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Abstract

A dichotomy concerning extinction and survival (even persistence)

at late times is established for critical multitype spatially homoge-

neous branching particle systems in continuous time under natural

conditions on the branching mechanism known from the \classical"

processes without motion component. This generalizes results of

L�opez-Mimbela and Wakolbinger [LMW96] and others. Our simpli-

�ed approach is based on some genealogical tree analysis combined

with the study of the long-term behavior of L1{norms of solutions of

related systems of reaction-\di�usion" equations, which is perhaps

also of some independent interest.
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1 Introduction and results

1.1 Motivation

Reaction-di�usion equations usually describe the concentration of some sub-

stances or similar quantities. In the case of systems of such equations the

non-negativity of solutions is therefore an important property which has to be

established ([GH96, GH97]).

There is a class of systems of reaction-di�usion equations which is related

to multitype branching particle systems. The relation is realized via so-called

log-Laplace functionals. Here the di�usion term re
ects the motion of marked

particles, whereas the reaction term corresponds to the branching mechanism.

There are already a lot of papers where such connection between reaction-

di�usion equations and branching systems was exploited in one or another di-

rection. See, for instance, [Daw93, Dyn94], and references therein.

In the case of systems however, we know only a few papers: [GLM90,

GRW90, GR91, GRW92, GW92, LM92, GW93, GW94, LMW96]. A common

feature there is that, compared with \classical" multitype branching processes

(�nite particle systems without motion component), more or less strong condi-

tions on the branching mechanism are imposed. One of our aims is to overcome

this 
aw in studying the long-term behavior of the particle system. This will be

achieved by some genealogical tree analysis combined with an investigation of

asymptotic properties of L1{norms of solutions of the related equation system.

Our main purpose is to provide a simpli�ed approach to a dichotomy be-

tween extinction and survival (even persistence) of the particle systems in low

respectively high dimensions of space under natural conditions on the branching

mechanism (see Corollary 10 at p.6). Such dichotomy is known from more spe-

ci�c models. In terms of the reaction-di�usion equation systems this concerns

the extinction or survival of L1{norms of non-negative solutions.

1.2 Systems of reaction-di�usion equations

On the equation side, typically we are concerned with systems of equations of

the following type.

De�nition 1 (system of reaction-di�usion equations) Fix K � 1: Con-

sider

@

@t
Ui = ��i Ui � %i

h
fi (1�U)� (1� Ui)

i
; 1 � i � K: (1)

The ingredients of this system are as follows.

(a) (\di�usion" component) For each i 2 f1; :::;Kg =: K; the fractional

power � (��)
�i=2 of Laplacian � in R

d is denoted by ��i , where the

�i are constants in (0; 2]: Note that ��i is a di�erential operator only
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in the boundary case �i = 2 (and only in this case the term di�usion is

actually adequate).

(b) (rates %i) The constants %i ; i 2 K; are (strictly) positive.

(c) (reaction term) Each component fi : R
K
+ ! [0;+1] of the vector f =

(f1 ; :::; fK) is a power series with non-negative coe�cients. Moreover,

it is assumed that the vector 1 = (1; :::; 1) is a �xed point for f ; that

is f (1) = 1: In other words, for i �xed, fi is a probability generating

function of a Z
K
+ {valued random vector (�i;1 ; :::; �i;K) :

fi(z) = Ez
�i;1
1 � � � z�i;KK ; z = (z1 ; :::; zK) 2 [0; 1]K: (2)

(d) (solution) A solution of (1) is a vector

U = (U1 ; :::; UK) of functions Ui : R+ � R
d ! [0; 1]

satisfying (1).

(e) (initial condition) The components Ui(0) : Rd ! [0; 1] of the vector

initial function U(0) belong to Ccomp
+ = Ccomp

+ (Rd); the set of all non-

negative continuous functions with compact support. 1) 3

The following example will be used later to compare our results with those

of other authors.

Example 2 Let K = 3 and, for z = (z1 ; z2 ; z3) 2 [0; 1]3;

f1(z) := 3
4 +

1
4 z1

h
z2 + c1(1� z2)

1+�
i
;

f2(z) := 1
2 +

1
4 z

3
1 +

1
8 z

3
2 +

1
8 z

5
3 ;

f3(z) := 5
8 +

3
8 z2

h
z3 + (1� z3)

1+�L (1� z3)
i
;

with constants 0 < � � 1; 0 � c1 � (1 + �)�1; and where L : [0; 1]! R+ is

an appropriate (slowly varying) function satisfying

L(z) � c3

log 1
z

as z # 0; with c3 > 0:
3

Under certain conditions on the fi ; formulated in Assumption 3 in the next

subsection, the system (1) of equations has a unique (non-negative) solution,

for each (admissible) initial vector U(0): In fact, existence of a non-negative

1) If no confusion is possible, we simplify notation and write U(t) instead of U(t; � ); for
instance.
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solution follows from a probabilistic representation in terms of a branching par-

ticle system (see (18)), and uniqueness by a standard contraction argument, we

will skip. The quantities of interest are then the L1{norms

KX
i=1

�i

Z
dx Ui(t; x); t � 0; (3)

as t " 1; where the �i ; i 2 K; are some positive constants. Under our

conditions (see Assumption 3 and Hypothesis 5), the norm in (3) converges

as t " 1; and the limit vanishes or is positive in dependence on whether the

dimension of space is low or high, respectively (dichotomy); see Remark 11.

In other words, in low dimensions the reaction wins the competition with the

di�usion, whereas in high dimensions the di�usion e�ect is dominating in this

competition.

1.3 Multitype branching particle systems

Our next aim is to describe the related stochastic particle process on an intuitive

level. Details on the connection between both models will follow in x 1.5.
Consider particles with types in the �nite set K = f1; :::;Kg : We assume

�rst of all that they move independently in R
d: In fact, all particles of type

i 2 K move according to a symmetric stable process of index �i 2 (0; 2] (that

is a Markov process with generator ��i ): Additionally, after an exponentially

distributed time with expectation 1=%i (recall De�nition 1 (b)) a particle of type

i \dies". Upon death, it produces children of types 1; :::;K according to the

o�spring generating function fi as in (2) (that is, �i;j children of type j are

born). O�spring instantaneously start from their parent's site and continue to

evolve independently and according to the same rules.

Introduce the matrix of o�spring means

M = (mi;j)
K

i;j=1 :=

�
@fi

@zj
(1)

�K
i;j=1

: (4)

That is, mi;j is the mean number of particles of type j produced from a particle

of type i upon its death.

Assumption 3 (critical mean matrix) Let M be irreducible and have the

maximal eigenvalue 1 (criticality). Let u = (u1 ; :::; uK) and v = (v1 ; :::; vK)

be (positive) right and left eigenvectors corresponding to this eigenvalue, i.e.

