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Asymptotic Equivalence of Density Estimation 
and White Noise 

Michael Nussbaum 
IAAS Berlin 

December 1992 

Abstract 

Signal recovery in Gaussian white noise with variance tending to zero has served for 
some time as a representative model for nonparametric curve estimation, having all the 
essential traits in a purified form. The equivalence has mostly been stated informally, but 
an approximation in the sense of Le Cam's deficiency distance !:::,. would make it precise. 
Then two models are asymptotically equivalent for all purposes of statistical decision with 
bounded loss. In nonparametrics, a first result ofthis kind has recently been established 
for Gaussian regression (Brown and Low, 1992). We consider the analogous problem for 
the experiment given by n i. i. d. observations having density f on the unit interval. 
Our basic result concerns the parameter space of densities which are in a Sobolev class 
of order 4 and uniformly bounded away from zero. We show that an i. i. d. sample of 
size n with density f is globally asymptotically equivalent to a white noise experiment 
with trend j11 2 and variance ~n- 1 • This represents a nonparametric analog of Le Cam's 
heteroskedastic Gaussian approximation in the finite dimensional case. The proof utilizes 
empirical process techniques, especially the Hungarian construction. White noise models 
on f and log f are also considered, allowing for various "automatic" asymptotic risk 
bounds in the i. i. d. model from white noise. As first applications we discuss linear 
wavelet estimators of a density and exact constants for Hellinger loss. 

1 Introduction and main result 

One of the basic principles of Le Cam's (1986) asymptotic decision theory is to approximate 
general experiments by simple ones. In particular, weak convergence to Gaussian shift exper-
iments has now become a standard tool for establishing asymptotic risk bounds. The risk 
bounds implied by weak convergence are generally estimates from below, and in most of the 
literature the efficiency of procedures is more or less shown on an ad hoc basis. However, a 
systematic approach to the attainment problem is also made possible by Le Cam's theory, 
based on the notion of strong convergence which means proximity in the sense of the full 
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deficiency distance. But due to the inherent technical difficulties of handling the deficiency 
concept, this possibility is rarely made use of, even in root-n consistent parametric problems. 
In nonparametric curve estimation models of the 'inverse problem' class where there is no 
root-n consistency, a theory on attainable exact risk bounds is developing the origin of which 
has not been reduction to a limit experiment. Such an exact risk bound was first discovered 
by Pinsker (198P) in the problem of signal r~covery in Gaussian white noise, which is by now 
recognized as the basic or "typical" nonparametric curve estimation problem. The cognitive 
value of this model had already been put forward by Ibragimov and Khasminski (1977). These 
risk bounds have been established since then in a variety of other problems, e. g. density, 
nonparametric regression, spectral density, see Efroimovich and Pinsker (1982), Golubev 
(1985), Nussbaum (1985)); and they have also been substantially extended conceptually 
(Donoho and Johnstone (1992)). The theory is now at a stage where the approximation of 
the various particular curve estimation problems by the white noise model could be made 
formal. An important step in this direction has been made by Brown and Low (1992) by 
relating Gaussian regression to the signal recovery problem. These models are essentially 
the continuous and discrete versions of each other. The aim of this paper is to attempt the 
formal approximation by the white noise model for the problem of density estimation from 
an i. i. d. sample. 
To formulate our main result, define a basic parameter space ~ of densities,as follows. Let 

W;1(M) = { f E L2(0, 1), llJ(m)11: ~ M } 

be an L2-Sobolev class of order m. Let :F?."- be the set of densities on [O, 1) bounded below 
by E: 

(1) 

Define an a priori set, for given E > 0, M > 0 

~"-.M = Wi( M) n F?.E· 

For two sequences of experiments P n and Qn having the same parameter space we shall say 
that they are asymptotically equivalent if the respective deficiency /),, distance tends to zero, 
i. e. if !),,('Pn, Qn) ~ 0 as n ~ oo. Let dW denote the standard Gaussian white noise process 
on the unit interval. 

1.1 Theorem. 

(2) 

(3) 

For any E > 0, M > 0, the experiments given by observations 

Yi, i = 1, .. ., n i. i. d. with density f 
1 

dy(t) = J112(t)dt + 2n-112 dW(t), t E [O, 1) 

with f E ~E,M are asymptotically equivalent . 

This result is closely related to Le Cam's global asymptotic normality for parametric models. 
Let in the i. i. d. model f be in a parametric family {P19, {) E 0} where 0 C Rk, which is 
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sufficiently regular and has Fisher information matrix I( 1J) at point {}. Then the i. i. d. model 
may be approximated by a heteroskedastic Gaussian experiment 

(4) 
where 'T/ is a standard normal vector and tn( {}) is a map which assigns to {} an element of a 
certain discrete net in 0 which becomes successively more dense with n (see Le Cam (1986), 
chap. 11). We see that (3) is a nonparametric analog of (4) when{} is identified with j 112 • 

Indeed, the identity for the Fisher information matrix in the parametric case 

formally describes 1(1112 ) as ~ times the unit operator. But even for parametric families (3) 
seems to be an advantageous form of a global approximation, since the discretization map 
tn(1J) is absent there. When deducing (4) from (3), which is possible for parametric families 
in ~e,M, one recognizes that this complication derives only from the "curved" nature of a 
general parametric family in the space of roots of densities. 
We believe that the restriction to a parameter space ~e,M, in particular to densities of smooth-
ness 4 is of preliminary nature. What matters in our view is that ~e,M is genuinely global and 
nonparametric, and that approximation by the experiment (3) provides conceptual insight 
on asymptotic normality of i. i. d. models. White noise models with fixed variance do occur 
as local limits of experiments in ..Jii, consistent nonparametric problems (Millar (1979)), and, 
via specific renormalizations, also in non root-n consistent curve estimation (Low (1992), 
Donoho and Low (1992)). Thus various central limit theorems for i. i. d. experiments can be 
imdedded in a relatively simple and closed form approximation by (3). 
The paper is organized as follows. In section 2 we develop the basic approximation of likeli-
hood ratios over local shrinking neighborhoods of a given density f0 • These neighborhoods 
~n(fo) are already "nonparametric", ~n the sense of shrinking slower than n-1/ 2 . The tech-
nical part of the proof is in the appendix of the paper. Once in a Gaussian framework, in 
section 3 we manipulate likelihood ratios to obtain other approximations, in particular the 
one with trend j 112 . For these experiments which are all Gaussian we use the methodology 
of Brown and Low (1992), who did compare the white noise model with its discrete version 
(the Gaussian regression model). 
Piecing together local approximations to a global one by means of a preliminary estimator is 
the subject of section 4; the proof of theorem 1.1 is at the end of this section. Our method 
is somewhat different from Le Cam's which works in the parametric case; the concept pf 
metric entropy or dimension and related theory is not utilized. But obviously these methods 
which already proved fruitful in nonparametrics (Birge (1982), Van de Geer (1990)) have a 
potential application also here. The same holds true for the results of Mammen (1986) on 
the informational content of additional observations; this paper is also recommended for an 
accessible overwiew of some global asymptotic theory. 
Some statistical consequences are discussed in section 5; here we focus on exact constants 
for L2-loss. As an exercise we derive the result of Efroimovich and Pinsker (1982) result on 
density estimation from the white noise model; this then serves as a basis for extensions to 
linear wavelet density estimators and to exact constants for Hellinger loss. 
The preliminary estimator required for the global approximation is treated in section 6, with 
an emphasis on existence. A more constructive theory oflog-density estimation in exponential 
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families which was also instrumental for our approximation result has been developed recently 
by Barron and Sheu (1991). -

