the context of disordered networks,

and the purpose of these notes is to give an overview of the results achieved so far in this line.

Our aim in this text is to be as understandable as possible also to the non-expert. Thus, while

we will present results that are proven rigorously, we will be somewhat informal, explaining and

paraphrasing results occasionally rather than stating theorems in a technically precise form. In the

same spirit, proofs will not be given but only the main ideas explained. We hope to provide in this

way an easily readable text that could serve as a �rst introduction to the �eld. A good source for

technically more detailed expositions is the recent collection of reviews [BP]. Good reviews on the

physical and biological aspects of the �eld are for instance [A,HKP,GM,MR,DHS].

Let us begin with a short presentation of the original Hop�eld model. This model is intended to

describe in a very simpli�ed way the interaction of neurons in the cortex in the process of retrieval of

memorized information1. Each neuron, i, is supposed to have essentially two states, active (\�ring")

and passive (\non-�ring") and is thus represented by the binary variable �i 2 f�1; 1g. Let N be

the total number of neurons in the system. It is known that neurons communicate with each other

by sending (\�ring") electrical impulses over the connecting dendrites. The �ring intensity depends

on the activation state of the neuron and a given neuron will change its state with time according

to the information received from the other neurons. The point now is that the connections between

di�erent pairs of neuron do not have identical properties. Rather, the response of neuron i to

neuron j depends on a variable Jij , and the collection of these variables represents the memorized

information in the network. Note that Jij may represent both the fact whether or not there exists

1 We should note that the dynamic considered here do not really model the behaviour of actual biological neural

networks in detail. A model that re
ects more of the neural reality was studied for instance by Turova [Tu].
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a dendrite connecting neuron i with neuron j, and the properties of this connection (\synaptic

e�ciency"), if it exists. The original model of Hop�eld assumes full connection, i.e. each neuron

is connected to each other, but we will discuss variants of the model where each neuron is only

connected to a small (random or deterministic) fraction of the others. Given the set of values Jij ,

the time evolution of the system is now modeled by a (discrete or continuous time) Markov process

where the transition rates for neuron i to change its state at time t depend on the state of the other

neurons through the variable hi(t) �
PN

j=1 Jij�j(t). More precisely, in the discrete time case the

process is described as follows: We start with some initial con�guration �i(0) = �i, i = 1; : : : ; N .

At time t = n we �rst select a neuron i at random and set

�i(n) =

�
+1; with probability p(�i(n� 1); hi(n� 1))

�1; with probability 1� p(�i(n� 1); hi(n� 1))
(1:1)

(Such a dynamic is called \asynchronous", as opposed to a \synchronous" dynamic, where all

neurons change their state simultaneously at the same instant. We stick to the asynchronous case

here).

Finally, we have to choose the functions p(�i; hi). One possibility would be a deterministic

dynamic2where

p(�i; hi) =

�
1; if hi � 0

0; if hi < 0
(1:2)

Hop�eld observed that if the dendritic couplings are symmetric3, i.e. Jij = Jji, then this deter-

ministic dynamic follows the gradients of the function

HN(�)[J ] � �
1

2N

NX
i;j=1

Jij�i�j (1:3)

(the choice of the factor 1
2N

is of course arbitrary at this point but will become clear soon). The

crucial point of this observation is that HN(�)[J ] looks like the Hamiltonian of a mean �eld model

for a spin system with inhomogeneous interaction Jij . More precisely, since we will see that the

dendritic interactions will be modeled by a collection of random variables and that they will be

allowed to take both positive and negative values, this spin system will be quali�ed as a so-called

\spin glass". This observation in Hop�eld's 1982 paper certainly sparked the growing interest of

the statistical mechanics community in models of neural networks.

2 For a more extensive discussion of the dynamic of the Hop�eld model in general, see the paper by Malyshev

and Spieksma [MS].
3 It has been argued frequently that this symmetry assumption is unrealistic in the context of biological systems.

One should therefore not forget that there are many systems that cannot be treated immediately with the methods

we describe in this paper.
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Once a Hamiltonian is seen to appear, it is quite natural to introduce a non-deterministic

dynamic in such a way that the corresponding invariant measure is the Gibbs measure for this

Hamiltonian with inverse temperature �. This can be achieved e.g. by choosing

p(�i; hi) =
e�hi=2

2 cosh(�hi=2)
(1:4)

In fact, with this choice the Markov chain de�ned in (1.1) is reversible with respect to the Gibbs

measure

�N (�)[J ] �
e��HN (�)[J]

ZN;�[J ]
(1:5)

This is the reason why the statistical mechanics problem of studying the Gibbs measures for HN

is relevant for the analysis of the dynamic of the Hop�eld neural network. We will come back to

the relation between dynamic and equilibrium statistical mechanics later in more detail.

So far we have not said much about the dentritic e�ciencies Jij . Hop�eld's intention was to

model an autoassociative memory. That is to say, the dynamic of the network should allow to

associate initial conditions � (\presented images") to given, previously memorized images, called

\patterns" and conventionally denoted �� 2 f�1; 1gN , if the presented image is in some sense close

to a given patterns. To do this, the dendritic e�ciencies should be chosen as a function of a set of

patterns �1; �2 : : : ; �M that one wants to store. There are many elaborate ways of choosing J as a

function of these patterns, but Hop�eld's choice was the old Hebb's learning rule

Jij =

MX
�=1

�
�
i �

�
j (1:6)

With such a choice, one wants to answer the basic question: For which values of the parameter

� and for which values of M does the above Markov chain function as a memory, i.e. when does

�(0) � ��, for some �, imply �(t)! ��, as t " 1, or at least �(t) � �� for \most of the time" (at

least as long as t is not astronomically large). Of course the answer to this question may depend

on the speci�c patterns stored. In principle, we would want an a�rmative answer for all possible

patterns, but some re
ection shows that this will hardly be possible. On the other hand, if N is

large, there are enormously many patterns, and we may be willing to accept that for a small subset

of patterns that we are not likely to select, the memory does not work. To make such statements

precise, it is natural to construct a probabilistic model for the possible choice of the patterns. The

most simple one is to assume that all patterns are chosen independently and each possible pattern

has the same probability to be chosen. This leads to the assumption that �
�
i are independent

identically distributed random variables and IP [�
�
i = �1] = 1=2. This is again Hop�eld's choice

and we will be mostly concerned with this situation here. But note that considerable work has been

done for di�erent choices of the distribution of the patterns (see e.g. [L1] and references therein).
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The Hop�eld model (the above setup will be sometimes called the \standard Hop�eld model")

has the special feature that it can be considered as a \mean-�eld model" in a very speci�c sense.

Namely, we can introduce the so called \overlap parameters"

m
�
N(�)[�] �

1

N

NX
i=1

�
�
i �i; � = 1; : : : ;M (1:7)

Then the Hamiltonian turns out to be a simple function of these parameters only

HN (�)[�] = �N

2

MX
�=1

(m
�
N (�)[�])

2 � �N

2
kmN (�)[�]k22 (1:8)

The overlap parameters play the rôle of \macroscopic variables", or order parameters, in this

model. The general principle of the thermodynamic formalism is to deduce from a probabilistic

description of the microscopic variables (the �i in our case) the deterministic laws (both dynamical

and analytical) of the macroscopic observables. The speci�c form of HN helps greatly to make this

program feasible. However, contrary to conventional \mean �eld models", there are two essential

di�culties we have to deal with here: First, the macroscopic observables are random functions of the

microscopic ones, and second in the situation we are most interested in, the number of macroscopic

variables, M , depends on the size, N , of the system, and tends to in�nity. This is due to the fact

that in the memory context, one of our main questions is how many patterns a network can store!

