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Abstract

In this paper we study a system of �eld equations of Penrose-Fife type

governing the dynamics of phase transitions with a nonconserved order pa-

rameter. In many recent contributions on this subject, the heat 
ux law has

been assumed in the form q = r(1=�) . In contrast to that, here we consider

the (more realistic) case of the Fourier law when q is proportional to the

negative gradient �r� of the (absolute) temperature � . The assumption

of Fourier heat conduction presents particular di�culties in the framework of

the Penrose-Fife model, since then the �eld equation representing the balance

of internal energy does not seem to have a maximum principle from which the

positivity of � could be derived. In this connection, we recall that the main

di�culty in proving existence for phase-�eld systems of Penrose-Fife type is

the proof of the positivity of � . It is shown in this paper that in the case

without interfacial energy, that is, when the free energy does not contain a

quadratic gradient term of the order parameter, there exists a comparatively

easy way to conclude the positivity of � under rather weak and quite natural

conditions on the data of the system. Having established this result, the ex-

istence of a weak solution is readily obtained using known results on general

phase-�eld systems.

1 Introduction

In this paper we study the initial-boundary value problem

(� + �(�))t(x; t) � ��(x; t) = g(x; t; �(x; t); �(x; t))

for a. e. (x; t) 2 Q ; (1.1)

�t + @I(�) + �0(�) 3 ��0(�)=� a. e. in Q ; (1.2)

@�

@�
= 0 a. e in � ; (1.3)

�( � ; 0) = �0 ; �( � ; 0) = �0 a. e. in 
 : (1.4)

Here, 
 � IRN (N � 1) denotes some bounded domain with smooth boundary @
 ,

@=@� is the outward normal derivative to @
 , and we have set Q := 
 � (0; T ) ,

� := @
 � (0; T ) , where T > 0 stands for some �nal time. In addition, � ; � ; g

are smooth functions, �0 ; �0 are given data, and @I denotes the subdi�erential of

the indicator function I of the interval [0; 1] . Namely, we have that I(�) = 0 if

� 2 [0; 1] , I(�) = +1 otherwise, and consequently

� 2 @I(�) if and only if � 2 [0; 1] and �

8>><
>>:
2 (�1; 0] for � = 0

= 0 for 0 < � < 1

2 [0;+1) for � = 1

:
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The nonlinear system (1.1{2) constitutes the system of �eld equations arising

from the Penrose-Fife phase-�eld model of phase transitions for a nonconserved

order parameter � and the absolute temperature � when no di�usive e�ect is

assumed for the phase transition, the heat 
ux obeys the Fourier law, and the free

energy has the (nonsmooth) normalized form

F (�; �) = � � � log � + � (I(�) + �(�)) + �(�) : (1.5)

Then equation (1.1) yields the balance of internal energy, while (1.2) describes the

evolution of the order parameter (where all physical constant are normalized to

unity). For details of the Penrose-Fife model we refer the reader either to the

original papers [22 , 23] or to the monograph [5] (cf. especially Chapter 4). The

presence of the singular factor 1=� in the right hand side of (1.2) and of a nonlinear

function �(�) in (1.1) distinguishes the above system from the standard phase-

�eld model [6 , 13], which can be viewed as a linearization of (1.1{2) around some

equilibrium temperature. In fact, the advantage of the actual system (1.1{2) is

that it is consistent with the Second Law of Thermodynamics, as the Clausius-

Duhem inequality is satis�ed, and (1.1) and (1.2) have been tailored with exactly

this purpose. Moreover, since the quadratic gradient term for � is missing in the free

energy expression (1.5), the Clausius-Duhem inequality holds not only in integrated

form but locally in space (and time). In this respect, notice that the inclusion (1.2)

can be equivalently rewritten as a pointwise variational inequality, namely

0 � �(x; t) � 1 for a. e. (x; t) 2 Q ;

�t (�� r) � � (�0(�) + �0(�)=�) (�� r) a. e. in Q ; 8 r 2 [0; 1] : (1.6)

Clearly, (1.6) forces the order parameter � to attain only values in [0; 1] , that is,

� may for instance be regarded as the volume fraction of one of the two phases

between which the phase transition occurs.