2 The local approximation 

Our model will be estimation of a density f on the unit interval [0,1]. Supppose we have 
. i. i. d. observations Xi, i = 1, ... , n distributed with Lebesgue density f, and it is known a 
priori that f belongs to a set Ea of densities. Define Ea to be the class of all densities on 
[O, 1] which are strictly positive and of bounded variation. Thus the logarithms of densities 
in Eo exist, are bounded and of bounded variation. 
Let II · llP denote the norm in the space Lp(O, 1), 1 ~ p ~ oo, and II · llTv be the total 
variation norm. Let a sequence Tn ~ oo be given, and for any fa E Ea define a class En(fo) 
by 

(5) En(fo) = {f E Eo, II log f - log folloo < r;; 1n-l/3 , 

lllogf-logfollTv < Tnn- 113 } 

To define the approximating Gaussian shift experiment, assume a fo in Ea fixed and let Fo 
be the corresponding distribution function. Let B be the standard Brownian bridge on [0,1] 
and consider an observed process 

(6) y(t) =lot log fa (F0- 1 (u))du - tK(follf) + n-1!2 B(t), t E [O, l]. 

Let Qn,J.Jo be the distribution of this process, and 

Qn,fo = {Qn,J.fo 'f E En(fo)} 

be the corresponding experiment when f varies in a neighborhood En(fo). Let Pn,J be the 
joint distribution of the observations xi, i = 1, ... 'n, and let 

Pn,J0 = {Pn,f , f E En(fo)} 

be the corresponding experiment around f 0 . Let 6- denote Le Cam's deficiency distance. 

2.1. Theorem. Let M and Tn ~ oo be given, and define En(fo) as in (5). Suppo?e 
Tn = o(n") for any€> 0. Then 

uniformly over f o E Eo. 

The proof is based upon the following principle, described in Le Cam and Yang (1991), p. 
16. Consider two experiments P = {Pt9, {) E 0} and Q = {Qt9, {) E 0}. Assume there is 
some point {Jo E 0 such that all the Pt9 are dominated by Pt90 and all the Qt9 are dominated 
by Qt9o· Construct the process A(O) = {A(0 )({)),{) E 0} where A(0)(19) = ::fl . Construct 

i9o 

A(l) similarly with A(1)(19) = :QQfl. Give A(o) the distribution induced by P190 and A(l) the 
i9o 

distribution induced by Qt90 
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2.2 Proposition. Suppose there is a pairing on some common probability space such that 

sup EIA(0)(1J) - A(1)(1J)I:::; E. 
'9E0 

Then b,,(P, Q) :S E/2. 
Let (n,B,P) be the common probability space for the processes A(i). The proof of this 
proposition is easily argued by showing that the experiment P* = { PJ, {) E 0} given by 
measures dPJ = A(0)( 1J)dP is of the same type as P (likewise for Q and Q* given by measures 
dQ~ = A(1)(1J)dP), and that EIA(0)(1J) - A(1)(1J)I is the total variation distance between PJ 
and Q~. Thus the inequality for the deficiency follows from the total variation distance 
estimate for equivalent representations. 
For our problem, we identify {) = f, 0 = 1:n(fo), P = Pn,fo, Q = Qn.Jo. Furthermore, 
we represent the observations Xi as Xi = F-1 (Zi), where Zi are i. i. d. uniform (0,1) 
random variables and F is the distribution function for the density f (note that F are 
strictly monotone for f E 1:0 ). We will then make use of the Hungarian construction (see 
Shorack, Wellner (1986), chap. 12, section 1, theor. 2). Let Un be the empirical process of 
Zi, ... , Zn, i. e. 

1 n 
Un(t) = ~ L)X[o,t](Zi) - t), t E [O, l]. 

yn i=l 

2.3 Proposition (The Hungarian construction). There is a double array of independent 
uniform {0,1) random variables Zin, i = 1, ... , n, n = 1, 2, ... and a sequence of Brownian 
Bridges Bn, n = 1, 2, ... , all defined on a common probability space (n, B, P), such that for 
some positive constants c 1 , c 2 , c3 not depending on n we have 

(7) 

Using the elements of this construction, we define the pairing of proposition 1 as follows. 
Note that the experiment P n,fo is dominated by P10 ; then the likelihood ratio process A (o) is 

Note that 

Elog {fa (F0- 1 (Zi))} = j log fa dFo = -K(fo II!), 

where K(fo II f) is the Kullback-Leibler relative entropy. Defining 

we then have the following representation of A(0 ): 

A(0)(f) =exp { n j K-J,J0 (t) Jn Vn(dt) - nK(fo II J)} · 
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The corresponding likelihood ratio process for Qn.fo has the form (with Z a uniform (0,1) 
random variable) 

(8) A<1 l(J) =exp { n j K.j,J0 (t) Jn Bn(dt) - ~Var (K.J,J0 (Z))}. 

2.4 Proposition. Under the conditions of theorem 2.1 we have on the probability space 
(O,B, P) for n----+ oo 

EIA(0)(!) - A(1)(f)I --4 0 

uniformly over f E En(fo), fo E Eo. 

Theorem 1 now hinges on this proposition; the proof is in the appendix. 

3 Further local approximations 

We are now able to identify several more asymptotically equivalent models. Let W(t) be 
the standard Wiener process on the positive half line. Let Q(2.f,) be the experiment given by n, o 
observations 
(9) dy(t) = (f(t) - fo(t))dt + n-1!2 J~12 (t)dW(t), t E [O, 1] 

when f varies in En(fo), and let Q~3.f,) correspondingly given by 
' 0 

(10) dy(t) = (J112(t) - f~/ 2 (t))dt + ~n- 1 12 dW(t), t E [O, 1]. 

Let A(i)(J) be the likelihood ratio process for Q(i).f, built in analogy to A(l) in (2.6), i.e. when n, o 
the dominating element is the one with f = Jo. 

3.1 Theorem. The experiments Q(i).f, , i = 1, 2, 3 are all asymptotically equivalent. More n, o 
specifically, there are versions of A ( i), i = 1, 2, 3, all defined on the probability space ( n, B, P) 
of proposition 2.4 such that as n --t oo 

uniformly over f E En(fo), Jo E Eo, for i = 2, 3. 

3.2 Remark. For fixed Jo, the type of the experiment is not changed when the additive 
term fo(t)dt in (7) is omitted, since this amounts to a translation of the observed process y. 
The same is true for the other variants, so that locally asymptotically equivalent experiments 
for f E En(fo) are also given by 

(11) 
(12) 

(13) 

(14) 

Yi, i = 1, ... , n i. i. d. with density f 
dy(t) =log f(F0- 1 (t))dt + n-1l 2 dW(t), t E (0, 1) 

dy(t) = f(t)dt + n-1 / 2 J~12 (t)dW(t), t E [O, 1] 
1 

dy(t) = j112 (t)dt + 2n-1l 2 dW(t), t E [O, 1] 
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For the proof of theorem 3.1 we need 
3.3 Lemma. Let 9i E L2 (0, 1), i = 1, 2 and Pi be the distribution of Ji 9i + <7W(t), t E 
[O, 1), i = 1, 2. Then for the total variation norm II· II for measures we have 

llP1 - P2llTv ::; ( 1 - exp {- 4~2 1191 - 9211~}) 112 

Proof. Let p(P1 , P2) be the Hellinger affinity 

p(P1, P2) = j )dP1dP2. 

