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Abstract. A mean-square approximation, which ensures boundedness of both time

and space increments, is considered for stochastic di�erential equations in a bounded

domain. The proposed algorithm is based on a space-time discretization using a

random walk over boundaries of small space-time parallelepipeds. To realize the

algorithm, exact distributions for exit points of the space-time Brownian motion

from a space-time parallelepiped are given. Convergence theorems are stated for the

proposed algorithm. A method of approximate searching for exit points of the space-

time di�usion from the bounded domain is constructed. Results of several numerical

tests are presented.
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1. Introduction

The paper is devoted to a mean-square approximation for a system of stochastic
di�erential equations (SDE)

dX = ��t;x>sb(s;X)ds+ ��t;x>s�(s;X)dw(s); X(t) = Xt;x(t) = x; (1.1)

in a space-time bounded domain Q = [t0; t1) � G � Rd+1: Here X and b are d-
dimensional vectors, � is a d�d-matrix, (w(s);Fs); s � t0; is a d-dimensional standard
Wiener process de�ned on a probability space (
;F ; P ), G is a bounded open domain
in Rd; and the Markov moment �t;x is the �rst-passage time of the process (s;Xt;x(s));

s � t, to � = Q�Q: The set � is a part of the boundary @Q consisting of the lateral
surface and the upper base of the cylinderQ. We putXt;x(s) = Xt;x(�t;x) under s � �t;x;
and thus, the process (s;Xt;x(s)) is de�ned for all t � s < t1: The coe�cients b

i(s; x)

and �ij(s; x); (s; x) 2 Q; and the boundary @G are assumed to be su�ciently smooth,
while the strict ellipticity condition is imposed on the matrix a(s; x) := �(s; x)�>(s; x).
The �rst numerical method concerning simulation of a di�usion process in a bounded

domain is constructed in [27]. The method is based on a random walk over touching

spheres and applied to solving the Dirichlet problem for elliptic equations with constant
coe�cients by a Monte Carlo technique.
Probabilistic methods for solving boundary value problems, which involve the numer-

ical integration of ordinary SDE, are the main subject of the works [19, 20, 21, 24, 26].

These methods ensure that the proposed weak approximations belong to the bounded
domain associated with a considered boundary value problem. Some other probabilistic
approaches are also available in [5, 8, 16, 31].
A mean-square approximation for simulation of an autonomous di�usion process in

a space bounded domain is considered in [23, 25]. The algorithm is based on a space

discretization (quantization) using a random walk over small spheres. It gives the points
which are close in the mean-square sense to the points of the real phase trajectory for
SDE in the space bounded domain. To realize the algorithm, the exit point of the
Wiener process from a d-dimensional ball has to be constructed at each step. Due

to independence of the �rst exit time and the �rst exit point of the Wiener process
from the ball, it is possible to simulate them separately. It is known, that the exit
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point is distributed uniformly on the sphere, but simulation of the exit time is a fairly
laborious problem. Consequently, the algorithm gives only the phase component of the
approximate trajectory without modelling the corresponding time component like the
algorithm over touching spheres [27]. The space-time point lies on the d-dimensional
lateral surface of a semi-cylinder with sphere base in the (d + 1)-dimensional semi-

space [0;1) � Rd: The algorithm ensures smallness of the phase increments at each
step, but the non-simulated time increments can take arbitrary large values with some
probability.
As is well known, "ordinary" mean-square methods (see, e.g. [14, 18, 28]), intended to

solve SDE on a �nite time interval, are based on a time discretization (sampling). The
space-time point, corresponding to an "ordinary" one-step approximation constructed
at a time point tk, lies on the d-dimensional plane t = tk, which belongs to the (d+1)-
dimensional semi-space [t0;1)� Rd: The "ordinary" mean-square methods give both
time and phase components of the approximate trajectory. They ensure smallness of
time increments at each step, but space increments can take arbitrary large values with
some probability.
The mean-square approximation, which is the subject of the present paper, controls

boundedness of both space increments and time increments at each step. In addition

it gives approximate values for both time and phase components of the space-time
di�usion in the space-time bounded domain Q: It is possible to solve this problem in a
constructive manner by the implementation of a space-time discretization by a random
walk over boundaries of small space-time parallelepipeds. It turns out that the �rst exit

point (��; w(��)) of the space-time Brownian motion (s; w(s)); s > 0; from the space-time
parallelepiped �r = [0; lr2)�Cr; Cr � Rd is a cube with center at the origin and edge
length equal to 2r; can be easily simulated in a su�ciently easy way (some aspects of
the space-time Brownian motion under d = 1 are considered in [11]). To construct

a one-step approximation, we introduce the system with frozen coe�cients (both t; x
�xed)

d �X = b(t; x)ds+ �(t; x)dw(s); �X(t) = x: (1.2)

As an approximation of the point (t + ��;Xt;x(t + ��)) of the space-time di�usion

(s;Xt;x(s)); s � t; we take the point (t+ ��; �Xt;x(t+ ��)), where �Xt;x(t+ ��) is a solution
of (1.2):

�Xt;x(t+ ��) = x + b(t; x)�� + �(t; x)(w(t+ ��)� w(t)); (1.3)

and (��; w(t+��)�w(t)) is the exit point of the space-time Brownian motion (s�t; w(s)�
w(t)); s > t; from the space-time parallelepiped �r:
The point (t+��; �Xt;x(t+��)) lies on the lateral surface or on the upper base of a certain

parallelepiped obtained from �r by a linear transformation, i.e., it is constructed on a

bounded d-dimensional manifold in contrast to the "ordinary" mean-square approxima-
tions and to the approximations of [23, 25], which are constructed on the d-dimensional
unbounded manifolds.
On the basis of the one-step approximation (1.3), we form a Markov chain (�#k; �Xk)

which belongs to Q at each step and approximates the points (�#k; X(�#k)) of the tra-
jectory (s;Xt;x(s)); s � t; in the mean-square sense.

2



2. Auxiliary knowledge

Let G be a bounded domain in Rd; Q = [t0; t1) � G be a cylinder in Rd+1; � =
�QnQ: The set � is a part of the boundary of the cylinder Q consisting of the upper
base and the lateral surface.

Consider the �rst boundary value problem for the equation of parabolic type

@u

@t
+
1

2

dX
i;j=1

aij(t; x)
@2u

@xi@xj
+

dX
i=1

bi(t; x)
@u

@xi
+ c(t; x)u+ e(t; x) = 0; (t; x) 2 Q;

(2.1)

with the initial condition on the upper base

u(t1; x) = f(x); x 2 �G; (2.2)

and the boundary condition on the lateral surface

u(t; x) = g(t; x); t0 � t � t1; x 2 @G: (2.3)

Introduce the function ' de�ned on � such that it is equal to f(x) on the upper base
and it is equal to g(t; x) on the lateral surface. Then the conditions (2.2)-(2.3) may be
rewritten shortly as

u j � = ': (2.4)

All the coe�cients and the boundary @G of the domain G in (2.1)-(2.3) are assumed

to satisfy the appropriate conditions of smoothness. Besides, the coe�cients aij = aji

are such that the property of strong ellipticity in Q is ful�lled, i.e.,

�21 = min
(t;x)2 �Q

max
1�i�d

�2
i
(t; x) > 0;

where �21(t; x) � �22(t; x) � � � � � �2
d
(t; x) are eigenvalues of the matrix a(t; x) =

faij(t; x)g:
Let �2

d
= max(t;x)2 �Q �

2
d
(t; x): Then for any (t; x) 2 �Q and y 2 Rd the following

inequality

�21

dX
i=1

yi
2 �

dX
i;j=1

aij (t; x) yiyj � �2
d

dX
i=1

yi
2

(2.5)

holds.
The solution to the problem (2.1), (2.4) has the following probabilistic representation

[6]

u(t; x) = E ['(�;Xt;x(�))Yt;x;1(�) + Zt;x;1;0(�)] ; (2.6)

where Xt;x(s); Yt;x;y(s); Zt;x;y;z(s); s � t; is the solution of the Cauchy problem of the
following system of stochastic di�erential equations

dX = b(s;X)ds+ �(s;X)dw(s); X(t) = x;

dY = c(s;X)Y ds; Y (t) = y;

dZ = e(s;X)Y ds; Z(t) = z: (2.7)

Here the point (t; x) belongs to Q; � = �t;x is the �rst-passage time of the tra-
jectory (s;Xt;x(s)) to the boundary �: In the system (2.7) Y and Z are scalars,

w(s) = (w1(s); :::; wd(s))> is a d-dimensional standard Wiener process, b(s; x) is a
3



column-vector of dimension d compounded from the coe�cients bi(s; x); �(s; x) is a
matrix of dimension d� d which is received from the equation

�(s; x)�>(s; x) = a(s; x); a(s; x) = faij(s; x)g: (2.8)

Setting in (2.1)-(2.7)

c = 0; e = 0; f = 0; g = �(@G)0(x); (2.9)

where (@G)0 � @G; we get the following formula

u(t; x) = P (�t;x < t1; Xt;x(�t;x) 2 (@G)0); t0 � t < t1; (2.10)

where the time �t;x is the �rst-passage time of the trajectory Xt;x(s) to the boundary
@G.
In particular, if

c = 0; e = 0; f = 0; g = 1; (2.11)

then

u(t; x) = P (�t;x < t1); t0 � t < t1: (2.12)

Setting in (2.1)-(2.7)

c = 0; e = 0; f = �G0
(x); g = 0; (2.13)

where G0 � G; we get the following formula

u(t; x) = P (�t;x � t1; Xt;x(t1) 2 G0): (2.14)

In autonomous case (i.e., aij; bi; c; e; g do not depend on t) we shall consider the
�rst boundary value problem for parabolic equations in the following form

@u

@t
=

1

2

dX
i;j=1

aij(x)
@2u

@xi@xj
+

dX
i=1

bi(x)
@u

@xi
+ c(x)u+ e(x); t > 0; x 2 G;

(2.15)

u(0; x) = f(x); x 2 �G; (2.16)

u(t; x) = g(x); t > 0; x 2 @G: (2.17)

Using (2.9)-(2.10) and (2.13)-(2.14), it is not di�cult to obtain that:
the function

u(t; x) = P (�0;x < t; X0;x(�0;x) 2 (@G)0); t > 0; (2.18)

is the solution of the problem (2.15)-(2.17) under (2.9);

the function

u(t; x) = P (�0;x < t); t > 0; (2.19)

is the solution of the problem (2.15)-(2.17) under (2.11);
the function

u(t; x) = P (�0;x � t; X0;x(t) 2 G0) (2.20)

is the solution of the problem (2.15)-(2.17) under (2.13).

Here X0;x(s) is the solution to the Cauchy problem

dX = b(X)ds+ �(X)dw(s); X(0) = x; (2.21)

and �0;x is the �rst-passage time of the trajectory X0;x(s) to the boundary @G:
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3. Some distributions for one-dimensional Wiener process

A part of distributions for the Wiener process, which we give in the paper (see
Sections 3, 4, 9), may be found in the literature. For instance, in [4, 7, 11] some
distributions for the one-dimensional Wiener process are written down in a certain

form. But we do not know whether all the distributions needed for our goals are
available in the literature. Moreover, we need in various analytical forms of one and
the same distribution due to computational aspects. That is why, for completeness of
the exposition, we derive all the distributions here and give them in the forms, which

are suitable for practical realization.
Introduce the �rst-passage time �x := �0;x of the one-dimensional Wiener process

x + W (t); �1 � x � 1; t > 0; to the boundary of the interval [�1; 1]: Derive the
formulas for

u(t; x) = P (�x < t):

From (2.15)-(2.17) under (2.11) we obtain that the function (see (2.19))

v(t; x) = u(t; x)� 1 = P (�x < t)� 1

satis�es the following boundary value problem

@v

@t
=

1

2

@2v

@x2
; t > 0; �1 < x < 1; (3.1)

v(0; x) = �1; v(t;�1) = v(t; 1) = 0: (3.2)

By the method of separation of variables, we get the following distribution

P (�x < t) = 1� 4

�

1X
k=0

(�1)k
2k + 1

cos
�(2k + 1)x

2
� e� 1

8
�2(2k+1)2t : (3.3)

Further, extending the initial data in (3.1)-(3.2) by the odd way on the whole axis and
solving the obtained Cauchy problem, we get another form for the same distribution

P (�x < t) = 1�
Z 1

�1

G(t; x; y)dy; (3.4)

where

G(t; x; y) =
1p
2�t

1X
k=�1

(e�
1
2t
(x�4k�y)2 � e�

1
2t
(x�(4k+2)+y)2) : (3.5)

We shall use the formulas (3.3) and (3.4) under x = 0: Denote � = �0;

P(t) := P (� < t);

and introduce the density P 0(t): From (3.3) and (3.4) one can obtain the following
lemma.