Hop�eld observed in numerical simulations that the maximal number scales likeM(N) = �N , with

� � 0:14 (in the case of deterministic gradient dynamic).

The �rst part of this review will be devoted to these mean �eld models. As we said earlier,

the assumption of full connectivity of the network is frequently unrealistic. One would thus like to

study models with some geometric structure. We will discuss two variants of the Hop�eld model

that take this into account:

Dilute Hop�eld model: This model can be viewed as a Hop�eld model on a random graph.

Consider independent random variables �ij = �ji, i � j, that take values in f0; 1g, with IP [�ij =

1] = p(N), where we may allow p(N) to go to zero as N tends to in�nity. The Hamiltonian for this

model is

HN(�)[�; �] = � 1

2p(N)N

NX
i;j=1

�ij

MX
�=1

�
�
i �

�
j �i�j (1:9)

Kac-Hop�eld model: Here we assume the neurons to be located on the vertices of a �nite subset

� of some lattice ZZd. We choose a deterministic function J
(i) and set

H�;
(�)[�] = �1

2

NX
i;j=1

J
(i� j)

MX
�=1

�
�
i �

�
j �i�j (1:10)
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Here 
 is a small parameter and the function J
(i) is supposed to be of the form J
(i) = 
dJ(
i),

with J(x) some �xed function that has compact support or decays rapidly (e.g. J(x) = e�jxj, or

J(x) the indicator function of the unit cube). The Kac-Hop�eld model is suited to investigate

properties of the system on a mesoscopic scale which makes it particularly interesting. It has

received only little attention so far, although it was introduced already in 1978 by Figotin and

Pastur [FP3]. We will discuss in detail some recent progress in this �eld.

The remainder of this paper is organized as follows. In Section 2 we introduce a class of

generalized random mean �eld models, discuss the basic questions to be studied and introduce

the main mathematical tools used for their analysis. In Section 3 we present the results obtained

in this way for the Hop�eld model. In Section 4 we review some results obtained for the dilute

and the Kac-Hop�eld models. Finally, in Section 5, we give a brief historical outline of the main

developments that have lead to our present status of understanding of these models.

2. Mean �eld models: Thermodynamic formalism

2.0 Generalized random mean �eld models. In this section we want to discuss the thermo-

dynamic formalism for a class of models that somewhat generalize the Hop�eld model [BG5]. We

consider a con�guration space SN = f�1; 1gN , and a family of linear random maps �� : SN ! IR,

� 2 IN , de�ned on some abstract probability space (
;F ; IP ). De�ne

m
�
N (�)[�] �

1

N
(��; �) (2:1)

where in coordinates (��; �) � PN
i=1 �

�
i �i. Let EM be a real valued function on IRM . We will

assume that EM is non-negative, convex and essentially smooth [Ro] (i.e. its gradient diverges on

the boundary of its domain). We can now de�ne a Hamiltonian

HN;M(�)[�] � �N

2
EM (mN(�)[�]) (2:2)

where EM (mN(�)[�]) � EM

�
m1
N (�)[�]; : : : ;m

M
N (�)[�]

�
. It is clear that the standard Hop�eld

model is an example of such a system, but neither the dilute Hop�eld model not the Kac-Hop�eld

model fall into this class. An important feature in these models is that there are two parameters, N

and M , which both should be thought of as large. In fact, we will be interested in the asymptotic

behaviour as N tends to in�nity withM =M(N) a given function that tends to in�nity. The most

interesting case is M(N) = �N .

Given such a Hamiltonian, we can de�ne the �nite volume Gibbs measures by

��;N;M (d�)[�] =
e��HN;M (�)[�]

Z�;N;M [�]

NY
i=1

q(d�i) (2:3)
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where q is the a priori distribution on f�1; 1g of the single spin, e.g. q(�1) = 1=2. We write IE�

for the expectation with respect to this a priori measure. The partition function Z�;N;M [�] is given

by

Z�;N;M [�] = IE�e
��HN;M (�)[�] (2:4)

In models of our type the �nite volume Gibbs measures can be reconstructed from the distribution

of the overlap parameters,

Q�;N;M (m)[�] � ��;N;M (fmN (�)[�] = mg) (2:5)

We call Q�;N;M the induced measures.

Remark: We would like to stress at this point that while the Gibbs and induced measures are

equivalent in �nite volume, this is not necessarily true if one passes to the in�nite volume limits.

The reason is that the natural topology on the spin space in the in�nite volume limit is the product

topology, and the same is true on the space IR1 of overlaps. But the maps mN : SN ! IRM are

not uniformly continuous with respect to these topologies as N " 1. This point has to be kept in

mind when discussing in�nite volume limits.

The measures Q�;N;M can be expected to have large deviation properties. In fact, if M is kept

�xed as N " 1, this is not very di�cult to verify and has been the object of intensive study in the

early 80's [vHvEC,vH1,GK,vHGHK,vH2,AGS2,JK,vEvHP].

The study of the induced measures can be seen both as a tool to get insights in the Gibbs

measures and as an end in itself. Namely, we might say that the knowledge of the overlaps of a spin

con�guration with all the stored patterns gives su�cient criteria for the recognition of a pattern in

the retrieval process.

2.1 Mean �eld dynamics. For �xed N and M and �xed �, we denote by WN;M [�] the set

WN;M [�] �
�
x 2 IRM

��9�2SN : x = mN (�)[�]
	

(2:6)

We now de�ne the (discrete time) Markov chain xN (n), n 2 IN with state space WN;M with

transition matrix

P (yjx) =

8>><>>:
K
h
Q�;N;M (x�2�i=N)[�]

Q�;N;M (x)[�]

i1=2
; if y = x� 2�i=N for some i

1�K
PN

i=1

P
s=�1

h
Q�;N;M (x+s�i=N)[�]

Q�;N;M (x)[�]

i1=2
; if x = y

0; else

(2:7)

where K must be chosen such that P (yjx) � 0 for all x; y 2 WN;M . Obviously, this chain is

reversible w.r.t. Q�;N;M . Note that this dynamics is not identical to the dynamics induced on the

overlaps by a Markovian Glauber (spin-
ip) dynamic reversible w.r.t. the Gibbs measures (this
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induced dynamics is generally not Markovian), but it is trying to imitate this by a Markov process

as closely as possible. It seems reasonable to expect that the two dynamics actually have quite

similar long-time behaviour, but as far as we know nothing is known rigorously about this issue. In

any case, we �nd it certainly interesting to study this mean-�eld dynamics by itself. It is suggestive

to de�ne

F�;N;M (x)[�] � � 1

�N
lnQ�;N;M (x)[�] (2:8)

The above process can then be seen as some kind of random walk (on IRM ) in a landscape described

by F�;N;M . One would expect the process to prefer to stay in the \valleys", i.e. the minima of

F�;N;M and to take long times to get from one valley to another. This intuition is mainly based

on the following simple but fundamental observation. Let �yx > 0 denote the �rst time that the

process XN (t) starting at point y at time t = 0 hits the point x at some later moment.