Then we have (Le Cam and Yang, p. 25) 

For the Gaussian measures Pi we have 

Proof of Theorem 3.1. We shall frequently suppress the index n. Let us first exhibit 
the versions of A(i) on (!1, B, P). Let 'f/ be a standard normal random variable, defined on 
(!1, B, P) and independent of B and the sequence {Zi}. Define W(t) = B(t) + t'f/; then, since 
EB(t)B(u) = t/\u-tu, it follows that EW(t)W(u) = t/\u, so that Wis a Wiener process. 
It then readily follows that B(t) = W(t) - tW(l). (Let the stochastic integral J 9dB(t) be 
defined via this representation of B). Set x:}~~o = Kf,fo; for A(l) we then have 

(15) A{l)(f) = ~xp { n j (x:}~~o - K(follf)) ~ dW - ~llx:}~~o - K(follf)ll 2 } · 

Furthermore let W o F0(t) = W(F0 (t)) and define a process 

- rt -112 
b(t) =Jo f0 dW o F0 • 

This is a Gaussian process with independent increments, and b has variance 
Ji f01dFo = t. Hence bis a Wiener process, and we have for every continuous 9 on [O, 1] 

j 9f~ 12 db = j 9dW o Fo. 

In (9), the distribution of y is absolutely continuous with respect to the distribution of 
n-112 J~ f~/2db, with density 

Using the relation between b and W, we transform this to 

A( 2)(!) =exp { n (fa - 1) n-112dW o Fo - -~ j (fa -1)2 dF0 }, 
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and defining the function 

(16) /'i,(2) (t) = l(F.-1 (t)) - 1 
f.fo Jo o ' 

we obtain 
(17) A C2)(J) = exp {n j K(2) n-1/ 2 dW - ~ j(KC2) ) 2 } f,fo 2 f.fo ' 

In view of the definition of W, A(2)(f) is defined as a random variable on (n, 8, P). To 
obtain A<3)(J), we also use bin (10) and obtain a likelihood ratio 

A(3)(f) =exp { 4n ju112 - J~/2)~n-1f2dw - ~n ju112 - f~/2)2} 

exp 2n - - 1 n-1/ 2dW o F0 - - -- - 1 dFo , { ( j1/2 ) 4nj (j1/2 ) 2 } 
f~/2 2 f~/2 

and with 

we obtain 
(18) 

Now we apply lemma 3.3 for a= n-1/ 2 and observe that EIA 1(!)-Ai(f)I is the total variation 
distance between the respective elements of Q(lf) and Q(i)f, when these are construed as n, o n, o 
measures on ( n, 8, P ). It then remains to prove 

(19) sup 11/'i,t(lf,) - K(follf) - K(fi)f II~= o(n-1) 
fEE.,.(fo) ' 0 ' 0 

uniformly over Jo E Eo. Using the expansion 

(20) log x = log(l + x - 1) = x - 1 - ~(x - 1)2 + o((x - 1)2 ) 
2 

and putting x = /o, we note that for f E En(fo) 

uniformly. (Actually we may write o(n-113 ).) Consequently 

(21) K(follf) - J K}~J0 (t)dt = j (fa -1) (F0 1(t))dt + O(n-213) 
= O(n-2/3). 

Furthermore 

(22) llK(l) - K( 2 ) 11 2 = O (II (1_1) 2 11) = O(n- 213 ). !.Jo !.Jo Jo 
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Now (21) and (22) imply 

proving (19) for i = 2. To obtain it for i = 3, use (20) with x = (Jo) 112 to obtain. 

so that 

(23) 
f j1/2 

log Jo ( t) = 2 log f~/2 ( t) = 11:}~~0 ( t) + O( n-213 ) 

uniformly overt E [O, l]. Now (23) and (21) imply (19) for i = 3. D 

3.3 Remark. Note that to prove (19), it would have sufficed to have o(n-112 ) in place of 
O(n-213 ), so the asymptotic equivalence of the white noise models (12)-(14) is actually valid 
for fin neighborhoods of Jo 

{ f E ~o, II log f - log foll ~ r;1n-1l 4} 

for some Tn ---t oo. But we do not have then the equivalence to the density model over these. 

4 From local to global results 

The local result concerning a shrinking neighborhood of some Jo is of limited value for sta-
tistical inference since in general such prior information cannot be assumed. It would now 
seem natural to construct an experiment where the prior information is furnished by a pre-
liminary estimator, and subsequently the local Gaussian approximation is built around the 
value furnished by that estimator. 
To formalize this approach, let N(n) define a "fraction of the sample size", i. e. N(n) 
is a sequence N(n) ---t oo, N(n) < n, and let the corresponding fraction of the sample be 
S1 = (X1, ... , XN ). For the global result we need to restrict the densities to the set ~ defined 
in section 1. Let then fJ be an estimator of log f based on S1 taking values in ~ and fulfilling 

(24) 

The set ~ must be chosen to guarantee its existence. If f is m times differentiable, we have 
for f an attainable rate in sup-norm (n/ log n)-m/(2m+i) (see Woodrofe (1967)), Bickel and 
Rosenblatt (1973)). Moreover, Barron and Sheu (1992) have shown that for estimating log f, 
some of the attainable rate results for f carry over. Thus if we presuppose a smoothnes class 
with m larger than 1, we have reason to expect that there is an estimator fJ based on the 
whole sample (N = n) attaining the rate in sup-norm required in ~n(J) (i.e. r;1 n.-113 ). 

However, the other norm occurrring in 'En(!) is crucial. Note that the total variation norm is 
essentially an Li-norm on the first derivative. For the k-th derivative we have an attainable 
rate n-(m-k)/(2m+l), which in our setting means that the rate n-1 / 3 would be attainable from 
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m = 4 onwards. Therefore, for the global result, we have to impose such a strong smoothness 
condition. We believe that it is an artefact and due to the nonoptimal method of proof for 
the local approximation; i. e. the local result should actually hold for larger sets 'r,n(f). As 
a further condition for the global result we need the uniform boundedness from below of our 
densities. 
Let F?:.e be the set of densities bounded below by E (see (1)), and define an a priori set, for 
given E > 0, M > 0 

r, = Wi(M) n F?.e· 

In section 6 below we will prove the existence of the required preliminary estimator. In par-
ticular we will justify choices N(n) "'njlogn, Tn = logn, and also N"' n/2. In any case 
assume n ;::: n - N henceforth. 