Lemma 3.1. Let � be the �rst-passage time of the one-dimensional standard Wiener

process W (t) to the boundary of the interval [�1; 1]. Then the following formulas for

its distribution and density take place

P(t) = 1� 4

�

1X
k=0

(�1)k
2k + 1

� e� 1
8
�2(2k+1)2t ; t > 0; (3.6)
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and

P(t) = 2

1X
k=0

(�1)kerfc2k + 1p
2t

; t > 0; (3.7)

P 0(t) = �

2

1X
k=0

(�1)k(2k + 1)e�
1
8
�
2(2k+1)2t ; t > 0; (3.8)

and

P 0(t) = 2p
2�t3

1X
k=0

(�1)k(2k + 1)e�
1
2t
(2k+1)2 ; t > 0: (3.9)

Remember

erfc x =
2p
�

Z 1

x

e�s
2

ds; erfc 0 = 1:

The formulas (3.6) and (3.8) are suitable for calculations under great t; and the
formulas (3.7) and (3.9) are suitable under small t: The remainders of the series (3.8)
and (3.9) are evaluated by the quantities

rk(t) =
�

2
(2k + 3)e�

1
8
�2(2k+3)2t

and

�k(t) =
2p
2�t3

(2k + 3)e�
1
2t
(2k+3)2

correspondingly.

These quantities coincide under t =
2

�
and

rk(t) < rk(
2

�
); t >

2

�
;

�k(t) < rk(
2

�
); t <

2

�
:

If we take k; for example, equal to 2; then

r2(
2

�
) =

7�

2
e�49�=4 < 2:13 � 10�16;

and consequently,

�P 0(t) =

8><
>:

2p
2�t3

(e�1=2t � 3e�9=2t + 5e�25=2t) ; 0 < t <
2

�
;

�

2
(e��

2t=8 � 3e�9�
2t=8 + 5e�25�

2t=8) ; t >
2

�
;

di�ers from P 0(t) by a quantity of 2:13 � 10�16 on the whole interval [0;1):
It is not di�cult to evaluate that

�P(t) =
Z

t

0

�P 0(s)ds

di�ers from P(t) on the whole interval [0;1) by
8

7�
e�49�=4 < 7:04 � 10�18: Such an

exactness is quite su�cient for practical calculations. See the curves of the distribution
P(t) and its density P 0(t) on Figure 1.
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Figure 1. The distribution function P(t) and the density P 0(t):

Denote the inverse function to P by P�1; and let 
 be a uniformly distributed on
[0; 1] random variable. Then the random variable

� = P�1(
)
is distributed by the law P(t):
To simulate this law in practice, we have to solve the following equation

�P(t) = 
 : (3.10)

Let us note that due to analytical simplicity of the function �P(t) it is natural to use
the Newton method for solving the equation (3.10).

Lemma 3.2. For the conditional probability

Q(�; t) := P (W (t) < �� jW (s)j < 1; 0 < s < t) ;

where �1 < � � 1; the following equalities hold:

Q(�; t) = P (W (t) < � ; � � t)

P (� � t)

=
1

1� P(t) �
2

�

1X
k=0

1

2k + 1
� ((�1)k + sin

�(2k + 1)�

2
) � e� 1

8
�2(2k+1)2t ;

(3.11)

and

Q(�; t) = 1

1� P(t)�

�
1X
k=0

(�1)k
2

(erfc
2k � 1p

2t
� erfc

2k + �p
2t

� erfc
2k + 2� �p

2t
+ erfc

2k + 3p
2t

) :
(3.12)
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Proof. The �rst equality in (3.11) 
ows out equivalence of the events (jW (s)j <
1; 0 < s < t) and (� � t). Let us prove the second one. To this end consider the
probability

u(t; x) = P (�x � t; � � x +W (t) < �)

where � � �1: Due to (2.15)-(2.17), (2.20) under (2.13), this probability is the solution
of the following boundary value problem

@u

@t
=

1

2

@2u

@x2
; t > 0; �1 < x < 1; (3.13)

u(0; x) = �[�;�)(x); u(t;�1) = u(t; 1) = 0; t > 0: (3.14)

Solving this problem, we get

u(t; x) =
2

�

1X
k=1

1

k
sin

�k(� + �)

2
sin

�k(� � �)

2
sin�kx � e� 1

2
�
2
k
2
t

+
4

�

1X
k=0

1

2k + 1
sin

�(2k + 1)(� � �)

4
cos

�(2k + 1)(� + �)

4
cos

�(2k + 1)x

2
� e� 1

8
�
2(2k+1)2t :

As P (W (t) < � ; � � t) = u(t; 0) under � = �1; x = 0; we obtain (3.11) from here.
The equality (3.12) follows from

u(t; x) =
1p
2�t

Z
�

�

G(t; x; y)dy

obtained analogously to (3.4) . Lemma 3.2 is proved.

Let us note that the series (3.11) and (3.12) are of the Leibniz type, the formula
(3.11) is convenient for calculations under great t, and the formula (3.12) is convenient
under small t: We draw our attention to the denominator (1 � P(t)) in (3.11) which
is close to zero for t � 1: But it is not di�cult to transform (3.11) to the proper for

calculations form. See the curves of the distribution Q(�; t) for some values of t on
Figure 2.

Let the function Q�1( � ; t) for every �xed t be the inverse function to Q( � ; t): Then
the random variable

� = Q�1(
; t)

has Q(�; t) as its distribution function.

4. Simulation of exit time and exit point of Wiener process from cube

Let C � Rd be a d-dimensional cube with center at the origin and with edge length
equal to 2. We suppose all the edges of the cube to be parallel to the coordinate axes,
i.e., C = fx = (x1; :::; xd) : jxij < 1; i = 1; :::; dg: Let W (s) = (W 1(s); :::;W d(s))> be

a d-dimensional standard Wiener process, � be the �rst-passage time of W (s) to the
boundary @C of the cube C:
Let us give the following evident result in the form of a lemma.

Lemma 4.1. The distribution function Pd(t) for � is equal to

Pd(t) = P (� < t) = 1� (1� P(t))d (4.1)
8



0.5

1
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t=0.05
t=0.1
t=0.5

Figure 2. The distribution function Q(�; �); under t � 0:5 the curves
coincide visually.

and the random variable

� = P�1(1� 
1=d) (4.2)

is distributed by the law Pd(t):

Our nearest goal is to construct an algorithm for simulation of the point (�;W (�)):
To this end, let us obtain some distributions connected with the d-dimensional Wiener
process.

Lemma 4.2. Let � j be the �rst-passage time of the component W j(t) to the

boundary of the interval [�1; 1]. Then

P (
\
i6=j

(W i(� j) < �i ; jW i(s)j < 1; 0 < s < � j)�� j)

= (1� P(� j))d�1 �
Y
i 6=j

Q(�i; � j) : (4.3)

Proof. We shall use an assertion of the following kind: if � � 0 is ~F -measurable
(where ~F is a �-subalgebra of a general �-algebra F), a random variable '(t; !) under

every t � 0 does not depend on ~F ('(t; !) is supposed to be measurable on t), and

E'(t; !) = h(t); then E('(�; !)� ~F) = h(�) (see [9, p. 67], [15, p. 158]).
Due to Lemma 3.2 and independence of the processes W i(s); we get for any t � 0

P (
\
i6=j

(W i(t) < �i ; jW i(s)j < 1; 0 < s < t)) = (1� P(t))d�1 �
Y
i6=j

Q(�i; t) :

This equality implies (4.3) in accordance with the above-mentioned assertion because
the processes W i(s); i 6= j; do not depend on the process W j(s): Lemma 4.2 is proved.
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Introduce the random variable { which takes the value j for ! 2 f! : W j(�) = �1g:
This variable is de�ned uniquely with probability 1; and P ({ = j) =

1

d
: Let � :=

W{(�): Clearly, the distribution law for � is given by P (� = �1) = P (� = 1) =
1

2
:

Lemma 4.3. The following equality takes place

P ({ = j; � < �;
\
i6=j

(W i(�) < �i))

=

Z
�

0

(1� P(#))d�1 �
Y
i6=j

Q(�i;#) � P 0
(#)d# (4.4)

Proof. We have

P ({ = j; � < �;
\
i6=j

(W i(�) < �i))

= P (
\
i6=j

(W i(� j) < �i ; jW i(s)j < 1; 0 < s < � j); � j < �)

=

Z
�

0

P (
\
i6=j

(W i(� j) < �i ; jW i(s)j < 1; 0 < s < � j)� � j = #)dP� j (#)
(4.5)

where P� j (#) is the distribution function for � j: Clearly P� j (#) = P(#): Now the
assertion (4.4) arises from Lemma 4.2. Lemma 4.3 is proved.

Lemma 4.4. The following equality takes place

P (
\
i6=j

(W i(�) < �i)�{ = j; � = �) =
Y
i6=j

Q(�i; �) : (4.6)

Proof. The random variables { and � are independent. Indeed, P ({ = 1; � <
�) = � � � = P ({ = d; � < �) on the strength of symmetry. Hence P ({ = i; � < �) =
1

d
P (� < �) = P ({ = i)P (� < �): Further (see (4.1))

dP ({ = j; � < �) =
1

d
dPd(�) = (1� P(�))d�1P 0(�)d�:

From here we get

P ({ = j; � < �;
\
i6=j

(W i(�) < �i))

=

Z
�

0

P (
\
i6=j

(W i(�) < �i)�{ = j; � = #) � (1� P(#))d�1P 0(#)d# : (4.7)

Comparing (4.4) with (4.7), we obtain (4.6). Lemma 4.4 is proved.

Let us note that the point (�; W (�)) 2 [0;1)� @C, i.e., this point belongs to the

lateral surface of the unbounded semi-cylinder [0;1)� C with cubic base in (d + 1)-
dimensional space of variables (t; x1; :::; xd):

10



Theorem 4.1 (Algorithm for simulating exit point to lateral surface of
cylinder with cubic base). Let {; �; 
; 
1; :::; 
d�1 be independent random variables.

Let { and � be simulated by the laws P ({ = j) =
1

d
; j = 1; :::; d; P (� = �1) = 1

2
; and

let 
; 
1; :::; 
d�1 be uniformly distributed on [0; 1]. Then the point (�; �) = (�; �1; :::; �d)
with

� = P�1(1� 
1=d); �1 = Q�1(
1; �); :::; �{�1 = Q�1(
{�1; �);

�{ = �; �{+1 = Q�1(
{; �); :::; �d = Q�1(
d�1; �) (4.8)

has the same distribution as (�; W (�)):

Proof. This theorem is a simple consequence of Lemmas 4.1 and 4.4.

Corollary 4.1. Let Cr = fx = (x1; :::; xd) : jxij < r; i = 1; :::; dg � Rd be a d-
dimensional cube with center at the origin and with edge length equal to 2r. Let �� be the
�rst-passage time of the d-dimensional standard Wiener process w(s) to the boundary

@Cr of the cube Cr: Then the point

(��; �w) = (r2�; r�);

where (�; �) is simulated by the algorithm for simulating exit point to lateral surface of

cylinder with the cubic base C, has the same distribution as (��; w(��)):

Proof. The proof easily follows from the fact: if W (t) is a Wiener process, then

w(t) = rW (t=r2) is a Wiener process as well.

Remark 4.1. The algorithm for simulating exit point to lateral surface of cylinder
with parallelepiped base is more complicated because of dependence of { and �: This
algorithm will be adduced later as a consequence of some next results.

5. Simulation of exit point of the space-time Brownian motion from
space-time parallelepiped with cubic base

Now let us consider the space-time parallelepiped � = [0; l)� C � Rd+1; where the
cube C � Rd is de�ned as above, and construct an algorithm for simulating the exit
point (�(l);W (�(l))) from the parallelepiped �: The random variable �(l) is found as
min(�; l); where � is the �rst-passage time of W (s) to the boundary @C as above, and

the distribution function of �(l) is equal to

P (�(l) < t) =

�
1� (1� P(t))d; t � l

1; t > l
(5.1)

Theorem 5.1. (Algorithm for simulating exit point from space-time par-
allelepiped with cubic base).
Let �; {; �; 
; 
1; :::; 
d�1 be independent random variables. Let � be simulated by

the law

P (� = �1) = 1� (1� P(l))d; P (� = 1) = (1� P(l))d;
and the random variables {; �; 
; 
1; :::; 
d�1 be simulated as in Theorem 4.1.