Lemma 2.1: Let xN (t) be a Markov process with state space WN;M that is reversible with respect

to the measure Q�;N;M . Let P denote the law of this process. Then

P [�yx < �xx ] = e�N [F�;N;M (x)�F�;N;M (y)]P
�
�xy < �yy

�
(2:9)

for any x; y 2 WN;M .

This lemma says that the probability that the process starting from x hits y before it returns

to x is related to the probability of doing the opposite, namely to hit x before y when starting in y

by a factor e�N [F�;N;M (x)�F�;N;M (y)]. In particular, if x is in a valley and y on a mountain, than the

probability to reach y from x without an intermediate return to x is very small, namely of the order

exp(��N). It is not di�cult to deduce from Lemma 2.1 that in such a case, the expected time to

reach y from x is at least of order exp (�N [F�;N;M (y)� F�;N;M (x)]), i.e. exponentially large.

This leads to the general picture that any local minimum of the function F�;N;M surrounded by

walls of height � should trap the process for times of order exp(�N�). Moreover, the process spends

most of its time near the deepest minima of F�;N;M . This picture is clear and well understood in

the case of one single order parameter. The corresponding analysis of the long time behaviour

was performed in [CGOV]; recently, a more precise analysis that also computes the polynomial

corrections to the exponential asymptotic was given by Eckho� [Eck]. In higher dimensions, we

are not aware of any systematic analysis of the situation. The problem here is that on the one

hand, one-dimensional methods, based on exact solutions of the �nite di�erence equations cannot

be applied. On the other hand, other techniques (see. e.g. [OS]) require a �nite state space,

while in our situation the number of points in the state space depends on the large parameter. A

�rst analysis of the problem of exit times from domains containing a local minimum in the case of

�nite, N -independent dimension is carried out in [E1]. The expected behaviour on the level of the
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exponential asymptotic is con�rmed. To deal with the case where the dimension M increases with

N will require considerably more work and more precise estimates. Such an analysis is under way.

If we take the picture outlined above for granted, we see that the system functions in the

desired way as a memory, if for large N , the function F�;N;M has its deepest minima near the

points mN (�
�). This motivates why we want to check under what conditions on the parameters

such a statement is true.

2.2 Large deviations Above we have motivated why the functions F�;N;M (y) are of interest in

understanding the long time dynamics of our model. However, their de�nition in (2.8) is not very

convenient, mainly because they can only be de�ned on the discrete, N -dependent sets WN;M . It

is thus suitable to de�ne the smoothed out version of this function on all of IRM by

f�;N;M;�(x)[�] � �
1

�N
lnQ�;N;M (B�(x)) [�] (2:10)

where B�(x) denotes the ball in IRM of radius � centered at x. In the case M <1 independent of

N , we can immediately ask whether

lim
�#0

lim
N"1

f�;N;M;�(x)[�] � f�;M (x)[�] (2:11)

exists. If so, the family of measures Q�;N;M satis�es a large deviation principle with rate function

f�;M (x)[�]. It is not hard to establish that under our assumptions on the energy function E and

under mild assumptions on the distribution of �, this limit will exist for almost all � and, moreover,

the limit will be independent of �.

Can such a result be extended to the case where M depends on N? The real question

here is how we want to extend it. The problem here is that the domains where the functions

f�;N;M(N);�(x)[�] are de�ned now again depend on N . An obvious way out is to study the distri-

butions of only �nitely many of the overlap parameters at a time, i.e. to �x any �nite set I � IN

and to de�ne functions

f I�;N;M;�(x)[�] � �
1

�N
lnQ�;N;M

�
BI
�(x)

�
[�] (2:12)

where now x 2 IRI and BI
�(x) is a ball in IRI . We can now ask whether for all I these functions

converge to a limit as N " 1 and � # 0. This has been proven to be the case in the standard

Hop�eld model under the condition that limN"1M(N)=N = 0 in a rather recent paper by Bovier

and Gayrard [BG3]. The rate functions are again almost surely independent of � and are given in

[BG3] in terms of some (rather horrible) variational formula.

While such a result is esthetically appealing, it is in some sense not very satisfying for under-

standing the functioning of the network. For one thing, the case M = o(N) is not so interesting
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(for we expect the memory to function with a much higher load), for the other we are in a way

more interested in knowing how the rate function looks like then to know that it exists. Also, for

the study of the Gibbs measures themselves, we need to have large deviation estimates in the `2

sense and not in the product topology.

There are two ways out of this di�culty. The �rst is to avoid the use of large deviation

techniques altogether and to make use of what is called the \Hubbard-Stratonovich transformation".

This technique only works in the case where EM is a purely quadratic function, and thus in

particular in the case of the standard Hop�eld model, where it was used in the original papers of

Figotin and Pastur [FP1,FP2] for the �rst time. It is based on the simple observation that

ex
2=2 =

1p
2�

Z
dze�z

2=2+xz (2:13)

By this trick one can show, if EM (m) = 1
2
kmk22, that the measure

eQ�;N;M [�] � Q�;N;M [�] ?N
�
0; (�N)�11I

�
(2:14)

(where ? denotes the convolution andN (0; a1I) theM -dimensional gaussian measure with mean zero

and covaraince matrix a1I) is absolutely continuous with respect to the M -dimensional Lebesgue

measure with density

d eQ�;N;M [�](z)

dMz
=

e��N��;N;M (z)[�]

Z�;N;M [�]
(2:15)

where

��;N;M (z)[�] � kzk22
2

� 1

�N

NX
i=1

ln cosh (�(�i; z)) (2:16)

and (�i; z) �
PM

�=1 �
�
i z�. The measures eQ�;N;M [�] can be studied using the Laplace method (in a

space of growing dimension) by studying the function ��;N;M(z)[�]. The information obtained can

be used to deduce properties of the induced measures and the Gibbs measures.

While this approach is very elegant and simple, the limitation to purely quadratic functions is

rather annoying and makes it appear to be some cheap trick. Therefore we have devised in [BG5]

an alternative approach based on large deviation ideas that works in more generality.

Let us de�ne the function

��;N;M (x) = �EM (x) + (x;rEM (x))�L�;N;M (rEM (x)) (2:17))

with

L�;N;M(t) � � 1

�N
ln IE�e

�(t;mN (�)[�])

= � 1

�N

NX
i=1

ln cosh (�(t; �i))

(2:18)
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Then

Theorem 2.1:

(i) Let x� be a point in IRM such that for some �0 > 0, for all x; x0 2 B�0(x
�), krEM (x) �

rEM (x0)k2 < ckx� x0k2. Then, for all 0 < � < �0

1

N
logZN;�(x

�) � ���;N;M(x�) +
1

2
c�2 (2:19)

(ii) Let x� be the position of a local extremum of ��;N;M [�]. Then,

1

N
logZN;�(x

�) � ���;N;M(x�) + 1
N
log(1� 1

�2N
�L�;N;M(rEM (x�))) (2:20)

The proof of this theorem can be found in [BG5].

Remark: Note that in the case where EM is quadratic, the function de�ned in (2.17) is the same

as the one bearing the same name that appears in (2.15). This is no coincidence.