The following construction of a global approximating experiment assumes such an estimator 
sequence fixed. Consider a process y which conditional upon S1 is given by 

(25) y(t) = ft log ~(c-1 (u))du - tK(follf) + (n - N)-112 B(t), t E [O, l]. lo g 

where G is the distribution function corresponding to the realized value fJ. Call the conditional 
distribution of y(t) given by (25) Q~,J,g· Denote the distribution of S1 as P~.f; define CJn,f 
to be the joint distribution of S1 and y . Define an experiment 

4.2 Theorem. Let an M and Tn as in theorem 2.1 be given, and also an estimator sequence 
fJ fulfilling {24}, depending only on the sample fraction S1 = (X1, .. .", XN), N = N(n), n = 
1, 2, ... , and where n - N ;::: n. Then 

Proof. Define S2 = (XN +1> •.. , Xn) as the second fraction of the sample, and let its distribu-
tion be P~,J· We claim that there is a probability space (n2, 8 2 , P2) independent of n, and on 
it independent uniform random variables Zi:n, i = N +1, ... , n, a sequence of Brownian Bridg~s 
B~, n = 1, 2, ... , such that if U~ denotes the empirical process of Zin, i = N + 1, ... , n then 
U~ and B~ satisfy relation ( 7) with n replaced by n-N. Indeed this also follows from theorem 
2 in Shorack, Wellner (1986), chap. 12, section 1; it suffices to consider Xi, i = N + 1, ... , n 
as the first fraction of a sample of size n. We may then identify as usual Xi= F- 1 (Zi':n), but 
also define y(t) via the Brownian bridge B~, by taking B~ for Bin (25). 
Observe that given g E ri, the distribution Q2 Jg is absolutely continuous with respect to the n, I 

distribution of pure noise, i. e. of (n - N)-112 B. This distribution may be written Q~,g,g· 
Define then densities on (n2, E2, P2) 

dQ2 
2* ( ) n,f,g ( ( ) ) qn,f,g W2 = dQ2 y W2 

n,g,g 
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where the random variable y has distribution Q;,g,g· It was already argued in proposition 

2.2 that { q~~1,9dP2 , f E E} is equivalent to { Q~,f,g , f E E} (since the likelihood ratio dis-
tributions coincide). Analogously define for a random variable S2 having distribution P;,,9 

2•. dP;_,f 
Pn,f,g(w2) = dP2 (S2(w2)). 

n,g 

Then {P~71,9 dP2, f E E} is equivalent to { p;_,1, f E E }. Also in the local case (proposi-
tion 2.4) it was argued that if f E En(g) then 

(26) 

uniformly over f E En(g) and g E Ea. (It was shown for sample size n; but since n - N::::: n, 
the argument remains valid for the now relevant diminished sample size). Hence (26) holds· 
also uniformly over g E En(!) and f EE. Now model the distribution of (Zi, . .. ,ZN) on a 
probability space (Di,81, P 1)such that S1 has density p~71 , and take (n, B, P) as the product 
of(f21 ,Bi,P1 ) and (f22,B2,P2 ). On (D,B,P) define a P-density for g = g(w1 ) 

let Q~,f be the corresponding measure and Q~ ={ Q~,f' f E E }. 

4.3 Lemma. The experiment Q~ is of the same type as Qn-

Proof. Let P 1 1 be the distribution of S1 under the uniform· density 1; and Q2 11 be n, n, , 

the distribution of pure noise in (25). Then Qn,f is absolutely continuous with respect to 
P~,l ®Q~,l,l >with density iJ.n,Ji say. We already noted that Q~,l,l = Q~,9 ,9 ; hence 

- (S ) - dP~,f (S ) dQ~,f,g(Si) ( ) 
qn,f i, Y - dP1 1 dQ2 Y · 

n, 1 n,g( Si ),g( Si) 

Now q~11 (w) is obtained from this density by plugging in S1(w1) = (Z1(w1), .. . , ZN(w1)) 
and y(w2) = (n - N)- 1 l 2B~(w2). The factorization criterion then says that the map w 1----+ 

(S1(w1), y(w2)) is a sufficient statistic in the experiment Q~, and Qn is constituted by tl)_e 
distributions of this sufficient statistic. Thus Qn and Q~ are equivalent. D 

Having found a convenient representation of Qn, we will now complement it by orie for 'Pn 
on the same probability space. Define a P - density 

* 2* 1* Pn,f ;= Pn,f,gPn,f > 

a corresponding measure P~,f and an experiment P~ = { P~.f, f E E}. 
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4.4 Lemma. The experiment P~ is of the same type as Pn. 

Proof. The experiment Pn is dominated by the Lebesgue measure, which may be writ-
ten P~ 1 0 P~ 1 . But another dominating measure is P 1 1 0 P 2 (S ) , indeed this measure , , n, n,g t 

has Lebesgue density f1i=N+l g(x1, ... , XN)(xi) which under our assumptions is positive and 
bounded. (Here the notation g(xi, ... , XN)(xi) signifies dependence of the estimator g on 
S1 = (x1, .. . ,xN) and its dependence as a density on an argument Xi, N + 1 ~ i ~ n.) Now 
the density of Pn f EP n with respect to the measure P 1 1 0 P 2 (S ) may be written , n, n,g 1 

dP~.f dP~.! 
Pn,J(S1, S2) = dP1 (S1) p 2 (S2). 

n,1 n,g(Si) 
Now P~.1 (w) is obtained from this density by plugging in S1(w1) = (Z1(w1), ... , ZN(w1)) and 

S2(w1, w2) = ( G51\wJZN+i(w2)),. .. , G51\wi)(Zn(w2))) . 

The factorization cri.terion then says that the map w ~ (S1(w1 ), S2(wi,w2)) is a sufficient 
statistic in the experiment P~, and Pn is constituted by the distributions of this sufficient 
statistic. Thus Pn and P~ are equivalent. D 

Theorem 4.2 then follows from 
4.5 Lemma. We have 

uniformly over f E E. 

Proof. Define an event 

Then 

asn ~ oo 

Here, for w1 EA, the inner integral in the second summand is o(l) uniformly over f E E, w1 E 
A according to (26). The first summand is also o(l) uniformly over f E E, see (24). Hence 
the lemma. D 

As in section 3, further white noise models may now be considered and used as global ap-
proximants. Remind that according to lemma 3.3, two white noise models with C7 = n-1 

are asymptotically equivalent if the respective trend functions differ at o( n-1! 2 ) in L 2 (the 
Brown-Low approach). Furthermore, in the proof of the global approximation, (26) is crucial. 
Indeed the argument remains valid if the density p2*1 , which is the likelihood ratio of (25), n, ,g 
is replaced by another likelihood ratio also fulfilling (26). We may refer to (25) as "the second 
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part of the compound experiment"; this may now be replace_d, on the basis of lemma 3.3, by 
another one. 
In this sense, the Brownian bridge in (25) may at first be replaced by a Wiener process W(t) 
(see proof of theorem 3.1; here the likelihood ratios coincide). As a next step, in (25) the 
term tK(follf) may be omitted, since its derivative is o(n-112 ) (see (21)). We arrive at the 
compound experiment with second part 

(27) . dy(t) =log ~(a- 1 (t))dt + (n - Nt 1l 2 dW(t), t E [O, l]. g . 

In the compound experiment g is observed. Hence addition oflogg(G-1(t))dt to (27) amounts 
to transforming the overall observations in a fixed given manner. This yields an experiment 
of the same type. Hence 

4.6 Corollary. The compound experiment with first part Y1, ... , YN: i. i. d. with density f 
and second part 

dy(t) =log f(G- 1(t))dt + (n - Nt 112dW(t) t E [O, 1] 

is asymptoticallly equivalent to P n. 