Then a random point (�(l); �); distributed as the exit point (�(l);W (�(l))); is simu-

lated by the following algorithm:
11



If the simulated value of � is equal to �1; then the point (�(l); �) belongs to the lateral

surface of �; and

�(l) = P�1(1� [1� 
(1� (1� P(l))d]1=d);

�1 = Q�1(
1; �(l)); : : : ; �{�1 = Q�1(
{�1; �(l)); �{ = �;

�{+1 = Q�1(
{; �(l)); : : : ; �d = Q�1(
d�1; �(l));

otherwise, when � = 1; the point (�(l); �) belongs to the upper base of �; and

�(l) = l;

�1 = Q�1(
; l); �2 = Q�1(
1; l); : : : ; �d = Q�1(
d�1; l):

Proof. Using Lemma 4.1, we have

P (�(l) < l) = P (� < l) = 1� (1� P(l))d; (5.2)

P (�(l) = l) = P (� � l) = (1� P(l))d:
The conditional probability P (�(l) < t��(l) < l) is equal to

P (�(l) < t��(l) < l) =
P ((�(l) < t)

T
(�(l) < l))

P (�(l) < l)
= �[l;1)(t) + �[0;l)(t)

P (� < t)

P (� < l)
;

and the random variable P�1(1� [1� 
(1� (1� P(l))d]1=d) is distributed by the law
P (�(l) < t��(l) < l):
Carrying out reasoning similar to Lemmas 4.2, 4.3, and 4.4, we obtain

P (
\
i6=j

(W i(�(l)) < �i)�{ = j; �(l) = � < l) = �[0;l)(�)
Y
i6=j

Q(�i; �): (5.3)

Further, the equality

P (

d\
i=1

(W i(�(l)) < �i)��(l) = l) = P (

d\
i=1

(W i(l) < �i)�� � l)

=
1

P (� � l)
� P (

d\
i=1

(W i(l) < �i; jW i(s)j < 1; 0 < s < l))

=
1Q

d

i=1 P (�
i � l)

P (

d\
i=1

(W i(l) < �i; � i � l)) =

dY
i=1

Q(�i; l) (5.4)

holds due to the mutual independence of the componentsW i; i = 1; : : : ; d; and Lemma
3.2.
Now the statement of the theorem easily follows from (5.2)-(5.4). Theorem 5.1 is

proved.

The following corollary has the same proof as Corollary 4.1.

Corollary 5.1. Let �r = [0; lr2)� Cr = f(t; x) = (t; x1; :::; xd) : 0 � t < lr2; jxij <
r; i = 1; :::; dg � Rd+1 be a space-time parallelepiped. Let �� be the �rst-passage time of

the process (s; w(s)); s > 0; to the boundary @�r:Then the point

(��; �w) = (r2�(l); r�);

where (�(l); �) is simulated by the algorithm for simulating exit point from the space-

time parallelepiped �, has the same distribution as (��; w(��)):
12



6. Theorem on local mean-square approximation

Let us return to the problem (1.1). Introduce the space-time parallelepipedU
�(t;x)
r (x) :

U�(t;x)
r

(x) =
[

0�s<lr2

ft + sg � C�(t;x)
r

(x+ b(t; x)s);

where (t; x) 2 Q and C
�(t;x)
r (x + b(t; x)s) is the space parallelepiped in Rd obtained

from the open cube Cr by the linear transformation �(t; x) and the shift x + b(t; x)s;
and as in the previous section, Cr is the cube with center at the origin and with edges

of length 2r which are parallel to the coordinate axes.
Let �� be an intersection of a �-neighborhood of the set � with the domain Q:

Remember that the set � is a part of the boundary @Q consisting of the lateral surface
and the upper base of the cylinder Q: The size � of the layer �� may depend on r: The
condition of strict ellipticity ensures for any � > 0 the existence of a constant � > 0
such that under all su�ciently small r for every point (t; x) 2 Qn��r the following
relations take place:

U�(t;x)
r

(x) � Q; min
0�s�lr2

�(@C�(t;x)
r

(x + b(t; x)s); @G) � �r: (6.1)

The values �; �; and r used below are such that these relations are ful�lled.

To construct a one-step approximation for the system (1.1), we consider the system
with frozen coe�cients

d �X = b(t; x)ds + �(t; x)dw(s); �X(t) = x; (t; x) 2 Q���r: (6.2)

Let �� be the �rst-passage time of the process (s � t; w(s) � w(t)); s > t; to the

boundary @�r of the space-time parallelepiped �r = [0; lr2) � Cr � Rd+1: Clearly,
�� � lr2: The point (��; w(t+ ��)� w(t)) is simulated in accordance with Corollary 5.1.
Let us take the point (t+ ��; �Xt;x(t + ��)) with �Xt;x(t + ��) calculated by

�Xt;x(t + ��) = x + b(t; x)�� + �(t; x)(w(t+ ��)� w(t)) (6.3)

as an approximation of the point (t+��; Xt;x(t+��))); (t; x) 2 Q���r; where Xt;x(s) is a

solution of the system (1.1). Remember that if t+�� � �t;x; then Xt;x(t+��) = Xt;x(�t;x).

The point (t + ��; �Xt;x(t + ��)) belongs to the lateral surface or to the upper base of

the space-time parallelepiped U
�(t;x)
r (x) � Q:

It follows from (6.1) that

�( �Xt;x(t+ s); @G) � �r; 0 � s � lr2: (6.4)

Theorem 6.1. For every natural m there exists a constant K > 0 such that for any

su�ciently small r and for any point (t; x) 2 Q���r the inequality

E
��Xt;x(t+ ��)� �Xt;x(t+ ��)

��2m � K r4m (6.5)

holds.

Proof. Below we use the same letter K without any index for various constants,

which depend only on the system (1.1) and do not depend on (t; x); r; and so on.
Thereby, we write K instead of, e.g., K +K; 2K, K2; etc.
We have (see (1.1)) that �t;x � t1; Xt;x(s) 2 G under s 2 [t; �t;x), and Xt;x(s) =

Xt;x(�t;x) under s � �t;x:
Let us rewrite the local error in the form

E
��Xt;x(t+ ��)� �Xt;x(t+ ��)

��2m =
13



Ej
Z

t+��

t

�
��t;x>sb(s;Xt;x(s))� b(t; x)

�
ds+

Z
t+��

t

�
��t;x>s�(s;Xt;x(s))� �(t; x)

�
dw(s)j2m

� K Ej
Z

t+��

t

�
��t;x>sb(s;Xt;x(s))� b(t; x)

�
dsj2m

+K Ej
Z (t+��)^�t;x

t

(�(s;Xt;x(s))� �(t; x)) dw(s)j2m

+K Ej
Z

t+��

(t+��)^�t;x

�(t; x) dw(s)j2m: (6.6)

We obtain for the �rst term in (6.6):

KEj
Z

t+��

t

�
��t;x>sb(s;Xt;x(s))� b(t; x)

�
dsj2m � K E��2m � K r4m (6.7)

because of boundedness of b(s; x); (s; x) 2 Q; and �� � lr2:
Below we need the following inequality for Ito integrals in the case of scalar Wiener

process (see, e.g., [9, p.26]):

E(

Z
t+T

t

'(s) dw(s))2m � (m(2m� 1))m�1Tm�1

Z
t+T

t

E'2m(s) ds; m = 1; 2; :::
(6.8)

Clearly, in the case of the d-dimensional Wiener process the inequality (6.8) implies

Ej
Z

t+T

t

'(s)dw(s)j2m � KTm�1

Z
t+T

t

E

dX
i;j=1

('ij(s))2mds; m = 1; 2; : : : ;
(6.9)

where the constant K depends on m; of course.
If ' is bounded, we also have

Ej
Z

t+T

t

'(s)dw(s)j2m � KTm; m = 1; 2; ::: (6.10)

Due to the inequality (6.9), smoothness of �(s; x); (s; x) 2 Q; and (t+��)^�t;x � t+lr2,
we obtain for the second term of (6.6):

KEj
Z (t+��)^�t;x

t

(�(s;X(s))� �(t; x)) dw(s)j2m

= KEj
Z

t+lr2

t

�(t+��)^�t;x>s (�(s;Xt;x(s))� �(t; x)) dw(s)j2m

� Kr2m�2
Z

t+lr2

t

E(�(t+��)^�t;x>s

dX
i;j=1

���ij(s;Xt;x(s))� �ij(t; x)
��2m)ds

� Kr2m�2
Z

t+lr2

t

�
E��t;x>s jXt;x(s)� xj2m + (s� t)2m

�
ds

� Kr2m�2
Z

t+lr2

t

E��t;x>s jXt;x(s)� xj2m ds+Kr6m: (6.11)

14



Further,

E��t;x>s jXt;x(s)� xj2m = E��t;x>sj
Z

s

t

b(s0; Xt;x(s
0))ds0 +

Z
s

t

�(s0; Xt;x(s
0))dw(s0)j2m;

whence due to (6.10)

E��t;x>s jXt;x(s)� xj2m � K � (s� t)2m +K � (s� t)m:

Substituting this inequality in (6.11), we obtain

KEj
Z (t+��)^�t;x

t

(�(s;Xt;x(s))� �(t; x)) dw(s)j2m � Kr4m: (6.12)

It follows from the inequalities (6.7) and (6.12) that

E
��Xt;x(�t;x ^ (t+ ��))� �Xt;x(�t;x ^ (t+ ��))

��2m � Kr4m: (6.13)

Now let us estimate the third term in (6.6). We have due to (6.9):

KEj
Z

t+��

(t+��)^�t;x

�(t; x) dw(s)j2m = KEj
Z

t+lr2

t

�
�(t+��)>s � �(t+��)^�t;x>s

�
�(t; x)dw(s)j2m

� Kr2m�2
Z

t+lr2

t

E
�
�(t+��)>s � �(t+��)^�t;x>s

�
ds

= Kr2m�2 � E��t;x<(t+��)

�
(t+ ��)� (t+ ��) ^ �t;x

�
� K r2m � P (�t;x < t+ ��):

(6.14)

Evaluate the probability P (�t;x < t+ ��) using the reception from [25]. If �t;x < t+ ��;
then �t;x < t1 and, consequently, Xt;x(�t;x) 2 @G: At the same time due to (6.4)

�( �Xt;x(�t;x ^ (t+ ��)); @G) � �r:

Therefore,

E
�
��t;x<t+��

��Xt;x(�t;x ^ (t+ ��))� �Xt;x(�t;x ^ (t+ ��))
��m�

� P (�t;x < t+ ��) � (�r)m; m = 1; 2; : : : :

From the other hand, due to (6.13) we have

P (�t;x < t + ��) � (�r)m � E
�
��t;x<t+��

��Xt;x(�t;x ^ (t + ��))� �Xt;x(�t;x ^ (t + ��))
��m�

�
q
P (�t;x < t+ ��)

h
E
��Xt;x(�t;x ^ (t+ ��))� �Xt;x(�t;x ^ (t+ ��))

��2mi1=2

� Kr2m
q
P (�t;x < t+ ��):

Consequently,

P (�t;x < t + ��) � Kr2m; m = 1; 2; ::: : (6.15)

Now the inequality (6.6) together with (6.7), (6.12), and (6.14) gives (6.5).

Theorem 6.1 is proved.
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7. Global algorithm and convergence theorems

Let us construct a random walk over small space-time parallelepipeds based on the
one-step approximation (6.3) of the previous section. Let (��1; w(t+ ��1)� w(t)) be the
�rst exit point of the process (s � t; w(s) � w(t)); s > t; from the parallelepiped �

simulated in accordance with Corollary 5.1, (��2; w(t+ ��1 + ��2)�w(t+ ��1)) be the exit
point of the process (s� t� ��1; w(s)� w(t + ��1)); s > t + ��1; from the parallelepiped
�; and so on.
Suppose that (t; x) 2 Q���r: Then, we construct the recurrence sequence (�#k; �Xk);

k = 0; 1; : : : ; �� :

�#0 = t; �X0 = x;

�#k = �#k�1 + ��k;

�Xk = �Xk�1 + b(�#k�1; �Xk�1)��k + �(�#k�1; �Xk�1)(w(�#k)� w(�#k�1)); k = 1; : : : ; ��;

where the number �� = ��t;x is the �rst one for which (�#k; �Xk) 2 ��r:
If (t; x) 2 ��r; we put �� = 0:
Let (�#k; �Xk) = (�#�� ; �X��) under k > ��: The obtained sequence (�#k; �Xk); k = 0; 1; : : : ;

is a Markov chain stopping at the Markov moment ��: It is clear that the random
number of steps �� depends on the domain Q���r: That is why, the more rigorous

notation for �� is ��t;x(Q���r):
At �rst we consider some average characteristics of ��t;x = ��t;x(Q���r) following the

technique proposed in [19, 23, 24].

De�ne the operation P acting on functions v(t; x); (t; x) 2 Q; as
Pv(t; x) = Ev(�#1; �X1)

and the operator A :

Av(t; x) = Pv(t; x)� v(t; x) (7.1)

which is called by generator of the chain.
The generator gives an average increment of the function v on the trajectory of the

chain per step.

Lemma 7.1 ([32], see also [24]). Let v(t; x) be a solution to the boundary value

problem

qPv(t; x)� v(t; x) = �g(t; x); (t; x) 2 Qn��r; (7.2)

v(t; x) = 0; (t; x) 2 ��r; (7.3)

where q > 0 is a constant, g(t; x) � 0 is a continuous function on Qn��r.
Then for (t; x) 2 Qn��r

v(t; x) = E

��t;x�1X
k=0

g(�#k; �Xk) � qk: (7.4)

Proof. Let us complete the de�nition of the function g : g(t; x) = 0 for (t; x) 2
��r:We have for (t; x) 2 Qn��r :

v(t; x) = g(t; x) + qPv(t; x) = g(t; x) + qEv(�#1; �X1)

= g(t; x) + qE(g(�#1; �X1) + qPv(�#1; �X1))
16



= g(t; x) + qE���t;x>1g(
�#1; �X1) + q2E���t;x>1E(v(

�#2; �X2)�(�#1; �X1))

= g(t; x) + qE���t;x>1g(
�#1; �X1) + q2E���t;x>2v(

�#2; �X2)

= g(t; x) + qE���t;x>1g(
�#1; �X1) + q2E���t;x>2g(

�#2; �X2) + q3E���t;x>3v(
�#3; �X3)

= : : : = g(t; x) + qE���t;x>1g(
�#1; �X1) + : : :+ qNE���t;x>Ng(

�#N ; �XN)

+qN+1E���t;x>N+1v(�#N+1; �XN+1):

As N goes to in�nity, we obtain (7.4). Lemma 7.1 is proved.