Typical nonlinearities � and � in the case of a solid-liquid phase transition are

given by

�(�) =
Z �

1=2
`(�) d� ; �(�) = �

�(�)

�c
+ 4 a � (1� �) ; (1.7)

where `(�) > 0 represents the (possibly constant) latent heat of the phase transi-

tion, �c > 0 the critical (melting or freezing) temperature, and a > 0 the maximum

value of the function 4 a � (1��) , attained at the midpoint � = 1=2 and measuring

the depth of the potential wells corresponding to the di�erent phases. Notice that

this choice of � and � turns out to provide the double obstacle potential considered

for instance in [3 , 4]. We point out that by (1.7) one point between 0 and 1 is always

preferred as minimum provided � 6= �c . Another interesting form for the free energy

is obtained with the choice

�(�) = 4 b � (1� �) ; �(�) =
b

�c
(1� 2�)2 ; (1.8)
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which corresponds to the Ising model of ferromagnetism if the con�gurational en-

tropy k � log(�) + k (1��) log(1��) considered in [22 , 23] ( k denotes a constant

factor) is replaced by the expression I(�) + �(�) . Here, the parameter b is anal-

ogous with a , while �c plays the role of the Curie temperature. This situation is

rather di�erent from the previous one, since here the free energy may assume either

two absolute minima with the same value (two symmetric phase variants) if � < �c
or just one absolute minimum in the midpoint if � > �c.

The main novelty of this paper lies in the use of the standard Fourier law of heat

conduction in (1.1) in the framework of the Penrose-Fife model. Until now (up to the

paper [21] where a very particular case was considered), no global existence results

could be derived for Penrose-Fife phase-�eld systems with Fourier law. Instead, the

heat 
ux q was always assumed in the singular form

q = r(1=�) ; (1.9)

or in a generalized form thereof which was still singular in � for � & 0 . In this

connection, the reader is referred to [8 , 9 , 11 , 15{17 ,19, 20, 24, 25].

The reason for the lack of conclusions under the Fourier law lies in the presence of

the inverse temperature 1=� in (1.2). The occurrence of this singular term renders

the evolution equation for � singular, so that earlier existence results for phase

relaxation systems (cf. [1 , 2 , 7 , 12 , 14 , 26 , 27], for instance) do not apply. However,

once that a positive lower bound for � has been found, it becomes a standard matter

to show global existence, due to the Lipschitz continuity of the reduced nonlinearity.

Therefore, the proof of the positivity of � constitutes the main step in any existence

proof for the system (1.1{4). However, while a maximum principle turned out to

be hidden in the balance of internal energy for the heat 
ux law (1.9) (the related

balance law then reads

(� + �(�))t + �(1=�) = g a. e. in Q ; (1.10)

in place of (1.1)), this did not seem to be true for the Fourier law.

We will demonstrate in this note that, under both simple and quite natural con-

ditions on the form of the nonlinearities � and � , a uniform lower bound for �

can be constructed. While in the case of the heat 
ux (1.9) (treated in [11]) the

corresponding maximum principle proof is based on technically di�cult Moser-type

iterations applied to (1.10) (following an argument devised in [25]), our proof for

the case of the Fourier law is comparatively easy. Its main idea is to combine (1.1)

with the phase relaxation law (1.2) instead of discussing (1.1) by itself. The general

scheme behind this approach is motivated by physics: in a system of phase-�eld

equations complying with the Second Principle of Thermodynamics the positivity

of temperature should be hidden somewhere. However, in general one cannot ex-

pect to extract it by considering the balance of internal energy alone; after all, the

latter re
ects the First Principle of Thermodynamics and not the Second Principle.

Therefore, to obtain full information about the behaviour of � , one will usually have

to invoke the whole system of �eld equations.
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Then, determining a lower bound for � allows us to deduce existence of solu-

tions to the initial-boundary value problem (1.1-4). We should point out another

advantage of our technique: it is noteworthy that it does not require to assume �

to be a convex function as in the corresponding papers [11 , 17 , 24] that deal with

equation (1.10).

The rest of the paper is organized as follows. In Section 2, we formulate the

general assumptions and the main existence and uniqueness result. Section 3 brings

the detailed proof of this result and, in particular, of the positivity of temperature.

2 Statement of Problem and Existence

In this section we give a complete statement of the problem and formulate the exis-

tence result which will be proved in Section 3. To this end, let us consider the system

(1.1{4). We make the following general assumptions on the data �; �; g; �0; �0:

(A1) � ; � 2 C1; 1[0; 1] .