2.3 Laplace method. Theorem 2.1 is just made to su�ce to control concentration properties of

the measures Q�;N;M \near" the minima of the function ��;N;M , when N , but also M becomes

large. Here what will be \near" will depend explicitly on the speed of divergence of M . The

idea of the proof is very simple: Let A � IRM be such that the absolute minimum of ��;N;M is

contained in it together with a su�ciently large neighborhood to use the lower bound (2.20) to

bound its probability from below. Then cover the complement of A with su�ciently small balls

(small enough to make the error term c�2 in (2.19) unimportant). Use the upper bound to estimate

the probabilities and sum up. Compare the two contributions. If A wins, the measure concentrates

on A. It will win if the volume of the level sets of ��;N;M do not grow too fast.

A precise version of the result is the following Theorem:

Theorem 2.2: Let A � IR1 be a set such that for all N su�ciently large the following holds:

(i) There is n 2 A such that for all m 2 Ac,

��;N;M (m)���;N;M (n) � C� (2:21)

for C > 0 su�ciently large.

(ii) �LN;M(rEM ) � KM for some K <1, and BK
p
�(n) � A. Assume further that � satis�es

a tightness condition, i.e. there exists a constant, a, su�ciently small (depending on C), such

that for all r > C�

` (fm j��;M;N (m)� ��;M;N(n) � rg) � rM=2aMM�M=2 (2:22)
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where `(�) denotes the Lebesgue measure. Then there is L > 0 such that

Q�;N;M (Ac) � e�L�M (2:23)

and in particular

lim
N"1

Q�;N;M (A) = 1 (2:24)

Remark: Condition (2.22) is veri�ed, e.g., if � is bounded from below by a quadratic function.

2.4 Symmetry. We have seen that under reasonable conditions we can show that the induced

measures concentrate on a small neighborhood of the set where the function � is not by more than

�C larger than its absolute minimum. The most interesting situation for us is when this set consists

of several disjoint connected components. This corresponds to the case of \phase transitions" or, in

the memory context, memorization of several patterns. If such a situation occurs we would like to

be able to compare the relative masses of the individual connected components in order to decide

which are the most important, viz. most stable ones. Due to the symmetry of the disorder variables

(e.g. in the standard Hop�eld case where their distribution is invariant under the permutation of

all the indices i and �), one can also expect that the set A breaks up into connected subsets Ak

whose masses have the same probability distribution, in particular we may have

IE lnQ�;N;M (Ak) = IE lnQ�;N;M (Al) (2:25)

for all indices k; l. In such a situation we would like to assert that with overwhelming probability, the

random quantities lnQ�;N;M (Ak) for di�erent indices k di�er from each other only by terms small

compared to N . Thinking about this problem one soon realizes that in the case � > 0, it cannot

be solved by elementary means, simply because the errors in our large deviation estimates will

always be bigger than the random 
uctuations we want to control. This di�culty was responsible

for the fact that this problem remained unsolved for quite some time. In [BGP3] the crucial idea

to use concentration of measure techniques that give exponential estimates on 
uctuations was

introduced and used to prove such a result in the Hop�eld model. Since then, the proof was re�ned

and streamlined, mainly due to the use of a new general theorem on measure concentration that

was proven by Michel Talagrand [T1] (presumably in view of applications to the Hop�eld model).

Using his theorem, we proved in [BG5] the following general theorem that is valid for a large class

of the models we discuss here.

Theorem 2.3: Let �
�
i be bounded i.i.d. random variables with mean zero and variance 1. Let

Ak be a family of sets that verify (2.25) and for which for some constant c <1

Q�;N;M (Ak) � e�c�N (2:26)
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with probability greater than 1� e�M . Then there is a �nite constant 0 < C <1 such that for all

1=C > � > 0, for any k; l,

IP
h

1
�N

jlnQ�;N;M (Ak)� lnQ�;N;M (Al)j � C�1=4 + x
i
� Ce�M + Ce�

x2�2N
C (2:27)

We see that this theorem implies the desired result by choosing � and x of the form N��

with e.g. � = 1=5. Let us also note that in the case of the standard Hop�eld model, one can get

somewhat sharper estimates (see [BG4]).

We will not give the proof of this theorem which can be found in [BG5]. Very roughly, it consists

of showing that the quantities 1
�N

lnQ�;N;M (A) are Lipshitz continuous as functions of the NM

random variables �
�
i , and then to use Talagrand's general theorem on the concentration properties

of Lipshitz functions of bounded i.i.d. random variables.We stress that this is an extremely powerful

tool in the analysis of 
uctuations of random systems which has not received su�cient appreciation

yet.

3. Some speci�c results

In the previous section we explained how to reduce the analysis of the induced measures to

the study of the explicitly calculable random function �. A lot of our e�orts have to go into this

analysis for speci�c models. Our speci�c results so far concern the cases where EM (x) = 1
p
kxkpp

for integer p � 2, spin space S = f�1; 1g and i.i.d. bounded random variables �
�
i . In this case,

the results can be summarized by saying that if the corresponding mean �eld free energy for the

single pattern model has two degenerate minima �m�, then, if M = �N with � su�ciently small

(typically we need
p
� < 
(m�)2, and 
 small enough), then the lowest minima of � are located in

the balls of radius c
m� around the points �m�e�, � = 1; : : : ;M , with overwhelming probability.

The most elegant and general strategy to prove such a statement is to �rst consider the averaged

function IE�N (x). One shows quite easily that its lowest minima are located precisely at the points

�m�e�, and with some more work one also gets bounds on the growth of the function away from

these minima. Only this part of the analysis depends on the details of the the function E. Then

one studies the 
uctuations of �N (x) around its average. Roughly speaking, one arrives at showing

that with probability close to one these are uniformly in x of order at most
p
�. The technique

used here relies on concentration of measure estimates together with \chaining", a technique well

known for instance from the analysis of the regularity properties of stochastic processes.

We will get estimates on 
uctuations uniformly inside ballsBR(x) �
�
x0 2 IRM j kx� x0k2 � R

	
of radius R centered at the point x 2 IRM .
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Proposition 3.1: Assume � � 1. Let f��i gi=1;:::;N ;�=1;:::;M be i.i.d. random variables taking

values in [�1; 1] and satisfying IE�
�
i = 0, IE(�

�
i )

2 = 1. For any R < 1 and x0 2 IRM and

x0 2 fsm�e�; s = �1; � = 1; : : : ;Mg, we have:

i) for p = 2 and � < 11=10, there exist �nite numerical constants C, K such that

IP

"
sup

x2BR(x0)

����� 1

�N

NX
i=1

fIE ln cosh(�(�i; x))� ln cosh(�(�i; x))g
�����

� C
p
�R(m� +R) + C�m� + 4�3(m� +R)

#
� ln

�
R
�3

�
e��N + e��

2N

(3:1)

ii) For � � 11=10,

IP

"
sup

x2BR(x0)

����� 1

�N

NX
i=1

fIE ln cosh(�(�i; x))� ln cosh(�(�i; x))g
�����

� C
p
�R(R+ kx0k2) + C�+ 4�3

#
� ln

�
R
�3

�
e��N + e��

2N

(3:2)

Remark: The proof of this proposition can be found in [BG5].