Mu = u; vM = v; (5)

normalized so that

(v;u) :=

KX
i=1

viui = 1; (1;u) = 1: (6)

3
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Example 4 Note that f from Example 2 has the irreducible mean matrix

M =

0
@ 1=4 1=4 0

3=4 3=8 5=8

0 3=8 3=8

1
A (7)

which possesses the eigenvalues 1; 1
8

p
6; and �1

8

p
6 ; hence it meets all the

requirements in Assumption 3. Moreover, the corresponding eigenvectors are

u = (5; 15; 9)=29 and v = (1; 1; 1) : 3

Let N
�
t;B � fig

�
denote the number of particles of type i 2 K which at

time t � 0 are in the Borel set B � R
d: Set

�i := vi=%i ; i 2 K; (8)

(with vi from the left eigenvector, and %i the death rate of a particle of type i):

Assume the process starts as a Poisson particle system N (0) in R
d � K with

intensity measure

� := �1` � � � � � �K`; (9)

with the �i from (8) and where ` is the (normalized) Lebesgue measure on

R
d: That is, at time 0 the particle con�gurations in disjoint subsets of Rd�K

are independent, and the number of particles of type i in the Borel set B � R
d

is Poissonian with mean �i `(B): In particular, the particles' initial intensity is

�nite. Write P� for the law of N = fN (t) : t � 0g starting with this Poisson

system, and E� for the related expectation. (We use the letter E always

according to such a rule.)

For z 2 [0; 1]K; put

�i (z) :=

KX
j=1

mi;j zj � [1� fi (1� z)] ; (10)

	 (z) :=
�
v;� (z)

�
=

�
v ; f (1� z)� (1� z)

�
: (11)

Before we can state our results, we introduce the following basic hypothe-

ses on the characteristics of the process N: The �rst one is exploited in low

dimensions d; whereas the second one is of use for large d:

Hypothesis 5 (reproductivity conditions)

(a) (lower bound) There exist a constant � 2 (0; 1] ; a constant c > 0; and

a type k 2 K such that

	 (z) � c z
1+�
k ; z 2 [0; 1]

K
: (12)

(b) (upper bound) There exists a constant � 2 (0; 1] and a constant c > 0

such that

	 (z) � c (1; z)
1+�

; z 2 [0; 1]
K
: (13)

3
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Remark 6 (interpretation of the hypotheses) Note that in (a) the type

k is something like the \worse" type, which we interpret as follows: The total

production of particles of type k by particles of all types is \at most" in the

normal domain of attraction of a stable law of index 1+� (that is, the law might

have still fatter tails). On the other hand, (b) is an integral characteristic saying

roughly that the total particle production is \at least" in the normal domain of

attraction of a stable law of index 1+� : In particular, here the total production

of particles (at death of a parent) has moments of all orders 1 + " < 1 + � : 3

Example 7 Our Example 2 satis�es requirements (a) and (b) of Hypothesis

5, if we take k = 2; assume additionally c1 > 0 in the de�nition of f1 ; and

choose � 2 [�; 1] and � 2 (0; �); respectively. Note that necessarily � > � : 3

Set

� := minf�1 ; :::; �Kg : (14)

1.4 Results and discussion

From now on we always impose the criticality Assumption 3. Our �rst result

concerns low dimensions:

Theorem 8 (local extinction in low dimensions) Under Hypothesis 5 (a),

if d � �=�; then for any bounded Borel set B � R
d,

P�

�
N (t; B � K) 6= 0

�
��!
t"1

0: (15)

In other words, in low dimensions the counting measure-valued process N

su�ers local extinction in the long-term limit.

We complement the previous theorem by a result concerning high dimen-

sions.

Theorem 9 (persistent convergence in high dimensions) Under Hypo-

thesis 5 (b), if d > �=� ; then N (t) converges in law as t " 1 to a limiting

counting measure N (1); say. It is a steady state which has intensity measure

� again (persistence).

Both theorems combined lead immediately to the following conclusion.

Corollary 10 (necessary and su�cient criterion) If Hypotheses 5 (a) and

5 (b) are satis�ed for � = � =: �; then persistent convergence holds if and only

if d > �=�; whereas N su�ers local extinction in the remaining case.

In simple terms: In low dimensions the extinction features of critical branch-

ing dominate the di�usion of particles, whereas in high dimensions the motion

is mobile enough to transport mass \from in�nity" to �nite regions.
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The discovery of a dichotomy e�ect for spatial branching processes goes back

to [Lie69], who dealt with a discrete time particle model. A multitype gener-

alization can be found in [PR77]. A characterization in terms of parameters

in the model (of the type d � �=� respectively d > �=�) was provided in

[DF85] (even in a random environment context), using a backward tree tech-

nique developed in [Kal77] and [Lie81]. See [DFFP86] for such a parametrized

condition in a superprocess setting, and [GW91] in a continuous time particle

version. Systems with in�nite intensity are dealt with in [BCG93], [BCG97],

and [Kle97]. Concerning multitype processes in continuous time under more re-

strictive assumptions compared with the present paper, references had already

been given at the beginning of x 1.1 (p.2).
Note that for the model under consideration the results of the present note, in

particular Corollary 10, cover persistence criteria recently due to [GW93] and

[LMW96]. Our approach involves some genealogical tree analysis and simple

equation tools rather than Palm tree constructions. In particular, we got rid of

the following restrictions imposed in the mentioned papers:

(i) M is a stochastic matrix (that is 1 is a right eigenvector), and M has

only (strictly) positive entries,

(ii) for each i 2 K; the total o�spring number produced by a particle of type i

is in the normal domain of attraction of a stable law of index 1+�i 2 (1; 2]:

Recall that the generating functions of Example 2 satisfy our Hypotheses 5 (a)

and 5 (b), but note they meet neither condition (i) nor (ii).

Theorem 8 will be proved in x 3.4, whereas the proof of Theorem 9 is post-

poned to x 3.5. The remaining parts of Section 2 and 3 serve as a preparation

for these proofs. In particular, with Proposition 17 in x 2.5 a large deviation

probability estimate is provided for ancestry lines in the reduced genealogical

tree (without spatial structure).

That we start the process from a homogeneous Poisson system is a simpli-

�cation. In fact, the old results on spatially homogeneous branching processes

in discrete time (see [PR77]) make clear, that by approximation one should be

able to pass to shift invariant initial laws of appropriate intensities.

For background on classical multitype branching theory, we refer to [AN72],

on point processes and discrete-time single type spatially homogeneous branch-

ing particle systems to [MKM78, in particular, Chapter 12], and on reaction-

di�usion equation systems to [Smo83].

1.5 Connection between the branching model

and the equation system

In this subsection we introduce the basic relations between the multitype branch-

ing particle model under consideration and the system of reaction-di�usion equa-

tions in De�nition 1.
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For a measure � on R
d � K and h 2 Ccomp

+ :=
�
Ccomp
+

�K
; we write

h�;hi :=
Z
� (d[x; i]) hi(x): (16)

Similarly, we proceed in the single type case K = 1:

Since N starts with a Poisson system of intensity � (recall (9)), the log-

Laplace functional of N (t) has the form

� logE� exp
h
� hN (t);hi

i
=
D
�;U (h; t)

E
; h 2 Ccomp

+ : (17)

In this case, the components Ui (h; t) = Ui (h; t; � ) of the vector function

U(t) = U (h; t) =
�
U1 (h; t) ; :::; UK (h; t)

�

are speci�ed by

0 � Ui (h; t; x) := Ex;i

h
1� e�hN(t);hi

i
� Ex;i hN (t);hi < 1; (18)

[x; i] 2 R
d � K: Here Px;i stands for the law of our branching process N

if it started at time 0 from a single particle of type i 2 K situated at site

x 2 R
d: Denote by Gi the distribution function of the exponential law with

parameter %i ; and by t 7! S�it the stable semigroup with generator ��i :

Applying standard renewal arguments one gets

Ui (h; t) = Gi(t)S
�i
t

�
1� e�hi

�
(19)

+

Z t

0

Gi(ds)S
�i
s

h
1� fi

�
1�U (h; t� s)

�i
:

In fact, the �rst term at the r.h.s. of (19) concerns the case that the initial

particle did not die by time t; whereas the second one results from the remaining

case if that particle died at some time s � t:

If h is additionally twice continuously di�erentiable (to be in the domain of

the Laplacian), by a di�erentiation of (19) with respect to t one can verify that

U(h) satis�es the equation system (1) with initial condition 1� e�h: That is,

via (18) the branching model N and the di�erential equation system (1) (or

an integrated version as (19)) correspond to each other. In particular, the log-

Laplace expression


�;U (h; t)

�
appearing in (17) coincides with the L1{norm

in (3).