In conjunction with remark 3.2 we obtain more generally 

4. 7 Corollary. 
and second parts 

(28) 
(29) 
(30) 

(31) 

The compound experiments with first part Y1, ... , YN: i. i. d. with density f 

Yi, i = N + 1, ... , n i. i. d. with density J 
dy(t) = logj(G__:1(t)) + (n- N)-1l 2dW(t), t E [O, 1] 
dy(t) = f(t)dt + (n - Nt 1! 291l 2(t)dW(t), t E [O, 1] 

dy(t) = J112(t)dt + ~(n - N)- 112dW(t), t E [O, 1] 
2 

are all asymptotically equivalent. 

Proof of theorem 1.1. Note that the above corollary, in particular the result connected 
with ( 31) is not tied to the choice N :;:::: n/ log n; it remains valid for larger N. Indeed theorem 
4.2 spells out (24) as a condition; suppose we take N = [n/2]. Then (24) is still valid: the 
relevant neighborhoods ~n(f) are of the same size in a rate sense (since n - N :;:::: n), and 
the preliminary estimator only gets better. On the resulting compound experiment we may 
then operate again, reversing the roles of first and second part. Indeed first part y1 , ... , YN 
and second part (31) are independent, so we may in turn substitute y1 , ... , YN by a white 
noise model, using a preliminary estimator based ori. (31). The existence proof for such an 
estimator fulfilling (24) is entirely analogous to section 6; here we exploit the well known 
parallelism of density estimation and white noise on the rate of convergence level. Only we 
now have a white noise model on J112 rather than on f, so a few things have to be taken 
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care of. Observe that for densities in F?.e, € > 0, the seminorms ll(J1f 2 )Cm)ll 2 and llJ(m)ll 2 
are equivalent, and 

(for estimators ]112 of j 112 taking values in W2(M') n F?.e ). Also 

so that it is clear that from a white noise model with trend j112, f E L:, the function f can 
be estimated with a rate as from trend f. Thus substituting y1 , ... , YN by white noise leads 
to an experiment with observations 

(32) 

(33) 

1 
dy1 (t) = j 112(t)dt + 2N- 112dW(t), t E [O, 1] 

1 
dy2(t) = j 112(t)dt + 2(n - N)"""' 112dW(t), t E [O, l]. 

A sufficiency argument shows this equivalent ton i. i. d. processes with variance 1/4, which 
in turn is equivalent to (3). D 

5 An application: exact constants for Lrrisk 

Let F C L: be any a priori set for the density f, and L be a bounded loss function in an 
estimation problem: 

L(g, f) ~ T for f E F and for all possible estimator values g. 

Let Pn be the density experiment with full parameter space L:, and Pn(L, F) be the minimax 
risk there for restricted parameter space F and loss function L. Let Qn be another experi-
ment with parameter space L:, and let p~(L, F) be the analogous minimax risk there. 

5.1 Proposition. Let Ln be a uniformly bounded sequence of loss functions. Suppose that 
tl.(Pn, Qn) ---+ O. Then for any sequence of parameter spaces Fn C L: the minimax risks fulfill 

This is an immediate consequence of the characterization of the deficiency in terms of risk 
functions (see Le Cam and Yang (1990)). The interesting case is the one where Ln is derived 
from a normalized truncated loss function such as 

(34) Ln,T(}.f) = ( nl-r11J - !II~) /\ T, 

where nr-l is the optimal rate of convergence and T a truncation constant. By a suitable 
limit argument in which T ~ oo after n, it will be possible to recover even the optimal 
constants in the known risk asymptotics for the nice nontruncated loss functions. 
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L2-RISK OVER SOBOLEV CLASSES 

As a first exercise let us try to deduce the results of Efroimovich and Pinsker (1982) from the 
white noise approximation. Let <pj(x) = v'2cos(2?rjx), j ~ 1, <pj(x) = v'2sin(2?rjx), j ~ 1, 
<po = 1 be the classical Fourier basis, and fj = (!, <pj) be the Fourier coefficients of f. 
Consider a periodic Sobolev class 

Wl"(P) = { f, Jo= 1, ~(2~j)2m Jj <; P}. 

and the set of all densities in it: 

:F(m, P) = Wf'(P) n F?.o· 
We begin by stating Pinsker's (1980) minimax risk bound in the white noise model, for the 
full nontruncated L2-loss function Ln,oo· Let Qn(F) be the experiment given by the distri-
butions of yin a model (13) where f E F and Jo = 1 (the uniform density). Let Ln,T be 
given by (34). The ball in L2 with center f and radius c will be denoted by B(c, !). 

5.2 Proposition. For r = 2m1+l and any sequence T~ --i- oo the relation 

( )
1-r 

holds, where 1(m) = (2m + 1y ?r(::1'+i) is the Pinsker constant. 

The original result was stated as a nonlocal one, i. e. it referred to parameter space W2(P); 
but it is easily seen to be valid for the shrinking L2-balls: see e. g. Golubev and Nussbaum 
(1990), section 4. 
In this statement, Ln,oo may be substituted by Ln,Tn. if Tn is an appropriate sequence tending 
to infinity. Indeed estimators may be assumed to take values in the ball B(T~n(r-l)/2 , f0), 
whereupon n 1-rllJ - Jll~ ~ 4T~2 , so that any choice Tn ~ 4T~2 is possible. As T~ may grow 
arbitrarily slowly, we now have a sequence Ln,Tn. in which Tn --i- oo arbitrarily slowly. In 

. conjunction with proposition 5.1 this already allows to state a risk convergence in the density. 
model. We first use the local equivalence (remark 3.2); as it refers to local neighborhoods 
:En(fo) the center of which is now known, we see that it is appropriate for lower asymptotic 
risk bounds. It remains to verify that :En( 1) contains a parameter space as in proposition 5.2. 

5.3 Lemma. Let m ~ 4, and let the sequence Tn in :En(fo) be given. Then T~ may be chosen 
such that for any n 

Proof. First we demonstrate that for f E W2(P) n B(T~n(r-l)/2 ,fo) we have 

(35) 
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for r~* = ( r~)l-l/m. We use the multiplicative imbedding inequality 

which implies 

~ Cm(2r~)l-1/mn-(m-1)/(2m+1)2pl/2m 

so that (35) is proved. The remainder of the proof is now entirely analogous to the argument 
in section 6 (for the preliminary estimator g to be in "I'in(f) with high probability). Indeed 
(35) and the relation II/ - foll 2 = O(r~n-m/(2m+i)) can be used to show that f E "I'in(fo) if 
T~ is chosen to grow sufficiently slowly. To treat the logarithms, we may assume as in lemma 
6.2 that J, Jo E :F?_E, since Jo = 1 and ( 48) then implies f E F~.E eventually.D 

The lemma implies that functions in W;1(P) n B(r~n(r-l)/2 , 1) are eventually positive and 
hence densities. This implies a lower risk bound in the density problem: 

5.4 Proposition. There is a sequence Tn --t oo such that in the density problem, form ;::: 4 

For the converse upper bound we shall invoke the global result of corollary 4. 7. Take the 
model (30) and look what risk bounds are attainable there by linear estimators based on 
empirical Fourier coefficients. If i = L:1 c1f1'P1 where i1 = J <p1dy then 

E Iii - 111: = l;:(l - c1) 2 !J + (n - N)-1 L cJ j <pJ?J. 
J J 

(Nate that jj are not independent here if g is not the uniform density.) Observe that 
J( <pJ + ip2_j)g = 2 Jg= 2. Hence if Cj = c_1 we have 

(36) E Iii - 111 2 = 2:(1- Cj) 2 f] + (n - N)-1 L cJ = Rn(c, f), 
2 . . 