Having control over 
uctuations, the problem remains to study the behaviour of the average

function, IE��;N . Note that while this function is independent of N , it is still a function of M

variables and not entirely trivial to study. Fortunately, in the case of the standard Hop�eld model,

it is easy to see that the points �m�e�, are absolute minima of this function, and it is also not

hard to see that they are the only ones. However, to get strict lower bounds is already a non-trivial

matter that so far demands considerable work. We proved the following result in [BG5]:

Proposition 3.2: Assume that �
�
i are i.i.d. with IP [�

�
i = �1] = 1=2. Then, for all � > 1, there

exists a strictly positive constant C(�) such that

IE��;N;M(x)� ��;N;M (e1m�(�)) � C(�) inf
s;�
kx� se�m�(�)k22 (3:3)

The in�ma are over s 2 f�1;+1g and � = 1; : : : ;M .

With these ingredients one can now show easily that the induced measures are supported on

small balls around the points �e�m�, provided � is su�ciently small. We emphasize that the only

place where very speci�c properties of the model enter, and where work has to be done to generalize

is Proposition 3.2.
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The replica symmetric solution. The large deviation approach outlined above clearly can only

be expected to yield in some sense \qualitative" results, when � > 0. These are in nice agreement

with the predictions obtained with the replica method, but there appeared to be little hope that the

precise numerical predictions of that method could be reproduced. Almost surprisingly, however,

it turned out quite recently that at least some of the exact results of the replica approach can

be recovered by rigorous methods. The key additional idea here is to use the so-called \cavity

method", which is nothing but induction over the size of the volume. This method had been used

by physicists (see [MPV]) both in the SK-model and in the Hop�eld model as an alternative device

to derive the predictions of the replica method. The original implementation of this approach

involves numerous uncontrolled approximations, and as such is no more rigorous than the replica

method itself. However, with enough courage one might hope that a rigorous version of this method

could be derived. The idea to do this appears �rst in a paper by Pastur and Shcherbina [PS] in

the context of the SK-model, and later in a paper by the same authors and Tirozzi [PST] for

the Hop�eld model. These papers provide conditional results that link the validity of the replica

symmetric solution to self-averaging properties of some order parameter, without showing that

this property was ever satis�ed (there are also some steps in the chain of arguments that are not

easy to verify). This basic idea was reconsidered in a recent paper by Talagrand [T2]. Carrying

the induction method through with full control on all error terms (which he controlled in turn by

induction), and using the a priori estimates on the distribution of the overlaps obtained earlier, he

succeeded in proving that there exists a non-trivial domain of the parameters for which the replica

symmetric solution of [AGS] can be proven to be correct. Subsequently, we gave a di�erent proof

of this result, and some more consequences of it in [BG7] and we �nd it instructive to give a brief

outline of this approach (which takes up more closely some of the ideas in [PST]).

Suppose we wanted to construct, instead of the measure on the overlaps the original Gibbs

measures on the spin variables. Since the topology which we consider is the product topology on

the spins, to control the measures it is enough to consider any �nite subset I � IN and to compute

the probability that �i = si, for all i 2 I. We assume that � � I, and for notational simplicity we

put j�j = N + jIj.

Without loss of generality it su�ces to consider the measures �
(1;1)
�;�;� that are the Gibbs mea-

sures conditioned s.t. m�(�) � B�(m
�e1). Here � = c

p
�=m� is such that the induced measure

concentrate on this set. We are interested in the probabilities

�
(1;1)
�;�;�[!] (f�I = sIg) �

IE��nI e
1
2
�j�jkm�(sI ;��nI )k2

21Ifm�(sI ;��nI )2B
(1;1)
� g

IE�I IE��nI e
1
2
�j�jkm�(�I ;��nI )k2

21Ifm�(sI ;��nI )2B
(1;1)
� g

(3:4)
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Note that kmI(�)k2 �
p
M . Now we can write

m�(�) =
N

j�jm�nI(�) +
jIj
j�jmI(�) (3:5)

Then
1Ifm�(sI ;��nI )2B

(1;1)
� g � 1Ifm�nI (�)2B

(1;1)
�+

g

1Ifm�(sI ;��nI )2B
(1;1)
� g � 1Ifm�nI (�)2B

(1;1)
��

g

(3:6)

where �� � � �
p
M jIj
N

. For all practical purposes the distinction between �; ��, and �+ plays no

rôle whatsoever and we will ignore it for the purpose of this review. If we introduce the Laplace-

transforms of the measures Q and eQ
L(�;s)
N;�;�[!](t) �

Z
e(t;x)dQ(�;s)

N;�;�[!](x) ; t 2 IRM(N) (3:7)

and eL(�;s)
N;�;�[!](t) �

Z
e(t;x)d eQ(�;s)

N;�;�[!](x) ; t 2 IRM(N) (3:8)

it is not very hard to show (see [BG7] for details) that, with probability tending to 1 rapidly, one

has

(i)

�
(1;1)
�;�;�[!] (f�I = sIg) =

L(1;1)

�=I;�;�
[!](�0jIjmI(sI))

2jIjIE�IL
(1;1)

�=I;�;�
[!](�0jIjmI(�I))

+O(N�1=4)

(3:9)

and alternatively

(ii)

�
(1;1)
�;�;�[!] (f�I = sIg) =

eL(1;1)

�=I;�;�
[!](�0jIjmI(sI))

2jIjIE�I
eL(1;1)

�=I;�;�[!](�
0jIjmI(�I))

+O
�
e�O(M)

� (3:10)

where �0 � N
j�j�. Thus the computation of the marginals of the Gibbs measures is reduced

to the computation of the Laplace transforms of the induced measures at the random points t =P
i2I si�i, or, in other words, to that of the distribution of the random variables (�i;m), i 2 I.

Now it is physically very natural that the law of the random variables (�i;m) should determine

the Gibbs measures completely. The point is that in a mean �eld model, the distribution of the

spins in a �nite set I is determined entirely in terms of the e�ective mean �elds produced by the rest

of the system that act on the spins �i. These �elds are precisely the (�i;m). In a \normal" mean

�eld situation, the mean �elds are constant almost surely with respect to the Gibbs measure. In the
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Hop�eld model with subextensively many patterns, this will also be true, as m will be concentrated

near one of the values �m�e� (see [BGP1]). In that case (�i;m) will depend only in a local and

very explicit form on the disorder, and the Gibbs measures will inherit this property. In a more

general situation, the local mean �elds may have a more complicated distribution, in particular

they may not be constant under the Gibbs measure, and the question is how to determine this.

The approach of the cavity method (see e.g. [MPV]) as carried out by Talagrand [T2] consists in

deriving this distribution by induction over the volume. [PST] also followed this approach, using

however the assumption of \self-averaging" of the order parameter to control errors. Our approach

consists in using the detailed knowledge obtained on the measures eQ, and in particular the local

convexity to determine a priori the form of the distribution; induction will then only be used to

determine the remaining few parameters.

Let us write IE�N for the expectation with respect to the measures eQ�nI;�;h[!] conditioned on

B� and we set �Z � Z � IE�NZ. We will write IE�I for the expectation with respect to the family

of random variables �
�
i , i 2 I, � = 1; : : : ;M .