Remark 11 (convergence of L1{norms) The L1{norms


�;U (h; t)

�
are

non-increasing in t (see (86)). Under the conditions of our theorems, the limit

as t " 1 is zero in the low dimensional case of Theorem 8 (see (92)), whereas

it is typically positive in the high dimensional situation of Theorem 9 (cf. with

the persistence statement (98)). 3
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Di�erentiating Ui ("h; t; x) with respect to " at " = 0+; we arrive at the

expectation Ex;i hN (t);hi =: Vi(h; t; x): On the other hand, if we do the same

with (19) with h replaced by "h; we obtain the following linear system of

integral equations for the expectation vector V(h) = V :

Vi(t) = Gi(t)S
�i
t hi +

Z t

0
Gi(ds)S

�i
s

X
j2K

mi;jVj(t� s): (20)

But the semigroup t 7! Gi(t)S
�i
t has generator ��i � %iI (with I the identity

operator). Hence from (20) we get the following `variation of constants' equation

system for the expectation vector V(h) = V :

Vi(t) = S�it hi + %i

Z t

0

ds S�is

X
j2K

(mi;j � �i;j)Vj(t� s): (21)

Integrating the space variable with Lebesgue measure `; multiplying by �i ;

and summing over i give the following formula for the intensity measure of

N (t) :

E�hN (t);hi =
Z
� (d[x; i]) Ex;i hN (t);hi � h�;hi : (22)

That is, after integration with �; time dependence of the intensity measure

disappears, since the term resulting from the second summand at the r.h.s.

of (21) vanishes by our choice (8) of the �i and the left eigenvalue property.

Actually a bit care has to be taken to guarantee that after integration with `

the terms remain �nite. We will skip this at this point and only refer to Lemma

19 (a) below.

Di�erentiating (21) with respect to t (if h is additionally twice continuously

di�erentiable), for the expectation vector V(h) = V we get the following linear

di�erential equation system

@

@t
Vi = ��i Vi + %i

X
j2K

(mi;j � �i;j)Vj ; i 2 K; (23)

with initial condition h: If we assume for the moment that M is in addition a

stochastic matrix, then the r.h.s. de�nes the generator of a Markov process in

R
d � K; which gives a good tool to study properties of the expectation vector

V(h) = V (see the `basic process' in [GRW92]). But in the present case of a

general critical M we are interested in, this tool is not anymore available. In

the next section we will analyze instead ancestry lines in the genealogical spatial

trees of our process and, in particular, at a point we will reduce the problem to

a stochastic matrix M; by a comparison argument and some transformations.
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2 Some family tree analysis

In this section we prepare for the proof of the persistence Theorem 9. For this

purpose, we start our branching process only with a single particle situated at

x 2 Rd and having type i: Actually, we are looking at the whole arising (�nite)

genealogical spatial tree. Of course, this requires to work from the beginning

with a �ner model. However, we will not give a formal construction since it is

quite intuitive and can be found in the literature. (For a systematic study of

such constructions, we recommend for instance [DP91].)

The genealogical spatial tree is a detailed description of the types and paths

of all the particles which arise, their birth and death times, recording this way

in particular all genealogical relations. For simplicity, we again use the symbol

Px;i to denote the law of the whole tree we just discussed.

If we neglect in such description the spatial data, we denote the remaining

(non-empty �nite) genealogical tree by T : Write IPi for the law of T if it

started from a particle of type i: Moreover, if we further drop recording after

time t � 0; we write Tt : Consequently, Tt tells us all what happens by time

t with the arising progeny of the original particle, except about their spatial

data.

2.1 Moment �niteness of the embedded multitype

continuous-time Galton-Watson process

Write N+(t; j) for the total number N
�
t;Rd � fjg� of particles of type j 2 K

living at time t: Note that N+ is a critical multitype continuous-time Galton-

Watson process. We will show that under condition (b) of Hypothesis 5, this

`classical' process N+ has �nite moments of all orders less than 1 + � : To

prepare for this we introduce the following notation.

De�nition 12 (function class B) We say that a function g : R+ ! R+ be-

longs to the class B if

(i) g is convex,

(ii) there exists a constant C such that

g (xy) � C g (x)g(y); x; y � 0: (24)

3

First we state the following lemma; compare with [Sew74, Theorems 2.3.1

and 2.3.7]. Recall that �i;j denotes the number of o�spring of type j born from

a particle of type i:

Lemma 13 (expectation �niteness of convex functionals) Let g 2 B:
If

IEi g (�i;j) <1; i; j 2 K; (25)
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then, for each T � 0;

sup
0�t�T

IEi g
�
N+(t; j)

�
< 1; i; j 2 K: (26)

Proof Introduce the probabilities

�i;j (t; n) := IPi

�
N+(t; j) = n

�
; n � 0;

the truncated expectations

�i;j (t;H) :=

HX
n=0

g(n)�i;j (t; n) ; H � 0; (27)

and

� (t;H) :=

KX
i=1

KX
j=1

�i;j (t;H) : (28)

We have to show that

sup
t�T

sup
H�0

�(t;H) < 1: (29)

Recall that %i is the death rate of a particle of type i; and fi its o�spring

generating function. Represent

%i [fi (z)� zi] =:
X
d�0

pi(d) z
d1
1 � � � zdKK ; z = (z1 ; :::; zK) 2 [0; 1]K;

with pi(d) � 0 for d 6= ei := (�i;j)
K

j=1 (where �i;j denotes the Kronecker

symbol). Put kdk := d1+ � � �+ dK : From the Kolmogorov backward equation

and the branching property we have, for n � 0;

@

@t
�i;j (t; n) = �n;0 pi(0) +

KX
k=1

pi (ek) �k;j (t; n)

+
X

kdk� 2

pi(d)
Xn

KY
k=1

dkY
q=1

�k;j (t; nk;q)

(30)

where the symbol
Pn

denotes summation over all tuples

(n1;1 ; :::; n1;d1; :::; nK;1; :::; nK;dK)

of non-negative integers summing up to n :

(n1;1 + � � �+ n1;d1) + � � �+ (nK;1 + � � �+ nK;dK ) = n: (31)
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Multiplying (30) by g(n) and summing over n from 0 to H; we obtain

@

@t
�i;j (t;H) = pi(0) g(0) +

KX
k=1

pi (ek)�k;j (t;H)

+
X

kdk� 2

pi(d)

HX
n=0

Xn

g(n)

KY
k=1

dkY
q=1

�k;j (t; nk;q) :

(32)