Corollary. If q > 1 and g(t; x) � c for (t; x) 2 Qn��r; then
1

q � 1
(Eq��t;x � 1) � 1

c
v(t; x):

Now consider the following boundary value problem in Q

Av(t; x) = �g(t; x); (t; x) 2 Qn��r; (7.5)

v(t; x) = 0; (t; x) 2 ��r; (7.6)

which is connected with the chain (�#k; �Xk):
The solution of this problem v(t; x) is equal to

v(t; x) = E

��t;x�1X
k=0

g(�#k; �Xk); (t; x) 2 Qn��r:

Therefore, if g � 1; then v(t; x) = E��t;x; and if

g(t; x) � 1;

then

E��t;x � v(t; x):

Theorem 7.1. The mean number of steps ��t;x(Q���r) is estimated as

E��t;x(Q���r) �
K

r2
; (7.7)

where the positive constant K does not depend on r.

Proof. Introduce the function [19]

V (t; x) =

�
t1 � t; (t; x) 2 Qn��r;

0; (t; x) 2 ��r:

It is clear that V (t; x) � 0 for all (t; x) 2 Q and it complies with the boundary

condition (7.6).
At �rst consider the points (t; x) such that U�

r
(x) � Qn��r; then V (s; y) = t1 � s

for (s; y) 2 @U�

r
(x) and

AV (t; x) = EV (t+ ��1; �X1)� V (t; x) = �E��1:
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Analogously to (5.1), the random variable ��1 has the following distribution function
(see also Corollary 4.1 and Lemma 4.1)

P (��1 < s) =

8<
:

1� (1� P(s=r2))d; s � lr2;

1; s > lr2;

whence it is not di�cult to obtain that

E��1 = 
r2; 
 =

Z
l

0

(1� P(s))d ds:

Thus, for (t; x) mentioned above

AV = �
r2:
Let (t; x) 2 Qn��r be now such that a part of U�

r
(x) belongs to ��r: Introducing for

a while the function �V (s; y) which is equal to t1 � s on Q; we get as above:

A �V = �
r2:
Since V (s; y) � �V (s; y) on @U�

r
(x); we have due to (7.1)

AV � �
r2: (7.8)

Clearly, the inequality (7.8) is ful�lled for all (x; t) 2 Qn��r; and the function

v(t; x) =
V (t; x)


r2
(7.9)

satis�es (7.5)-(7.6) with g � 1: Thus, we prove (7.7) with K = (t1 � t0)=
: Theorem
7.1 is proved.

Remark 7.1. The statement of the theorem is also valid in the case of in�nity t1
and the bounded G if we assume that the coe�cients of the system (1.1) are bounded
in Q and the lowest eigenvalue of the matrix a(t; x) is uniformly bounded with respect
to (t; x) 2 Q by a positive constant from below. To prove the theorem in this case, one
can use, for example, the following Lyapunov function analogously to [12, p.132]:

V (t; x) =

�
B2 � jx+ cj2n; (t; x) 2 Qn��r;

0; (t; x) 2 ��r;

where c is a vector such that min
x2G jx + cj � C > 0, n is a su�ciently large natural

number, the choice of which depends on bounds of (b(t; x); y + c); (t; x) 2 Q; y 2 G,
and B2 is the constant equal to max

x2G jx+ cj2n:

Theorem 7.2. (see [23, 24]). For every L > 0 the inequality

P

�
��t;x(Q���r) �

L

r2

�
� (1 + t1 � t0) e

�cr



1+t1�t0
L
; cr ! 1 as r! 0;

(7.10)

is valid.

Proof. We have for the function v(t; x) from (7.9):

(1 + �r2)Pv � (1 + �r2)v � �(1 + �r2); (t; x) 2 Q���r:

Hence

(1 + �r2)Pv � v � �r2v � (1 + �r2); (t; x) 2 Q���r;
18



v = 0; (t; x) 2 ��r:

Thus, the function v(t; x) is a solution to the problem (7.2)-(7.3) with q = 1 + �r2

and with g(t; x) satisfying the inequality

g(t; x) � 1 + �r2 � �r2v = 1 + �r2 � �V (t; x)



:

Then due to Corollary to Lemma 7.1 (remember V � t1 � t0), we have under � =



1 + t1 � t0
:

1 + t1 � t0


r2
(E(1 +




1 + t1 � t0
r2)��t;x � 1) � (1 + t1 � t0)v(t; x);

and, consequently (see (7.9)),

E(1 +



1 + t1 � t0
r2)��t;x � 1 + t1 � t0;

whence by the Chebyshev inequality we obtain (7.10). Theorem 7.2 is proved.

We need in two auxiliary lemmas.

Lemma 7.2. There exists a constant K such that for all r small enough and all

(t; x) 2 Qn��r the inequality��E(Xt;x(t + ��1)� �Xt;x(t+ ��1))
�� � Kr4 (7.11)

is valid.

Proof. By the Ito formula, smoothness of b(s; x); and the inequality (6.15) under
m = 1, we obtain

jE(Xt;x(t+ ��1)� �Xt;x(t+ ��1))j

= jE
Z

t+��1

t

�
��t;x>sb(s;Xt;x(s))� b(t; x)

�
ds

+E

Z
t+��1

t

�
��t;x>s�(s;Xt;x(s))� �(t; x)

�
dw(s)j

= jE
Z

t+��1

t

�
��t;x>sb(s;Xt;x(s))� b(t; x)

�
dsj

= jE(
Z (t+��1)^�t;x

t

(b(s;Xt;x(s))� b(t; x))ds)� b(t; x)E((t + ��1)� �t;x ^ (t+ ��1))j

� jE(
Z (t+��1)^�t;x

t

Z
s

t

Lb(s0; Xt;x(s
0))ds0 ds)j+KE((t + ��1)� �t;x ^ (t+ ��1))

� KE��21 +Kr2P (�t;x < t+ ��1) � Kr4;

where

L =
@

@s
+
1

2

dX
i;j=1

aij
@2

@xi@xj
+

dX
i=1

bi
@

@xi
:

Lemma 7.2 is proved.
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Lemma 7.3. Let the random variable Z be de�ned by the relation

Xt;x(t + ��1)�Xt;y(t+ ��1) = x� y + Z:

Then for every natural m there exists a positive constant K such that for any r small

enough and all (t; x); (t; y) 2 Q���r the inequalities

EjZjm � K rm � (jx� yjm + rm) ; (7.12)

jEZj � K r2 �
�
jx� yj+ r2

�
: (7.13)

hold.

Proof. We have due to (t; x); (t; y) 2 Q���r and (6.3):

�Xt;x(t + ��1) = x+ b(t; x)��1 + �(t; x)(w(t+ ��1)� w(t))

and

�Xt;y(t+ ��1) = y + b(t; y)��1 + �(t; y)(w(t+ ��1)� w(t)):

Then

Z = Xt;x(t+ ��1)�Xt;y(t+ ��1)� (x� y)

= (Xt;x(t + ��1)� �Xt;x(t+ ��1))� (Xt;y(t + ��1)� �Xt;y(t+ ��1))

+(b(t; x)� b(t; y))��1 + (�(t; x)� �(t; y))(w(t+ ��1)� w(t)):

By Lemma 7.2 and smoothness of b(s; x); (s; x) 2 Q, we get
jEZj �

��E(Xt;x(t+ ��1)� �Xt;x(t+ ��1))
��+ ��E(Xt;y(t+ ��1)� �Xt;y(t + ��1))

��
+ jb(t; x)� b(t; y)j � E��1

� Kr4 +Kjx� yj � r2;
that gives (7.13).
Now consider the 2n-th moments of Z: Using Theorem 6.1, the property (6.9), bound-

edness of b(s; x); (s; x) 2 Q; and smoothness of �(s; x); (s; x) 2 Q; we obtain

E jZj2n � K EjXt;x(t+ ��1)� �Xt;x(t+ ��1)j2n +K EjXt;y(t+ ��1)� �Xt;y(t+ ��1)j2n

+K jb(t; x)� b(t; y)j2n �E��2n1 + Ej
Z

t+lr2

t

�t+��1>s(�(t; x)� �(t; y)) dw(s)j2n

� Kr4n +Kr2njx� yj2n

that gives (7.12) in the case of the even m.
In the case of the odd m; we come to (7.12) using the Cauchy-Bunyakovskii inequal-

ity:

EjZjm � (EjZj2m)1=2 � (Kr2m � (jx� yj2m + r2m))1=2 � Krm � (jx� yjm + rm):

Lemma 7.3 is proved.
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For every " 2 (0; 1] and any � > 0 it is possible to introduce the layer ��r1�" with
a constant � such that under a su�ciently small r and for every (t; x) 2 Qn��r1�" the
following relations together with the relations (6.1) take place:

U�(t;x)
r

(x) � Q; min
0�s�lr2

�(@C�(t;x)
r

(x+ b(t; x)s); @G) � �r1�":

Clearly, ��r � ��r1�" :
The Markov moment ��t;x(Q���r1�"); when the chain (�#k; �Xk) leaves the domain

Q���r1�" ; satis�es the inequality

��t;x(Q���r1�") � ��t;x(Q���r):

We shall use the old notation (�#k; �Xk) for the new Markov chain, which is constructed
by the same rules as above but stops in the layer ��r1�" at the new Markov moment

�� = ��t;x(Q���r1�"): We believe that such a use of the same notation (�#k; �Xk) for
various Markov chains and �� for various stopping moments will cause no confusion
below.
Consider the sequence (�#k; Xk); k = 0; 1; : : : :

X0 = x;

X1 = Xt;x(�#1)

: : : : : : :

Xk = Xt;x(�#k) = X�#k�1;Xk�1
(�#k)

: : : : : : :

connected with the system (1.1).
The sequence (�#k; Xk) is a Markov chain, which stops at the random moment �� due

to �#k = �#�� under k > ��.
The following theorem states the closeness of Xk and �Xk for N = L=r2 steps.

Theorem 7.3. Let �� = ��t;x(Q���r1�"); 0 < " � 1; be the �rst exit moment of

the Markov chain (�#i; �Xi), i = 1; 2; : : : ; from the domain Q���r1�" : Then, there exist

constants K > 0 and 
 > 0 such that for all r small enough the inequality�
E
��XN^�� � �XN^��

��2�1=2 = �E ��XN � �XN

��2�1=2 � K e
L r

holds.

Proof. Below we use the same letter K for various constants (see the notice in
Theorem 6.1).

Remember that �#k = �#k^��; �Xk = �Xk^��; and Xk = Xk^�� = X(�#k^�� ^ �t;x):
Here we follow the proof of the corresponding theorem in [25].
Let � be the �rst number at which X� 2 �cr :

� =

�
minfk : Xk 2 �cr; k � ��g;
1; Xk =2 �cr; k � ��;

where c � �

2
r�" (here � is concerned to ��r1�"):

Then under � � ��

jX� � �X�j �
�

2
r1�": (7.14)
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We rewrite the global error in the form (l is a diameter of G) :

E
��XN � �XN

��2 = E���N^��
��XN � �XN

��2 + E��<N^��
��XN � �XN

��2
� E���N^��

��XN^� � �XN^�

��2 + l2P (� < N ^ ��)

� E
��XN^� � �XN^�

��2 + l2P (� < N ^ ��): (7.15)

Due to (7.14), we have

E��<N^��
��XN^� � �XN^�

��n � P (� < N ^ ��) � (�
2
)n � rn�"n; n = 1; 2; : : : :

From the other hand

E��<N^��
��XN^� � �XN^�

��n
�

p
P (� < N ^ ��) �

h
E
��XN^� � �XN^�

��2ni1=2 :
Consequently,

P (� < N ^ ��) � K r�2n+2"n �E
��XN^� � �XN^�

��2n : (7.16)

To prove the theorem, we need to �nd bounds for Ejdkj2n; k = 0; 1; : : : ; N; where
dk := Xk^� � �Xk^�: Note that the �rst term in (7.15) is equal to EjdN j2:
We have

dk = Xk^� � �Xk^� = (X�#(k�1)^� ;X(k�1)^�(
�#k^�)�X�#(k�1)^� ; �X(k�1)^� (

�#k^�))

+(X�#(k�1)^� ; �X(k�1)^�(
�#k^�)� �Xk^�):

Denote the second term by �k and de�ne Zk similarly to Z in Lemma 7.3:

X�#(k�1)^� ;X(k�1)^�(
�#k^�)�X�#(k�1)^� ; �X(k�1)^� (

�#k^�) = X(k�1)^� � �X(k�1)^� + ��^��>k�1Zk:

Then

dk = X(k�1)^� � �X(k�1)^� + ��^��>k�1Zk + ��^��>k�1�k = dk�1 + ��^��>k�1(Zk + �k):

We have

Ejdkj2n = E jdk�1 + ��^��>k�1(Zk + �k)j2n

= E[(dk�1; dk�1) + 2(dk�1; ��^��>k�1(Zk + �k)) + ��^��>k�1(Zk + �k; Zk + �k)]
n

� E jdk�1j2n + 2nE jdk�1j2n�2 (dk�1; ��^��>k�1(Zk + �k))

+K

2nX
m=2

E jdk�1j2n�m ��^��>k�1jZk + �kjm:

Due to Fk�1-measurability (we denote Fm = F�#m) of dk�1 and ��^��>k�1 and due to
the conditional variants of (7.13) and (7.11), we get

E jdk�1j2n�2 (dk�1; ��^��>k�1(Zk + �k))

= E
�
jdk�1j2n�2(dk�1; ��^��>k�1E ((Zk + �k)�Fk�1)

�
� E

�
jdk�1j2n�1��^��>k�1(jE(Zk�Fk�1)j+ jE(�k�Fk�1)j

�
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� Kr2Ejdk�1j2n +Kr4Ejdk�1j2n�1:
Now consider E jdk�1j2n�m ��^��>k�1jZk+�kjm: Using Fk�1-measurability of dk�1 and

��^��>k�1 and the conditional variants of (7.12) and (6.5), we obtain for 2 � m � 2n :

Ejdk�1j2n�m��^��>k�1jZk + �kjm = E
�
jdk�1j2n�m��^��>k�1E (jZk + �kjm�Fk�1)

�
� KE

�
jdk�1j2n�m��^��>k�1E (jZkjm�Fk�1)

�
+KE

�
jdk�1j2n�m��^��>k�1E (j�kjm�Fk�1)

�
� KE(jdk�1j2nrm + jdk�1j2n�mr2m):

Then,

Ejdkj2n � E jdk�1j2n +Kr2Ejdk�1j2n +Kr4Ejdk�1j2n�1 +Kr2
2nX
m=2

Ejdk�1j2n�mr2m�2

� E jdk�1j2n +Kr2 � E
2nX
m=0

jdk�1j2n�m � rm:

Using the elementary inequality ab � ap

p
+
bq

q
; a; b > 0; p; q > 1;

1

p
+
1

q
= 1; we get

jdk�1j2n�mrm �
jdk�1j2n

2n=(2n�m)
+

r2n

2n=m
; 1 � m < 2n:

Hence

Ejdkj2n � Ejdk�1j2n +Kr2Ejdk�1j2n +Kr2n+2; d0 = 0;

and we obtain for N = L=r2 :

EjdN j2n = E
��XN^� � �XN^�

��2n � Ke2
L � r2n: (7.17)

Taking n � 1=" and substituting (7.17) in (7.16), we get

P (� < N ^ ��) � Ke2
L � r2: (7.18)

Note that K and 
 depend on ":
Then, the inequality (7.15) together with (7.17) under n = 1 and (7.18) gives the

statement of the theorem. Theorem 7.3 is proved.

Theorem 7.4. Let �� = ��t;x(Q���r1�"); 0 < " � 1; be the �rst exit moment of

the Markov chain (�#i; �Xi), i = 1; 2; : : : ; from the domain Q���r1�" : Then, there exist

constants K > 0 and 
 > 0 such that for all r small enough the inequality�
E
��X�� � �X��

��2�1=2 � K (e
L r + e�cr
L=2)

holds.

Proof. Introduce two sets C = f�� � L=r2g and 
�C = f�� > L=r2g: Let l be a
diameter of G: Using Theorems 7.2 and 7.3, we obtain

E
��X�� � �X��

��2 = E
���X�� � �X��

��2 ; C� + E
���X�� � �X��

��2 ; 
�C�
= E

���XN^�� � �XN^��

��2 ; C�+ E
���X�� � �X��

��2 ; 
�C�
� E

��XN � �XN

��2 + l2 � P (
�C) � K e2
L r2 +K e�cr
L:

Theorem 7.4 is proved.
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Remark 7.2. Let �� = ��t;x(Q���r1�"); 0 < " � 1; be the �rst exit moment of

the Markov chain (�#i; �Xi), i = 1; 2; : : : ; from the domain Q���r1�" : Then, for every
natural m there exist constants K > 0 and 
 > 0 such that for all r small enough the

following inequalities

E
��XN � �XN

��2m � Ke2
L r2m; (7.19)

E
��X�� � �X��

��2m � K( e2
L r2m + e�cr
L); (7.20)

and

P (�t;x < �#N ) � Ke2
Lr2n; n = 1; 2; : : : ; (7.21)

hold.
Indeed, taking n � m=" in (7.17) and in (7.16), we get

P (� < N ^ ��) � Ke2
L � r2m (7.22)

instead of (7.18).

Similarly to (7.15), we have

E
��XN � �XN

��2m � E
��XN^� � �XN^�

��2m + l2mP (� < N ^ ��):

Now the inequality (7.19) can be easily obtained from (7.17) under n = m:
The inequality (7.20) follows by the arguments as in the proof of Theorem 7.4.
Let us prove the inequality (7.21). Remember that XN = Xt;x(�t;x^ �#N ) = Xt;x(�t;x)

under �t;x < �#N ; and �( �XN ; @G) � �r1�": Therefore

E��t;x<�#N

��Xt;x(�t;x ^ �#N)� �XN

��m � P (�t;x < �#N ) � �m � rm�"m; m = 1; 2; : : : :

From the other hand,

E��t;x<�#N

��Xt;x(�t;x ^ �#N )� �XN

��m �qP (�t;x < �#N )
h
E
��XN � �XN

��2mi1=2 :
Consequently, we get

P (�t;x < �#N ) � Kr2"m�2mE
��XN � �XN

��2m :
Using (7.19) under m � n="; we come to (7.21).

8. Approximation of exit point (�;X(�))

Here we are interesting in an approximation of the exit point (�t;x; Xt;x(�t;x)) of the
space-time di�usion (s;Xt;x(s)); s � t; from the space-time domain Q:

We have (�#N ; �XN) = (�#�� ; �X��) 2 ��r1�" on the set C = f�� � L=r2g. Let (��t;x; �t;x)(!);
! 2 C, be a point on � de�ned as: if �#�� � t1 � �r1�" then ��t;x = t1 and �t;x = �X�� 2 G;
otherwise (i.e., when �( �X�� ; @G) � �r1�") : ��t;x = �#�� and a point �t;x 2 @G is such that�� �X�� � �t;x

�� � �r1�"; ! 2 C: (8.1)

To complete the de�nition of (��t;x; �t;x)(!) on the set 
�C; we put ��t;x be equal to
�#N and �t;x be a point on @G nearest to �XN .
It is natural to take the point (��t;x; �t;x) as an approximate one to the exit point

(�t;x; Xt;x(�t;x)):
Below we need the following lemma (it is analogous to the corresponding lemma

from [23]).
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Lemma 8.1. There exists a constant K > 0 such that for all (t; x) 2 Q and y 2 @G
the inequalities

E (Xt;x(�t;x)� y)
2 � Kjx� yj;

E(�t;x � t) � Kjx� yj
are valid.

Proof. Consider the Dirichlet problem

@u

@t
+
1

2

dX
i;j=1

aij(t; x)
@2u

@xi@xj
+

dX
i=1

bi(t; x)
@u

@xi
= �g; (t; x) 2 Q;

u(t; x) j�= (x� y)2;

where g � 0 is a constant.
The solution of the problem is

uy(t; x) = E (Xt;x(�t;x)� y)
2
+ gE(�t;x � t):

Due to the assumptions on the coe�cients (see Introduction), uy is a su�ciently

smooth function on Q: Since uy(t; y) = 0; we have

uy(t; x) = uy(t; x)� uy(t; y) � K jx� yj :
Lemma 8.1 is proved.

Theorem 8.1. Let �� = ��t;x(Q���r1�"); 0 < " � 1; be the �rst exit moment of

the Markov chain (�#i; �Xi), i = 1; 2; : : : ; from the domain Q���r1�" : Then, there exist

positive constants K and 
 such that for all r small enough the inequalities�
E
�
jXt;x(�t;x)� �t;xj2 ; C

��1=2 � K r
1�"
2 ; (8.2)

and �
E jXt;x(�t;x)� �t;xj2

�1=2 � K( r
1�"
2 + e�cr
L=2) (8.3)

hold.

Proof. Consider the distance between Xt;x(�t;x) and �t;x on C :
E
�
jXt;x(�t;x)� �t;xj2 ; C

�
= E

�
��#N�t1��r1�" jXt;x(�t;x)� �t;xj2 ; C

�
+E

�
��#N<t1��r1�" jXt;x(�t;x)� �t;xj2 ; C

�
: (8.4)

We get for the �rst term of (8.4):

E
�
��#N�t1��r1�" jXt;x(�t;x)� �t;xj2 ; C

�
= E��#N�t1��r1�"

��Xt;x(�t;x)� �XN

��2
� 2E��#N�t1��r1�" jXt;x(�t;x)�XN j2 + 2E

��XN � �XN

��2 : (8.5)

Due to Theorem 7.3, the second term of (8.5) is estimated by Ke2
L r2: And we have
for the �rst term of (8.5):

E��#N�t1��r1�" jXt;x(�t;x)�XN j2 = E
����#N�t1��r1�"(Xt;x(�t;x)�XN)

��2

� 2E

�����
Z

�t;x

�#N^�t;x

��#N�t1��r1�"b(s;Xt;x(s))ds

�����
2
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+2E

�����
Z

�t;x

�#N^�t;x

��#N�t1��r1�"�(s;Xt;x(s))dw(s)

�����
2

� KE��#N�t1��r1�"
�
�t;x � �t;x ^ �#N

�2
+KE��#N�t1��r1�"

�
�t;x � �t;x ^ �#N

�
� KE��#N�t1��r1�"(t1 � �#N)

2 +KE��#N�t1��r1�"(t1 � �#N ) � K r1�";

whence it follows that

E
�
��#N�t1��r1�" jXt;x(�t;x)� �t;xj2 ; C

�
� K r1�": (8.6)

Consider the second term of (8.4). Due to its de�nition, the point �t;x(!); ! 2 C;
belongs to @G if �#N < t1 � �r1�": Then by the conditional version of Lemma 8.1, we

get (note that �t;x is measurable with respect to FN)

E
�
��#N<t1��r1�" jXt;x(�t;x)� �t;xj2 ; C

�
= E

�
��#N<t1��r1�"E

���X�#N ;XN
(��#N ;XN

)� �t;x
��2�FN

�
; C
�

� KE
�
��#N<t1��r1�" jXN � �t;xj ; C

�
:

Theorem 7.3 and the inequality (8.1) imply

E
�
��#N<t1��r1�" jXN � �t;xj ; C

�
�
�
E
�
��#N<t1��r1�" jXN � �t;xj2 ; C

��1=2
�
h
2E
��XN � �XN

��2 + 2
�
E��#N<t1��r1�"

�� �XN � �t;x
��2 ; C�i1=2

� K e
Lr + 2� r1�" � Kr1�": (8.7)

Thus,

E
�
��#N<t1��r1�" jXt;x(�t;x)� �t;xj2 ; C

�
� K r1�":

Substituting this inequality and the inequality (8.6) in (8.4), we get (8.2).

The inequality (8.3) is obtained by Theorem 7.2 analogously to the proof of Theorem
7.4. Theorem 8.1 is proved.

Theorem 8.2. Under the assumptions of Theorem 8.1, the inequalities

E (j�t;x � ��t;xj; C) � K r1�"; (8.8)

Ej�t;x � ��t;xj � K( r1�" + e��r
L) (8.9)

hold.

Proof. Remember that �t;x � t1; �#N � t1: Further, ��t;x = t1 under �#N � t1 � �r1�"

and ��t;x = �#N otherwise. Consequently, ��t;x � �#N : Let below � := �t;x; �� := ��t;x:
Consider the di�erence j� � �� j on the set C. We have

E (j� � �� j; C) = E ((�� � � ^ �� ); C) + E ((� � � ^ ��); C) : (8.10)

We get for the �rst term:

E ((�� � � ^ �� ); C) � E(�� � � ^ ��) = E��<�� (�� � � ^ ��)

= E��<�#N
(�� � � ^ �� ) + E��#N��<��(�� � � ^ ��)

� (t1 � t0) � P (� < �#N ) + E�t1��r1�"��<t1(t1 � �):
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Then using (7.21) under n = 1, we obtain

E ((�� � � ^ �� ); C) � Ke2
L � r2 + �r1�" � Kr1�": (8.11)

Consider the second term of (8.10). Due to �t;x 2 @G under �#N < t1��r1�"; Lemma
8.1, and the inequality (8.7), we get

E ((� � � ^ ��); C) = E (���<� (� � � ^ ��); C) = E
�
��#N<���#N<t1��r1�"(� � � ^ �#N ); C

�
= E

�
��#N<t1��r1�"(��#N ;XN

� �#N ); C
�
= E

�
��#N<t1��r1�"E(��#N ;XN

� �#N�FN); C
�

� KE
�
��#N<t1��r1�" jXN � �t;xj; C

�
� Kr1�":

Substituting this inequality and the inequality (8.11) in (8.10), we get (8.8).