J J 

say. Thus we are· essentially in the case of uniform variance function (g = 1) provided we use 
estimators with Cj = c_j. That is no real restriction if the parameter space fulfills a related 
kind of symmetry. Here is a formal argument. 
Identify a set F C L2(0, 1) with its sequence of Fourier coefficients under the usual isometry, 
and for any i, let Yi be the group of transformation which act as follows: for any sequence f, 
the coefficients at level Iii are permuted (i. e. fi appears in place of f-i and vice versa). Call 
:F level symmetric if :Fis invariant under all Yi, i natural. Call a sequence f level symmetric 
if the one element set. {f} is level symmetric, i. e. if f;. = f-i., all i. 
Following Donoho, Liu and MacGibbon (1990) (abbreviated DLM henceforth) we call :For-
thosymmetric if f E :F entails {±Ji} E :F for all possible combinations of+ and -. 

16 



5.5 Lemma. Assume the set Fe l2 is compact, orthosymmetric and level symmetric. Then 
for Rn( c, J) given by (36) we have 

(37) inf sup Rn( c, J) = inf . sup Rn( c, !). 
c fEF c level symmetric fEF 

Proof. For any sequence f E l2 let f* be the sequence {f-i} and j(2) be the sequence {fl}. 
DLM in their theorem 11 show that if :Fis orthosymmetric and compact then the 1. h. s. of 
(37) remains unchanged if :Fis replaced by its quadratically convex hull Q:F (i. e. the set of 
f such that f(2) is in the convex hull of g(2), g E F). Hence 

(38) inf sup Rn( c, J) = inf sup Rn( c, J) ::; inf sup Rn( c, J). 
c fEQF c fEF . c I. 5 • fEF 

For f E :F let J be a level symmetric sequence fulfilling J = ~(!( 2 ) + f*(2l). For any level 
symmetric c we. have Rn( c, !) = Rn( c, J). Moreover, if :F is level symmetric and compact 
then f E :F entails f* E F, so that J E Q:F. Hence (38) may be continued by 

(39) = inf sup Rn(c,J)::; inf sup Rn(c,f). 
c I. s. fEF c I. s. fEQF, f I. s. 

Clearly the abovementioned theorem 11 of DLM also applies to the r. h. s. of (39) and 
guarantees that Q:F may be substituted there by :F. Furthermore, for any sequence c, let c 
be the level symmetric sequence c = ~(c +c*). Any level symmetric c may be represented 
as Co for some general co. Observe also that Rn( c, f) is convex in c. Hence (39) may be 
continued by 

( 40) = inf sup Rn( c, f) = 
c 1. 5 • fEF, f I. s. 

( 41) = inf sup Rn( c, !) ::; inf sup -2
1 ( R,;.( c, !) + Rn( c*, !) ) = 

c fEF,fl.s. c JEF,fl.s. . 

( 42) = inf sup Rn( c, f) ::; inf sup Rn( c, !) 
c fEF, f I. s. c fEQF 

The chain (38)-( 42) shows that (38) is an equality. D 

DLM also show that under the conditions of the lemma Rn( c, !) coincides with the minimax 
linear risk, i. e. with the minimax risk for l2-loss over all linear estimators. 
For attainabiltiy in the white noise model we may disregard the restriction to f which are 
densities. Then evidently our periodic Sobolev class Wf1( P) fulfills all conditions of lemma 
5.5. Hence the minimax linear risk, for nontruncated L2-loss, in the model (30) with realized 
fJ E I:* coincides with the one in the case fJ = 1. This latter one is the stan:dard case covered 
by the original result of Pinsker (1980), where the asymptotics of the minimax linear risk is 
well known. This is thus an attainable risk in the full compound experiment; corollary 4. 7 
then implies 
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5.6 Proposition. There is a sequence Tn --+ oo such that in the density problem, form 2:: 4 
and any E > 0 

Pn(Ln,T,.., :F(m, P) n F?.€)--+ 1(m)Pr as n--+ oo. 

Note that the lower bound of proposition 5.4 holds also over densities m :F?.€' in view of 
lemma 5.3. 

LINEAR WAVELET ESTIMATORS 

The principle that for level symmetric sets and Lr loss the case of heteroskedastic white noise 
may be reduced to the homoskedastic one may be extended. Above it was developed for linear 
Fourier series estimators; an extension to linear wavelet estimators is now straightforward. 
Although recent developments in Wavelet estimation mostly concern nonlinear estimators 
(Donoho, Johnstone (1992)), still linear estimators are efficient in a number of cases. 
Suppose a ~oubly indexed orthonormal wavelet basis of L2 (0, 1) be given: ¢0 , 'l/Jij, i = 0, 1, ... , 
j = 1, ... 2\ with corresponding wavelet expansion of a function f: 

00 2i 

f = f o<Po + L L fij'l/Jij 
i=O j=l 

Here the i-th level is naturally defined as the set of coefficients for given i. Suppose an a 
priori class for f is formulated in terms of wavelet coefficients. Such a class may be called 
level symmetric if all coefficients of the same level are treated the same way, or more formally, 
if the set is invariant under all groups Yi which permute the coefficients of level i. The Besov 
smoothness classes are level symmetric: 

The background is that a restriction which defines smoothness should force the coefficients 
of high frequencies to be small; but in wavelet analysis all coefficient of a given level i 
correspond to the same frequency. Now identify the double arrays {fi1} with the sequence 
space 12; then lemma 5.5 above also holds in the wavelet framework. Since the Besov class 
is also orthosymmetric, and compact if the restriction Jo = 1 is added, the minimax linear 
risk is attained by level symmetric smoothing coefficients c. Thus if J = <Po + Li,j Cij fij 'l/J,j 
where Cij does not depend on j then in the model (30) we have 

E llJ- 111: = o(n-1 ) + ~(1- Cij) 2 Ji~+ (n - N)~ 1 ~ c~1 j 'I/Jig. 
i, J t., J 

2i 

= o(n-1 ) + ~(1- ci-) 2 Ji~+ (n - N)-1 L cl L j 'l/Jf1fl· 
.. J • J=l 

Here 'l/J'fi(x) = 2i'lj; 2 (2ix - j) where 'lj; is the mother wavelet; hence 
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( 43) 

for large i. (Here we did simplify slightly about the wavelet basis, but ( 43) is still true if 
we use the correct version for [O, l] given by Meyer (1992)). Consequently, in nonparametric 
settings where the relevant i are large 

which means that the same risk as for fJ = 1 is attainable. So indeed we have the same 
phenomenon as for linear Fourier series estimators; the heteroskedasticity of the noise does 
not influence the L2-risk of linear estimators. 
For linear wavelet estimators of a density see also Kerkyacharian and Picard (1992). 