Since g is convex, and d 6= 0;

g(n) = g

�
n1;1 + � � �+ nK;dK

kdk kdk
�
� 1

kdk
KX

k0=1

dk0X
q0=1

g
�
nk0;q0kdk

�
;

and by the multiplicativity property (24) we obtain

g(n) � C
g (kdk)
kdk

KX
k0=1

dk0X
q0=1

g (nk0;q0) :

Thus, for the last term in (32) we get the estimate

X
kdk� 2

pi(d)

HX
n=0

Xn
g(n)

KY
k=1

dkY
q=1

�k;j (t; nk;q)

� C
X

kdk�2

pi(d)
g (kdk)
kdk

HX
n=0

Xn
KX

k0=1

dk0X
q0=1

g(nk0;q0)

KY
k=1

dkY
q=1

�k;j(t; nk;q):

(33)

In the latter subexpression
PH

n=0 ::: at the r.h.s., we may interchange the order

of summation, so that we �rst �x a pair (k0; q0): Then we have to deal with the

remaining internal expression

HX
n=0

Xn
g (nk0;q0)

KY
k=1

dkY
q=1

�k;j (t; nk;q) : (34)

Again we interchange the order of summation, so that in (34) we �rst let run

nk0;q0 from 0 to H; and withdraw g (nk0;q0 ) �k0;j (t; nk0;q0) : Then the remaining

internal expression from (34) is a probability saying that H�nk0;q0 particles of

type j are produced etc. We may estimate this probability by 1; so that for

(34) we get the bound

HX
nk0;q0 = 0

g (nk0;q0) �k0;j (t; nk0;q0) = �k0;j (t;H) :
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Consequently, the r.h.s. of (33) is majorized by

C
X

kdk� 2

pi(d)
g (kdk)
kdk

KX
k0=1

dk0X
q0=1

�k0;j (t;H) :

But �k0;j (t;H) does not depend on q0; and dk0 � kdk: Hence, denoting

Di :=
X

kdk� 2

pi(d) g (kdk)

(observe that Di <1 by assumption (25)), instead of (33) we get

X
kdk� 2

pi(d)

HX
n=0

Xn
g(n)

KY
k=1

dkY
q=1

�k;j (t; nk;q) � C Di

KX
k0=1

�k0;j (t;H) :

Applied to (32), together with the trivial inequality pi (ek) � 1; we arrive at

@

@t
�i;j (t;H) � pi(0) g(0) + (1 + CDi)

KX
k=1

�k;j (t;H) :

Summing over i and j; recalling the notation (28), and setting D :=
PK

i=1Di

gives

@

@t
�(t;H) � K g(0)

KX
i=1

pi(0) +K (K +CD) � (t;H) :

Since � (0;H) = K g(1) � 0; and all the constants in this linear ordinary

di�erential inequality are non-negative and independent of H; by standard

comparison it follows that the function t 7! �(t;H) is majorized by a (�-

nite) continuous function being independent of H: This gives (29), �nishing

the proof.

The next statement follows easily from the preceding lemma and the fact

that

IEi �
1+"
i;j <1; i; j 2 K; 0 � " < � ;

(recall Remark 6).

Corollary 14 (moment �niteness) If condition (b) in Hypothesis 5 holds,

then for each T � 0 and 0 � " < � ;

sup
0�t�T

IEi

�
N+(t; j)

�1+"
< 1; i; j 2 K:
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2.2 Linear bound for (1 + "){moments

Along with the critical mean matrix M of (4), we introduce the matrices

M(%) :=
�
%i (mi;j � �i;j)

�K
i;j=1

(35)

and

M(t) =
�Mi;j(t)

�K
i;j=1

:= eM(%)t; t � 0: (36)

Actually, (see, for example, [AN72, x 5.7.2])

Mi;j(t) = IEiN
+(t; j): (37)

Recall that u is the right eigenvector of M normalized by (1;u) = 1: It is

easy to check that M(%)u = 0; hence u is a right 2) eigenvector of M(t) :

M(t)u = u; t � 0: (38)

Combined with (37) we get the well-known fact

sup
s�0

IEi

KX
k=1

N+ (s; k) < 1; i 2 K: (39)

Now we are ready to majorize the moments IEi
�
N+(t; j)

�1+"
as t ! 1

under Hypothesis 5 (b), for �xed 0 � " < � :

Lemma 15 (linear bound for (1 + "){moments) If condition (b) in Hy-

pothesis 5 holds, then for any " 2
�
0; �

�
there exist a constant c (depending

on ") such that

IEi

�
N+(t; j)

�1+" � c (1 + t) ; i; j 2 K; t � 0:

Proof Fix "; i: It su�ces to show that

IEi

�
N+(t);u

�1+" � c (1 + t) t > 1; (40)

for some constant c (recall Corollary 14). To this aim, �x t (for the moment)

and set � := t= [t] and

Xm :=
�
N+(m� );u

�
�
�
N+

�
(m � 1)�

�
;u
�
; m � 1: (41)

Clearly, under IPi ;

�
N+(t);u

�
= ui +

[t]X
m=1

Xm : (42)

2) Similarly, writing � for the vector with components �i = vi=%i (recall (8)), we get
�M(%) = 0; hence � is a left eigenvector of the M(t):
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Let Ft denote the standard �{�eld generated by the (c�adl�ag) process N+ up

to time t. Given F(m�1)� ; by the Markov property, time-homogeneity, and

the branching property, we can represent

N+(m�; j) =

KX
k=1

N+((m�1)� ;k)X
q=1

N
+(q)
k (�; j) (43)

where, for k �xed,
n
N

+(q)
k : q � 1

o
are independent copies of N+ under IPk :

But by (37) and (38),

IEk

�
N

+(q)
k (� );u

�
=

KX
j=1

Mk;j (� )uj = uk (44)

is independent of q: Hence, from (43) and (44) we conclude that

IEi

n�
N+(m� );u

� ��� F(m�1)�

o
=
�
N+

�
(m � 1)�

�
;u
�
:

Therefore, the random sequence
��
N+(m� );u

�
; m � 0

	
is a martingale with

respect to fFm� ; m � 0g and IPi : In particular,

IEi

�
Xm

�� F(m�1)�

	
= 0; m � 1: (45)

On the other hand, from (41), (43), and the right identity in (44), given

F(m�1)� ;

Xm =

KX
k=1

N+((m�1)� ;k)X
q=1

KX
j=1

h
N

+(q)
k (�; j) �Mk;j (� )

i
uj :

Hence,

IEi

n
jXmj1+"

��F(m�1)�

o

� const

KX
k=1

KX
j=1

IE
(q)
k

�������
N+((m�1)� ;k)X

q=1

h
N

+(q)
k (�; j) �Mk;j (� )

i
uj

�������

1+"

;

where the latter expectation IE
(q)
k ::: means that it has to apply only to the

random variables N
+(q)
k (�; j): Here we used the convention to denote by const

a positive constant which may change from term to term. Applying the von

Bahr-Esseen inequality [vBE65, Theorem 2] to the zero mean i.i.d. sequence

nh
N

+(q)
k (�; j) �Mk;j (� )

i
uj : q � 1

o
;
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the latter inequality can be continued with

� const

KX
k=1

KX
j=1

2

N+((m�1)� ;k)X
q=1

IE
(q)
k

����
h
N

+(q)
k (�; j) �Mk;j (� )

i
uj

����
1+"

:

Observing that

max
j;k

sup
0<��2

IEk

�����N+
k (�; j) �Mk;j (� )

�
uj

����
1+"

is �nite by Corollary 14, we may summarize the previous estimates to

IEi jXmj1+" � const IEi

KX
k=1

N+
�
(m � 1)� ; k

�
� const sup

s�0
IEi

KX
k=1

N+ (s; k) :

But the latter expression is �nite since N+ is critical (recall (39)), and we arrive

at

C := sup
m�1

IEi jXmj1+" < 1: (46)

On the other hand, from (42),

IEi

�
N+(t);u

�1+" � const

�
u1+"i + IEi

���
[t]X

m=1

Xm

���1+"
�
:

By (45) and (46), we may again exploit the von Bahr-Esseen inequality to

continue the latter formula line with

� const

�
u1+"i + 2

[t]X
m=1

IEi jXmj1+"
�
� const

�
1 +C [t]

� � const (1 + t)

as required for (40).