The �rst step in the computation of our Laplace transform consists in centering, i.e. we write

IE�N e

P
i2I

�si(�i;Z) = e

P
i2I

�si(�i;IE�N
Z)
IE�N e

P
i2I

�si(�i; �Z) (3:11)

The most di�cult part of the entire analysis is to show that (in a suitable regime of the parameters

�; �)

IE�N e

P
i2I

�si(�i; �Z) � e
�2IE�N

k �Zk22
P

i2I
�s2i (3:12)

i.e. that the centered variables (�i; �Z) are asymptotically independent gaussians with variance

IE�N k �Zk22. In our approach, this relies essentially on the fact, proven in [BG4], that in a certain

domain of parameters the function � is strictly convex on the support of our measures (with large

probability), from which (3.12) is easily deduced using the so-called Brascamp-Lieb inequalities

[BL,HS]. We cannot enter into the details of the proof here and refer the interested reader to

[BG7]. Since s2i = 1, we see that assuming (3.12), the second term in (3.11) is actually without

importance at the moment and the only quantities we need to control are the random variables

(�i; IE�NZ). These are obviously random variables with mean value zero and variance kIE�NZk2.
Moreover, the variables (�i; IE�NZ) and (�j ; IE�NZ) are uncorrelated for i 6= j. Now IE�NZ has

one macroscopic component, namely the �rst one, while all others are expected to be small. It

is thus natural to expect that for large N these variables will actually be close to a sum of a

Bernoulli variable �1i IE�NZ1 plus independent gaussians with variance TN �PM
�=2[IE�NZ�]

2, and

it is indeed possible, although far from trivial, to prove this. For the details see [BG7]. At this

stage we fully control the distribution of our random variables up to three unknown parameters

m1(N) � IE�NZ1, TN � PM
�=2 [IE�NZ�]

2
and UN � IE�N k �Zk22. What we have to show is that
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these quantities converge almost surely and that the limits satisfy the equations of the replica

symmetric solution of Amit, Gutfreund and Sompolinsky [AGS].

The proof of this fact relies �nally on induction over N , and we will not present any of the

details here.

Proposition 3.3: There exists an open set of the parameters �; � for which the following holds:

For any �nite I � IN

�
(1;1)
�;�;� (f�I = sIg) D!

Y
i2I

e�si[m1
��1i+gi

p
�r]

2 cosh
�
��i

�
m1

��1i + gi
p
�r
�� (3:13)

where the convergence holds in law with respect to the measure IP . fgigi2IN is a family of i.i.d.

standard normal random variables and f��1i gi2IN are independent Bernoulli random variables, in-

dependent of the gi and having the same distribution as the variables �1i . Moreover the constants

r;m1; q are nonzero solutions of the system of equations

m1 =

Z
dN (g) tanh(�(m1 +

p
�rg))

q =

Z
dN (g) tanh2(�(m1 +

p
�rg))

r =
q

(1� � + �q)2

(3:14)

Remark: Equations (3.14) determine the replica symmetric solution of [AGS]. The domain of

parameters where our proof works is essentially bounded by the three lines � = 0, � � c(m�)4,

� � c�. The last curve is due to our convexity requirement. This curve does not seem optimal, as

the results of Talagrand (that are not exactly the same as ours) are obtained on a larger domain.

Remark: Note that the Gibbs measures converge in law, and not almost surely, if � > 0. This

may appear as a rather unusual feature, however it should be seen as rather natural in the context

of strongly disordered systems. An extensive discussion of this issue is to be found in [NS] and also

in [BG7].

4. Beyond mean �eld: dilute and Kac models

From the point of view of statistical mechanics, the models discussed so far represent convenient

simpli�cations, but miss a crucial feature of the local structure of realistic systems. In fact, in

realistic models of statistical mechanics the interaction between the microscopic components of the

models depends rather strongly on their distance, and the most common models allow interactions

only between nearest neighbors. In the context of networks, what represent a realistic modeling
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of the network geometry is certainly less clear, however, it is obvious that the idealization of a

complete connectivity without any dependence of some kind of \distance" is realistic at best in

rather small systems. E.g., in the brain the number of neurons is of the order of 1010, while each

neuron is directly connected to at most about 105 � 106 others. One may describe such situations

in various ways that will certainly depend on the details of the system studied. I will not enter

into these modeling problems, but just mention two extreme cases: First, one may conceive the

underlying network as a random graph, modeled by a family of i.i.d. random variables �ij that take

the values 0 and 1 with probabilities p and 1�p, respectively. Note that it may be suitable to allow

p to depend on the system size N . The Hop�eld model on such a random graph is then simply

de�ned by the Hamiltonian

HN(�)[�; �] �
1

2pN

NX
i;j=1

MX
�=1

�
�
i �

�
j �i�j�ij (4:1)

As long as one is not interested in very dilute graphs, more precisely as long as one requires

limN"1 pN =1, and as long as one stays in the \retrieval phase", meaning here that M � �pN ,

this model exhibits a nice homogenization property, i.e. the Hamiltonian (4.1) is uniformly very

close to the one obtained by averaging over the variables �. Indeed, it was proven in [BG2] that

sup
�2SN

jHN;M [�; �](�) � IE� [HN;M [�; �](�)]j � cN

r
M

xN
(4:2)

with probability tending to one. Here IE� denotes the expectation w.r.t. the random variables �ij .

Thus for small load the dilute model behaves like the model on the homogeneous graph, while

the analysis in the strong load case seems hopelessly di�cult. More interesting things happen if

we study instead of the random graph a regular lattice. A particularly nice situation arises when

we consider the basic lattice ZZd and introduce long-range interactions. To be speci�c, e.g. choose

the function J
(i� j) � 
J
�

dji� jj

�
, and

J(x) =

�
1; if kxk1 � 1=2

0; otherwise
(4:3)

(Note that other choices for the function J(x) are possible. They must satisfy the conditions

J(x) � 0,
R
dxJ(x) = 1, and must decay rapidly to zero on a scale of order unity.

The interaction between two spins at sites i and j will be chosen as

�1

2

M(
)X
�=1

�
�
i �

�
j J
(i� j)�i�j (4:4)

and the Hamiltonian will be, for a �nite subset � � ZZd

H
;�(�)[�] = �1

2

X
i;j2�

M(
)X
�=1

�
�
i �

�
j J
(i� j)�i�j (4:5)
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Note that we anticipate, again, that the number of patterns can only be proportional to the local

connectivity, i.e. 
�d.

Such Kac-models have a long tradition in statistical mechanics. They were introduced in the

sixties by M. Kac [KUH] to provide a microscopic model for a rigorous derivation of the van der

Waals-Maxwell theory of the liquid vapor transition. Recently, there was an upsurge of interest in

these models mainly in connection with static and dynamic aspects of phase separation problems.

Kac models are also natural candidates to study disordered systems, and in particular the question

to what extend results in mean �eld theories are relevant for �nite dimensional system. Indeed, the

Kac version of the Hop�eld model had been introduced already by Figotin and Pastur [FP3]. More

recently, a number of di�erent disordered Kac models have been studied, notably the site diluted

model [Bod], and a spin glass [B].

In the Kac model one de�nes �nite volume measures with boundary conditions ��c by assigning

to each �� 2 S� the mass

�
��c
�;
;�[�](��) �

1

Z��c
�;
;�[�]

e��[H
;�[�](��)+W
;�[�](��;��c )] (4:6)

where Z��c
�;
;�[�] is the partition function and

W
;�[�](��; ��c) = �
X
i2�

X
j2�c

M(
)X
�=1

�
�
i �

�
j J
(i� j)�i�j (4:7)

represents the in
uence of the boundary conditions.