EXACT CONSTANTS FOR HELLINGER LOSS 

~he basic white noise approximation of theorem 1.1 in conjunction with the result on the 
L2-risk for the density over Sobolev classes discussed above immediately suggests a result on 
the exact asymptotics of the Hellinger risk. Consider an a priori class 

FH(m, P) = {f, fa density, j1l2 E W;1(P)}. 

Define a truncated (squared) Hellinger loss as 

L;f,T(}, J) = ( nl-rllf1/2 - j1/2ll~) I\ T, 

where r = 1/(2m + 1), and let Pn as before be_ the minimax risk in t_he i. i. d. model. 

5.6 Proposition. There is a sequence Tn ---> oo such that in the density problem, form ;:: 4 
and any f. > 0 

Proof. The attainability of the bound is obvious, in view of theorem 1.1, and our previo1:1s 
reasoning bn how to carry over the Pinsker bound to the density model. Also, it is to be noted 
that the variance cr2 of the white noise (which in our case is 1/4) appears with an exponent 
1 - r in the risk asymptotics. For the lower bound we have to take into account that j112 

is now restricted to the unit sphere in L2. For this we use proposition 5 .2 and restrict j 112 
to a shrinking ball B( r.:n(r-l)/2, 1) around the uniform density 1. Let then II(J112 ) be the 
projection of j112 to the tangent space of the unit sphere in 1. Then obviously 

(44) 

uniformly over j 112 E B(r.:n(r-l)/2, 1). Now nr-l = n:-2m/(2m+l); thus the r. h. s: of 
( 44) is o(n-112) for m > 1/2 and rr: growing not too fast. We may then apply lemma 3.3 
for cr2 = n~1 , to show that in the white noise model the trend j 112 may be substituted by 
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II(J112), with asympotic equivalence of the experiments. Then II(J112 ) varies in an affine 
subspace of L2 , and since it can be represented II(J112 ) = f 112 + c1l for some number 
CJ, its m-th derivative coincides with that of j11 2 • Hence h = II(J112 ) varies fully within 
W2(P) n B(r:,,n<r-l)/2, 1), subject only to the affine restriction (h, 1) = l. But that is 
essentially the case covered by proposition 5.2, so we may infer the lower bound in the white 
noise model. It is then carried over to the density model as before. D 

6 The preliminary estimator 

Recall that the a priori set E was defined as 

E={f; J f=l, f(x)~E, xE[0,1], fEW2(M)} 

where we did impose the smoothness condition m = 4. For the sake of clarity we will retain 
here the general m in the notation. First let us recap a standard type result on attainable 
rates for the density f itself, based on the whole sample X 1 , ... , Xn. 

6.1 Lemma. Let the density f be in a Sobolev class W2(M), m ~ l. Then there exists an 
estimator in, which almost surely is a function from W2(M), such that 

Proof. Suppose :first that f fulfills periodicity conditions, and use a truncated Fourier series 
estimator. Form empirical Fourier coefficients jj = n-1 L:i=1 <pj(xi)· Then 

Ejj = fj, Var Jj = n-1 (! <pJf - f]) ~ n-1 llill 00 • 

Define k = [n7n/(2m+l)) and the estimator I:lil~k ji'Pi· Then, with the usual bias/variance 
decomposition, 

E llin - f11: = E f (Jj - fj )2 ~ L f} + n-1 (2k + 1) llfll00 , 

-oo lil~k 

E Iii~ - f'll: = E f (27rj)2 (Jj - fj) 2 ~ L (27rj) 2 f} + n-l L (27rj) 2 llfll 00 

- 00 lil~k lil~k 

Obviously Llil~k(27rj)2 ~ ck3 • Furthermore, by imbedding inequalities, we have llfll00 ~ c, 
say, on W2(M). The equality 

(45) llf(m)11: = L(27rj) 2mfJ 
j 

implies that for f E W2(M) 

L f} ~ (27rk)-2mM, L (27rj) 2f} ~ (27rk)-2(m-l)M. 
lil~k lil~k 
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Consequently 

E llJ~ - J'll: ~ C ( k- 2(m-l) + n- 1 k 3 ) = Ck 2 ( k- 2m + n-1k) . 

Now the usual argument to choose k ~ n-1 k is seen to yield k ~ n-1/(2m+l) for both risks, 
with respective optimal rates n-2m/(2m+l), n-2(m-l)/(2m+l). Chebyshev's inequality then 
implies the assertion for the periodic case. 
For the class W:i(M) without periodic boundary conditions, it suffices to replace the Fourier 
basis with another suitable basis. One possibility is to use Wavelets, e. g. the orthonormal 
basis in L2 (0, 1) of Meyer (1991) (see Donoho, Johnstone (1992) for a statistical context). The 
equality (45) which expresses llJ(m)jj 2 in terms of Fourier coefficients is then to be replaced 
by the equivalence of this seminorm with the corresponding seminorm in a Besov space B22 , 

. I 

which in turn can be expressed (up to equivalence) in terms of Wavelet coefficients.D 

Introduce a family of norms v( ·,a, b) 

v 2 (f, a, b) = a2 llJll~ + b2 llf'll~ · 
These are all Hilbertian norms for the Sobolev space Wi. Consider sequences 
/ln = nm/( 2m+l), / 2n = n(m-l)/(2m+l). The statement of lemma 6.1 is then equivalent to 

(46) v(fn - f, /ln, /2n) = Op(l), uniformly in J E W;'(M). 

Define now J to be the projection with respect to v( ·,/in, / 2n) of J onto the convex set 
I: C Wj-. Then 

( 47) v(} - f' /1n, /2n) = v(f - f, tln, /2n) 

which implies that ( 46) is valid for J. in place of J, and J is now a bona fide probability 
density taking values in I:. 
The neighborhood I:n(fo) involves involves the sup-norm. To avoid the technical argument 
connected with the correct rate of convergence involving a log term, we shall simply invoke 
a multiplicative Sobolev imbedding inequality: 

( 48) llflloo ~ C llJll~/ 2 llJ'll~/2 

(a special case of general multiplicative imbedding inequalities, see Donoho and Liu (1991) 
for references). Define another family of norms 

v*(f, a, b) =a llflloo + b l/f'll1 
and a sequence 1rn = 1i~2 /~~2 = n(m- 1/ 2)/(2m+i). It immediately follows from (46)-(48) and 
from 11!'11 1 ~ llJ'll 2 that 

( 49) v*(}- f,1;n,/2n) = Op(l), uniformly inf E W;'(M). 

Now form log}; the next step is to prove ( 49) for the log-densities. 
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6.2 Lemma. We have 

v*(logf-logf,1;n,/2n) = Op(l), uniformly inf EE. 

Proof. Since f E E, j E E, we have 

llog f(t) - log f(t)I ::; IJ(t) - f(t)j max u-1(t), f- 1 (t)) ::; jf(t) - f(t)j M. 