2.3 An auxiliary Markov jump process

Recall that in general the critical mean matrix M is a non-stochastic matrix

(Assumption 3). Using its (normalized) right eigenvector u; we introduce the

stochastic irreducible matrix M with entries

mi;j :=
mi;j uj

ui
; i; j 2 K: (47)

Consider a Markov jump process in K where a jump from i to j occurs with

rate %imi;j (including self-transitions if i = j): In other words, the process
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spends in state i a random time with distribution Gi ; and then jumps to j

chosen with probability mi;j :

Parallel to (35) and (36), we introduce the matrices

M(%) :=
�
%i (mi;j � �i;j)

�K
i;j=1

and

M(t) =
�
Mi;j(t)

�K
i;j=1

:= eM(%)t; t � 0:

Note that from de�nition (47) of M; Assumption 3, and de�nition (8) of �i it

follows that the vector � de�ned by

� = (�1 ; :::; �K) with �i = �iui= (�;u) ; i 2 K; (48)

satis�es �M(%) = 0: Hence, � is a normalized left eigenvector of the matrices

M(t): In other words, � is the unique invariant law for the transition matrices

M(t); that is for the Markov jump process under consideration. Therefore, �i
may be viewed as the approximate relative time this process spends in i:

Let P i denote the law of the present Markov jump process starting from i;

and tj(t) the total time this process spends at state j by time t: Set

ri;j(t; a) := P i

�
tj(t) � a

�
; i; j 2 K; t; a � 0: (49)

Note that

ri;j(t; a) = 0 if 0 � t < a; i; j 2 K: (50)

The following large deviation estimates for occupation times are well-known

(use, for instance, [Var84], Theorem 11.6, the remark on the case of compact

state spaces before (1){(5), p.34, and the contraction principle (9.4)):

To each � > 0 there are constants c1 and c2 such that

ri;j

�
t;
�
�j + �

�
t
�
� c1 e

�c2t; i; j 2 K; t � 0:

9=
; (51)

By a renewal argument, for 0 � a � t;

ri;i(t; a) = 1�Gi(a) +

Z a

0

Gi(ds)

KX
k=1

mi;k rk;i (t� s; a � s) ;

ri;j(t; a) =

Z t

0

Gi(ds)

KX
k=1

mi;k rk;j (t� s; a) ; i 6= j:

9>>>>>=
>>>>>;

(52)

It is easy to see that the system (52) has a unique [0; 1]{valued solution. (Indeed,

pass for instance to a description in terms of matrices, and use that in this

matrix renewal equation one has uniform bounds to reduce to a usual renewal

equation.) Recall that this solution satis�es (51).
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Observe now that by setting

ri;j(t; a) := ri;j(t; a)
ui

uj
(53)

the system (52) changes to

ri;i(t; a) = 1� Gi(a) +

Z a

0

Gi(ds)

KX
k=1

mi;k rk;i (t� s; a� s) ;

ri;j(t; a) =

Z t

0

Gi(ds)

KX
k=1

mi;k rk;j (t� s; a) ; i 6= j;

9>>>>>=
>>>>>;

(54)

0 � a � t: Then (51) immediately gives the following exponential estimates for

the unique solution to (54):

To each � > 0 there are constants c1 and c2 such that

ri;j

�
t;
�
�j + �

�
t
�
� c1 e

�c2t; i; j 2 K; t � 0:

9=
; (55)

2.4 Exponential smallness of some ancestry line probabil-

ities

Now we turn back to the genealogical trees Tt introduced in the beginning

of this section. To each particle which is alive at time t there is an ancestry

line w : [0; t)! K describing the type of this particle and the types of all its

ancestors. Similarly, for particles who died at a time � < t without producing

children, we may adjoin an ancestry line w : [0; � ) ! K: Since we exclude

events of probability zero (the life time of particles is exponentially distributed,

hence nothing may happen at a given time point as t); we can imagine Tt to

be the collection of those ancestry lines w (of particles which are alive at time

t or died before t) and we write w 2 Tt if w belongs to Tt in this sense.

Let tj(w) � 0 denote the total time the ancestry line w 2 Tt spends in type
j 2 K: Note that t1(w) + � � �+ tK(w) � t (if w 2 Tt): The key of our family

tree analysis will be a large deviation result on tj(w) as time t tends to in�nity

(see Proposition 17 in the next subsection) we now prepare for.

Set

0 � �j(t) := max
w2Tt

tj(w) � t; j 2 K; t � 0; (56)

for the maximal total time any of the ancestry lines w 2 Tt spent in j: Write

pi;j(t; a) := IPi (�j(t) < a) ; i; j 2 K; t; a � 0; (57)

for the probability that the maximal total time �j(t) an ancestry line in a tree

Tt is smaller than a: Put

qi;j(t; a) := 1� pi;j(t; a): (58)
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Clearly,

qi;j(t; a) = 0 if 0 � t < a; i; j 2 K: (59)

By comparison with the solution to (54), we will derive the following result.

Lemma 16 (exponential smallness) Fix � > 0: Then there are constants

c1 and c2 such that

qi;j

�
t;
�
�j + �

�
t
�
� c1 e

�c2t; i; j 2 K; t � 0:

Proof Write p�;j(t; a) for the vector
�
p1;j(t; a); :::; pK;j(t; a)

�
: Similarly, intro-

duce the notation q�;j (t; a) : By a renewal argument, for 0 � a � t;

pi;i(t; a) =

Z a

0

Gi(ds) fi

�
p�;i (t� s; a� s)

�
; i 2 K;

pi;j(t; a) = 1� Gi(t) +

Z t

0

Gi(ds) fi

�
p�;j (t� s; a)

�
; i 6= j:

9>>>=
>>>;

(60)

Hence, for 0 � a � t;

qi;i(t; a) = 1� Gi(a) +

Z a

0

Gi(ds)
h
1� fi

��
1� q�;i(t � s; a� s)

��i
;

qi;j(t; a) =

Z t

0

Gi(ds)
h
1� fi

�
1� q�;j (t� s; a)

�i
; i 6= j:

9>>>=
>>>;

(61)

We would like to compare qi;j(t; a) with ri;j(t; a): To this aim we approximate

the solutions of (61) and (54) in a standard way by the following quantities:

q
(0)
i;j (t; a) := �i;j

�
1�Gi(a)