(A2) g is a Carath�eodory function satisfying g( � ; � ; '; r) 2 L2(Q) for all pairs

('; r) 2 IR� [0; 1] ; and there exists some constant Cg > 0 such that

jg(x; t; '1; r1) � g(x; t; '2; r2)j � Cg (j'1 � '2j + jr1 � r2j)

for a. e. (x; t) 2 Q ; 8'1 ; '2 2 IR ; 8 r1 ; r2 2 [0; 1] : (2.1)

(A3) �0 2 H1(
) ; �0 2 L2(
) ; �0 > 0 and 0 � �0 � 1 a. e. in 
 .

Now, we may de�ne our notion of solution to the system (1.1{4).

De�nition 2.1 A pair (�; �) is said to be a solution to (1.1{4) if

� 2 H1(0; T ;L2(
)) \ C0([0; T ];H1(
)) \ L2(0; T ;H2(
)) ; (2.2)

� 2 H1(0; T ;L2(
)) \ L1(Q) ; (2.3)

� > 0 a. e. in Q ;
1

�
2 L1(Q) ; (2.4)

and the equations (1.1{4) are satis�ed in the sense speci�ed there.

Observe that in our setting all terms in (1.1) belong to L2(Q) and that, by

virtue of (A1) and (2.4), �0(�)=� 2 L1(Q) , whence (1.2) and (1.6) are meaningful.

For the proof of positivity of the temperature � the next assumption will be

crucial.
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(A4) There exists some constant �� > 0 such that the following three conditions

are ful�lled at the same time,

�0 � �� a. e. in 
 ; (2.5)

g(x; t; '; r) � 0 for a. e. (x; t) 2 Q ; 8' � �� ; 8 r 2 [0; 1] ; (2.6)

j�0(r)j2 + �0(r)�0(r) �� � 0 8 r 2 [0; 1] : (2.7)

We remark that (2.5) and (2.6) are rather natural constraints for the initial

(absolute) temperature and the heat supply, respectively, while (2.7) holds if either

�0 �0 has the right sign or if j�0j is not too large when compared with j�0j . Note

that both the physically interesting nonlinearities mentioned in (1.7) and (1.8) satisfy

(A4) provided that �� > 0 is chosen small enough.

We have the following existence and uniqueness result.

Theorem 2.2 Suppose that the assumptions (A1{4) hold. Then the system (1.1{

4) has a unique solution (�; �) (in the sense of De�nition 2.1). Moreover, it turns

out that �t 2 L1(Q) and

� � �� a. e. in Q : (2.8)

The proof of this result will be given in the next section.

The following additional statement yields a su�cient condition for the bounded-

ness of temperature from above.

Proposition 2.3 Let (A1{4) be satis�ed and let �0 2 L1(
) . Besides, assume

that there is some p > 1 + n=2 such that

g0 := g( � ; � ; 0; 0) 2 Lp(Q): (2.9)

Then we have � 2 L1(Q) .

Note that Theorem 2.2, (2.1), and (2.9) entail

j � (�(�))t + g(x; t; '; r)j � jg0(x; t)j+ Cgj'j+ C1

for a. e. (x; t) 2 Q ; 8' 2 IR ; 8 r 2 [0; 1]; (2.10)

for some constant C1 depending only on k�0kL1(0;1); k�tkL1(Q); and Cg: Hence,

arguing on (1.1) and (1.3{4), it is not di�cult to check that Proposition 2.3 is just

a consequence of [18, Theorem V.2.1]. The proof is essentially based on a maximum

principle procedure, which can be reproduced directly on (1.1) with minor e�ort.
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3 Proof of the Theorem

In order to show the assertion of Theorem 2.2, we �rst verify that (2.8) must hold

for any solution of (1.1{4). The simple argument used in the proof of the following

lemma constitutes the main new idea of this paper.

Lemma 3.1 Let (�; �) be a solution to (1.1{4) in the sense speci�ed in De�nition

2.1, and suppose that (A1{4) hold. Then (2.8) is satis�ed.