Furthermore 

l(log })'(t) - (log J)'(t)I = I j (t) - j (t)I ::; 
I j' f J' (t)I + I (if ~)J' (t)I <; IU' - /')( t)I M + IU - /){t)I M' llJ'lloo · 

By an imbedding inequality, we have llf'lloo ::; CM on W2(M). Consequently 

Since /2n < 'Y;n, we see that ( 49) implies the lemma. D 

Observe that for differentiable f, we have llfllTv = llf'll 1 . The rate implied by lemma 6.2 for 
log fin terms of the seminorm ll·llTv is n-Cm-l)/(2m+i); to achieve the n-1/ 3 rate connected 
with En(fo) we have to assume m ~ 4. H~nce the restrictive assumption f E E. 
Lemma 6.2 implies that an achievable rate in 11·1100 is n-3 .5/ 9 ~ n- 1/ 3 . Thus if Tn in En(fo) 
does not grow too fast· we already have · 

sup Pn,j (Jn E En(!)) --t 1, n--t oo. 
JEE 

However, Jn is based on the whole sample. It now remains to deal with achievability in terms 
of sample size Nn ~ n. 

6.3 Lemma. Suppose En(!) is defined in terms of Tn = log n, while Nn = n/ log n. Then 
for the estimator fln = JN based on a sample fraction (X1 , ... , XN) we have 

sup Pn,f (!Jn E En(!)) --t 1, n --t 00. 
JEE 

Proof. Consider lemma 6.2 for a sample size Nn. It then suffices to show 'Y;N T;; 1n-1/ 3 --t oo, 
/2N Tnn- 1! 3 --t oo. Since /;N = n-a for a= 3.5/9 > 1/3, we have 

/;N T;; 1 n-1/ 3 = na /(log n)l+anl/3 --t oo. 

Furthermore, 'Y2N = N 113 , so 

'Y2N Tnn- 1!3 = (logn)2/3 --t oo.D 

Other choices of Nn and Tn are also possible, in particular Nn = [n/2], Tn = log n. 
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7 Appendix 

Proof of proposition 2.4. Define 

Then 

T11 = n 
nK(follf), T12 = 2 Var(~J.J0 (Z)), 

n J ~j,J0 (t) Jn Un(dt), T22 = n J ~j,J0 (t) Jn Bn(dt). 

EIA(0)(f) - A(1)(f)I =El exp(T21 - T11) - exp(T22 - T12)I 
::; El exp(T21) - exp(T22)I exp(-T11) 
+E exp(T22)I exp(-T11) - exp(-T12)I. 

Furthermore, T1i are nonrandom, and T22 is a normal random variable with expectation 0 
and variance nVar(~J,Jo(Z)). Hence 

(50) 

and we obtain 

E exp(T22) =exp { ~Var(~J,J0 (Z))} =exp T12, 

EIA(0)(f) - A(l)(f)I < El exp(T21) - exp(T22)I exp(-T11) 
+ I exptT12 - T11) - ll 

It now suffices to prove that uniformly over f E ~n(fo), Jo E ~o 

(51) T12 - T11 ---> 0, 

(52) E lexp(T21) - exp(T22)I exp(-Tu)---> O, n---> oo. 

We begin with (51). Consider the expansion 

(53) 
1 1 

log x = log(l + x - 1) = x - 1 - 2(x - 1)2 + 3(x - 1)3 + o((x - 1)3) 

and put x = -Jo .Then it follows that for f E ~n(fo) 

(54) 

for n large enough, uniformly. Consequently (as in section 3, (21)) 

(55) K(follf) = O(n-213 ). 

Now expand T12 and T11 by means of (53), with x =fa (F0- 1(t)). Then 
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Now, since 

we have 

T12 i j (1og fa ( F0- 1(t))) 2 dt - i (K(follf))2 , 

i j (x -1)2 -%(x-1)3 +n0 (n- 413 ), 

Tn nK(follf) = -n j log fa ( F0- 1 (t)) dt 

-n j(x -1) + i j(x -1)2 - ~ j(x -1)3 + nO (n- 413 ) 

n j 3 ( -1/3) Ti2 - T11 = 6" ( x - 1) + 0 n 

Then (54) with Tn----> oo implies (51). 
To prove the analog for the random parts (52), define T0 = T21 - T22 . We then have 

To= Vn j K.j,j0 d(Vn - Bn) = Vn j log fa d(Vn o Fo - Bn o Fo). 

With a partial integration we obtain 

!Toi= lvn j (Uno Fo - Bn o Fo) d (log f - log fo)I 

~ Vn llUn o Fo - Bn b Foll 00 lllog f - log follrv. 

Now taking into account llUn o Fo - Bn o Folloo = llUn - Bnll 00 and the definition of the 
class "£n(fo), we get for On= Tnn- 1! 3 

(56) 

Now consider the inequality (7) of the Hungarian construction. In (7) set x = ~ , where 
-i/2 Th b . Un = T n . en we o ta.In 

P ( VnOn JJUn - Bnll00 > C10n log n +Un) ~ C2 exp (-c3 ;: ) . 
Now Onlogn = Tnlogn n- 1/ 3 ~Un (since Tn = o(nE) for any E > 0 by assumption), while 
Un/ On = n113 /r~/2 • Hence for n large enough 

(57) 

Now we claim 

(58) 
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For i = 2 we have analogously to ( 50) 

E exp 2T22 = exp ( 4T12) , 

Hence 

E exp 2 (T22 - Tl2) :::; exp (2T12) :::; exp ( n j "-}.Jo) . 

Now f E ~n(fo) implies II "-J,fo 11 00 :::; r;;1n--1/3 , so that (58) is proved for i = 2. For the case 
. i = 1, observe 

Now with K~~~o from section 3, (16) 

J (1-) 2 dF0 = j (1- K-(2) ) 2 = 1 + j (."-(2) ) 2 < 1+2r--2n--2! 3 J 0 f,fo · f,fo - n 

according to (54). Consequently 

Eexp2(T21-T11):::; (1 +2r;2n--2/3r:::; exp (n2r; 2n--2! 3) =exp (2r;2n113) 

so that (58) is established for i = 1. 
Define an event 

A= {w : IT21 - Tnl :::; 2un}. 

Then (56) and (57) imply the estimate 

(59) 

To prove (52), split the expectation there into ExA · and EXA"., and consider 

ExA lexp(T21) - exp(T22)I exp(-Tn) = ExA ll - exp(T22 - T21)I exp(T21 - Tu). 

Observe that on w E A 

ll - exp(T22 - T21)I :::; IT22 - T21I exp(T22 - T21) :::; 2un exp 2un = o(l), 

so that, since E exp(T21 - T11 ) = EM0 )(f) = 1, 

(60) ExA lexp(T21) - exp(T22)I expC--Tn):::; 2un exp 2unE exp(T21 - Tu)= o(l). 

For the other part, use Cauchy-Schwartz to obtain 

(61) (P(Ac)E exp 2(T21 - Tn))1/2 + (P(Ac)E exp 2(T22 - T12))1/2 exp(T12 - Tn). 

Here the first term on the r. h. s. can be bounded from above by (see (58), (59)) 
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( c2 exp (-c3n113r;:312) exp ( 2r;;2n1! 3)) 112 = ( c2 exp -n113r;:312 ( c3 - 2r;;1! 2)) 112 . 

Since r;1 - 0, n113r;312 - oo, we see that this term is o(l). The second term on the r. h. 
s. of (61) is estimated analogously, using (58) for i = 2, and in addition (51) for the term 
exp(T12 - Tu). Now (60) and (61) prove (52).D 
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