�
=: r

(0)
i;j (t; a);

and, for n � 1,

q
(n)
i;i (t; a) = 1� Gi(a) +

Z a

0

Gi(ds)
h
1� fi

��
1� q

(n�1)
�;i (t� s; a� s)

��i
;

q
(n)
i;j (t; a) =

Z t

0

Gi(ds)
h
1� fi

�
1� q

(n�1)
�;j (t� s; a)

�i
; i 6= j:

9>>>=
>>>;

and

r
(n)
i;i (t; a) = 1�Gi(a) +

Z a

0

Gi(ds)

KX
k=1

mi;k r
(n�1)
k;i (t� s; a� s) ;

r
(n)
i;j (t; a) =

Z t

0
Gi(ds)

KX
k=1

mi;k r
(n�1)
k;j (t � s; a) ; i 6= j;

9>>>>>=
>>>>>;
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0 � a � t: Exploiting the simple estimate

0 � 1� fi (1� z) �
KX
k=1

mi;k zk ; i 2 K; z 2 [0; 1]K; (62)

(implying by the way also that �i from (10) is non-negative), by induction we

get

q
(n)
i;j (t; a) � r

(n)
i;j (t; a); 0 � a � t; i; j 2 K; n � 1;

Passing to the limit as n " 1 in this relation gives

qi;j(t; a) � ri;j(t; a); 0 � a � t; i; j 2 K:

Then by (55) the proof is complete.

2.5 Large deviation probabilities for ancestry lines in the

reduced tree

Let T r
t denote the reduced tree obtained from Tt by removing all the ancestry

lines w 2 Tt which die before t: Recall the vector � de�ned in (48) is the

invariant law of the auxiliary Markov jump process.

Proposition 17 (large deviations) Take � > 0: Then there are positive con-

stants c1 and c2 such that

IPi

�
9w 2 T r

t : tj(w) <
�
�j � (K�1)�� t� � c1 e

�c2t; i; j 2 K; t � 0:

Proof We may assume that K > 1 (otherwise the probability expression

in the proposition disappears since in this case t1(w) � t). If w 2 T r
t then

t1(w) + � � �+ tK(w) = t: Since
�
1; �

�
= 1; for i; j 2 K �xed the probability in

question is

IPi

�
9w 2 T r

t :
X
k: k 6=j

tk(w) >
X
k: k 6=j

�
�k + �

�
t

�

�
X
k: k 6=j

IPi

�
9w 2 T r

t : tk(w) >
�
�k + �

�
t
�
:

Enlarging further by passing to Tt and to the � relation, and using that

IPi

�
9w 2 Tt : tk(w) �

�
�k + �

�
t
�
= qi;k

�
t;
�
�k + �

�
t
�
;

the claim follows from Lemma 16.
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2.6 A uniform estimate

Recall de�nition (18) of the `Laplace' functionals Ui (h; t; x) : We will use the

derived linear bounds of (1 + "){moments and the large deviation probabilities

to estimate these functionals.

Lemma 18 (a uniform estimate) Impose Hypothesis 5 (b). Take " > 0 and

h 2 Ccomp
+ : Then there is a constant c independent of " such that

sup
(x;i)2Rd�K

Ui ("h; t; x) � c "
�
1 ^ t�d=�

�
; t > 0: (63)

Proof Without loss of generality, we may assume that the motion exponents

are ordered: �1 � � � � � �K : Take � > 0 such that c� := �1 � (K � 1)� > 0;

and introduce the event

At;� :=
n
9w 2 T r

t : t1(w) < c�t
o
:

In the following, I fAg always denotes the indicator of a set (or event) A:

Using the bound in (18), for i 2 K;

sup
x2Rd

Ui ("h; t; x)

� " IEi hN+(t);hi I fAt;�g+ " sup
x2Rd

Ex;i hN (t);hi I�Ac
t;�

	
:

(64)

Here, by an abuse of notation, Ac
t;� refers to the complement of At;� on the set

fN (t) 6= 0g : Take � 2 (0; � ): For the �rst term at the r.h.s. we apply H�older's

inequality to get

IEi



N+(t);h

�
I fAt;�g �

�
IEi



N+(t);h

�1+��1=(1+�) �
IPi (At;�)

��=(1+�)
:

Then Lemma 15 and Proposition 17 give

IEi



N+(t);h

�
I fAt;�g � const (1 + t)1=(1+�) e�const t; (65)

which is of a smaller order than required for (63).

It remains to deal with the second term at the r.h.s. of (64). Choose a ball

B in R
d centered at the origin such that

hi � chIfBg; i 2 K; for some constant ch : (66)

Then

Ex;i hN (t);hi I
�
Ac
t;�

	
� chE0;iN

�
t; (B � x)� K

�
I
�
Ac
t;�

	
:
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Denoting by Wm
j (t) the position of the mth particle of type j (in any ordering)

in the (non-empty) population at time t; we have

E0;iN
�
t; (B � x)� K

�
I
�
Ac
t;�

	

= E0;i

KX
j=1

N+(t;j)X
m=1

I
�
Ac
t;�

	
P0;i

n
Wm

j (t) 2 B � x

��� Ac
t;�

o
:

(67)

Recall that tk (w) denotes the total time the ancestry line w in the reduced tree

T r
t spends at type k: Write t(w) :=

�
t1(w);:::; tk(w)

�
: Now we decompose the

latter probability as follows:

P0;i

n
Wm

j (t) 2 B � x
��� Ac

t;�

o

=

Z
P0;i

n
t (w) 2 dt

��� Ac
t;�

o
P0;i

n
Wm

j (t) 2 B � x

��� t (w) = t
o
:

(68)

Denoting by pk the transition density function of the stable motion process

with index �k ; the internal conditional probability can be written as

P0;i

n
Wm

j (t) 2 B � x
��� t (w) = t

o

=

Z
dy (p2t2 � � � � � pKtK)(y)

Z
z+y2B�x

dz p1t1 (z) :

(69)

In view of the unimodality and symmetry of p1; the internal integral is bounded

by Z
B

dz p1t1 (z) � const
�
1 ^ t

�d=�
1

�
� const

�
1 ^ t�d=�

�
: (70)

Here we used the fact that by de�nition t1(w) � c�t on the event Ac
t;� : Thus

the r.h.s. of (70) is a bound for (69) (on Ac
t;� ); hence for (68). Therefore, the

r.h.s. of (67) is bounded by

const
�
1 ^ t�d=�

�
E0;i

KX
j=1

N+(t; j) � const
�
1 ^ t�d=�

�

since N+ is critical ((39)). This �nishes the proof.

3 Remaining proofs

Lemma 18 will be our main tool for the proof of the persistence Theorem 9.

But �rst of all we prepare for the proof of the extinction Theorem 8.
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3.1 On the intensity measures

For t; L � 0; set

C(t; L) :=
n
x 2 Rd : jxj � L t1=�

o
: (71)

Recall the de�nition (9) of the initial intensity measure �:

Lemma 19 (intensity measures) Let d � 1: Then the following two state-

ments hold.