The inequality (8.9) is obtained by Theorem 7.2 analogously to the proof of Theorem
7.4. Theorem 8.2 is proved.

9. Simulation of Brownian motion with drift provided bounded space
increment

Sections 6-8 are connected with the one-step approximation (t+��; �Xt;x(t+��)); (t; x) 2
Qn��r (see (6.3)), which is based on the simulation of the exit point (��; w(t+��)�w(t))
of the process (s � t; w(s) � w(t)); s > t; from the space-time parallelepiped �r =

[0; lr2) � Cr with the cubic base Cr: We can guarantee that �Xt;x(t + ��)) belongs to
G due to the smallness of both Cr and lr2: The smallness of the time-size lr2 of �r

ensures that the term b(t; x) � �� in (6.3) is not bigger than b(t; x) � lr2: Consequently,
the projection of the space-time parallelepiped U

�

r
(x) on Rd di�ers not essentially from

the space parallelepiped C
�

r
(x); to which the point �(t; x)(w(t + ��) � w(t)) belongs.

Remember that (t + ��; �Xt;x(t+ ��)) 2 @U�

r
(x):

It is possible to derive other constructive one-step approximations. Let us consider a

one-step approximation based on a simulation of exit points for the Brownian motion
with drift W�(s) :

W�(s) = �s+W (s); W�(0) = 0;

where � is a d-dimensional �xed vector and W (s) is a d-dimensional standard Wiener
process.
If (��; w�(t + ��) � w�(t)) is the �rst exit point of the process (s � t; w�(s) � w�(t));

s > t; under � = ��1(t; x)b(t; x); (t; x) 2 Qn��r; from the space-time parallelepiped

[0; l)� Cr; l � t1 � t; then it is easy to see that the approximation

�Xt;x(t+ ��) = x + �(t; x)(w�(t + ��)� w�(t)) (9.1)

belongs to the space parallelepiped C
�

r
(x) even under not small l:

Then we are able to ensure again belonging of �Xt;x(t + ��) to G; and, consequently,

(t+ ��; �Xt;x(t+ ��)) to Q; but the smallness of time-size of the space-time parallelepiped
[0; l)� Cr is already not required in contrast to the approximation (6.3).
The approximation (9.1) is more universal than the approximation (6.3). However,

the approximation (6.3) is simpler in a computational sense than (9.1) and is quite
appropriate for the majority of problems.
In this section we give algorithms on simulating exit points for the Brownian motion

with drift W�(s). The theorems on local error and global convergence connected with

the one-step approximation 9.1 can be done analogously to the corresponding theorems
of Sections 6-8.
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9.1. Some distributions for one-dimensional Brownian motion with drift.
Lemma 9.1. Let � be the �rst-passage time of the one-dimensional Brownian motion

with drift W�(s) = �s+W (s); W�(0) = 0; to the boundary of the interval [�1; 1]: Then
its distribution P(t;�) = P (� < t) is equal to

P(t;�) = 1� 2�e�
1
2
�
2
t(e� + e��)

1X
k=0

(�1)k (2k + 1)

�2(2k + 1)2 + 4�2
e�

1
8
�
2(2k+1)2t

(9.2)

or

P(t;�) = 1� 1

2

1X
k=0

(�1)ke2�k(erfc 2k � 1 + �tp
2t

� erfc
2k + 1 + �tp

2t
)

�1

2

1X
k=1

(�1)ke�2�k(erfc 2k � 1� �tp
2t

� erfc
2k + 1� �tp

2t
) : (9.3)

Proof. Due to (2.19), the distribution P (�x < t) is equal to 1� v(t; x); where �x is
the �rst exit time of x+W�(s) = x+ �s+W (s); �1 � x � 1; to the boundary of the
interval [�1; 1]; and v(t; x) obeys the following boundary value problem

@v

@t
=

1

2

@2v

@x2
+ �

@v

@x
; t > 0; �1 < x < 1; (9.4)

v(0; x) = 1; v(t;�1) = v(t; 1) = 0: (9.5)

The function

u(t; x) = e
1
2
�2t+�xv(t; x)

satis�es the following boundary value problem

@u

@t
=

1

2

@2u

@x2
; t > 0; �1 < x < 1; (9.6)

u(0; x) = e�x; u(t;�1) = u(t; 1) = 0: (9.7)

Solving this problem analogously to (3.1)-(3.2) and (3.13)-(3.14), we get two expres-
sions for v(t; x) :

v(t; x) = e�
1
2
�
2
t��x

1X
k=1

(�1)k�k
(�k)2 + 4�2

(e�� � e�) � sin �kx � e� 1
2
�
2
k
2
t

+e�
1
2
�
2
t��x

1X
k=0

(�1)k2�(2k + 1)

�2(2k + 1)2 + 4�2
(e�� + e�) � cos �(2k + 1)x

2
� e� 1

8
�
2(2k+1)2t

and

v(t; x) = e�
1
2
�
2
t��x

Z 1

�1

G(t; x; y) � e�ydy:

The equality P(t;�) = P (� < t) = 1 � v(t; 0) gives (9.2) and (9.3). Lemma 9.1 is
proved.

Remark 9.1. As earlier the formula (9.2) is convenient for calculations under great t;
and the formula (9.3) is convenient under small t: It should be pointed out that if one of

2k�1��t takes a negative value then the corresponding erfc 2k � 1� �tp
2t

> 1: Therefore
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it may be necessary to calculate more terms of the series in (9.3) in comparison with
(3.7). But the number of the needed terms is not too large in practice due to very fast
convergence of the series under small t:

Remark 9.2. Using the Laplace transform, it is possible to derive one more expres-
sion for P(t;�) :

P(t;�) = 2(e�� + e�)p
�

1X
k=0

(�1)k
Z 1

2k+1p
2t

exp(��
2(2k + 1)2

4z2
� z2)dz:

It is clear that this expression is convenient for calculations under small t:

Lemma 9.2. Let � be the �rst-passage time of the one-dimensional Brownian motion

with drift W�(s) = �s+W (s); W�(0) = 0; to the boundary of the interval [�1; 1]: Then
the probabilities

P(t;�1;�) := P (� < t; W�(�) = �1); P(t; 1;�) := P (� < t; W�(�) = 1)

are equal to

P(t;�1;�) = 1

e2� + 1
P(t;�); P(t; 1;�) = e2�

e2� + 1
P(t;�) : (9.8)

Proof. The probability P(t;�1;�) is equal to v(t; 0) , where v(t; x) is the solution
of the equation (9.4) with the initial and boundary conditions: v(0; x) = 0; v(t;�1) =
1; v(t; 1) = 0 (see the problem (2.15)-(2.17) under (2.9) and its solution (2.18)). The

following change of variables

u(t; x) = e
1
2
�2t+�x(v(t; x) +

e�2� � e�2�x

e2� � e�2�
) (9.9)

leads to the problem

@u

@t
=

1

2

@2u

@x2
; t > 0; �1 < x < 1;

u(0; x) =
e�2�+�x � e��x

e2� � e�2�
; u(t;�1) = u(t; 1) = 0:

Solving this problem, we get (we restrict ourselves to writing u(t; 0) only)

u(t; 0) = 2�e��
1X
k=0

(�1)k+1 (2k + 1)

�2(2k + 1)2 + 4�2
e��

2(2k+1)2t=8

or

u(t; 0) =
e�2�

e2� � e�2�

Z 1

�1

G(t; 0; y) � e�ydy � 1

e2� � e�2�

Z 1

�1

G(t; 0; y) � e��ydy:

Using (9.9), we obtain (9.8) for P(t;�1;�): The second formula in (9.8) is obtained

analogously. Lemma 9.2 is proved.

Remark 9.3. Lemma 9.2 is a consequence of Reuter's theorem (see [30, p. 84]),

which asserts that � and W�(�) = �� +W (�) are independent random variables (it is

not di�cult to show that P (W�(�) = �1) = 1

e2� + 1
; P (W�(�) = 1) =

e2�

e2� + 1
). But

the given proof has an independent interest because it can be used for evaluation of
some other probabilities, for example, like P (�x < t; W�(�) = �1):
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Lemma 9.3. For the conditional probability

Q(�; t; �) := P (W�(t) < ��jW�(s)j < 1; 0 < s < t); 1 < � � 1

the following inequalities

Q(�; t; �) = 4

1� P(t;�)e
��2t=2

1X
k=0

1

�2(2k + 1)2 + 4�2

�
(�1)k�(2k + 1)

2
e��

+e��
�
� cos

�(2k + 1)�

2
+
�(2k + 1)

2
sin

�(2k + 1)�

2

��
e�

1
8
�
2(2k+1)2t;

(9.10)

Q(�; t; �) = 1

2(1� P(t;�))

1X
k=�1

�
e4�k

�
erfc

4k � � + �tp
2t

� erfc
4k + 1 + �tp

2t

�

+ e�(4k+2)

�
erfc

4k + 3 + �tp
2t

� erfc
4k + 2� � + �tp

2t

��
(9.11)

hold.

Proof. We have (as in Lemma 3.2)

Q(�; t; �) = P (W�(t) < �; � � t)

P (� � t)
:

Then to prove the lemma, we need in expressions for the probability P (W�(t) <
�; � � t): This probability is equal to v(t; 0); where v(t; x) is the solution of the

equation (9.4) with the initial and boundary conditions: v(0; x) = �[�1;�)(x); v(t;�1) =
v(t; 1) = 0; t > 0 (see the function (2.20), which is the solution of the problem (2.15)-
(2.17) under (2.13)). The following change of variables

u(t; x) = e
1
2
�
2
t+�xv(t; x) (9.12)

leads to the problem

@u

@t
=

1

2

@2u

@x2
; t > 0; �1 < x < 1;

u(0; x) = e�x�[�1;�)(x); u(t;�1) = u(t; 1) = 0:

Solving this problem analogously to (3.13)-(3.14) and then using (9.12), we get the
statement of the lemma. Lemma 9.3 is proved.

9.2. Simulation of exit time and exit point of Brownian motion with drift
from cube. Let us consider a d-dimensional Brownian motion with driftW�(s) in the

d-dimensional cube C = fx = (x1; :::; xd) : jxij < 1; i = 1; :::; dg � Rd, and let � be
the �rst-passage time of W�(s); W�(0) = 0; to the boundary @C of the cube C:

Lemma 9.4. The distribution function Pd(t;�) for � is equal to

Pd(t;�) = P (� < t) = 1�
dY
i=1

(1� P(t;�i)); (9.13)

where �i; i = 1; : : : ; d; are components of the vector �:
The proof is evident.
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Introduce the random variable {; which takes the value j for ! 2 f! : W j

�
(�) = �1g:

Lemma 9.5. The conditional probability P ({ = j�� = �) is equal to

P ({ = j�� = �) =

P 0(�;�j)
Q
i 6=j

(1� P(�;�i))

dP
i=1

P 0(�;�i)
Q
l 6=i

(1� P(�;�l))
; j = 1; : : : ; d: (9.14)

Proof. To prove the lemma, we use two expressions for P ({ = j; � < �) :

P ({ = j; � < �) =

Z
�

0

P ({ = j�� = #) dP� (#)

=

Z
�

0

P ({ = j�� = #)

dX
i=1

P 0(#;�i)
Y
l 6=i

(1� P(#;�l)) d#; (9.15)

and

P ({ = j; � < �) = P (
\
i6=j

(jW i

�
(s)j < 1; 0 < s < � j); � j < �)

=

Z
�

0

P (
\
i6=j

(jW i

�
(s)j < 1; 0 < s < � j)�� j = #) dP� j(#)

=

Z
�

0

Y
i6=j

(1� P(#;�i))P 0(#;�j) d#: (9.16)

The equality P (
T

i6=j(jW i

�
(s)j < 1; 0 < s < � j)�� j = #) =

Q
i6=j

(1�P(#;�i)) in (9.16)

is proved similarly to Lemma 4.2. The expressions (9.15) and (9.16) imply (9.14).

Lemma 9.5 is proved.

Lemma 9.6. The following equalities

P (W j

�
(�) = �1�{ = j; � = �) =

1

e2�j + 1
; (9.17)

P (W j

�
(�) = 1�{ = j; � = �) =

e2�
j

e2�j + 1
: (9.18)

are true.

Proof. Due to Lemma 9.2 and Remark 9.3, which state the independence of � j and
W j

�
(� j), we get

P (W j

�
(�) = �1�{ = j; � = �) = P (W j

�
(� j) = �1�� j = �)

= P (W j

�
(� j) = �1) = 1

e2�j + 1
:

The formula (9.18) is obtained analogously. Lemma 9.6 is proved.
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Lemma 9.7 The following equality

P (
\
i6=j

(W i

�
(�) < �i)�{ = j; � = �) =

Y
i6=j

Q(�i; �; �i): (9.19)

is valid. In particular, the relation (9.19) means that provided { and � been known,

W i

�
(�); i 6= j; are independent.