Proof. We multiply (1.1) by the function

� (� � ��)
� := min f� � �� ; 0g 2 L2(0; T ;H1(
)) ;

and integrate over 
 � (0; t) (where t 2 [0; T ] ) and by parts. Owing to (2.5), we

obtain that

1

2
k(� � ��)

�( � ; t)k2L2(
) +

Z t

0

Z


jr((� � ��)

�)j2 = I1(t) + I2(t) ; (3.1)

where, thanks to (2.6),

I1(t) := �

Z t

0

Z


g(x; s; �(x; s); �(x; s)) (� � ��)

�(x; s) dx ds � 0 ; (3.2)

and where

I2(t) :=
Z t

0

Z


�0(�) (� � ��)

� �t : (3.3)

Now, we notice that the integrand of I2(t) may only di�er from 0 in the set

At := f (x; s) 2 
� (0; t) j 0 < �(x; s) < 1 and �(x; s) < �� g : (3.4)

Indeed, since � 2 H1(0; T ;L2(
)) , we have �t = 0 in both the sets f� = 0g and

f� = 1g , so that �0(�) (� � ��)
� �t = 0 a. e. in (
 � (0; t)) n At . Moreover, from

(1.6) we infer that

�t = � �0(�) � �0(�)=� a. e. in At ; (3.5)

since we may take both values r > � and r < � as test numbers. Therefore, I2(t)

reduces to the expression

I2(t) =
Z Z

At

�

(� � ��)
�

�

�
� �0(�)�0(�) + j�0(�)j2

�
; (3.6)

and we can deduce from (2.4) and (2.7) that I2(t) � 0 . Indeed, it follows that

� �0(�)�0(�) � �� �
0(�)�0(�) whenever � < �� and �0(�)�0(�) < 0 , and that

� �0(�)�0(�) � 0 , otherwise.

In conclusion, on account of (3.1) we realize that k(� � ��)
�( � ; t)kL2(
) = 0 for

all t 2 [0; T ] , whence the assertion follows. 2
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Remark 3.2 The argumentation in the proof of Lemma 3.1 is similar to that used

by the authors in [10] to show the positivity of temperature in the so-called Fr�emond

model for shape memory alloys. The details, however, were quite di�erent there.

Nevertheless, we suspect that the scheme of our proof, namely to play with the

variational inequality for the order parameter, should be applicable in much more

general situations. From the physical point of view, the method consists in making

full use of the Second Principle of Thermodynamics.

We are now in the position to prove Theorem 2.2.

Proof of Theorem 2.2. We use a \cut-o�"-argument. To this end, we consider

the initial-boundary value problem (1:1) + (3:7)+ (1.3{4), in which the evolution

equation (1.2) for the order parameter is replaced by

�t + @I(�) + �0(�) 3 ��0(�) �(�) a. e. in Q ; (3.7)

with the cut-o� function � 2 C0; 1(IR) de�ned by

�(') =

(
1=�� if ' � ��

1=' if ' > ��
: (3.8)

Apparently, the function � is bounded, and hence the right-hand side of (3.7) is

Lipschitz continuous with respect to both variables. In addition, (A1{3) are sat-

is�ed. Using these facts, it is not di�cult to verify that the abstract result con-

tained in [7, Theorem 1] can be suitably adapted to yield the existence of a unique

pair (�; �) satisfying � 2 H1(0; T ;L2(
)) \ C0([0; T ];H1(
)) , (2.3{4), (3.7), (1.4),

and (1.1) and (1.3) in some weaker sense. Moreover, by comparison in equation

(1.1), and using standard elliptic estimates, we �nd that � 2 L2(0; T ;H2(
)) as

well. Since � 2 H1(0; T ;L2(
)) , we can conclude that �t = 0 a. e. in the set

A := f� = 0g[f� = 1g and, with the help of the variational inequality correspond-

ing to (3.7), that

�t = � �0(�) � �0(�) �(�) a. e. in Q n A : (3.9)

Hence, by (A1) and the boundedness of � , it turns out that �t 2 L1(Q) .

Next, we show that (�; �) solves (1.1{4). To this end, it su�ces to check that

� � �� a. e. in Q. But this can be performed by repeating the argument in the proof

of Lemma 3.1 and just remarking that �(�) = 1=�� in At (indeed, estimating I2(t)

is even simpler than before because of (2.7)). Thus, we achieve that �(�) = 1=�

a. e. in Q , and (�; �) satis�es also (1.2), i. e. it is a solution to (1.1{4). On the

other hand, Lemma 3.1 implies that any solution to (1.1{4) also ful�ls (3.7). Then,

since the problem (1:1) + (3:7)+ (1.3{4) admits at most one solution, it follows

that (�; �) is uniquely determined. This completes the proof of Theorem 2.2. 2
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