(a) (�nite intensity measures) For all t � 0 and h 2 Ccomp
+ ;

E� hN (t);hi =
Z
� (d[x; i]) Ex;i hN (t);hi = h�;hi < 1: (72)

(b) (negligible contribution from outside) For each bounded Borel sub-

set B of R
d;

sup
t�1

KX
i=1

�i

Z
Rd nC(t;L)

dx Ex;iN (t; B � K) ��!
L"1

0: (73)

Proof Given h 2 C
comp
+ ; choose ch and B satisfying (66). Assume that B

is a ball of radius r � 1 (centered at the origin). Consider a �xed i:

1� (preparation) For t;K � 0; we want to deal with the quantity

Z
Rd nC(t;L)

dx Ex;iN (t; B � K) =

Z
Rd nC(t;L)

dx E0;iN
�
t; (B � x) � K

�
: (74)

As in (67), conditioning on the (non-empty) reduced tree T r
t , the expectation

expression at the r.h.s. can be dominated by

E0;i I
�
N (t) 6= 0

	 KX
j=1

N+(t;j)X
m=1

P0;i

n
Wm

j (t) 2 B � x

��� T r
t

o
: (75)

Integrating with respect to dx on R
d nC(t; L); for (74) we obtain the bound

E0;i I
�
N (t) 6= 0

	 KX
j=1

N+(t;j)X
m=1

Z
Rd nC(t;L)

dx

Z
B�x

P0;i

n
Wm

j (t) 2 dy

��� T r
t

o
: (76)

Since B is a ball of the radius r centered at the origin, the restrictions to the

integration variables imply that jx+ yj � r and jyj > Lt1=�� r: Hence, inter-

changing the order of integration, the latter double integral can be estimated

from above byZ
jyj>Lt1=��r

P0;i

n
Wm

j (t) 2 dy

��� T r
t

oZ
jx+yj � r

dx: (77)
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Denoting the internal integral by cr (which is independent of y); the double

integral (77) can be written as

cr P0;i

n��Wm
j (t)

�� � Lt1=� � r

��� T r
t

o
: (78)

2� (proof of (a)) Take now L = 0; estimate the latter (conditional) probability

expression by 1; and combine all the previous estimates to arrive at

Z
dx Ex;iN (t; B � K) � const E0;i

KX
j=1

N+(t; j):

But the latter expectation is �nite (recall (39)). This gives the �niteness of the

expectation expression in (72). Combining with the identity (22), statement

(a) follows.

3� (proof of (b)) Consider now t � 1 and L � 2r: Then the (conditional)

probability expression in (78) is bounded from above by

P0;i

� ��Wm
j (t)

�� � L

2
t1=�

��� T r
t

�
: (79)

Recall that, for i; j;m; t; �xed, Wm
j (t) is the position of a particular particle

at time t: In the time interval [0; t]; this particle and its ancestors spent total

time tk in type k 2 f1; :::;Kg; where t1 + � � �+ tK = t: Then, evidently, given

T r
t ; the following coincidence in law holds:

Wm
j (t)

L

= W (t1 ; �1) + � � �+W (tK ; �K)

where t 7!W (t; �k) is a symmetric stable process with index �k ; starting from

0 at time 0; its law we denote by P
�k
0 : Now the probability in (79) can be

estimated from above by

KX
k=1

P�k
0

� ��W (tk ; �k)
�� � L

2K
t
1=�k
k

�
;

since t � 1 and t1=� � t1=�k � t
1=�k
k (recall de�nition (14) of �). By the

self-similarity of the stable process, we can continue with

=

KX
k=1

P�k
0

� ��W (1; �k)
�� � L

2K

�
=: "L :

Consequently, the conditional probability expression in (78) is bounded by "L ;

and for (76) hence (74) we get the upper bound

const "LE0;i

KX
j=1

N+(t; j) � const "L ��!
L"1

0

(recall (39)). This �nishes the proof.
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3.2 Some uniform continuity in time

Before we will come to some uniform continuity property of certain functionals

needed for the extinction proof, we observe the following simple fact. Recall the

de�nition (11) of 	:

Lemma 20 (monotonicity and non-negativity) If the matrix M of means

satis�es Assumption 3 then 	(z) � 0 for z 2 [0; 1]
K

and, in addition, 	 is

monotone non-decreasing in all of its arguments.

Proof Recalling the identity in (11), and that v is the left eigenvector, we

have

@

@zi
	(z) = vi +

KX
j=1

vj
@fj (1� z)

@zi
� vi �

KX
j=1

vjmji = 0; i 2 K;

proving the monotonicity. The non-negativity then follows from 	(0) = 0:

Recalling (18) and (72), for h 2 Ccomp
+ put

0 � U+
i (h; t) :=

Z
dx Ui (h; t; x) � const h�;hi < 1: (80)

Lemma 21 (uniform continuity in time) Without any dimension restric-

tion, for " > 0 one can �nd � = � (") such that

sup
t�0; i2K

���U+
i (h; t)� U+

i (h; t+ � )

��� � " if 0 � � � �:

Proof Set

bi(h; t; x) := E�i
x

�
1� exp

h
� hi (W (t;�i))

i�
:

Then, since the stable process W (� ;�i) (introduced in step 3� of the proof of

Lemma 19) has stationary increments,

`;bi(h; t)

�
=


`;1� e�hi

� � h`; hii < 1:

Hence, 

�;b(h; t)

�
=


�;1� e�h

� � h�;hi < 1: (81)

In particular, 

�;b("h; t)

�
� " h�;hi &

"#0
0: (82)

Integrating equation (19) with respect to ` we obtain

U+
i (h; t) = Gi(t)



`; 1� e�hi

�
+

Z t

0

G(ds) U+
i (h; t� s) (83)

�
Z t

0

G(ds)

�
` ; fi

�
1 �U (h; t� s)

�
� 1 + Ui (h; t� s)

�
:
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All the terms in this equation are indeed �nite by (80) and the elementary

estimate (62). Introduce the function

Hi(t) :=

1X
n=1

G�n
i (t); t � 0:

Note that Hi(t) = %it (use Laplace transforms). Solving the renewal equation

(83) with respect to U+
i (h; t) (see for instance [Fel71, x 11.1]), we �nd

U+
i (h; t)

=


`; 1� e�hi

�
� %i

Z t

0

ds
D
`; fi

�
1�U (h; s)

�
� 1 + Ui (h; s)

E
:

(84)

Multiplying by �i = vi=%i (recall (8)), summing over i 2 K, and recalling

notation (11) of 	 and that v is the left eigenvector, we obtain



�;U(h; t)

�
=


�;1� e�h

�
�
Z t

0

ds
D
`;	

�
U (h; s)

�E
: (85)

But 	 is non-negative by Lemma 20, and it follows that



�;U(h; t)

�
is non�increasing in t (86)

and

0 �


�;U(h; t)

�
�


�;1� e�h

�
� h�;hi < 1: (87)

From (84) we have

���U+
i (h; t)� U+

i (h; t+ � )

���
� %i

Z t+�

t

ds

�
`;
���fi �1�U (h; s)

�� 1 + Ui (h; s)
���
�
:

(88)

By (62), the term in angles can be estimated from above:

�
`;

KX
k=1

mi;kUk (h; s) + Ui (h; s)

�
� const



�;U(h; t)

�
� const h�;hi ;

where we used (87). Managing (88) in this way, the claim follows.