Proof. Carrying out reasoning as in Lemma 4.2, we get

P (
\
i6=j

(W i

�
(� j) < �i ; jW i

�
(s)j < 1; 0 < s < � j)�� j)

=
Y
i6=j

[(1� P(� j;�i)) � Q(�i; � j; �i)];

whence, doing as in Lemma 4.3, we obtain

P ({ = j; � < �;
\
i6=j

(W i

�
(�) < �i))

=

Z
�

0

Y
i6=j

[(1� P(#;�i)) � Q(�i;#; �i)] � P 0(#;�j) d#: (9.20)

We have from (9.16):

dP ({ = j; � < �) =
Y
i6=j

(1� P(�;�i)) � P 0(�;�j) d�:

Then

P ({ = j; � < �;
\
i6=j

(W i

�
(�) < �i))

=

Z
�

0

P (
\
i6=j

(W i

�
(�) < �i)�{ = j; � = #)

Y
i6=j

(1� P(#;�i)) � P 0(#;�j) d#:
(9.21)

Comparing (9.20) and (9.21), we come to (9.19). Lemma 9.7 is proved.

Let us note that the point (�;W�(�)) belongs to the lateral surface of the unbounded

semi-cylinder [0;1)� C � Rd+1 with the cubic base C.

Theorem 9.1. (Algorithm for simulating exit point of the space-time
Brownian motion with drift to lateral surface of cylinder with cubic base).
Let �{; ��; 
; 
1; : : : ; 
d�1 be independent, uniformly distributed on [0; 1] random

variables. A random point (�; ��); distributed as the �rst exit point (�;W�(�)) of the
process (s;W�(s)) to the lateral surface of the cubic semi-cylinder, is simulated by the

following algorithm:

� = P�1
d
(
;�);

where P�1
d
(�;�) is the inverse function to Pd(t;�) with respect to t;

{ is found as

{ = j if �{ 2 [�j�1; �j); j = 1; : : : ; d;
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where

�0 = 0; �j = �j�1 +

P 0(� ;�j)
Q
i6=j

(1� P(� ;�i))

dP
i=1

P 0(� ;�i)
Q
l 6=i

(1� P(� ;�l))
;

� is found as

� =

8>>><
>>>:
�1; �� 2 [0;

1

e2�
{

+ 1
)

1; �� 2 [
1

e2�
{

+ 1
; 1];

and then the components �i
�
; i = 1; : : : ; d; of �� are simulated as

�1
�

= Q�1(
1; �; �1); : : : ; �{�1
�

= Q�1(
{�1; �; �{�1); �{
�
= �;

�{+1
�

= Q�1(
{; �; �{+1); : : : ; �d
�
= Q�1(
d�1; �; �d):

Proof. The statement of the theorem follows from Lemmas 9.4-9.7.

Corollary 9.1. Let Cr = fx = (x1; :::; xd) : jxij < r; i = 1; :::; dg � Rd be the d-
dimensional cube with center at the origin and with edge length equal to 2r. Let �� be the
�rst-passage time for the d-dimensional Brownian motion with drift w�(s) = �s+w(s)
to the boundary @Cr of the cube Cr: Then the point

(��; �w�) = (r2�; r�r�);

where (�; �r�) is simulated by the algorithm for simulating exit point to lateral surface

of cylinder with the cubic base C, has the same distribution as (��; w�(��)):

Proof. We have

Wr�(
t

r2
) = r� � t

r2
+W (

t

r2
):

Due to the fact that if W (t) is a Wiener process, then w(t) = rW (t=r2) is also a

Wiener process, we get

w�(t) = �t+ w(t) = rWr�(
t

r2
):

Evidently, the point w�(��) belongs to the boundary @Cr of the cube Cr and w�(s) 2
Cr under s 2 [0; ��): Corollary 9.1 is proved.

Remark 9.4. Consider an application of Theorem 9.1 in the case, when the domain
G is bounded, t1 = 1; and the system (1.1) is autonomous. Then by Corollary 9.1,
we are able to construct the following one-step approximation

�Xt;x(t + ��) = x + �(x)(w�(t + ��)� w�(t));

where �� is the �rst passage time of the Brownian motion with drift w�(s)�w�(t); s � t;

� = ��1(x)b(x); to the boundary of the cube Cr � Rd.
The approximation �Xt;x(t + ��) satis�es the equation with frozen coe�cients (6.2).

The point (t+��; �Xt;x(t+��)) belongs to the lateral surface of the semi-cylinder [t0;1)�
C
�(x)
r (x) � Rd+1; where the space parallelepiped C

�(x)
r (x) is obtained from the cube Cr
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by the linear transformation �(x) and the shift x: Note that �� can take arbitrary large
values with some probability.
The point (t + ��; �Xt;x(t+ ��)) approximates in the mean-square sense the point (t +

��;Xt;x(t + ��)). Theorems on the local mean-square error, global convergence, and on
an approximation of the exit point of the autonomous di�usion process X(s) from the
domain G can be stated and proved analogously to the corresponding theorems of [25].
Remember that the algorithm of [25] gives only the phase component of the ap-

proximate trajectory (see also Introduction). Using a random walk over boundaries
of small space parallelepipeds, we are able to simulate constructively both phase and
time components of the approximate trajectory.

9.3. Simulation of exit point of the space-time Brownian motion with drift
from space-time parallelepiped with cubic base. Analogously to Section 5, let
us construct an algorithm for simulating the exit point (�(l);W�(�(l)) of the process

(s;W�(s)) from the space-time parallelepiped � = [0; l) � C � Rd+1. The random

variable �(l) is found as min(�; l); where � is the �rst-passage time of W�(s) to the
boundary @C as above.

Theorem 9.2. (Algorithm for simulating exit point of the space-time
Brownian motion with drift from space-time parallelepiped with cubic base).
Let �; �{; ��; 
; 
1; : : : ; 
d�1 be independent random variables. Let � be simulated by

the law

P (� = �1) = Pd(l;�); P (� = 1) = 1� Pd(l;�);

and the other random variables be uniformly distributed on [0; 1]:
Then a random point (�(l); ��); simulated by the algorithm given below, is distributed

as the exit point (�(l);W�(�(l))):
If the simulated value of � is equal to �1; then the point (�(l); ��) belongs to the

lateral surface of �; and

�(l) = P�1
d
(
Pd(l;�);�);

{ is found as

{ = j if �{ 2 [�j�1; �j); j = 1; : : : ; d;

where

�0 = 0; �j = �j�1 +

P 0(�(l);�j)
Q
i6=j

(1� P(�(l);�i))

dP
i=1

P 0(�(l);�i)
Q
l 6=i

(1� P(�(l);�l))
;

� is found as

� =

8>>><
>>>:
�1; �� 2 [0;

1

e2�{ + 1
)

1; �� 2 [
1

e2�
{

+ 1
; 1];

and the components �i
�
; i = 1; : : : ; d; of �� are simulated as

�1
�

= Q�1(
1; �(l); �1); : : : ; �{�1
�

= Q�1(
{�1; �(l); �{�1); �{
�
= �;

�{+1
�

= Q�1(
{; �(l); �{+1); : : : ; �d
�
= Q�1(
d�1; �(l); �d);
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otherwise, when � = 1; the point (�(l); ��) belongs to the upper base of �; and

�(l) = l;

�1
�

= Q�1(
; l; �1); �2
�
= Q�1(
1; l; �2); : : : ; �d

�
= Q�1(
d�1; l; �d):

Proof. The statement of the theorem follows from Lemmas 9.4-9.7 and reasoning

similar to that done in the proof of Theorem 5.1.

The following corollary is proved as Corollary 9.1.
Corollary 9.2. Let �r = [0; lr2)� Cr = f(t; x) = (t; x1; :::; xd) : 0 � t < lr2; jxij <

r; i = 1; :::; dg � Rd+1 be a space-time parallelepiped. Let �� be the �rst-passage time of

the process (s; w�(s)); s > 0; to the boundary @�r:Then the point

(��; �w�) = (r2�(l); r�r�);

where (�(l); �r�) is simulated by the algorithm for simulating exit point from the space-

time parallelepiped �, has the same distribution as (��; w�(��)):

Remark 9.5. Let � be a d-dimensional vector, C� = fx = (x1; :::; xd) : jxij <
�i; i = 1; :::; dg � Rd be the d-dimensional parallelepiped, and �� = [0; l) � C� �
Rd+1 be the corresponding space-time parallelepiped. By the results of Section 3 and
reasoning of this section (see also Remark 4.1), we can prove lemmas, which are similar
to Lemmas 9.4, 9.5, and 9.7, in the case, when � is the exit time of the d-dimensional
Wiener processW (s); W (0) = 0; from the parallelepiped C�. Then, it is not di�cult to
state the corresponding theorems on algorithms for simulating the exit points (�;W (�))
of the process (s;W (s)); s > 0; both to the lateral surface of the cylinder [0;1)� C�

with parallelepiped base C� and to the boundary of the space-time parallelepiped ��:
Using these theorems, the corresponding one-step approximation can be constructed.
Note that we are also able to write down the distributions for the exit points in the
case when W (0) = x; x 6= 0; x 2 C�.

10. Numerical examples

The numerical methods proposed in the paper are widely applicable. As it has been
mentioned in Introduction, these methods are the �rst ones which can constructively
approximate space-time trajectories of a space-time di�usion process. They can be
also applied to solving boundary value problems through a Monte Carlo technique on

a level with the weak methods. Let us underline that the proposed methods give an
estimator for a solution to the Dirichlet problem for parabolic and elliptic equations
with constant coe�cients, which does not contain the error of numerical integration.

Here we give three numerical examples. The �rst and the second examples deal

with solving boundary value problems. The third one essentially uses simulation of
trajectories.
Example 1. Let us consider an application of random walks over touching space-

time parallelepipeds to the Dirichlet problem for parabolic equation (2.1)-(2.3) in the
case when the coe�cients are constant. This problem has the probabilistic representa-

tion (2.6)-(2.7), which we use for the Monte Carlo procedure here.
Let (�#k; �Xk) be a Markov chain which is formed analogously to the one of Section

7 but wandering is realized over touching space-time parallelepipeds (instead of small
space-time parallelepipeds in Section 7) and is �nished in the layer �� at a random step

��; where � > 0 is a su�ciently small constant. The equation with frozen coe�cients
(6.3), which we are able to simulate exactly, coincides with the equation (2.7), when
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its coe�cients are constant. Consequently, the chain (�#k; �Xk) coincides with the chain
(�#k; Xk). In the considered case, the solution u(t; x) to the Dirichlet problem (2.1)-(2.3)
under c = 0 and e = 0 is simulated as (see (2.6))

u(t; x)
:
= �u(t; x) =

1

M

MX
m=1

'( �X
(m)
�� )� 2[ �D=M ]1=2;

where

'( �X
(m)
�� ) =

8<
:

f( �X
(m)
�� ); �#

(m)
�� 2 (t1 � �; t1];

g( �X
(m)
�� ); �#

(m)
�� =2 (t1 � �; t1];

�D =
1

M

MX
m=1

h
'( �X

(m)
�� ))

i2
�
"
1

M

MX
m=1

'( �X
(m)
�� )

#2
;

and M is a number of independent Markov chains
�
�#
(m)

k
; �X

(m)

k

�
; m = 1; : : : ;M:

Because the simulated values (�#k; �Xk) coincide with the points of exact solution

(�#k; Xk) here, the estimator �u(t; x) does not contain the error of numerical integra-
tion (naturally, there are Monte Carlo error depending on M and the error due to
approximation of the boundary conditions depending on �):
The mean number of steps of the random walk over touching spheres up to the

boundary of space domain G is estimated by C ln
l

2�
(see, e.g., [8, 31] and also [24]),

if G is a convex and l is its diameter. In our case the value of �� is also estimated by

C ln
l

2�
:

Another Monte Carlo approach, whereby a random walk is made on a maximum

square and the di�erential Laplace operator is approximated by a di�erence one, was
proposed in [10].

As an illustration, we take the following parabolic equation in the domain Q =

[0; t1) � G; G = fx = (x1;x2) : jx1j < 2; jx2j < 1g (this example is similar to one of
[10]):

@u

@t
=

1

2
�u; t > 0; jx1j < 2; jx2j < 1; (10.1)

with the initial and boundary conditions

u(0; x) = 2; (10.2)

u(t; x) j@G= 0; t > 0: (10.3)

Table 1. Test results for the boundary value problem (10.1)-(10.3). The
exact solution u(1; 0:7; 0:4) = 0:4796 (� = 0:00001).

M �u(1; 0:7; 0:4)� 2[ �D=M ]1=2 E��

1000 0:4460� 0:0527 3:142
4000 0:4780� 0:0270 3:257
100000 0:4782� 0:0054 3:272
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By changing of time t = t1�s in (10.1)-(10.3), we obtain the corresponding boundary
value problem (like (2.1)-(2.3)) with the initial condition on the upper base.
The results of numerical test are presented in Table 1.
Throughout our tests we use a generator of uniform random numbers from [29].