The classical type of result in Kac models is the statement that the large deviation rate

function converges to the convex hull of that of the corresponding mean �eld model (\Lebowitz-

Penrose theorem" [LP]). On this level, there is still no e�ect either of the boundary conditions nor

of the dimensionality of the lattice visible. In our case, de�ne

m�(�) �
1

j�j
X
i2�

�i�i (4:8)

and set, as in (2.12)

f I
;�;�;M(
);�(x)[�] � �
1

�j�j ln�
��c
�;
;�[�]

��
mI

�(�) 2 B�(x)
	�

(4:9)

In [BGP2] we proved the following Theorem:

Theorem 4.1: Assume that M(
) satis�es lim
#0M(
) = +1 and lim
#0 
M(
) = 0. Then,

for any �, and any �nite subset I, almost surely,

lim
�#0

lim

#0

lim
�"ZZ

f I
;�;�;M(
);�(x)[�] = convF
Hopf;I
� (x) (4:10)
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where F
Hopf;I
� (x) is the rate function of the Hop�eld model and convF denotes the convex hull of

the function F .

Much more interesting than such a global large deviation result, however, is the possibility in

Kac models to study the distribution of \local overlap pro�les". By this we mean the following: Let

us introduce a scale ` much bigger than one and much smaller than 1=
. Consider blocks bx � �

de�ned e.g. by bx � fi 2 ZZdj ki � `xk1 � `=2g. We will abuse notation and identify bx with its

label x. We then set

mx(�) �
1

`d

X
i2x

�i�i (4:11)

The key point is that with large probability the Hamiltonian of out model is close to a function of

the variables mx(�).

To see this, let us introduce the function

E`

;�(m) � �1

2
(
`)d

X
(x;y)2���

J
`(x� y)(m(x);m(y)) (4:12)

We write

H
;�(��) = 
�dE`

;�(m`(�)) + �H`


;�(��) (4:13)

We have exhibited a 
�d factor in front of E`

;�(m`(�)) to make clear the scaling involved in the

problem.

The following lemma is the basic result to control the block spin approximation.

Lemma 4.2: There exists a �nite constant c such that for all � > 0

IP

�
sup
�2S�


d

j�j j�H�(�)j � 
`(
)(c + �) + c
M(
)

�
� 16e

�� j�j

d

(4:14)

The proof of (4.14) can be found in [BGP2], for the case d = 1, but one readily sees that it

holds in arbitrary dimensions. Let us mention the important fact that since the parameter M(
),

`(
) and L(
) are chosen in such a way that �(
) � 
M(
) # 0, 
`(
) # 0 and 
L(
) # 0, it

follows from (2.9) and (2.10) that with IP -probability very close to one the errors of the block spin

approximations is of order a small parameter times the volume (expressed in the macroscopic unit).

This will allow us to control only the Gibbs-probability of cylindrical events that have a basis with

a uniformly bounded diameter. The main problem is to obtain estimates for the in�nite volume

Gibbs measure.
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Technically, a great deal of the di�culties in the study of Kac models arise from the problem

of controlling the e�ect of the error terms �H. However, to understand what is basically going on,

it is useful to ignore them for the time being, and this is the attitude we will take in this review.

To be precise, we de�ne the block approximation of the Gibbs measure

���;
;�(�)[�] �
1

�Z�;
;�[�]
IE� exp

�
��E`


;�(m(�))
�

(4:15)

(We do not put any boundary conditions as we are only discussing qualitative features; in [BGP2]

the interested reader will �nd an extensive discussion on this matter). Now since E depends only

on m(�), one can as in the mean �eld models give a rather explicit representation of the measure

induced on the local overlaps, i.e.

���;
;�(fmx(�) = mx; x 2 �g)[�] = 1
�Z�;
;�[�]

exp
�
��E`


;�(m)
�
IE�

Y
x2�

1Ifmx(�)=mxg (4:16)

Using that (mx;my) = � 1
2
kmx�myk22+ 1

2
kmxk22+ 1

2
kmyk22, this can be re-written in the form (we

ignore boundary terms or think of periodic boundary conditions)

���;
;�(fmx(�) = mx; x 2 �g)[�] = 1
�Z�;
;� [�]

exp
�
�`d�F `

�;
(m)
�

(4:17)

with

F`
�;
(m) � 1

4

X
x;y2�

J
`(x� y)kmx �myk22 +
X
x2L

fx;�(mx) (4:18)

where

fx;�(mx) =
1

2
kmxk22 �

1

�`d
ln IE�1Ifmx(�)=mxg (4:19)

is nothing but the free energy functional of the normal Hop�eld model in the set x.

The main feature here is that (formally), this representation gives a large deviation type

representation for the law of the local overlaps with ` playing the rôle of the rate function. In

other, more physically inspired word, integrating out the spin variables for �xed values of the local

overlaps, we obtain a new model with local spin space [�1; 1]M at inverse temperature �`d (i.e. at

very low temperature) with an attractive interaction of range 1=
` and with a local a priori spin

distribution proportional to e��`
dfx;� . It is important to note that as random variables the fx;�

are independent. As a consequence, we may expect that the typical overlaps will tend to minimize

the functional F . Now, the local part of this functional wants the local overlap to minimize fx;� ,

while the quadratic part wants to align all overlaps. If �, ` and M are such that we are in the

situation of our results from Section 3, we know that fx;� has 2M \lowest" minima which are

almost degenerate. However, as these minima are not totally degenerate, but show some random


uctuations, these will create some local bias towards one of them. The main question of interest is
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then on which scale the competition between the random 
uctuations and the quadratic interaction

will equilibrate. This situation is similar to the low temperature random �eld Ising model.

Rigorous results on this question, for the full model, have been obtained only in the one

dimensional case in [BGP97]. They concern the situation where lim
#0
M(
) = 0. essentially, the

results can be summarized as follows:

Quasitheorem: Assume that lim
#0 
M(
) = 0. Then there is a scale L � 
�1 such that with

IP -probability tending to one (as 
 # 0) the following holds:

(i) In any given macroscopic �nite volume in any con�guration that is \typical" with respect to

the in�nite volume Gibbs measure, for \most" blocks r, mL(r; �) is very close to one of the

values �a(�)e� (we will say that mL(u; �) is \close to equilibrium").

(ii) In any macroscopic volume � that is small compared to 
�1, in a typical con�guration, there

is at most one connected subset J (called a \jump") with jJ j � 1

L

on which mL is not close to

equilibrium. Moreover, if such a jump occurs, then there exist (s1; �1) and (s2; �2), such that for

all u 2 � to the left of J , mL(u; �) � s1a(�)e
�1 and for all u 2 � to the right of J , mL(u; �) �

s2a(�)e
�2

For a more precise formulation, and the, unfortunately quite tedious proofs, we refer the reader

to the original paper [BGP4].

5. Historical remarks

We would like to give a brief account of the main developments in the study of the Hop�eld

model that have lead to our present status of knowledge. This account will certainly be biased,

and we excuse ourselves in advance for omissions and oversights which will re
ect only our own

limited state of knowledge. In particular, we will essentially concentrate only on the mathematically

rigorous results and mention others only in as far as this is indispensable for the understanding.