3.3 Extinction of some functionals

In this subsection, we impose Hypothesis 5 (a) and assume d � �=�:
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Lemma 22 (special extinction along a subsequence) Impose the condi-

tions of Theorem 8, let k be such as in Hypothesis 5 (a), and �x h 2 C
comp
+ :

Then there exists a sequence tn !1 as n " 1 such that

lim
n"1

U+
k (h; tn) = 0:

Proof It follows from (85) that

Z
1

0

dt

Z
dy 	

�
U (h; t; y)

�
< 1: (89)

Hence, by the assumption (12) we conclude that

1 >

Z
1

0

dt

Z
C(t;L)

dy 	
�
U (h; t; y)

�
� c

Z
1

0

dt

Z
C(t;L)

dy
�
Uk (h; t; y)

�1+�
:

Using Jensen's inequality, the estimation can be continued with

� c

Z
1

0
dt
�Z

C(t;L)
dy Uk (h; t; y)

�1+�
jC (t; L)j�� ;

with jBj denoting the Lebesgue measure of B: Recalling the de�nition (71) of

C (t; L) ; we have jC (t; L)j = const td=� implying that under the conditions of

Theorem 8, Z
1

1

dt jC (t; L)j�� = 1:

It follows that

liminf
t"1

Z
C(t;L)

dy Uk (h; t; y) = 0: (90)

On the other hand, by the de�nition (18) of Uk (h; t; y) ; we �nd a ball B in

R
d such that all hi disappear outside of B and that

Uk (h; t; y) � Py;k

�
N (t;B � K) 6= 0

�
� Ey;kN (t;B � K): (91)

Hence, by Lemma 19 (b), to " > 0 we can choose an L such that

sup
t�1

Z
Rd nC(t;L)

dy Uk (h; t; y) � ":

Thus, combined with (90),

liminf
t"1

Z
dy Uk(h; t; y) � ":

Since " > 0 is arbitrary, lim inft"1 U+
k (h; t) = 0; proving the lemma.
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Lemma 23 (extinction: general case) Under the conditions of Theorem 8,

for h 2 Ccomp
+ ;

lim
t"1



�;U(h; t)

�
= 0: (92)

Proof From the previous lemma we know that there is a sequence tn ! 1
such that

lim
n"1

U+
i (h; tn) = 0 (93)

holds if i coincides with k from Hypothesis 5 (a). If K > 1; let i 6= k be such

that mki > 0 (since M is irreducible, such an i always exists). Then there is

a � > 0 such that

1� fk (1� z) � 1

2
mki zi; z 2 [0; 1]K; 0 � zi � �: (94)

Recalling de�nition (18),

Ui (h; t; y) � P0;i

�
N (t) 6= 0

�
��!
t"1

0;

since the critical multitype continuous-timeGalton-Watson process dies. Hence,

there exists a t0 = t0 (�) such that

sup
h;y

Ui (h; t; y) � �; t � t0 :

Therefore, using once more equation (19), by (94), for " > 0 and t� " � t0 ;

Uk (h; t; x) �
Z "

0

Gk(ds)E
�k
x

h
1� fk

�
1�U

�
h; t� s;W (s; �i)

��i

� 1

2
mki

Z "

0

Gk(ds)E
�k
x Ui

�
h; t� s;W (s; �i)

�
:

Integrating with respect to dx gives

U+
k (h; t) � const

Z "

0
Gk(ds)U

+
i (h; t� s)

� const Gk (") inf
t�"�s�t

U+
i (h; s) :

Taking now t = tn from Lemma 22, we get

inf
tn�"� s� tn

U+
i (h; s) ��!

n"1
0:

But " > 0 is arbitrary, and from the uniform continuity established in Lemma

21 we obtain (93) for the selected i:

Since M is irreducible we can repeat this procedure �nitely often to see that

(93) holds for any i (along the same sequence tn):

Finally,


�;U(h; t)

�
is monotone in t; by (86). This, in view of (93), yields

(92), �nishing the proof.
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3.4 Proof of the local extinction theorem

Since N starts with a Poisson system of intensity �, and the law of N is

in�nitely divisible, the extinction claim (15) in Theorem 8 can be reformulated

as follows: For each bounded Borel subset B of Rd;

Z
� (d[x; i]) Px;i

�
N (t; B � K) 6= 0

�
��!
t"1

0: (95)

(In fact, combine, for instance, Lemma 2.2.5, Theorem 4.3.3, and Proposition

2.2.14 of [MKM78].) By Lemma 19, it remains to show that

Z
C(t;L)

dx Px;i

�
N (t; B � K) 6= 0

�
��!
t"1

0 (96)

for �xed constant L � 1; type i 2 K; and bounded Borel set B: For this

we may additionally assume that B is a centered ball in R
d: We can �nd

h = (h1 ; :::; hK) 2 Ccomp
+ such that hi � IfBg; i 2 K: For such a choice of h;

by the de�nition (18) of Ui (h; t; x) ; for any x; i; t;

Px;i

�
N (t;B � K) � 1

�
�
�
1� e�1

��1
Ui (h; t; x) :

Therefore, recalling notation (80),

Z
dx Px;i

�
N (t;B � K) 6= 0

�
� �

1� e�1
��1

U+
i (h; t) :

Then (96) follows from Lemma 23, �nishing the proof.

3.5 Proof of the persistence theorem

In order to prove Theorem 9, take h 2 Ccomp
+ : Recalling (17),

0 � � logE�e
�hN(t);hi = h�;U (h; t)i :

Using identity (85) and the �niteness (87), this equation can be continued with

=


�;1� e�h

��
Z t

0

ds
D
`;	

�
U (h; s)

�E
< 1:

The monotonicity (86) implies the existence of a �nite limit as t " 1: Since the

previous limit statement holds for all h 2 C
comp
+ ; by (87) we arrive at a log-

Laplace functional of a limiting point �eld N (1); which expectation symbol

we denote by E :

� logE e�hN(1);hi =


�;1� e�h

�
�
Z

1

0

ds
D
`;	

�
U (h; s)

�E
; (97)
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h 2 C
comp
+ : Applying a continuity theorem for clustering (see e.g. [MKM78,

Proposition 4.7.3]), one can easily check that N (1) is an equilibrium state.

(That is, N started from this limiting particle system leads to a time-stationary

process.)

It remains to show that N (1) has full intensity, i.e.

E


N (1);h

�
= h�;hi : (98)

In view of

E


N (1);h

�
= � d

d"
E exp

h
�


N (1);"h

�i ����
"=0

;

from (97) and U(0) = 0 as well as 	(0) = 0 follows that it su�ces to establish

lim
"#0

Z
1

0

ds "�1
Z
dy 	

�
U ("h; s; y)

�
= 0; h 2 Ccomp

+ ;

or, by the basic condition (13) in Hypothesis 5 (b) even that

lim
"#0

Z
1

0

ds "�1
Z
dy

�
1; U ("h; s; y)

�1+�
= 0: (99)

We know from (87) the estimate

0 �
D
�;U ("h; s)

E
� " h�;hi :

Therefore, up to a constant, the double integral in (99) is bounded from above

by

h�;hi
Z

1

0

ds

� KX
i=1

sup
y2Rd

Ui ("h; s; y)

��
:

From the uniform estimate in Lemma 18, the integral is bounded by

� const " �
Z

1

0

ds
�
1 ^ s�d�=�

�

that vanishes as " # 0; by our assumption d > �=� : This completes the proof

of the theorem.

Remark 24 (individual survival) By a slight modi�cation of the argument

given in the latter proof, one can show that under the conditions of the persis-

tence Theorem 9 the limit limt"1



`;Ui(h; t)

�
exists and is positive provided

that h 6= 0: 3
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