Example 2. Consider the boundary value problem for biharmonic equation

L2u+ c1(x)Lu+ c2(x)u = f(x); x 2 G � Rd; (10.4)

u j@G= '(x); Lu j@G=  (x); (10.5)

where L is an operator of elliptic type:

L =
1

2

dX
i;j=1

aij(x)
@2

@xi@xj
+

dX
i=1

bi(x)
@

@xi
;

and c1(x); c2(x); f(x); '(x); and  (x) are some known functions.

Introducing the function v = Lu; we obtain the system of elliptic equations

Lu� v = 0; x 2 G; u j@G= '(x); (10.6)

Lv + c1(x)v + c2(x)u = f(x); x 2 G; v j@G=  (x): (10.7)

Let us give a probabilistic representation of the solution to the problem (10.6)-
(10.7) (the �rst probabilistic representation for the problem (10.6)-(10.7) in the case
of constant c1 and c2 is obtained in [13]). To this end introduce the system of SDE

dX = b(X) ds+ �(X) dw(s); (10.8)

dY1

ds
= c2(X)Y2

dY2

ds
= �Y1 + c1(X)Y2; (10.9)

where w(s) is a standard d-dimensionalWiener process, b(x) is the d-dimensional vector
with the components bi(x) introduced above, Y1 and Y2 are scalars, and �(x) is a matrix
that is obtained from the equality

a(x) = �(x)�|(x); a(x) = faij(x)g:
Under some conditions on the coe�cients of the problem (10.6)-(10.7), its solution

(u(x); v(x)) has the following form (see [17]):

u(x) = E
h
'(Xx(�))Y

(1)
1 (�) +  (Xx(�))Y

(1)
2 (�)

i
� E

Z
�

0

f(Xx(s))Y
(1)
2 (s) ds;

v(x) = E
h
'(Xx(�))Y

(2)
1 (�) +  (Xx(�))Y

(2)
2 (�)

i
� E

Z
�

0

f(Xx(s))Y
(2)
2 (s) ds;

(10.10)

where � is the �rst exit time of the process Xx(s); X(0) = x; from the domain G;

and (Y
(1)
1 ; Y

(1)
2 ) is the solution of the system (10.9) with the initial data: Y

(1)
1 (0) = 1;

Y
(1)
2 (0) = 0; and (Y

(1)
1 ; Y

(1)
2 ) has the following initial data: Y

(2)
1 (0) = 0; Y

(2)
2 (0) = 1:

The probabilistic representation (10.8)-(10.10) for the boundary value problem (10.4)-
(10.5) can be used for solving the problem (10.4)-(10.5) by implementation of the ran-

dom walk over small space-time parallelepipeds through the Monte Carlo technique.
If the coe�cients of the elliptic operator L and the scalars c1; c2; f are constant, we
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can use the random walk over touching space parallelepipeds that gives an estimator,
which is free from the error of numerical integration. Note that in this case the suf-
�cient condition, under which the representation (10.10) is valid, consists in c1 � 0;
c2 � 0:

As an illustration, consider the following two-dimensional problem in the square
G = fx = (x1;x2) : jx1j < 1; jx2j < 1g :

1

4
�2u = 1; x 2 G; (10.11)

u j@G= '(x); '(x1;�1) =
1 + x41
12

; '(�1; x2) =
1 + x42
12

;

1

2
�u j@G=  (x);  (x1;�1) =

1 + x21
2

;  (�1; x2) =
1 + x22
2

:
(10.12)

Its exact solution is

u(x) =
x41 + x42
12

; u(x) =
x21 + x22

2
:

Introducing the function v = 1
2
�u as above, we obtain the system of elliptic equations

1

2
�u� v = 0; x 2 G; u j@G= '(x) (10.13)

1

2
�v = 1; x 2 G; v j@G=  (x): (10.14)

Of course, one can solve the problem (10.13)-(10.14) sequentially: �rst �nd the

function v from the problem (10.14) and then u from (10.13). But such an approach
requires the knowledge of the function v in the whole domain G even if one needs the
solution (u; v) only at individual points of the domain G: In the last case, the Monte
Carlo approach is more preferable.
For the system (10.13)-(10.14), the formulas (10.8)-(10.10) acquire the form

u(x) = E'(x+ w(�))� E[� (x + w(�))] +
1

2
E� 2;

v(x) = E (x+ w(�))� E�;

where � is the �rst exit time of the process x+ w(s) from the domain G:
To simulate the point (�; x + w(�)); we use the random walk over touching space

squares, which is �nished in a �-neighborhood of the boundary @G belonging to G:
Remember that we are able to simulate both the exit point and the exit time of the
Wiener process from a square exactly in accordance with Theorem 4.1. Then due to

the same reasons as in Example 1, the corresponding estimator (�u; �v) does not contain
the error of numerical integration. The notice on the mean number of steps E�� from
Example 1 is also valid here. Let us underline that the usual method of random walk
over touching spheres in the space domainG cannot be applied to this problem, because

we essentially use the simulation of both the exit point x+ w(�) and the exit time �:
The results of numerical tests are given in Table 2.
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Table 2. Test results for the boundary value problem (10.11)-(10.12)
(� = 0:00001).

M x1 x2 u(x1; x2) �u(x1; x2) v(x1; x2) �v(x1; x2) E��

10000 0:3 0:5 0:00588 0:0065 � 0:0038 0:17000 0:1700 � 0:0082 4:01
100000 0:0058 � 0:0012 0:1700 � 0:0026 3:99
1000000 0:00586� 0:00039 0:17005� 0:00082 4:00

10000 0:7 0:8 0:05414 0:0531 � 0:0020 0:56500 0:5637 � 0:0061 3:98
100000 0:05378� 0:00061 0:5651 � 0:0019 4:03
1000000 0:05419 �0:00020 0:56536� 0:00062 4:00

10000 0:9 0:9 0:10935 0:1088 � 0:0010 0:81000 0:8070 � 0:0038 3:05
100000 0:10918� 0:00033 0:8096 � 0:0012 3:01

Example 3. Let us remind some needed facts concerning the stability analysis of
stochastic equations. Consider the second-order Ito linear autonomous system of SDE

dX = AX dt+

2X
i=1

BiX dwi(t); (10.15)

where X is a two-dimensional vector, A and Bi; i = 1; 2, are constant 2� 2 matrices,

wi(t); i = 1; 2, are independent standard Wiener processes.
Various characteristic describing asymptotic behavior of solutions of the system

(10.15), such as the Lyapunov exponent, moment Lyapunov exponents, the stabil-
ity index, and some others, are considered in [1, 2, 12] (see also references therein).
The Lyapunov exponent �� of system (10.15) (cf. [12]) is de�ned as

�� := lim
t!1

1

t
E ln jXx(t)j = lim

t!1

1

t
ln jXx(t)j a:s:; (10.16)

and the moment Lyapunov exponent g(p) is de�ned as

g(p) := lim
t!1

1

t
E ln jXx(t)jp; p 2 R; (10.17)

where Xx(t); t � 0; is a nontrivial solution to system (10.15).
The limits �� and g(p) exist, and they are independent of x; x 6= 0; in the ergodic

case. The limit g(p) is a convex analytic function of p 2 R; g(0) = 0; g(p)=p increases
with growing p; and

g0(0) = lim
p!0

g(p)

p
= ��: (10.18)

If �� < 0 then the trivial solution to system (10.15) is a.s. asymptotically stable. It is
well-known and follows from (10.18) that in this case g(p) is negative for all su�ciently
small p > 0; i.e., the solution X = 0 of (10.15) is p-stable for such p: If g(p)! +1 as
p! +1, then the equation

g(p) = 0 (10.19)

has the unique root 
� > 0; which is known as the stability index.
It is clear that the solution X = 0 of (10.15) is p-stable for 0 < p < 
� and p-

unstable for p > 
�: The stability index 
� is connected with the asymptotic behavior
of the probability V�(x) of the exit of Xx(t) from the ball jxj < � (see [3]): V�(x) :=
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Pfsup
t�0 jXx(t)j > �g; jxj=� ! 0: It turns out that there exists a constant K > 0 such

that for all � > 0 and jxj < � the following inequality takes place:

1

K
(jxj=�)
� � V�(x) � K � (jxj=�)
�: (10.20)

The unstable case, when the equation (10.19) has a negative root 
�; is considered
analogously [3].
The stability properties of the system (10.15) can also be characterized by the exit

time � of Xx(t) from a certain neighborhood of the origin. In [16] the value of Ee��� ;
� > 0; is simulated. By the algorithms proposed in the present paper, we are able to

evaluate the distribution function P (� < t); which may be a good characteristic for
description of transient behavior related to the system (10.15). Naturally, we are also
able to evaluate functionals on �; e.g., Ee��� :

We take the following particular case of the two-dimensional system (10.15) for our

numerical tests:

dX1 = (aX1 + cX2) ds+ b1X1 dw1(s) + b2X2 dw2(s)

dX2 = (�cX1 + aX2) ds+ b1X2 dw1(s)� b2X1 dw2(s);

X(0) = Xx(0) = x: (10.21)

The function g(p); the Lyapunov exponent ��; and the stability index 
� for this

system are equal to (cf. [22]):

g(p) = p � (a+ 1

2
(b22 � b21)) +

1

2
p2b21;

�� = g0(0) = a+
1

2
(b22 � b21);


� = �2a + (b22 � b21)

b21
: (10.22)

Here we evaluate the distribution function P (� < t); where � is the �rst exit time
of Xx(s) under X(0) = (1; 1)| from the square G = f(x1; x2) : jxij < 3; i = 1; 2g: To
simulate the system (10.21), we use the random walk over boundaries of small space-
time parallelepipeds constructed in Section 7. The algorithm allows to �nd �� (see

Section 8), which is close to �: The sampling distribution function �PM(t) is calculated
as

�PM(t) =

8>>>><
>>>>:

0; t � ��
(M)
1 ;

m=M; ��
(M)
m < t � ��

(M)
m+1;

1; t > ��
(M)

M
;

where f�� (M)
1 ; : : : ; ��

(M)

M
g is a sample point of size M sorting in the ascending order, it

corresponds to the random variable �� :
The sampling function �PM(t) is close to the distribution function �P (t) = P (�� < t)

under a su�ciently big M; and �P (t) is close to P (� < t) under a su�ciently small

r (remember that r is a distinctive size of the space-time parallelepipeds used in the
algorithm for solving (10.21)). We control the accuracy of our simulations by increasing
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Figure 3. The distribution function �P (t) for a = �1; c = 1; b2 = 2;
X(0) = (1; 1)|; r = 0:02; M = 5000; and for various b1 : (1) b1 = 0:1
(�� = 0:995; 
� = �199), (2) b1 = 0:6 (�� = 0:82; 
� = �4:556), (3)
b1 =

p
5 (�� = �1:5; 
� = 0:6), and (4) b1 = 3 (�� = �3:5; 
� = 0:778).

M and decreasing r:We select M and r such that the curves �PM(t) are visually almost
identical under larger values of M and smaller values of r.
Figure 3 presents the behavior �P (t)

:
= �PM(t) under �xed a; c; b2; and various b1:

Increasing of b1 leads to stabilization (see formulas (10.22)). It is interesting to note
(see Figure 3) that the probability of the exit of Xx(s) from G at small times t under
�� > 0 (unstable case) is lower than the corresponding probability under �� < 0 (stable

case). It may be explained in the following way. The radius �(s) =
p
X2

1 (s) +X2
2 (s)

satis�es the following equation

d� = (a+
b22
2
)� ds+ b1� dw1(s): (10.23)

Due to the selection of the parameters, the Lyapunov exponent �� is positive (un-
stable case) under relatively small b1 and large b2: In this case the �rst term of (10.23)
plays the main role and in
uence of noise is relatively small. So there is a lag time

before the trajectory Xx(s) leaves the domain G: In the stable case our parameters are
such that b1 is large and the second term of (10.23) plays an essential role. Then the
trajectory Xx(s) can leave the domain G during a small time interval with a rather
large probability.
Figure 4 illustrates the behavior of �P (t) under �xed a; c; and �� = a+(b22� b21)=2 for

various values of the stability index 
� (see (10.22)). One can see that the probability
of the exit of the trajectory Xx(s) from G decreases with increasing of 
� that is in
accordance with (10.20).
Figures 3 and 4 also demonstrate that in the unstable case the trajectory leaves the

neighborhood of the origin during a �nite time interval with the probability equal to 1
(see the curves 1 and 2 on Figure 3). But in the stable case the probability P (� <1);
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Figure 4. The distribution function �P (t) for a = �1; c = 1; X(0) =
(1; 1)|; �� = �1:5; M = 5000; and for various 
� : (1) 
� = 1=3 (b1 = 3;

b2 = 2:828; r = 0:02), (2) 
� = 0:6 (b1 =
p
5; b2 = 2; r = 0:02), and (3)


� = 2:479 (b1 = 1:1; b2 = 0:4683; r = 0:05).

that the trajectory leaves the neighborhood of the origin, is less than 1. It decreases
with decreasing of the Lyapunov exponent �� (see the curves 3 and 4 on Figure 3) and
with increasing of the stability index 
� (see Figure 4).
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