The early history of the model goes back to the roots of spin glass theory. In spin glass

models, the basic idea was to replace the deterministic Rudderman-Kittel-Koruda-Yoshida (RKKY)

interaction that is of the form
cos(kF �(x�y))

jx�yj3 , where the Fermi-momentum kF is incommensurate with

the lattice vectors, by some random interaction (of short or long range type) that would be easier

to treat and would capture the supposed main feature of the rather irregular sign-changing RKKY-

interaction. The choice of independent random Jij that was made in the Edwards-Anderson [EA]

and the Sherrington-Kirkpatrick [SK] models proved di�cult, and so people tried other, possibly

simpler solutions. Mattis [Ma] proposed Jij = �i�j , with independent �i = �1. This was soon
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found too trivial, for a gauge transformation could immediately reduce the system to the original

ferromagnetic Ising model. Luttinger [Lu] proposed the simple amendment Jij = �1i �
1
j + �2i �

2
j ,

which at least was not totally trivial (although this model has some particular features that make

it almost trivial: It factors into two ferromagnetic Ising models on two random sublattices with

no interaction between the two subsystems). In 1977, Figotin and Pastur [FP1] generalized this

model in several ways: instead of two summands, they allowed an arbitrary number p, there were

additional weights ak for each summand, and the distribution of the random variables was allowed

to be more general. They also considered, in a separate paper [FP2], the quantum version of this

model. However, the number of terms p was kept a �xed, �nite parameter. Using the Hubbard-

Stratonovich transformation, they got a fairly complete description of the main features of the

model that was mathematically essentially rigorous. In a later paper [FP3] they also introduced

the Kac version of their model and proved that the free energy converges to the mean-�eld free

energy in the Lebowitz-Penrose limit. These papers all appeared in Soviet journals and seem to

have received very little attention; at least we did not �nd them quoted in the Hop�eld literature

until the early 90's.

In 1982 John Hop�eld introduced the same type of models in the context of neural networks

[Ho]. However, there was one notable di�erence: Since Hop�eld was interested in the memory

capacity of his model, he investigated (numerically) the behaviour of models with various sizes and

various numbers, p, of stored patterns. He observed the striking phenomenon that the number of

patterns that could be stored is proportional to the size, and that there is a sharp critical ratio of

about 0:14 above which the networks no longer retrieves the stored information.

Very soon after the publication of Hop�eld's paper the investigation of the statistical me-

chanics of the Hop�eld model by physicists from spin glass theory started. One can class these

investigations into two groups: The �rst was based on the non-rigorous replica method that had

just been successfully applied in the SK-model by Parisi and co-authors. Here, Amit, Gutfreund

and Sompolinsky [AGS2] obtained a strikingly complete picture of the properties of the model as

function of the temperature and the load parameter � = M=N that explained in a quantitatively

precise way the numerical results of Hop�eld. This success lead to an enormous and continuing

development which we cannot follow in this brief note. The second was the approach to these

models on the basis of large deviation theory and is the precursor of the work exposed in this re-

view. This work was largely rigorous (or could be made so) mathematically, but limited to the case

M < 1 independent of N , already studied in [FP1]. Some of the more important contributions

are [vHvEC,vH1,GK,vHGHK,vH2,AGS1,JK,vEvHP]. The development culminated in the rather

general paper on large deviations in such systems by Comets [Co].

The next step to extend this approach was taken by Koch and Piasko [KP] (see also [vEvH]).
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They succeeded to extend the large deviation approach to the case there M � lnN . This paper

again did not receive the attention it deserved. The next step in the direction of increasing N was

taken only in 1992. In two papers by Koch [K] and Shcherbina and Tirozzi [ST], it was shown

that the free energy in the general case M = o(N) converges to that of the Curie-Weiss model

(more precisely, Koch showed the convergence of the average free energy, [ST] the convergence in

probability, while [BG2] observed that the proof of Koch could be easily modi�ed to give the almost

sure convergence). Notably, in these papers the large deviations techniques were abandoned in favor

of the original Hubbard-Stratonovich approach used in [FP1]. In these papers, the question of Gibbs

states was not touched. This problem was tackled in [BGP1] where under the same assumption

M = o(N) the limiting induced measures were constructed. The full extension of the �nite M

results to this situation was completed with the large deviation principle only in [BG3]. The paper

[BGP1] contained already �rst results for the case M = �N , with small �. The complete proof

that in this case there exist (at least) one limiting Gibbs measure for each pattern was only given

some time later in [BGP3]; this picture was further cleaned in the paper [BG4].

Another development started in the paper by Pastur et al. [PST] in 92. This was an attempt

to obtain the results of the replica method via a rigorous application of what is know as the cavity

method, i.e. induction over the volume. This attempt was partially successful. They found that

the validity of the replica symmetric solution appeared to be linked to the self-averaging of the

Edwards-Anderson order parameter, but neither could be established in any non-trivial regime

of parameters. There appeared to be also some gaps in the arguments of the proof. This idea

was taken up in 1996 by Talagrand who actually proved by induction that the replica symmetric

solution holds in some region of the �; � plane. Following this, another proof of this fact was given

in [BG5] that used some convexity results established in [BG4] and the Brascamp-Lieb inequalities.

In [BG7] this was extended to a systematic analysis of the structure of the limiting Gibbs states.

A somewhat related development concerns the central limit theorem for the overlap distribution

in one of the extremal states of the Hop�eld model. This problem was apparently �rst considered in

a paper by Gentz [G1] in 1995. Here the case M bounded was solved. Using techniques from [BG4]

in [G2,G3] the condition on M could be relaxed to p = o
�p

N
�
. Finally, using Brascamp-Lieb

inequalities and the convexity results from [BG4], the CLT could be established under just the

hypothesis M = o(N) in [BG6].

Let us also mention a somewhat independent line of research that concerns just the structure

of the local minima of the Hamiltonian itself. This started essentially with a paper by McEliece et

al. [MPRV] there it was argued that all patterns �� should be local minima of the Hamiltonian if

M(N) < N
2 lnN

. This was proven rigorously (with a slightly worse constant than 2) by Martinez

[Mar]. In 1988 Newman [N1] proved that local minima near the patterns surrounded by extensive
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energy barriers exist at least as long as M(N) � �cN , with �c � 0:055. The lower bound on �c

was subsequently improved by Loukianova [Lo1] to 0:071 and Talagrand [T2] to some unspeci�ed

value. Similar results were also proved for variants of the Hop�eld model: Newman [N1] himself

treated the model with p-spin interactions, the q-state Potts-Hop�eld model was considered by

Ferrari, Martinez and Picco [FMP], the dilute Hop�eld model by the present authors [BG1]. The

only rigorous results on the Hop�eld model with correlated patterns are also estimates of this kind

and were obtained recently by L�owe [L1]. Finally we mention more detailed results on the domains

of attraction of these minima by Komlos and F�uredi [KF] and in more re�ned form by Burshtein

[Bu]. A notoriously di�cult problem is to get converse results, i.e. to show that beyond a certain

�c, there are no minima in a certain neighborhood of the patterns. There is only one quite recent

result on this question due to Loukianova [Lo2] who could show that for for all � > 0, there is a

r(�) > 0 such that the balls of radius r(�) around each pattern are free of local minima. However,

the estimate on r(�) obtained is quite poor, in fact it was only shown that lim inf�"1 r(�) � 0:05

Finally, let us point to extensions ton non-mean �eld models. The Kac-version of the model

had already been introduced in 1980 by Pastur and Figotin [PF3]. They also showed that with

�nitely many patterns, the free energy of this model converged to that of the Curie-Weiss model.

Apparently there was no work on this model until 1994 when we proved with Picco [BGP2] the

Lebowitz-Penrose theorem under the condition that 
M(
) # 0.
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